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Abstract.The goal of this paper is to find out under which conditions the resolvent R (1, A) of 
the generator A of a positive semigroup T = (T(t))l /0 on the space LP(Q) (1 < p < oo) is an 
integral operator. For this purpose we investigate the integral representability of some integrals 
of operator-valued functions (Theorems 2.1 and 2.10). 
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Introduction 

Let Q <= RN be open and 1 < p < oo. An operator U on LP(Q) is called an integral 
operator if there exists a measurable function K: Q x Q —• C such that 

(Uf){y) = \K{y,x)f{x)dx y-a.e. 
n 

for all f € LP (Q). 
Using classical methods, boundary value problems are frequently solved by the use 

of Green's function so that the solution is obtained by an integral operator. On the 
other hand, modern variational methods yield easily weak solutions in much more 
generality. But these methods give no information on the solution operator. 

The purpose of the present paper is to investigate under which conditions the 
resolvent if (1, A) of the generator A of a positive semigroup T= (7'(0)<>o on LP(Q) 
(1 < p < oo) is an integral operator. 

The following question arises naturally. Assume that a function S\[a,b] 
'£(LP(Q,)) is strongly continuous (where [a, b~] is a compact interval) and let 

Q = S(t) dt. If S(t) is integral for all t e [a, /)], does it follow that Q is an integral 
operator? We show in Section 2 that this is actually true if S is positive in addition 
(but not in general). Consequently, if any operator T(t) is integral for t> 0, then 
if (A, A) ••= (1 — A)'1 is integral if X is sufficiently large. 
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We give two different proofs for this result which both are of independent interest. 
The first consists in showing that the kernels of S(t) can be chosen measurable on 
[a, b~] x £2 x £2. This is not obvious. We use a criterion due to A.V. Bukhvalov [ B u i ] 
(see also [Bu3, KA, MN]) which characterizes integral operators by the property to 
transform dominated convergent sequences into almost everywhere convergent 
sequences. 

Our second proof is based on the following intermediate result. Denote by J f r ( L p ) 
the space of all operators which are dominated by a positive compact integral 
operator (those operators are compact and integral themselves). We show that 
Q e :rr(Lr) whenever 5 ( 0 e JtTr(Lp) for all t e [a, /;]. 

This is an order theoretical version of a recent result of J. Voigt [Vo] (after previous 
work by L. Weis [W]) saying that Q is compact whenever T(t) is compact for all 
tela, b~]). 

The space JT r has good permanence properties. Using a result in [ A l ] we show 
that if R{X0, Af e J f r for some A0 eg (A) such that R(k0, A) > 0, then R(X, A) e :'/fr 

for all A e g(A) (so that all resolvents are integral). A very convenient sufficient 
condition for an operator U on Lp to be integral is that ULP a L' (1 <p< co). If £2 
is bounded, this even implies U e :'/fr. This can be frequently applied to elliptic 
operators for which one can show that D (Ak) <= Lm for some k by Sobolev imbedding 
theorems and elliptic regularity; or, more generally, by logarithmic Sobolev 
inequalties (we refer to the books by Davies [Da] or Robinson [Ro]) . 

For bounded open £2 with non-regular boundary such results may fail if Neumann 
conditions are imposed. But in fact, one always has local regularity, i.e. 
D(Ak) <= C(£2) for some k e N. It is shown that this suffices to ensure an integral 
representation of the resolvent. 

Finally, we would like to mention that, even though we have restricted ourselves 
to / / -spaces, our results are still valid for very wide classes of Banach function spaces 
which include Orlicz spaces known for their importance in the investigation of 
general elliptic problems. 

1. Integral operators 

In this section we put together known results on integral operators as they are needed 
later. 

In the following (X, fi) and (Y, v) are <r-finite measure spaces. Let 1 < p, q < co 
and let F= Lp(X, fx), G = Lq(Y, v). 

Definition 1.1. A linear operator T:F-> G is an integral operator if there exists 
a measurable function K:Y* X C such that 

(a) K(y, • ) / ( • ) e L 1 (X, .y-a.e. for all f e F and 

(b) ( T f ) { y ) = \K{y, x)f{x)dli{x) y-a.e. for all feF. 
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Remark 1.2. It follows from the closed graph theorem that every integral operator 
is bounded. In fact, let fH~* f in F and T f n g in G. Then there is a subsequence 
(/nJfcetN (/») which converges a.e. and such that | / „ J < h (k e N) for some heF. 
Now it follows f rom Lebesgue's theorem that ( T f ) ( y ) = §K(y, x)f(x)d/j.(x) 
= l i m ^ C r / J O O a.e. Thus T f ( y ) = g(y) a.e. 

We denote by I(F, G) the space of all integral operators and let 1(F) ••= J(F,F). 
The following sufficient condition due to Kantorovich-Vulikh (cf. [KA]) is 

well-known. 

Theorem 1.3. Any bounded operator from LP(X, fi) (1 < p < GO) into L' (Y, v) is an 
integral operator. 

For completeness we include an easy proof for p = 1 and sketch the proof for p > 1 
(cf. the proofs in [ K A ] due to A. Bukhvalov). 

Proof, a) Let p =\.\f Ke Lx(Yx X), then it follows from Fubini's theorem that 

(1.1) ( S K f ) (y) = f K(y, x ) f ( x ) dft(x) 

defines an integral operator such that HS^H < H^Hoo-
Conversely, let S be a bounded operator acting from L1 (X, ft) to L°°(7, v). 

Consider the space H of all functions of the form 

( t f i ® g i ) { y , x ) = I&OO/ito 
i=l i — 1 

with / , e L1 (X, n), g i 6 L\Y, v), l / l A 1/1 = 0 for / + j- i, j = 1 6 N, which 
is obviously dense in L J ( y x X). Letting 

i= 1 i — 1 

defines a functional on H such that ||</>s.|| < ||,S'||. Thus, 0S has a continuous 
extension to the whole space L 1 ( F x X) whose du<^ is identified with L'(Y* X). 
Hence, there exists Ke L°°(7x X) such that ||A-||,; < ||,S'|| and < S f g ) 
= JJ K(y, x)f(x)dii(x)g(y)dv(y). This implies that SK = S. It is clear now that 
KeLx(Yx X) -> SK e 2\V (X), IJ' (Y)) is an isometric isomorphism. 

b) Let 1 <p< oo, i/p + 1 lp + i/p' = 1. The space 

L°°[LP ' ] := {K\K: F x J ^ C measurable, ess sup (JI^Cf , x)\"'d^(x)Ylp' < oo}, 
ysY 

which is a Banach space (for the obvious norm), is the dual space of 

L 1 [ L P ] == {K\K: Y*X -> C measurable, j ( j \K{y, x)\"dn(x)Ylpdv(y) < oo}. 
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One shows as in a) that SK : Lx [ Z / ] —> ?£ (Ll) L J ) is an isometric isomorphism, 
where SK is given by the formula (1.1). • 

Corollary 1.4. Let Ts^(Lp(X, /<)), 1 < p < oo, such that TLP a L". Then T is an 
integral operator. 

