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I. INTRODUCTION

Throughout this paper 4 denotes a closed operator on a Banach
space X. Let 0 <1< oo. We consider the Cauchy problem

ue C([0, t); D(4)) N C'([0, 7); X),
w'(t)y= Ault), te[0, 1), Col(1)
u(0)=x.

Here D(A) is considered with the graph norm | x| .= I|x| + || Ax].
Let 4 be a solution of Cy(7), let ke N, and

’(I—S)k t oA In
u(z)=fo - u(s)ds=j0f0-.-j0 oty o)) dyy, diy---dt,.

Then v is a solution of the problem

ve C([0, 1); D(4)) N C([0, 7); X),
v'(1)=Av(t)+ (/k)x,  1e[0,1), Cr (1)
v(0) =0.

We call C, . (1) the (k + 1)-times integrated Cauchy problem.

DEFINITION 1.1. Let keNg:=Nu {0}, 1>0. The Cauchy problem
C.(t) is well-posed if for all x € X there exists a unique solution of C,(1).

If A is the generator of a C,-semigroup, then for all x e D(A) there exists
a unique solution of Cy(oo). The converse is not true (see [Na, A-II,
Example 1.4]) unless the resolvent set is not empty. However, the following
holds.
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LOCAL INTEGRATED SEMIGROUPS 573

THEOREM 1.2.  The problem C,(t) is well posed for some t > 0 if and only
if A generates a C-semigroup.

This is a modified version of a theorem due to van Casteren [vCa,
Theorem 3.1]. It follows from Proposition 3.3 below and [Na, A-II,
Corollary 1.2].

Thus well-posedness of C,(t) is characterized by the Hille-Yosida
theorem.

Our goal is to characterize well-posedness of C,, (1) by the resolvent
for ke Ny and 7> 0. In our main result, we show in particular that well-
posedness of C,, (1) for some ke N, and some t >0 is characterized by
the fact that the resolvent set p(A) of 4 contains an exponential region

E(x, B):={x+iy:x2B, |y <e~}

(where 2>0, f>0) on which R(4, A):=(A—A4)"' is polynomially
bounded.

This result should be compared with the characterization of those
operators which generate an exponentially bounded k-times integrated
semigroup for some k € N by the fact that the resolvent set contains a semi-
plane on which the resolvent is polynomially bounded (see [AK]).

The local problem has an interesting extension property: if C, (1) is well-
posed then so is C,,(21). Thus one can reach arbitrarily large times if one
is ready to give up regularity. This result can be used to show that (under
the additional assumption that D(A4) is dense) 4 generates a distribution
semigroup (in the sense of Lions [Li]) if and only if C,(t) is well-posed for
some k € N and some 7> 0. From our characterization theorem mentioned
above one can now deduce Chazarain’s theorem characterizing generators
of distribution semigroups (see [Ch, Theorem 5.1]).

If C, . (1) is well-posed, we obtain in the usual way an operator-valued
function S on [0, 7) which governs the problem. We call it the (local)
k-times integrated semigroup generated by 4. Elementary spectral proper-
ties of the bounded operators S(r) are used in order to compute the
resolvent of the (unbounded ) operator 4 (Section 2). This is a new approach
which is very efficient in order to obtain complex characterizations.

A real characterization has been obtained by Tanaka and Okazawa
[TO] (after previous work of Oharu [Ohl]). However, they define local
integrated semigroups in a different way (by a functional equation corre-
sponding to the integrated semigroup property).

Our characterization theorem covers global k-times integrated semi-
groups which are not necessarily exponentially bounded. Those have been
considered before by Kellerman and Hieber [KH], Thieme [Th], and
Lumer [Lul, Lu2].



574 ARENDT, EL-MENNAOQUI, AND KEYANTUO
II. CHARACTERIZATION OF WELL-POSEDNESS BY THE RESOLVENT

For >0, >0, we define the exponential region E(x, ff) by
E(a, B):={4ieC:Re A=, |Im 4| < e*Re*}.

Let 4 be a closed operator on X. Well-posedness of the problem C,, ,(7)
is characterized by the following two theorems.

THEOREM 2.1. Let ke N, 0 <1< 0. Assume that C, _ (t) is well-posed.
Then for all 0 <o <t/k there exist >0, M =0 such that

E(x, Bycp(d)  and  |R(, A)| <M |A* (Le E(a, B)).

The converse theorem holds with some loss of regularity.

THEOREM 2.2. Let >0, >0, M=20, —1<keR, and assume that
E(a, B)<= p(A) and

IR(A, <M A" (Ae E(x, B)).

Let Nap>k+1, t=a(p—(k+1)). Then C, (1) is well-posed.

The proof of Theorem 2.2 is based on a contour argument which we give
at the end of this section. Theorem 2.1 is more delicate. Assuming well-
posedness of C,, ,(t), we obtain an operator-valued function which
governs the problem C, . ,(t) (see Proposition 2.3). Its finite Laplace
transform can be used to compute the resolvent of 4.

PROPOSITION 2.3. Let keN,, 0<teR, and assume that C,, (t) is

well-posed. Then there exists a wunique strongly continuous function
S: [0, 1) > L(X) such that [} S(s)x ds€ D(A) and

; k
A'[ S(s)xdszS(t)x—%x (te [0, 1), for all xe X).
0 .

We call S the k-times integrated semigroup generated by A. Thus, if xe X
and if v is the solution of C, , () then S(s)x=1v'(1}, 0< <.

Proof of Proposition 2.3. Tt follows from the assumption that there
exists a strongly continuous family of linear operators S(¢), 0 <<, such
that (2.1) holds. It remains to show that S(¢) is continuous, ie.,
S(tyeL(X)for0<t<.

For xe X, let V(1)x= [} S(s) x ds (te [0, 7)) be the solution of C, , (7).
Consider the mapping @: X — C([0, t); D(A)), &(x)= V(-)x where D(A4)
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is equipped with the graph norm |x,. The space C([0, t); D(A4)) is a
Fréchet space for the seminorms p,(v) =supo<,<,_ 12 10(?)ll .. Then @ is
linear and it follows from well-posedness that & has a closed graph. In fact,
let x, — x such that v, := &(x,) > v in C([0, 7); D(A)). Since | Av,(s) ds =
v, ()= (5 (k+1))x, (neN) it follows that j(’, Av(s)ds =v(t) —
(5 '/(k+ 1))x, ie., v is a solution of C, , ,(t) and by uniqueness v = ®(x).
Hence for all ne N there exists ¢, such that

1
1AV x]) < e, %] (xex,o<x<r—;).

Since S(1)x=AV(t)x+ (t*/k)x (xeX) it follows that S(t)e Z(X)
0<r<1) |

In order to prove Theorem 2.1 we need some notation.
For AeC, t=20 let

11 k—1 At
| jau-n_% -
g}.(t) Jl)e (k—l)'ds Ak+qi(t)a
where
- L P 12 =1
D= =k =TT T T S
Let
2 k-1
=1 —_
g)=1+1+5+ AT

Assume that A is the generator of a k-times integrated semigroup S
on [0,1). For re[0,7) let L,(r)={[4e *S(s)ds be the finite Laplace
transform of S.

LEMMA 2.4. One has L;(t)e L(X, D(A)) and
(A—A) Li(t)x=e"*(g,(1) = S(1))x (2.2)

for all xe X, te[0,1), AeC.
Proof. Let AeC, r20. Then

! —As d s
Li1)= L e o fo S(r) dr ds

—e ¥ fo S(r) dr+iJZe’“ L S(r) dr ds.
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Since A is closed, it follows from (2.1) that L,(¢)xe D(A4) and

(h—A) L(t)x

) t* o s*
=AiL,(t)x—e I:S(t)x——iale——/ljoe '[S(S)x—;—!x]ds

= "S(t)x+e””$x+,t're' i—k'xds

W S
(k—1)!

=—e "S(t)x+e Mg, (1)x

=e " M(gi(1) = S(N)x.

For a, f>01let A, f)={leC:Red=1,Reiz=f+alnl|il} 1|

xds

= —e""S(t)x+J‘ e
0

ProposITION 2.5. Let keN, 0<t<co. Assume that Cy (1) is well-
posed. Then for all o> k/t there exists >0, M 20 such that A(a, f) < p(A)
and

[R(A, A)Il < M [A)* forall Ae A(a, B).
Proof. Let0<g<1, let r=k/a<rt, and f=(1/t)In(]|S(2)||/q + q(1)).
Let Ae A(a, ). Then {A| =1, hence |gq,(¢)| <q(t). Moreover, Re 1>
B+ (k/t)In |4]; ie., e'®* = (|1S(1)]/g + q(2)) |A]*. Hence

|g:(1)] = e * 1Al 7F — |q,(1)]
> eRe4 4] ~F —q(1)

2 [1S()1/q.
Thus

1S(1)/g: ()l <g<1 (2.3)

and consequently, (g,(t)— S(z)) is invertible and

(g1)— S Z (1)"/g ()" + .
Moreover

I(gx() = SN~ < lga) ™ (1—q) 7" (24)
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Let R=e"L,(t)(g.(t)— S(¢))~'. Then by Lemma 2.4, RX = D(A4) and
(A—A)Rx=x (xe X). (2.5)

We show that (41— A) is injective. Let x € D(A4) be such that 4Ax = Ax. Then
the solution of C, . ,(t) is given by v(r)= [} g.(s) x ds.

Hence S(t)x =g,(r)x and (2.3) implies that x=0.

We have shown that Aep(4) and R(4, A)=R=e"L,(t)(g,(t)— S(t))~ L
In order to prove polynomial growth, let me {0,1,..,k—1}. Then
for AeA(a, B), |Ame *| =|A|" e ReM|Ame Pl ki =e=brgm—* 50
for ReA—»> oo and 4eA(a, f). Consequently, |e*g,(1)"' A% =
[1+g,(t) A*e *| "' =1 for Re A — oo, L€ A(a, B). Thus, there exists ¢, =0
such that |e*g,(¢)~!| <c, |A|* for all A€ A(x, B). Since ||L,(z)| is bounded
for A€ A(a, B) we obtain from (2.4),

IR, A <L (D)) - lle* - (ga(r) — S(1)) |
<const. |e* . g, (1) (1—¢) !
<M A% (A€ A, B))

for some M =0. |

LEMMA 2.6. (a) Leta’'>0, §'>0. For all 0 <a<a' there exists f =2
such that E(a, B)c A(1/a’, ).
(b) Let a>0, §=1. Then A(1/a, B) < E(a, B).