However, if {X, n) is not purely atomic, there always exist (many) operators on LP 
which are not integral operators (for example the identity is not). The following 
criterion is due to A.V. Bukhvalov [Bui ] , see also [ M N , Th. 3.3.11], [KA, Bu3], 

Theorem 1.5. Let 1 < p < oo and let T: LP (X, //) —> L"( Y, v) be linear. Then T is an 
integral operator if the following is satisfied: 

fnJeLp 1 
(1.2) \fn(x)\<f{x) x-a.e.\ => {Tfn)(y) ^ 0 y-a.e. 

/„ 0 x-a.e. J 

It follows immediately f rom Lebesgue's theorem that condition (1.2) is necessary. 
If 1 < p < oo we can change in (1.2) the condition o f / „ 0 x-a.e. to that of \\fn\\ 

0 in Lp. 

Remark 1.6. Theorem 1.5 remains true if we replace G = Lq by G = L°(Y, v), the 
vector lattice of all measurable functions on Y, and define integral operators f rom 
F into L° exactly as in Definition 1.1. 

On the basis of this criterion we prove the following extension of Corollary 1.4. 

Proposition 1.7. Let Te r£(L"(X, //)), 1 < p < oo. If T(LP(X, //)) c L£JX, //), then 
T is an integral operator. 

Here we define L?0C(X, //) := {/]/: X C measurable, f\Bn e L' (X, //) for all n e N}, 
where (Bn)neltl is a fixed increasing sequence of measurable subsets of X such that 
,Y\(J , l e N Bn is negligible. The definition of L'u,JX, p) does depend on the choice of 
this sequence. 

Proof. L(oc is a Frechet space for the seminorms pn ( /') = ||/'|„n|[,J;. It follows f rom the 
closed graph theorem that Tis continuous as a mapping from Lp into L](')C. Thus there 
exist constants C„ > 0 such that p J T f ) < C„ | | / | | p for all / e Lp, i.e. 

(1.3) \(Tf)(x)\< Cn\\f\\p (xe Bn) 

for all f eLp, n e N. This clearly implies (1.1). • 

Permanence properties of integral operators are not good: I(F, G) is not closed in 
,5?(i% G), and 1(F) does not form an ideal in (JJ(F). For that reason we introduce the 
smaller class of regular integral operators. 
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Definition 1.8. (a) A linear mapping T:F -*• G is regular if it satisfies the following 
equivalent conditions. 

(i) T is a linear combination of positive operators; 
(ii) there exists a positive operator Se (F, G) such that | 7'/'| < S\ f \ for a l l / e F; 
(iii) T is order bounded, i.e. for all feF+ there exists geG+ such that \h\<f 

implies | Th \ < g. 

(b) By yr{F, G) we denote the space of all regular operators and by Ir(F, G) 
••= i f ( j F , G) n I(F, G) the space of all regular integral operators. 

The space Ser(F, G) is a Banach lattice, the modulus \T\ of 7 'e ,Tr(F, G) being 
given by | T\f = sup^ j< r | Tg\ and the norm by || 7'||r == || | 7'| j[. Moreover, 
I f (F) -.= ,Tr (F, F) is a Banach algebra. If p = 1 or q = oo then <£' (F, G) = if (F, G) 
and || T\\ = || T\\r for all 7 'e (J"(F, G), whereas f£ r (L") is not even dense in . £ ( / / ) 
in the operator norm if 1 <p < oo. All these facts are standard, see [S, Chapter IV] 
(see also [KA, MN, Z]); the very last property is shown in [AV], 

Proposition 1.9. 

(a) Let T e I(F, G) be represented by the kernel K. Then Tis regular if and only if for all 
f e F, \ \K{ -, x)\f {x)dji{x) e E. In that case l^l is represented by the kernel |AT|. 

(b) Let S, Te£"(F, G), | S | <\T\. I f T e I ( F , G), then SeI(F, G). 

(c) Let SxeT(F, G), S, < e (F, G). Then s u p , S a e T ( F , G). 

(d) Ir(F, G) is closed in J2"(F, G). 

(e) If 1 < p < co, then T(LP) is an algebraic ideal in £Pr(Lp). 

For ( a ) - ( d ) we refer to Schaefer [S, Chapter IV], for example. 

Proof of (e). Let Te Ir(Lp), Se <Ir(Lp). We verify that TS and ST satisfy (1.2). Let 
\fn\ < / ; II/,II - 0. Since S is regular, \Sfn\ < I .S' | /and |I.S!/„!| 0. Consequently, 
(TSf„)(y) -> 0 a.e. by (1.2). Hence TSel(F). In order to show that STe 1(F), 
letg„ = supk>n| Tffr|. Since (Tfn)(y) -> 0 a.e. one hasg n | 0 a.e. Thus ||g„ || -> 0. This 
implies || | S |gn || -> 0. Because of monotonicity one deduces (| S |g n ) (y) -> 0 a.e. Since 
l(ST/n)(y)\^(ISHT/l,l)(y)^(lSlgll)(y) a.e., this implies that ST satisfies 
(1.2). • 

Properties (b) and (c) say that F(F, G) is a band in f£'(F, G). It turns out to be 
the band generated by the order continuous finite rank operators. More precisely, 
let F„' = F' if p < oo and F^ = L1 if p = oo (so that F,[ is the space of all order 
continuous linear forms of F). F o r / ' e g e G denote by / ' ® g the operator given 
by 

( f ® g ) ( f ) = \ f ( y ) f ( y ) d l i ( y ) - g 
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and by (x) G the space of all linear combinations of such operators. Then the 
following holds (see [S, IV. 9.8]). 

Theorem 1.10. (F„' ® G)dd = F(F, G). 

Here for M a !£r(F, G) we let Md = {Te^r(F, G): A \S\ = 0 VSE M], so that 
Mdd is the band generated by M in J V r ( F , G). 

Definition 1.11. Let 1 < p < oo. By Jtr(F, G) we denote the space of all operators 
Te F(F, G) such that | T\ is compact. 

Proposition 1.12. Let 1 < p, q < oo. 

(a) The space J f ( F , G) coincides with the closure of F' ® G in (fr(l-\ G). 

(b) c/fT (F) is an algebraic ideal and lattice ideal in (F). 

For the proof see [S, Theorem 10.3] 

It is clear that :/f ( l ) ) = :/f {l})\ however, if 1 < p < oo there exists a positive 
compact operator T 4= 0 such that T A S = 0 for all positive integral operators S on 
L" (see [A2]). 

The following is a convenient sufficient condition for T to belong to : / f ( F ) . 

Proposition 1.13. Let F = Lp(X, //), 1 < p < oo, and let Te ( f { F ) . Assume that there 
exists ueF+ such that TFcz Fu. Then Te : / f ( F ) . 

Here Fu -= {feF: |/| < mu for some me!M} denotes the principal ideal in F 
generated by u. 

Proof. It follows from the hypothesis that Tis order bounded and | T\Fa Fu. So we 
can assume T> 0. By Kakutani 's theorem there exists a compact extremely 
disconnected space Z and a bijective linear m a p p i n g / : Eu C(Z) such that j > 0, 
/ vl > 0 and / (u) = l z . It follows f rom the closed graph theorem that / T is 
continuous, so there exists C > 0 such that 

\Tf\<C\\f\\u 

for all / e E. This clearly implies (1.2), so that | T\ e L(F). It remains to show that 
T is compact. Let (/„)„etN c F, | | / | | < 1. Since F is reflexive we can assume 
that /„ converges weakly to f say. Let a e K and <p = (j° T)'(5a)eE' = LP'. Then 
</„, <P> - </, <P>, i-e- (j(Tfn))(a) ^ (jTfn){a). Let hm = sup„ ; :m | T f n - T f \ . Then 
j(hm) = sup„ a m T ) f n - {jo T)f 11 0 in C(Z) and so h j x ) | 0 (m ^ x-a.c. 
in X. It follows f rom Lebesgue's theorem that || T f n — Tf\\p 0 (n -* oo). • 

Remark. If p = 2 then T satisfies the condition of Proposition 1.13 if and only if T 
is a Hilbert-Schmidt operator. 
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Proposition 1.14. Let F= L1 (X, fi) andTe Assume that there exists ue F+ such 
that TFc Fu. Then TeF(F) and T2 e J f r ( F ) . 

Proof. The proof of Proposition 1.13 also shows | T\ e Lr(F) in this case. Since order 
intervals are compact in L1, the operator j T\ is weakly compact and so \T\2 is 
compact since L1 has the Dunford-Pettis property. So | T21 < | T\2 e X (F) n F(F). 
Consequently T2 e j f ( F ) . • 

Integral operators also behave badly with respect to interpolation: 

Example 1.15. Let Tp on //((R), 1 < p < 2 be the truncated Fourier transform, i.e. 
+ oo 

{Tpf){x)= J e-^f(x)dxli0il)(y). 
— oo 

Then TpeJ?(Lp(R)). For p = I one has (| T,\f)ix) = » / ( x ) J x l (0>1)(y), i.e. | r t | 
is of rank one and e Jf r(L1([R)). However, Tp is not an integral operator for any 
pe( 1 ,2] . 

2. Integrals of integral operators 

Let F= If (X. fi), G = Lq(Y, v), 1 <p, q < oo, where (X, /i) and (Y , v) are (T-finite 
measure spaces. Let / c [R be an interval. The following is the main result of this 
section. 

Theorem 2.1. Let T: J -» F(F, G) be a function such that 

(a) T(-)f: J —> G is measurable for all f e F 

(b) || r (? ) | | r < k(() (t eJ) for some K e Ll{J, IR). 

Then Qf= \T{i)fdt ( f e F ) j 

defines an operator Qe F(F, G). 

We will give two different proofs of this theorem based on the two criteria given by 
Theorem 1.5 and Theorem 1.10 respectively. 

Let K{t, •,•): Yx X C be the kernel of Tit). One would expect that 
Kl it, y, x) ••= J 7 K i t , y,x)dt is the kernel of Q. However, K need not be measurable 
in t. The first method of proof consists in replacing K by a kernel K which is 
measurable on / x Yx X and such that for a.e. t the operator T(t) is represented by 
the kernel Kit , •, •). The following Lemma 2.2 goes back to the 1930s. 

Lemma 2.2. Let u: J —> G = If (Y, v) be a (Bochner) integrable function. Then there 
exists a measurable function & : Jx Y —> C such that 

for a.e. teJ u{t)iy) = $it,y) y-a.e. 
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Moreover, for almost all teJ the function <£(?,•) is integrable and 
{\ju(t)dt(y) = j 4>(t, y)dt y-a.e. 

Proof We can assume that q = 1 (otherwise take g e LP'(Y, v) such that g(y) > 0 for 
all ye Y, then G <=. Lx (Y, gdv) and we may replace G by O ( Y , gdv)). There exists 
a sequence of functions un:J-> G integrable and countably valued such that 
\j\\u(t)-un(t)\\Gdt - 0 and \\u(t) - u„(t)\\G - 0 t-a.e. (see [HP, Def. 3.7.3]). 
Writing un = Y,k = t 1 Jkgk with Jkcz J measurable, pairwise disjoint and gkeG one 
sees that the function (pn(t, y) — (un( t )) (y) is measurable on J x Y with values in C. 
Since || cpn - q>m\\Ll(JX Y) = j j II "„(0 - " » ( 0 II dt ^ 0 (n, m co), the sequence (</)„)„6N 

is Cauchy in L1 (J x Y). Let <I> e Ll (J x Y) be its limit. It follows from Fubini 's 
theorem that u„(t) = <pn(t, •) <I>(t, •) in G' = L1 ( Y ) t-a.e. Hence u{t) = <l>(t, •) in 
L\Y) t-a.e. This proves the first claim. 

The second follows since for all g e G ' = L " ( Y), 

< J « (0 dt, gy=l<M(i),gydt = l l $ (t, y) dtg(y) dv (y) 
J J Y J 

by Fubini's theorem. • 

Lemma 2.3. (a) Let : / x Y C be measurable; i = 1,2. Then \p1(t, y) = ip 2 ( t , y) 
(t, y)-a.e. if and only if for a.e. t 

Vi(t,y) = w2(t,y) y-a.e. 

(b) Let iPi'.J* Y C be measurable ( i e tNl). Then v;(?,_k) 0 (i co) ( t ,y)-a.e. 
if and only if t-a.e. iPi(t,y) -» 0 (i -» oo) y-a.e. 

Proof. Truncate ipt in order to obtain integrable functions and use Fubini's 
theorem. • 

Lemma 2.4. Let L: Y x X -» C be measurable. Then 

( T f ) ( y ) = jL(y,x)f(x)dfi(x) 
x 

defines a regular integral operator if and only if 

j j \ L { y , x)\ f(x)dfi(x)g(y)dv(y) < oo 
Y X 

for all 0 <feLP(X,p), 0 <geU'(Y, v), i/q+i/q' = 1. 

This follows from Fubini's theorem. 

Lemma 2.5. Let L: / x Y -» C be measure such that L(t,-) is integrable t-a.e. Then 
the function L, (/) = jYL(t, y)dv(y) is measurable on J. 

This is a consequence of Fubini's theorem. 
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Proof of Theorem 2.1. By Lemma 2.2, for all / £ F there exists the unique measurable 
function ( f ^ / x y - t C such that 

t-a.e. (T(t)f)(y) = ^ f ( t , y ) y-a.e. 

Define W: F ->• LP {J x 7 ) by Wf = <Pf. It is clear that Wis linear. We show that W 
is an integral operator, using criterion (1.2) (cf. Remark 1.5). Let fn,feF, |/„| </ 
such that \\f„\\F -» 0 (« -» oo). Since T(t) is an integral operator, it follows that 
t-a.e. (Wfn)(t,y) = <Pfn(t,y) -> 0 y-a.e. Thus by Lemma 2.3(b) W satisfies (1.2). 
By the criterion there exists a measurable kernel K: / x Yx X -> C such that 
x -» K(t, >>, x)f(x) is integrable (t,y)-a.e. and (Wf)(t,y) = \xK(t,y,x)f(x)dn(x). 
It follows from Lemma 2.3(a) that for all f e F , 

t-a.e. (T(t)f(y) = f K(t,y, x)f(x)dn(x) y-a.e.; 
x 

i.e. t-a.e. K(t, •, •) is a kernel for T(t). Then \K(t, - ) | is a kernel for | 7X01 (t-a.e.). 
Let L(y, x) = j , | x, >>) | We show that L defines an operator Ql e Lr(F, G) 
using Lemma 2.5. Let 0 < / e . F , | | / | | < 1,0 < geL« ' , | jg | | < 1. Then by hypothesis (b) 

j j L(y, x)f(x)dn(x)g(y)dv(y) 
Y X 

= J J J \K(t,y,x)\f(x)dKx)dv(y) 
J Y X 

= l(\T{t)\fgydt<\K(t)dt<K. 
j J 

Let (y, x) = \jK(t, y, x)dt. Then J (y, x) \ < L(y, x). It follows that Kl defines 
an integral operator Q y . By Fubini's theorem 

<QJ,g> = I I Ki (y, x)f(x)dn(x)g(y)dv(y) 
Y X 

= SU K(t,y, x)f(x)dfi(x)g(y)dv(y)dt 
J Y X 

= S<Tmg>dt = <Qf,g>. 
J 

Thus Q = QV • 

We would like to emphasize that one cannot replace condition (b) in Theorem 2.1 by 
the weaker condition 

(b') || 7X0II < k(0 for some keL1 (J, IR) 

(which still implies that Qe £C(F, G)). The following example shows that under this 
weaker condition it can happen that Q is neither integral nor regular, even though 
T(t)eJf(F,G). 