Recall that

E(o, )={(x+iy):x =B, || <e™},
Ao, B)y={AeC:Rei=1,Re iz p+aln|i|}.

Proof. (a) There exists f>max{f’, 1} such that | e~ =2 ~2x_
x’e > (x = p); ie.,

X g o WHlx _ x2 (x=B). (2.6)

Let (x +iy)e E(a, B). Then y*><e®*, x = f. By (26), y’<e #¥e¥* —x2
and x>pB. Hence In(x’+y*)'"?<a'x—a'f and x>=pB. Thus x=p +
(1/2') In(x? + y?)*? and x = 1; ie., (x +iy)e A1/, §).

(b) LetO<a, B>1. Let (x+iy)eA(l/a, ). Then x>1and x=f+
(1/2) In(x? 4+ y*)'%. Hence x> f and p? < x?+ y?<e® e~ <e®> Thus
(x+iy)e E(x, ). 1

Now Theorem 2.1 follows from Proposition 2.5 and Lemma 2.6.
For the proof of Theorem 2.2 we will use the following uniqueness
theorem due to Ljubich.

409/186/2-21
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THeOREM 2.7 (Ljubich). Let A be an operator such that [ Ay, o0) < p(A)
Jor some iye R and

— 1
lim Eln |R(4, A)]| =0.

A= 4o

If ue C([0,1]; X)n C'((0, t]; X), where T >0, such that
u(t)e D(A), O<t<;
u'(t) = Au(s), O<t<r;
u(0)=0,

then u=0.

The proof of [Pa, Theorem 1.27] also yields this slightly more general
case.

Note that in the situation described in Theorem 2.2 the condition of
Theorem 2.7 is fulfilled.

Finally we prove Theorem 2.2.

Proof of Theorem 2.2. Assume that o, >0 such that E(a, )< p(4)
and |R(4, A} < M |Al* for all e E(a, B). We can assume that f is so large
that e>** > x? for all x= f. Let =y uUy,u 7y, be the contour consisting
of the paths y, =x+i./e®™ —x* (x> f) and y, the vertical line joining
B—1 /e —B?and f+i /e — B2

Let p>k+1, O<t<t:=a(p—(k+1)). Since |y, (x)|<const.e*"
(x> p) one has for A=y,(x) (x=f), |Al=e*, [y, (x) [e“R(A) A7) <
const. e*e'R** |A|* 7P = const. etk +1 =P (x > B). Thus S,(1) =
(1/2ni) [ "' R(A, A) A~7 dA converges and defines a norm continuous
function on [0, 7).

Moreover

! 1 eM—1
= —— ] -P A
jos,,(s)ds 2m,fr — R(L A) 377 d)
1
— [ R, A) APt g,

27 r

by Cauchy’s theorem, and

f 1 .
— At —p—1
A L Sy(s) ds =5~ fre AR(A, A) 2 di

1 1

—— | e"R(4, A) A Pdi—=—| AP ' d}
2ﬂifre (/L, ) 27[i~fre d
tP

—_—

I'(p+1)

Hence j'(’) S,(s)x ds is a solution of C,, ,(r) for xe X.
Uniqueness follows from Ljubich’s Theorem 2.7. |}

= Sp(t)_
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II1. PROPERTIES OF THE k-TIMES INTEGERATED SEMIGROUP

Let ke Ny, 0<1< 00, we establish consequences from the well-posed-
ness of C,(1). In the following it will be crucial that p(A4)+ ¢ which has
been shown in Theorem 2.1.

PROPOSITION 3.1.  Assume that C, . (1) is well-posed and denote by S the
k-times integrated semigroup generated by A. Then the following hold.

(a) S(2)x=0 for all te[0, 1) implies x =0 (i.e., S is non-degenerate).
(b) R(A, A)S(1)=S(2) R(4, A) for all Aep(A4), te[0,1).
(c) If xeD(A), then S(t)xe D(A) and AS(t)x = S(t) Ax.

(d) Let xe X. Then xe D(A) if and only if there exists y € X such that
S(1)x= [ S(s)y ds+ (t*/k)x for all te [0, t). In that case y= Ax.

(e) S(s)S(¢)=S8(t) S(s) for all 0<s, t<1.

Proof. (a) This is immediate from the definition.

(b) Let Ziep(d). Let xeX, wv(t)=R(4 A4)[§S(s)(A—A)xds.
Then by (2.1), v(?1)eD(A) and Auv(t)=R(4, A)A L’) S(sYA—A)xds=
R(A, AYS()(4 — A)x — (t/k) R(A, AYA— A)x = v'(t) — (+*/k!)x. Hence
v'(t)=S(t)x (0 <t <t) which proves (b).

(c) This follows immediately from (b).

(d) Let xeD(A). Then by (2.1) and (b), §g S(s) Ax ds=
A [t S(s)x ds=S(t)x — (*/k ) x. Conversely, assume that x, y € X such that
S()x=[4 S(s)yds+ (t*/k!)x (t€[0,7)). Let Aep(4). Then by (b),
{4 S(s) R(%, A)y ds = S(1) R(4, A)x — (1/k') R(, A)x = [§ S(s) R(%, A)x ds
(e [0, 1)) be the first part. It follows that S(s) R(4, A)y = S(s) AR(A, A)x
(s€ [0, 1)) and consequently R(4, A}y = AR(4, A)x by (a). Hence xe D(A)
and Ax=y.