Example 2.6. Let F=G= L2([R), / = [1, oo), 1 < <x < 3/2. Define T(t) e &(F) by 
T{t)f= \ S(t) f where : L2 ->• L2 is the Fourier transform and S: -'S(F) 



120 W. Arendt, A. V. Bukhvalov 

is defined by (S(t)f)(x) = l/xxlllyao)(x)f(x). It follows from Lebesgue's theorem 
that S(-)f:J->Fis continuous ( f e F ) . Moreover, | | r ( / ) l l < \\S(t)\\ = l/t*=--K(t). 
Since keL1 (J , 1R), T(- ) / e L 1 ( / , F) for all f e F and 

00 
8 / = I 

1 

defines an operator QeS'(F). It is easy to see that Qf = \((){):FR where 
( R f ) ( x ) = llUoo)(x)x-a(x-l)f(x). Thus Q £ 1(F) and Qt^r(F). One has 
T(t) e J f r (F) ; in fact, | T(t)\ = g, ® l [ 0 t l ] , where & ( i ) = l / / l M ) ( i ) . However, 
Q$I(F) and Q$&r(F). In fact, it is easy to see that Qf = \WAy¥R, where 
( R f ) ( x ) = 1[1i00)(jc)jc~oi(jc - 1 )f(x). The restriction Q0 of Q to V n L2 is an integral 
operator given by the kernel 

This kernel does not defines an integral operator on L2(\R). In fact, the formula 
f i x ) = l t i .oojW^0 1 - 2 defines a function feL2(\R) (since a < 3/2). But 
x —• K(y, x) f ( x ) is not integrable for any y e [R. Thus, Q i 1(F). 

The modulus \Q0\ of Q 0 is given by the kernel 

I ^ ^ N l u . c o j W * " " ^ - ! ) ^ , ! ) ^ ) -

Thus, | Q01 has no extension to L2. This implies that Q is not regular. 

Our second approach is based on the criterion given in Theorem 1.10 and avoids 
measure theoretic arguments. However, we have to assume that F is separable; 
i.e. we will assume in the following that F= LP(X, fi), 1 < p < co and that (X, ji) 
is a separable measure space. In the remainder of this section we assume that 
T: J -» y ( F , G) is a function such that 

(2.1) T(-)f:J -» G is measurable for all f e F, 

and we will add further assumptions. 

Proposition 2.7. The function \ T(-)\f: J -> G is measurable for all feF. 

For the proof we use 

Lemma 2.8. Let <pt, <p2: J —• G be measurable. Then \ <p <p x A <p2 and <px v cp2 are 
measurable as well. 

Proof. By definition, measurability of (pt means that <p{ can be approximated by 
a sequence of functions of the form 

OO 
fW= z l;t(0ft (teJ), 

k= 1 
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where the sets Jkcz J are measurable, pairwise disjoint and gk e G. It follows 
that 1*^1 can be approximated by the functions = i and 
so |<P,| is measurable. Since (p^ v cp2 = + q>2 + |<PJ — <P2|) and (px A q>2 

= — (( — (jOj) v (~<p2)) the proof is complete. O 

Proof of Proposition 2.7. Let feF+. Since F is separable, there exists a dense se-
quence (/„)„eN in D(J):={geF-.\g\<f}. Hence | T(t)\f = s up , e D ( / ) | T(t)g\ 
= sup„ e ,ti | T(t)f„ | = lim„ | 7 ' ( 0 / i l v . . . v j T(t)fn \. So it follows from Lemma 2.8 
that 17"(-) | / is measurable. Since F = span(F+) the proof is finished. O 

Now we assume in addition that 

(2.2) || T{t) ||r < K{t) it e J), where ice L1 (7, R). 

Let <2/= j T(t)fdt ( f e F ) . j 

Proposition 2.9. The operator Q is regular. 

Proof. It follows f rom Proposition 2.7 and (2.2) that \ T(-)\feL1 if G) for all feF. 
Hence Rf-.= j , | T(t) \fdt ( f e F) defines a positive operator R e f£ (F, G). Clearly, 
| 0 / | < £ 1 / 1 for a l l / e F . • 

The following result will be of interest for applications to semigroups given in 
Section 4. 

Theorem 2.10. Let F= LP (X, fi), G = LqiY, v), 1 < p < oo, 1 < q < oo. Assume that 
(2.1) and (2.2) are satisfied. If Tit) e J f r (F, G) for all t e J, then Qe J f r (F, G). 

This theorem is the order theoretical analog of the following result due to J.Voigt 
[Vo] (after previous work by L.Weis [W]). 

Theorem 2.11 (Voigt). Let , E2 be Banach spaces and let S: J -» (Eu E2) satisfy 

(a) S(-)feL\J,E2)for allfeE,-
(b) Sit) is compact for all teJ; 
(c) || Sit) || < K(t) (teJ) for some K e Ll if [R). 

Then Rf= j S(t)fdt ( f e E^) defines a compact operator R: E1 -» E2. j 

Since J f ' ( F , G) = (F, G) (the compact operators) if/? = 1 or q = oo, Theorem 2.10 
follows from Voigt's result in that case. In the other cases Theorem 2.10 can be 
deduced f rom Voigt's result and Theorem 2.1 (see Remark 2.12). Here we do the 
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converse, we give a direct proof of Theorem 2.10 (for separable F) and then deduce 
from it Theorem 2.1 with help of the second criterion (Theorem 1.10). 

Proof of Theorem 2.10. We assume that 1 < p < oo. For measurable subsets 
Xu ..., Xn of X such that Xi n X} = 0 (z + j) and 0<n(Xi)<co (i = 1 , . . . , « ) we 
consider the conditional expectation 

p = t / j Q f j , 
j= i 

where f- = 1 x. and f ) = lAj. Then 0 < Pe.fS(F), | |P | | < 1 and the adjoint 
P' e /J'(F') of P is given by P' = , f} ® f j . Since (X, fi) is separable, there exists 
a sequence (P,,),,^ of such operators satisfying 

(2.6) KmPJ = fmF 

n ao 

for all f e F , and, since p > 1, also 

(2.7) lim P„' / ' = / ' in F' for all / ' 6 F'. 

tl -*• 00 

We show that 

(2.8) | | S P „ - S | | r 0 (ti->oo) 

for all Setfr{F,G). 

a) Let S =f ® g e F' ® G. Then \\spn-s\\r = \\(p;r-n®g\\T = \\p;r-f'\\\\g\\ ^o («->«>). 
b) I t follows from a) that (2.8) holds for Se F ® G. 

c) Let 5 £ : / f ( F , G) and let e > 0. There exists S1eF' ® G such that || - 5 | | r < e. 
Hence 

l i m s u p | | 5 P B - 5 | | r 
« 00 

< lim sup {|| (S - SJP, ||r + || S1 Pn - S, ||r + || St - S ||r} < 2e 
n oo 

by b). 
Next we show that .:/f(F, G) is measurable. In fact, it follows from (2.8) 

that || T(t)Pn ~ Pn ||r 0 (n oo). So it suffices to show that T(t) Pn is measurable. 
Since PneF'®G, it is sufficient to prove that t T(t)(f ® f ) =f ®T(t)f: 
J -> .¥r(F, G) is measurable for all / ' e F', f e F. The mapping T(-) f:J G is 
measurable by hypothesis, and the mapping : U / ' ® U acting from F to 
Z£r(F,G) is continuous. Consequently, T(- ) (/' ® f ) = </> T(- ) f is measurable 
f rom J into r£r(F, G). 

It follows from (2.2) that TeLl{J,.yfr{F,G)). Hence, f rom the properties of 
Bochner integral we derive that Q = \j T(t) dt e :/f'(F.. G). • 
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Second Proof of Theorem 2.1. We deduce Theorem 2.1 from Theorem 2.10. Since the 
measure spaces are cr-finite, there exists functions u'e F', veG such that u' (x) > 0 
(fi-a.e.) and v(y) > 0 (v-a.e.). Let U=u'® v. Then r(F, G) = (F" ® G)di = Udd. 
In particular, for 0 <Se^(F,G) one has SeI(F,G) if and only if 
Sf = sup„ E (»S* A nU)f for all 0 < feF. It follows from Proposition 2.7 that 
(\T(t)\ a nU)f= {^(\T(t))+nU)-\\T(t)\-nU\}f is measurable for all feF. 
Since | T{t)\ A nUe ^r{F, G), it follows from Theorem 2.10 that 
Rn := [, I T(t) I A nU die J f r ( F , G). We claim that 

(2.9) R = supneMR„, 

where Rf= $j\T(t) \fdt. Let 0 < / e F and 

0 < g e G , = , 

[ Ll(Y, v) if q = oo. 

Then by the Beppo-Levi theorem 

<_Rf g'> = J <| T(t)\f g'}dt = j sup <(| T{i) | A nU)f g'}dt j ne[N 
= sup J <(| T{t) I A nU)f g'ydt = sup (Rnf G'> 

iteN neN 

= <(sup Rn)f,g'y. 
ne fN 

This proves (2.9) and so Re (F; ® G)dd = f(F, G). Since Q is dominated by R, the 
proof is complete. • 

Remark 2.12. We gave a direct proof of Theorem 2.10 in the case where 1 < p < oo 
and (X, fi) separable. As mentioned before, i f p = 1 or q = oo Theorem 2.10 follows 
directly f rom Voigt's result. If 1 < p < oo and q< oo, then Theorem 2.10 can be 
deduced from Theorem 2.1 and Voigt's result. In fact, it suffices to show that 
\T{')\f'.J -> G is measurable for all feF. But, by the proof of Theorem 2.1, the 
function (/, y) j || K(t, y, x)\f(x)dfi(x) is measurable. Since G has order continuous 
norm this implies that 

t - j \K(t, •, x)\f(x)dfi(x) = 1 7 X 0 l / e G 

is measurable (see, for example, [Bu2]). 
Thus, Theorem 2.10 actually remains true without the assumption that ( X , fi) is 

separable. 

3. Analytic dependence 

Frequently, a family of integral operators is given which depends analytically on 
a parameter. We show that the kernels can be chosen in such a way that they depend 
analytically on z as well. More precisely, we show the following. 
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Theorem 3.1. Let (X, n), (Y, v) be o-finite measure spaces; we suppose that (X, ji) is 
separable. Let F= LP(X, n), 1 <p < oo, and G = Lq(Y, v), 1 < q < oo. Let D a C 
be open and T: D —> f ( F , G) be a function such that 

(a) T(-)/: D —> G is analytic for all f 6 F; 
(b) for all z0eD there exists r> 0 and ke L1 ([0, 271], 1R) such that B(z0,r) c D and 

\\T{z0 + reie)\\^<K{e) (0 6 [0,271]). 

Then there exists a measurable function K : D x Y x X —> C such that 

1. K(- ,y,x): D —> C is analytic for all y e Y, x e X. 
2. T(z) is represented by K(z, •, •) (z e D). 

Remark. 1. It is well-known that (a) is equaivalent to 

(a') <T(-)f cp} : D ^ C is analytic for all f e F, cp e G'. 

2. In (b) we let B(z0,r) = {z e C : |z - z 0 | < r}. 
3. Condition (b) follows from (a) if q = 00 or p — 1. 

Proposition 3.2. Under the hypotheses of Theorem 3.1, the function T: D ->• <£r (F, G) 
is analytic. 

Proof. Let Let z0 6 D. We show that T is holomorphic at z0 . We can assume z0 = 0. 
Choose r > 0 from the condition (b) of Theorem 3.1. Then 

defines a regular operator T'(0) e (F, G) (by Proposition 2.9). Let f e F. Then 

Consequently, for f e F, 
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Hence, 

Remark 3.3. For Proposition 3.2 it suffices that T(z)e Ser{F,G) for all zeD 
(instead of r(F, G)). 

Lemma 3.4. Let (IV, o) be a a-finite measure space, D <= C open and let u:D 
—> E~Li(W, o) be a holomorphic function. Then there exists a measurable function 
g: Dx W -> C such that 

(a) g(-,x):D —> C is holomorphic for all x e W; 
(b) for all zeD one has u(z)(x) = g(z, x) x-a.e. 

Proof. Within this proof we say that an open set Dl <= D has property (P) if there 
exists g : D1 x W -> C satisfying (a) and (b) with D replaced by D1. 

1. Let B(z0, r) ••= {z e C : |z - z01 < r} c D. Then B(z0, r) has (P). In fact, there 
exist aneE such that lk„ lk" < °o and u{t) =E™=oan(z ~ zo)" i n L1 for all 
zeB(z0,r). In particular, the series Y.n=o i a„ I c o n v e r g e s in L1. Consequently, 
Yjn = o\an(x)\r" < 0 0 f ° r all x£N where N cz W is of measure 0. Let g(z,x) 
= Yn=oan{x){z - z0)" if x$N and g(z, x) = 0 if xeN. Then g: B(z0, r) x IV -> C 
satisfies (a) and (b) on B(z0, r). 

2. Suppose that D1 and D2 satisfy (P) with functions : Dt x W C (i = 1, 2). 
It suffices to show that for a.e. x eWg1 (z, x) = g2(z, x) for all z e /_), n D2. We can 
assume that n Z)2 =|= 0. Then D1 n D2 contains a countable set D0 with a limit 
point. It follows from (b) that for a.e. x e Wone has (z, x) = g2 (z, x) for all zeD0. 
Now the identity theorem for analytic functions implies that for a.e. xeWone has 
g j (z, x) = g2 (z, x) for all z e D2. 