(e) Let se[0,7) be fixed, xeX. Then by (c) and (2.1),
A [ 8(s) S(r)x dr = S(s) A [§ S(r)x dr = S(s) S(t)x — (¢*/k!) S(s)x. Since A
is closed, it follows that v(r) = [{ S(s) S(r)x dr is the solution of C, (1)
with x replaced by S(s)x. Hence v'(¢) = S(¢) S(s)x (te [0, 7)) which proves
the claim. |

The following rescaling property is frequently useful. It is analogous to
[ANS, Proposition 1.3] and its proof can be omitted.

LemMma 3.2. Let 1,keN. Assume that C,, (1) is well-posed; ie., A
generates a k-times integrated semigroup S on [0,1). Let re R. Then A—rl
generates the k-times integrated semigroup S, on [0, t) given by

S.(t)=e "S(1) + j e~"pt—s)S(s)ds  (0<i<1),
[4]
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where p, is the polynomial of degree (k — 1) such that

k k ) ) o0
¥ () r=[" e a o,
j=1\J 0
Next we characterize well-posedness of C,, (z) in terms of Cy(7).

ProprosITION 3.3, Let ke Ny and 0 < 1 < 0. The following are
equivalent.

(1) Cy, () is well-posed,
(ii) p(A)+# & and for all xe D(A**"') there exists a unique solution of
Co(7).

Proof. Assume that (i) holds. It follows from Theorem 2.1 that
p(A4)# & (in Theorem 2.1 we supposed that k> 1, but if C (1) is well-
posed, then so is C,(1)). For xe D(A4**") define

tk

T(0)x = Sy 1(1) A* x4 5

A*x+ - +1dAx+ x 0<r<1), (3.1)
where for m=k, S,, denotes the m-times integrated semigroup on [0, 7).
Then T is a solution of Cy(t) by (2.1). Uniqueness follows from
Theorem 2.7.

For the converse, assume that (ii) holds. By Lemma 3.2 we can
assume that Oep(A) (considering 4 —r otherwise). For yeD(4**!)
denote by t+—T(¢)y:[0,1) = X the solution of Cy(r). Let for xe X,
S (x=T(OA ¥ Dy —(FFkV)Y A 'x— - —tA ¥ Yx—A *x. Then
Se+1(-):[0,7)> X is a solution of C,,,(r). Uniqueness follows from
(CIYN |

Remark. Densely defined operators satysfying (ii) of Proposition 3.3
have been characterized by real conditions (of Hille-Yosida type) by
Oharu [Ohl1].

Finally, we consider the inhomogeneous Cauchy problem. It is
remarkable that under the assumption of well-posedness for very special
inhomogeneities one obtains solutions for a much larger class.

In fact, on the basis of the preceding results one can proceed as in [Ar]
and obtain the following results.

Let ke Ny, 7>0 and assume that C,, (1) is well-posed.

Let fe C([0, 7), X). We consider the problem

ue CY([0, 1), X), u(t)e D(A4) (te [0, 1)),

w()=Au(t)+f(1)  (1€[0,7)), CP(f)
u(0) = x.
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Let v(z)=S(t) x + {§ S(s) f(t —s) ds (t€ [0, 7)). Then the following holds.

If there exists a solution u of CP(f), then ve C** ([0, 1); X)
and u=0v". (3.2)

If ve C*+1([0, 1); X), then u=v* is the solution of CP(f). (3.3)

If fe C** ([0, 1); X), and xe D(A), u, := Ax+ f(0)e D(A);
u, .= Au, + f'(0)e D(A4); - -u,,, = Au,,+ f"0)e D(A);
cu = Auy o+ f*~D(0)e D(A), then CP(f) has a unique
solution. (34)

The following converse of Proposition 2.3 will be useful later.

Remark 3.4. Let 1>0, ke N and assume that there exists a strongly
continuous function S:[0, 1) - #(X) commuting with 4 (i.e., S(¢)xe
D(A4) and AS(t)x = S(t) Ax for all xe D(A) (0<t<7)) and such that
f{, S(s)xdse D(A) for all xe X, 0< <1t and such that (2.1) holds. Then
C. . .(1) is well-posed and S is the k-times integrated semigroup generated
by A4 on [0, 7).

In fact, let xeX. Then v(t)=[} S(s)xds is a solution of C., (7).
Moreover, the proof of Proposition 2.5 is valid for the family S. Thus the
hypothesis of Ljubich’s theorem is satisfied and the solution of C,, (1) is
unique. One might also argue as in [Ar].

IV. EXTENSION OF SOLUTIONS

In this section we show that solutions given on a finite interval can
always be extended if a loss of regularity is accepted. In fact, let ke N, 1>0
and assume that C,, (7) is well-posed. We will show that C,, ,,(21) is
well-posed. To make this more precise, denote by S,:[0, 1) - £ (X)
the k-times integrated semigroup generated by 4. It follows from the
definitions that C, .. (7) is well-posed and the (m 4+ k)-times integrated
semigroup S, . ,, generated by A on [0, t) is given by

)mvl

SH,,,(t):f(:(—;-’-n_-ﬁ_T)!-—Sk(s)ds 0<1<1), (4.1)

for all me N,. We will show that S, ,, can be extended to [0, 27) if m>k.
THEOREM 4.1. Let 7,>0, ke N. Assume that C,(1y) is well-posed.

Then C,, , 1(27,) is well-posed as well. In particular, for all " >0 there exists
k' e N such that C,.(1') is well-posed.
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Remark 4.2. If C, . (7) is well-posed we have the resolvent estimate of
Theorem 2.1. It follows from Ljubich’s theorem (Theorem 2.7) that for
every me N, and every t, > 0 there exists at most one solution of C,,(1,).

Proof of Theorem 4.1. Let 1 <1, It suffices to show that there exists a
solution of C, . (27). Define S,, on [0, ] by (4.1) and on (7, 27] by

So(t) :=Si(7) St —1) + — (TS (= T)+ (£ =1)" Sy (7).
(4.2)

Then S,: [0, 2t] — £(X) is strongly continuous. Let x € X. We show that
v(2) = [§ Sax(s)x ds is a solution of Cy , (21).
Let 7 <¢<21. Then

A jt Sox(s)x ds
0

— 4 j Sals)x ds+ A | Sy(s)x ds
0 T
2k

T
(2k)!

2k

(2k)!

= Syult)x—

t—1
x+ A4 f Syu(s+1)xds
0

=8 (1) x ——— x+ 8,(1) A'[ (s)xds

k—1

R (,nAj Sy m(s)xds+j

s™ ds ASZk_m(r)x>

m= Om'
2% RY;
= Syl x— (;k)'x+sk( )Sk(t—r)x—(tk!r) S(1)x
k—1 1 " (t_,C)Zk——m
+m§0 {ﬁf (Szkm(t‘r)—_(zk‘_m)'_>x
I
+(~m(1—f)m“szk;m71(f)x
1 +] 2k—m—1
"y (2k—m—1)!x}

k—1 1
=S8,(t) Sit—1)x+ Z ﬁ(rmSZk—m(t—T)x+(t_T)m Sok—m(T)X)
2k k—1 Tm( )2/( m k- ([—T)m+l TZk m—1

X m 2k —m) ZO m+1) k—m—1)1"

m=0

T
Tt
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TZk k—1 T (t_,t —m 2k—1 T)Zk [T/
= Sult)x = {(21( DX T T ,Z:k (2k—1 1!}‘
_ 2k—m
—SZk(t A 0(2k ( ) [ T) X
1%
= Sul)x-

This proves the claim. |

Remark 4.3. 1t follows from the proof of Theorem 4.1 and uniqueness
of the solutions that formula (4.2) holds throughout, i.e., the following is
true: Assume that C,, ,(7) is well-posed (where k€ N and 1> 0). Then the
following functional equation holds:

S4(s) Sult) = Syult +5) i o S 5+ TS 1) (43)

for all s, e [0, 1), where S, is the /-times integrated semigroup on [0, 1)
generated by 4 if /=% and S,, is the 2k-times integrated semigroup on
[0, 27) generated by 4.

We give some examples.

ExXAMPLES 4.4. By a multiplication operator on L”(2) we understand
an operator A defined in the following way. We assume that £2 is a o-finite
measure space and let 1 <p < oc. Let m: 2 — C be measurable and let 4 be
defined by Af=mf, D(A)={feL” .mfeL?}.

(a} Let A be a multiplication operator on L” such that E(a, f)c
p(A) where a>0, §>0. Then C,, (ko) is well-posed for all ke N.

Proof. The spectrum of A is the essential image of m.
Let ke N, t1>0. Then one sees directly that C, , (1) is well-posed if and
only if

1 ([—S)k_l .
sup ——— M dsi < 0 (4.4)
Aea(A) ’[0 (k_l)'
for all <t and in that case
t_s)kfl

(s =([ ¢

Omem('r”(is) f(X) (XEQ) (45)



584 ARENDT, EL-MENNAOUI, AND KEYANTUO

defines the k-times integrated semigroup S on [0, 7). Since

'(t—s)kil is _e/tr 1 1 1 ‘ A
J‘O (k—1) € ds*&k P T if A#£0,

(4.4) is equivalent to

eRe).t

—_ fi t<t. 4.6
Aea(A)l,r!.{leAqoo ik = or ‘ (4.6)
Now assume E(a, f)cp(A4). Let Aea(A4), such that Rei=p. Then
[Im 4| = e*®** Hence for t<a, e®*¥ |1 %<1, |}

(b) Let 4 be a multiplication operator and suppose that C, () is
well-posed where ke N and 7>0. Then there exists 0 <1'< 1t such that
C,(1") is well-posed.

Proof. By Theorem 2.1 there exist « >0, > 0 such that E(a, 8) = p(A).
Now the claim follows from (a). |}
Next we discuss the maximal interval of existence by two examples.