3. It follows from 2 that (P) is preserved by finite unions. 
4. Write D = ( J„ . N D„, where /)„ c D is open, relatively compact and Dn a Z)n+1. 

It follows from 1 and 2 that each Dn satisfies (P). Let gn:Dnx W -> C be the 
corresponding function. The argument given in 2 shows that there exists a set Nn <= W 
of measure 0 such that gn(z, x) = gk(z, x) for all z e Dk if x N„, k = 1 , . . . , n. The set 
N= ofmeasureO. Le tg ( z ,x ) = gn(z, x)forzeDn,x£Nandg(z, x) = 0 
for all z e D if x e N. Then g satisfies (a) and (b). • 

Proof of Theorem 3.1.1. We can assume that p = oo and q = 1. In fact, otherwise, let 
h e Lp(X, n) such that h(x) > 0 for all x e X and let k e Lq'(Y, v) such that k(y) > 0 
.y-a.e. Consider the mapping j: Lq(Y, v) L1 {Y, kdv), j(g) = g, and replace T by 
T(z)f = j(T(z)(hf)). 
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2. Since p = oo,q = \, the space r(F, G) = F(LX(X, //), Ll(Y, v)) is isometrically 
isomorphic to L 1 ( F x I j x where the isomorphism is given by Ke L ' ( F x X) 
-» Tk e r(F, G), (TKf)(Y) = | K(y, x) f(x)d/i(x) y-a.e. Now the claim follows from 
Lemma 3.4. • 

4. Integral representations of semigroups and resolvents 

In this section (X, /<) is a (r-finite, separable measure space and we write for short 
Lp = I f i X , n) (1 < p < oo). For most applications it suffices to take Xan open subset 
of IR* and /< Lebesgue measure. 

Let A be an operator on E -= LP. Our goal is to investigate under which condition 
the resolvent of A consists of integral operators. Because of the better permanence 
properties we restrict ourselves to regular integral operators. Therefore, it is natural 
to introduce 

Qo(A):={Xee(A):R(X, A) (Lp)}, 

the order resolvent set of A. It can actually happen that (I0(A) =(= G(A) (see [ A l ] and 
below), but q0(A) = q(A) if/? = 1 or oo. By rr 0(A) := C \ y 0 ( / 1 ) we denote the order 
spectrum. This notion has been introduced by Schaefer [S2] for bounded operators. 

Proposition 4.1. The order-resolvent set g0(A) is open and the function X —> R(X, A) 
from q0{A) into is analytic. 

Proof. Let X0 6 (A). If | X - X0 \ || R(X0, A) ||r < 1 then writing (X - A) 
= (I-(X0-X)R{X0,A)){X0-A) one sees that R(X, A) = R(X0,A) (/l0 - X)n 

R(X0,A)ne£er{Lp). • 

Proposition 4.2. Let A be an operator on LP, 1 < p < oo, such that R(£,, A) e I'(LP) 
for some £ e q(A). Then R(X, A) e V(LP) for all X e g0(A). Moreover, R(X, A) can be 
represented by a kernel K(X, y, x) which depends analytically on Xe q0(A). 

Proof. The first claim follows from the resolvent equation and the fact that Ir(Lp) is 
an algebraic ideal in «£?•r (77). The analytical dependence of the kernels follows from 
Theorem 3.1. • 

The spectral bound of A is defined by 

= sup {ReA: X e <r(A)} . 

The operator A is called resolvent positive if there exists OJ e IR such that (OJ, oo) <= Q (A) 
and R(X,A)>0 (X>co). In that case, R(X, A) > 0 for all X >s(A), and 
R(X, A) e $£r(LP), A)\ < R(TleX, A) whenever Re/l > s(A). Moreover, if 
s(A) > - oo, then 6 <r(A) (see [A3]). 

Now assume that A is a resolvent positive operator on LP and assume that 
1 < p < oo. Then A generates a positive integrated semigroup .S'on IP: i.e. S: [0, oo) 
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-> .'fi(IS) is strongly continuous, exponentially bounded, 0 = ,S'(0.) < S(s) < S(t) 
for 0 < s < t and 

oo 
R(X, A) = j e~x'dS(t) (Re2 > s(A)), 

o 

(see [A3]). For example, if A generates a positive C0-semigroup T = (T(t))t>0, then 
A is resolvent positive and 5(7) = j('> T(s)ds. 

Theorem 4.3. Let Abe a resolvent positive operator on E~ LP (1 <p< co) and let 5 
be the integrated semigroup generated by A. The following are equivalent: 

(i) There exists X> s(A) such that R(X, A) e F(E); 
(ii) S(t) e F(E) for all t > 0; 
(ill) R(X, A) e f ( E ) for all Xeo^A). 

Proof (0 => (ii) a) Assume that s(A) < 0 and X = 0, so that R(0, A) e Ir(E). Then 
0 < 5 ( 0 < R(0, A) for all t > 0. This implies (ii). 

b) Let X>s(A) be arbitrary. Then B-= A -). is resolvent positive, s(B)< 0, 
R(X, A) = R(0, B). Denote by 5A the integrated semigroup generated by B. It follows 
from a) that Sx(t) e Ir(E) (t > 0). Since 5 ( 0 = eXtSx(i) - l^e1'S;(s)ds (t > 0), 
one concludes f rom Theorem 2.1 that 5 ( 0 e T(E) for all t > 0. 

0 0 => (Hi) Let > m a x { s ( A ) , ()}. Then R(L A) = e 11 S(i)dte .'/f'(E) by 
Theorem 2.1. Let £ e Q0(A). Then R(^, A) = R(X, A) ( / + (X - £) R(£, A)) e F(E) 
since F(E) is an ideal in ' f (E). • 

Corollary 4.4. Assume that A generates a positive C0-semigroup T = (T(t))r> 0 on LP 
(\<p< co). I f T ( t ) e F (Lp) (t> 0), then R(X, A) e F(Lp)for allXe Q0(A) (and, in 
particular, for Re A > s(A)). 

If T(t)e.yfr(L"), we will see actually that R(X, A)e Xr(Lp) for all Xeg(A) 
(Corollary 4.8). We first show that Q(A) = Q0(A) in that case. 

Theorem 4.5. Let B be an operator on E = LP (t <p <co). Assume that there exist 
e q(B), ke IH such that 

1. R(ZuB)eJ?'(E); 
2. R(^,Bfe.yfr(E). 

Then R(X, B) e i£r(E) and R(X, B)k e r/f'(E) for all X eo(B). 

In particular, in the situation of Theorem 4.5 one has Q(B) = Q0(B). This is not 
always the case. There exists a compact positive operator U e SS(L2(0,1)) such that 
Q(U) =|= Q0(U) (and G0(U) is even uncountable). However, the following is shown in 
[Al , Corollary 2.9] (see also [MN, Corollary 4.5.7]). 
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Theorem 4.6. Let Ue P/'r(IJ'), 1 <p< oc. If Uk e :tfr(L") for some i e N , then 
R(X, U) e (LP) for alike g(U). 