(c) Let m(x)=x+ie* (x>1) and let 4 be the multiplication
operator defined by m on L?(1, o0) (1 < p< o). It follows from (4.6) that
C,(1) is well-posed. Moreover the integrated semigroup S is given by
(S(D) f)(x)=(1/m(x))(e™* —1) f(x) and exists for t<1. The problem
C,(t) is not well-posed for any 7 > 1. However, sup, ., {|S(¢)|| < c0.

(d) Let m(x)=x+ix"'e* (x>1) and let A be the multiplication
operator defined by m on L?(1, co) (1 <p< o). Then C,(1) is well-posed.
However, one has sup, ., [|S(z)|| = co, where S is the once integrated semi-
group generated by A.

Next for ke N, k>2, we give an example of an operator 4 such that
C, (1) is well-posed but C,(z) is not for any t>0. We use

LEMMA 4.5. Let B be an operator on X. Consider the operator

B B
M:
(o 5)
on X x X with domain D{(sf )= D(B)x D(B). Let keN, 1>0. If C,, (1) is

well-posed for B then C, ,(t) is well-posed for A. Moreover, if for m=k, S,
denotes the m-times integrated semigroup generated by B, then

A Skaa(t) 15:(5) = (k+1) Se i i(0)
o= s )

is the k + 1-times integrated semigroup by <.

(4.7)
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Proof. Let Aep(B). Then Aep(«/) and

(A—B)~! /1(/1—3)2—(/1—3)”)

(’1’”)_]=< 0 (A-B)"

This shows that Ljubich’s theorem holds for of.
Define V, , ;(¢) by (4.7). Then it is easy to see that for ze X x X, v(t) =
§6 Viy1(s)zds is a solution of C,, (r) with inhomogeneity z. I

ExaMPLE 4.6. Let B be the multiplication operator defined by
m(x)=x+ie* on L?(1, 00). Then (S(¢)f)(x)= (5 e™)f(x)ds defines the
integrated semigroup generated by B on [0, 1). Since ¢ is not bounded
for any ¢ >0, S| is not strongly differentiable for any € (0, 1). Define &, =

& 2). Then o/, generates a twice integrated semigroup ¥, on X, :=Xx X
given by (4.7) (for k=1). Thus V, is not strongly differentiable on (0, 1).
Thus C,(1) is well-posed but C,(7) is not well-posed for any 7> 0.

By induction, the construction of Lemma 4.7 yields an operator </, , ; on
Xy =X x X, which generates a k + 1-times integrated semigroup on
(0, 1) which is not strongly differentiable for any 7€ (0, 1). Thus C,(1) is
not well-posed for any 7> 0.

V. GLOBAL INTEGRATED SEMIGROUPS

Theorems 2.1 and 2.2 give characterizations of well-posedness of
Cr .1 (0); ie., they characterize generators of global k-times integrated
semigroups (up to the loss of regularity). The conditions formulated in
these theorems do not imply that p(A4) contains a semi-plane.

ExampLe 5.1. Let >0, #>0, /> 1, and define
E(o, B, 1) = {x+iy, x>0, p<e}.

Assume that E(a, 8, /)< p(A) and ||R(4, A)|| < M |A|* for all A€ E(a, B, ).
It follows from Theorem 2.2 that C,(0) is well-posed if p>k + 1.

A concrete example is the multiplication operator 4 on L?(1, co) defined
by m(x)=x+ ie”’. Observe that p(A) does not contain any semi-plane in
this case.

However, if we suppose that C, , (o0) is exponentially well-posed, then
p(A) contains a semi-plane.

DErINITION 52. Let keN,. We say that C,, (o) is exponentially
well-posed if C,, (o) is well-posed and every solution v of C,, ,(o0) is
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exponentially bounded, i.e., there exist M >0, w e R such that |Ju(r)|| < Me™
(1=0).

PROPOSITION 5.3. Let ke N and assume that Cy, (0) is exponentially
well-posed. For m=k we denote by S, the m-times integrated semigroup
generated by A. Then there exist we R, M =0 such that

1Sk 1@ < Me™  (120). (5.1)
Moreover, {Re(A)>w} < p(A4) and
R(Z,A)=lkfwe‘;”5(t)dt (Re 4> w). (5.2)
0
In former articles properties (5.1) and (5.2) had been used to define
integrated semigroups (cf. [ANS]).

The proof of Proposition 5.3 is based on the following uniform exponen-
tial boundedness principle.

ProproSITION 54. Let X, Y be Banach spaces and let S:[0, «v)—
L(X, Y) be a function such that for all xe X there exist M 20, w_eR
depending on x, such that |S(¢)x|| < M, z"*' (t20). Then there exist M =0,
we R such that

1S(I < Me™ (t=0).
Proof. For meN, the space
X, ={xeX: |S()x <ne™ x| (1=0)}

is closed. By hypothesis, X=1),_ X, Then by Baire’s theorem there
exists nge N such that X, has non-empty interior. Consequently, there
exist ze X, e>0, M >0, weR such that

e""IS(xf<M  (120),
whenever | x — z|| <& This implies that for { yl <1,
ee SOyl <e ™ |S(eWey +z) + e [1S(2)z||
<2M (r=0).

Thus [[S(1)[| <2(M/e) e (120). [

Proof of Proposition 5.3. Property (5.1) is a direct consequence of
Proposition 5.4. Let Q=" [ e ~*S,(1) dt which exists for 1 > w (see [ANS]).
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Integration by parts yields Qx=A**" [ e %S, (1)xdt for all xeX. It
follows from (2.1) that Qxe D(A) and (A—A4) Qx=2A***{F e *S, (t)x d1—
P2 e MAS, | (1)xdt= A5 [2 e MS, , (1) xd— PV [2 e S, (1) xdt+
A5 e (1" /k)x dr = x. Since for xe D(4), Q(A—A)x=(1—A) Qx, it
follows that Q= (A—4)~". |}

We conclude by the following characterization.

PRrROPOSITION 5.5. Let ke Ng. The following are equivalent.

(i) Cy,(0) is exponentially well-posed,;
(iiYa) p(A)#;

(b) for all xe D(A**") there exists a unique solution of Cy(0); and
this solution is exponentially bounded.

Proof. By Lemma 3.2 we can assume that 0 € p(4). Now it follows from
Proposition 3.3 that C,, (o0) is well-posed if and only if (ii}(b) holds. It
follows from formula (3.1) that the solutions of C, , ,(o0) are exponentially
bounded if and only if the solutions of Cy(00) for initial values in D(4**")
are exponentially bounded. |}

VI. SoLuTtioN ON D (A)

Let A be a closed operator on X. Then (D(A4™), ||-|,,) is a Banach space
with the norm | x|, := x| + |4Ax)] + -+ + |4™x|| and D, :=D(4):=
Nmen D(A™) is a Fréchet space with respect to the family of semi-
norms ()} -lm)nen- The restriction of A4 to D, is a continuous linear
operator. In this section we consider the Cauchy problem defined by 4 in
the space D ..

THEOREM 6.1. Let A be a closed densely defined linear operator. The
following assertions are equivalent.

(1) There exist 1>0, ke N such that C,(t) is well-posed.
(ii) One has p(A)+# & and the problem

ue C*([0, 0); D)
u'(t)= Au(t) (r=0) (6.1)
u(0)=x

has a unique solution for all xe D .
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(iii) One has p(A)+# & and there exists ©> 0 such that the problem

ueCY[0,1]; D)
£(t)= Au(t)  (1€[0,1]) (62)
u(0)=x

has a unique solution for all xe D ..

Of course the spaces C!([0,1];D..) and C*([0, ); D_) are under-
stood with respect to the topology introduced above.
For the proof we need the following.

PROPOSITION 6.2. Let A be a closed and densely defined linear operator
on a Banach space X with nonempty resolvent set. Then D (A) is dense in
X and in (D(A™), ||| ,x) for all me N.

This is a consequence of an abstract version of the Mittag—Leffler
Theorem (for proof and background we refer to Esterle [Es,
Corollary 2.27):

THEOREM 6.3 {Mittag-Leffler). Let (M,,d,), neN, be complete metric
spaces and assume that 6,: M, , , — M, is continuous such that 6, M, , | is
dense in M, for all neN. Then for all xe M, and all ¢>0 there exists
x, €M, (neN) such that x,=0,x,,, and d\(x,x,) <e.

Proof of Proposition 62. Let M, =(D(A4"),|-],) and let 6, be the
injection of M, ., in M,. Let Ae p(A4). Then (A— A)" is an isomorphism
from (D(A™), ||-1|,,) onto X which maps D(4”*!) onto D(A). Since by
hypothesis D(A4) is dense in X, it follows that D(A”*') is dense in
(D(A™), || -]|,)- Let xe X, ¢ > 0. By Theorem 6.3 there exists x,e M, (neN)
such that x,=40,x,,, and ||x—x,|| <& Thus x,=x, for all n. Conse-
quently, x, € D_,. We have shown that D, is dense in X. The last assertion
follows from the first by replacing X by (D(4™), ||-||,.)=: X,,, and A by the
part of 4in X,,. |

Proof of Theorem 6.1. (i)=>(ii). Uniqueness follows from Theorem
2.7. Let 1>0 be arbitrary. Then by Theorem 4.1 there exists ke N such
that C, , (t) is well-posed. For m > k denote by S, the m-times integrated
semigroup generated by 4 on [0, t). For xe D_(A) let T(¢)x be given by
(3.1). Since S,,,(t) commutes with 4, it follows that T(t)xe D, and
AT(t)x = T(t) Ax. Consequently, u(t)= T(t)x is a solution of (6.1).

(i1) = (iit). This is trivial.

(iii) = (i). Denote by 7T(-)x: [0, 1] = D, the solution of (6.2) for every
xe D . It follows from the closed graph theorem that 7(¢)e £ (D, X) for
all te [0, t] (cf. Proposition 2.3). Moreover, T is strongly continuous by
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hypothesis. It follows from the Banach-Steinhaus theorem that T is equi-
continuous.
In particular, there exist ke N, ¢ > 0 such that

IT()x<clxl, (0<t<t,xeD,). (6.3)

Since D, is dense in (D(A4%), ||-1,), it follows that there exists
T:[0, 1] = £(D(4A"), X) strongly continuous such that

IT(Oxl<clixl,  (0<t<t,xeDy) (6.4)

and T(t)x=T(t)x for xe D, 0<t<.