Proof of Theorem 4.5. a) By the resolvent equation we have 

(4.1) R(X, Bf = R(L B)k [/+(£ — X) R{X, B)f 

for all X, £eg(B). Letting X = £, = £,2 o n e s e e s that R(^x, Bf e :£'(E) since 
J f r ( E ) is an algebraic ideal in rJ"(E). 

b) Let Xeg(B). We show that R(X, B)e,'Ir(E). We can suppose that X 4= 
Thus a == ( ^ - Xy1 eg(R(^, B)) and (a - R(£u i?))"1 = ( ^ - X)(^ - B)R(X, B). 
Since B) e 'I'(E) and Bf e JtTr(E), it follows from Theorem 4.6 that 
(a - /?(<*!, B))'1 e &r(E). Hence R(X, B) = ocR(^, B)(oc - R(^, B))~l e £"(E). 

c) Choosing £ = ^ in (4.1) it follows now that R(X, Bf e Jtr(E) for all 
Xeg(B). • 

Now we obtain the following result which is analogous to Theorem 4.3. 

Theorem 4.7. Let Abe a resolvent positive operator on E = L" (\ < p < oo) and let S 
be the integrated semigroup generated by A. The following are equivalent: 

(0 R(X, A) e J f r ( E ) for some Xeg(A); 
(ii) R(X, A) e :£'(E)for all X eg(A); 
(iii) S(t) e : / f ( E ) for all t > 0. 

Proof. The equivalence of (z) and (ii) follows f rom Theorem 4.5. The equivalence of 
(ii) and (iii) can be proved as Theorem 4.3 with help of Theorem 2.1. • 

Corollary 4.8. Let A be the generator of a positive C0-semigroup T= (T(t))t>0 on 
E = LP (\ < p < oo). I f T ( t ) e J f r ( E ) (t> OJ, then R(X, A) e JTr(E)for allXe g(A). 

Proof. For ReA>,s(,4), R(X, A) = l i m ^ lle~x,T(t)dt in the sense of J?r(E). 
So R(X, A) e JtTr(E) by Theorem 4.6. • 

The converse of Corollary 4.8 is not true (see Example 4.15). 

Proposition 4.9. Let A be an operator on E = LP (\ < p < oo) and let co e [R, M > 0. 
Assume that 

(a) [<m, oo) <= g (A); 
(b) R(X,A)eJ?r(E) (X>to); 
(c) M— supA > ( 01|XR(X, A)\\r < co; 
(d) R(£, A)k e Jtr(E) for some Zeg(A) and some k e N. 

Then R(X, A) e Jfr(E)for all X eg (A). 
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Proof. 1. It follows f rom Proposition 4.6 that R(X, A) e &r(E) for all X eg (A). 
2. Let X0 e g (A). We claim that 

(4.2) lim ||(A1?(A, A))mR(X0, A) - R(X0, ^ ) | | r = 0 /. • / 

for all m e IKI. In fact, (4.2) being trivial for m = 0 assume (4.2) to hold for m e IN. 
By the resolvent equation we obtain 

3. Since J f r ( E ) is an ideal in J& r (E) , and since by Theorem 4.5 R(X, A)k e J f r ( E ) 
for all X eg (A) the claim follows f rom (4.2). • 

Corollary 4.10. Let A be the generator of a positive C0-semigroup on E. If there exist 
£ e q(A), k e IN such that R(£, A)K e J f r ( E ) , then R(X, A) e J f ( E ) f o r all X eg(A). 

Corollary 4.11. Let A be the generator of a positive C0-semigroup on E. Assume that 
R(Z, Af e Ir(E) for some s(A) and some ^celN. Then R(X,A)e/r(E) for all 
Xeg0 (A). 

Proof Since 0 < R(X, A) < R(X0, A) for X > X0, it follows that R(X, A)kuIr(E) 
for all X < X0. Now the claim follows f rom (4.2) and the fact that T(E) is closed ideal 
in Ser(E). • 

Remark 4.12. The proof of Proposition 4.9 is analogous to [dP, Lemma 3.4], The 
argument (due to de Pagter) shows that the generator B of a C0-semigroup has 
compact resolvent, whenever there exists ke IN such that R(X, B)k is compact for 
some X e g (B). 

Theorem 4.13. Let A be the generator of a positive C0-semigroup T = (T(t))t> 0 on 
E = LP(X, h), 1 < p < oo. Assume that there exists ueE+ such that 

D(AX) <= Eu. 

Then R(X, A) e J f ( E ) for all X eg (A). 
I f , in addition, T is differentiable, then also T(t) e J f ( E ) for all t > 0. 

Here we let D(A'r) = f)neNB(A"). This is a Frechet space for the semi-norms 
A ( / ) = I I / I I + M / I I + . . . + I M * / I | . 
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Proof. Consider the isomorphism j: Eu C(Z) introduced in the proof of 
Proposition 1.13. It follows from the closed graph theorem that the restriction j0 

of j to D(AX) is continuous. Consequently, there exist k e !M and c > 0 such that 

(4.3) \ \ j ( f ) \ L < c p k ( f ) (feD(A°)). 

The space ( D ( A k ) , p k ) is a Banach space and D(AX) is dense in ( D ( A k ) , p k ) . Thus, 
it follows f rom (4.3) that D(Ak) <= Eu and (4.3) remains true for a l l / e D(Ak). 

Let a > s(A). Then there exists a constant c, > 0 such tha tp k (R(oc , A ) k f ) < c, ||/|| 
(feE). Consequently, \\j(R(a, A f f ) \ \ n < c2\\f\\ for a l l / e E (where c2 = cct); i.e. 

\R(a,A)kf\<c2\\f\\u ( f e E ) . 

It follows f rom Proposition 1.13 or 1.14 that R (a, A)2k e Xr(E). Now Corollary 4.10 
implies that R(X, A) e J f r (E) for all X eg (A). 

If T is differentiable, then T(t) e £t?(E,D (Ak)) for all / > 0. It follows that 
T(t)EcEu for all t > 0. Now Proposition 1.13 or 1.14 imply that T(2t) e jTr(E) 
(t > 0). • 

Corollary 4.14. Assume that j.i(X)<co. Let E = LP(X, n) (\<p<co) and let 
T= (T(7)),> o be a positive C^-semigroup on E with the generator A. If 

then R(a, A) e J/ r(E) for all Xeg(A). I f , in addition, T is differentiable, then 
T(t) e Jtr(E) for all t > 0. 

If T is not differentiable it can happen that T(t) is not an integral operator. 

Example 4.15. Let E = L"(0,1), 1 < p < oo, and let T be given by 

Then (R(X, A)f)(x) = ekx\l e~ksf(s)ds (X e C). Thus, D(A) = R(X, A)Ecz Z,°°(0,1). 
However, T(t) is not an integral operator for t<\. 

The following simple case occurs very frequently in applications. 

Theorem 4.16. Let Q <= IR^ be open and let A be the generator of a positive semigroup 
T on LP(Q) (1 < p < oo). Assume that there exists k e N such that 

D(Ak) c LX(Q). 

Then the following holds. 

(a) R(X, A) is an integral operator for all X e g0(A). 
(b) If Q is bounded, then R(X, A) e ,yfr(Lp(Q)) for all X eg (A). 
(c) I f T i s holomorphic of angle a e (0,7t/2], then T(z) is an integral operator and the 

kernel K(z, y, x) can be chosen analytic in 
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ze Z(a) ••= [rem: r > 0,101 < a} for all x, ye Q. 

Proof (a) Let X > s(A). Then R(X, A) > 0 and R(X, A)kLp c It follows from 
Theorem 1.3 that R(X, A)K e F(LP(Q)). Now we obtain from Proposition 4.9 that 
R(X, A) e Ir(Lp(Q)) for all X e q0(A). 

(b) Assume now that Q is bounded. Let X > S(A). It follows from Corollary 4.14 
that R(X, A) e :%r(L"(Q)) for all X e q(A). 

(c) If T is ho lomorph ic , then T: Z(A) -»• JT(LP, D(AK)) c F£(L", L ' ) is a holo-
morphic function. So, the claim follows from Theorem 3.1. • 

5. Applications to elliptic operators 

In this section we illustrate how the abstract results can be applied to elliptic 
operators. As a general reference we use [Da] . 

Diverse realizations of elliptic operators via suitable boundary conditions generate 
positive holomorphic semigroups on L2 (Q). Much effort has been done in order to 
show that 

(5.1) D(Ak) c 

for some k e IN. Since the semigroup is holomorphic this immediately implies that it 
consists of integral operators. What our results give in addition is that the resolvents 
are integral operators. 

Let Q <= [RN be an open set and let au e L'()C(£2) be real such that atj = an 

(i, j = 1,..., N) and 

(5.2) I a ^ x K ^ ^ a l i l 2 x-a.e. 
i,j= 1 

for all £ e RN, where a > 0. 

a) Dirichlet boundary conditions 
Consider the symmetric quadratic form 

with D(Q) = C[' (Q). Let H be the operator on L2(£2) associated with the closure 
of Q. Then H is self-adjoint and — H generates a positive holomorphic semigroup 
(e~ t H) t> 0 on LP(Q). It follows f rom the Beurling-Deny criterion that there exists 
positive contraction semigroups Tp on LP(Q) with generator Ap such that 

TP ( 0 / = Tq ( 0 / ( f e LP nL*,t> 0), 

1 < p, q < oo and A2= — H. 
We call Ap a strictly elliptic operator on LP(Q) with Dirichlet boundary conditions 

(cf. [Da, pp. 9,10]). 
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h) Neumann boundary conditions 
We assume in addition that 

(5.4) X a i j ( x ) ^ j < m 2 

i,j= 1 

for all £ e \RN, where /? > 0. Then we define Q by (5.3) with domain W1,2(Q). Now Q 
is a closed form. Let H be the operator associated with Q. Again one finds 
interpolating positive contraction semigroups Tp on LP(Q) with generator Bp 

(1 < p < oo) such that B2 = — H. We say that Bp is a uniformly elliptic operator with 
Neumann boundary conditions (cf. [Da, Theorem 1.2.10]). 

Theorem 5.1. Let Q be a region in RN and let Ap be a strongly elliptic operator with 
Dirichlet boundary conditions or a uniformly elliptic operator with Neumann boundary 
conditions on LP(Q), 1 <p < oo. In the second case we assume, in addition, that Q has 
the extension property [Da, p. 46], 

Then R(X,Ap) is an integral operator for all X e g0(Ap)) (and, in particular, if 
R e l > 0 j . 

If Q is bounded, then R(X, Ap) e :/fr(Lp(Q)) for all X e q(Ap) (i.e. R(X, Ap) is an 
integral operator and the modulus of the kernel defines a compact operator). 

Proof. Let k > N/2, X > 0. Then 

(5.5) R(X,Ai)kLr(Q)^L,xl(Q). 

This follows from [Da, Lemma 2.1.2 and Theorem 2.4.1] together with [Da, Theo-
rem 2.3.6] in the case of Dirichlet boundary conditions and [Da, Theorem 2.4.4] in 
the case of Neumann boundary conditions. By interpolation it follows from (5.5) that 

(5.6) R(X, Ap)kLP(Q) c L"(Q). 

Now the claim follows from Theorem 4.16. • 

Theorem 5.1 does not hold true, in general, for Neumann boundary conditions if the 
regularity assumption is omitted. In fact, it can happen, that Q is bounded but A2 

does not have compact resolvent. Nevertheless, the first assertion remains true. We 
restrict ourselves to the Laplacian. 

Theorem 5.2. Let Q <= [R^ be an arbitrary open set and let A be the Neumann Laplacian 
on L2(Q). Then R(X, A) is an integral operator for all X e o0 (A). 

Proof. It is known that one still has local regularity in the sense that 

D(Ak) <= C(Q) 

(the space of continuous functions on i2) if k > N/4; see e.g., [Br, IX. 6.1]. Hence 
R(X, A)kL2(£2) c C(£2) for X>0, k> N/4. It follows f rom Proposition 1.7 that 
R(X, A)k e Ir(L2 (Q)). Now the claim follows from Proposition 4.12. • 
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We conclude with an example of an operator of order larger than two. 

Example 5.3 (the bi-Laplacian). Let Q <= [RN be a bounded open set and let B be the 
Laplacian with Dirichlet boundary conditions. Let A = — B2. Then A generates 
a contractive semigroup T on L2 (Q) (by the spectral theorem). Since 0 £ g(B) and 
B1 e it follows that R(0, A) = -A~l = - B~2 £ Jfr(L2). Hence by 
Theorem 4.5 R(X, A) e J f r ( L 2 ) for all Aeg(A) = — g(B)2. Thus, for all i e - g ( B ) 2 , 
the solution of 

Xu + A2u = v on £2 
u\SS2 = (AU)\SS2 = 0 

is given by u(y) = K(y, x)v(x)dx, where K(y, x) and ^ ( y , x) | define compact 
operators on L2(Q). 

6. Generalizations 

As it has been noticed in the introduction our results are still true for very general 
classes of Banach function spaces. Here we give some hints concerning the main 
results leaving the rest to a reader. 

First of all, both criteria for integral representability (Theorems 1.5 and 1.10) are 
true for general spaces of measurable functions (see [Bui , Bu3, Z]). This gives the 
basis for generalizations, together with some basic facts about Banach function 
spaces, which the reader can find in [KA, Z], 

We recall that a Banach space F of measurable functions on (X, fi) is said to be 
a Banach function space (BFS) provided 

( A E f2 6 F, \A| < |f21) ^ (A 6 F, HA || < ||f21|). 

A BFS F has order continuous norm if 

C U O ) => ( l l / J - o ) , 

and it is said that F satisfies the strong Fa tou property provided 

( / , T, sup H / J <oo ) ^ ( l f e F : f J f , \ \ f n \ \ n \ f \ \ ) -

Theorem 6.1. Theorem 2.1 holds true if F and G are BFS, and G has order continuous 
norm or satisfies the strong Fatou property. 

Theorem 6.2. Proposition 2.9 holds true if Fand G are BFS, and G has order continuous 
norm or satisfies the strong Fatou property. 

This means, for example, that Proposition 2.9 holds without any separability 
assumptions. The proof is based on some lattice theoretic arguments. 
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Theorem 6.3. Theorem 2.10 holds true if F and G are BFS, and G has order continuous 
norm. 

In Section 3 we, really, need no special assumpt ions concerning the spaces. Theorem 
3.1 holds t rue for arbi t rary BFS F and G wi thout any separability condit ions 
(cf. R e m a r k 6.2). 

Certainly, all this means tha t the results of Sections 4 and 5 could be corres-
pondingly generalized. 
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