It follows from the uniqueness of the solutions of (6.2) that AT(t)x=
T(t) Ax (xeD_). Consequently, T(r)xeD(A) and AT(t)x=T(t) Ax
whenever x e D(4**"'). For xe D_, one has

f AT(s)xds=T(t)x—x,  te[0,z]. (6.5)
(1]
Since D, is dense in (D(A**'), ||-||ls, ) it follows that
j AT()xds=T()x—x, te[0,1], (6.6)
0

whenever xe D(A“*!'); ie, v(t)=T(t)x is a solution of Cy(z’) for
all 0<t' <t Let ueCY[0,1); X)n C([0, t); D(4)) such that #'(1)=
Au(t) (0<t<1'), u(0)=0. We show that u=0. Let O<r<t' Let
pep(A). Define w(s)=T(t—s) R(, A)** ' u(s). Then w'(s)= —AT(t—s)
R(p, AV " u(s)+ T(t—s) R(u, A)<* ' u'(s)=0 for all se[0,+]. Conse-
quently R(u, AY**'u(t)=w(t)=w(0). Hence u(t)=0. We have shown
that Proposition 3.3(ii) is satisfied. Thus C, . ,(z) is well-posed by
Proposition 3.3. |

As a consequence of Theorem 6.1 and its proof we obtain the following.

Assume that A is a closed densely defined linear operator such that C,(1)
is well-posed for some 7> 0, ke N. Then there exist a strongly continuous
function

T:[0, 0)—> L(D_(A4))

satisfying T(t+s)=T(@) T(s) (s,t20); T(0)=1 T(-)xe C*([0, xv);
D_(A)) and (d/dt) T(t)x=AT(t)x (1 =20) for all xe D_(A).

In particular, T, is a strongly continuous semigroup on the Fréchet
space D, (A) and A, is its generator (see [Yo] for the theory of semi-
groups on Fréchet spaces). In the case where C,, ,(00) is exponentially
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well-posed there exist a Banach space Z such that D(4*)5 Zc X and 4,
generates a C,-semigroup ([ANS], see also [Th]). Moreover there exists
a Fréchet Z space which is maximal with respect to the property that A4,
generates a Cg-semigroup (see [dL1]).

VII. DISTRIBUTION SEMIGROUPS

In this section we show that a densely defined operator A generates a
distribution semigroup if and only if C,(z) is well-posed for some ke N and
some 7>0; ie, if A generates a local k-times integrated semigroup for
some ke N.

Distribution semigroups were introduced by Lions [Li] in 1960 and
have been studied in particular by Foias [Fo], Chazarain [Ch], Oharu
[Ohl, Oh2], Balabane [Ba], and Balabane and Emami-Rad [BE1, BE2];
we refer to Fattorini’s treatise [Fa, Chap. 8] for an introduction into the
theory and further references.

For our purposes it will be suitable to follow closely the setting of Lions
[Li].

Let Y be a Banach space. By 2 := Z(R) we denote the space of all the
test functions on R with the usual Schwartz topology. Let 2, :=
{¢eD:¢(r)=0for t<0}. Then Z, is an algebra for convolution. Let Y be
a Banach space. By 2'(Y) := .#(2; Y) we denote the space of all ¥-valued
distributions on R, i.e., all continuous linear mappings from £ into Y.

Let X be a Banach space.

ExaMpLE. Let T'=(7(t)),», be a Cy-semigroup on X. Let
G(¢)x=jw MO T(yxdi  (xeX) for ¢e@.
[¢]

Then Ge 2'(¥ (X)) has the properties of the following definition.

DeriniTiON 7.1 (Lions [Li]). A distribution semigroup on X is a
distribution G € 2'(.# (X)) satisfying
supp G < [0, ) (ie., G(¢)=0if supp ¢ = (—o0, 0)). (7.1)

Glgxy)=G(p)GlY)  (§, ¥ eD); (7.2)

let $€2,, xe X, y=G(¢)x; then there exists ue C([0, v); X)
satisfying u(0) =y such that G(¢)=j3° w(t)y(t)dt (Y e ), (7.3}

Uy e o Range(G(4)) is dense in X; (7.4)
ifG(Y)x=0for al Y € Z,, then x=0. (7.5)
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Let G be a distribution semigroup on X. The generator 4 of G is defined
in the following way. Fix (p,)c %, an approximate unit (ie.,
[ pa(t)dt=1, supp(p,) = (0, 1/n) (ne N)). Define the operator 4, on X by

D(Ap)={xeX: lim G(p,)x=x, G(—p,)x converges},

Aox = lim G(—p,)x.
It is shown by Lions [Li] that 4 is closable, and by definition the closure
A of A, is the generator of G. Then A4 has the following properties
(see [Li]):

G(¢)xe D(A)
and
AG(p)x=—G(p)x—$(0)x  forall $e@, xeX; (7.6)
AG($)x=G() Ax forall xeD(A4),¢e2.  (1.7)

THEOREM 7.2. Let A be a closed densely defined operator on X. The
Jollowing are equivalent.

(i) There exist koe N, 1> 0 such that C,(t) is well-posed.

(ii) A is the generator of a distribution semigroup.

Proof. (i)=>(ii). By Theorem 4.1, for every ke N, k >k, there exists
7(k) such that t(k+1)=1(k)>0, lim,_ , t(k)=0c and C, ((t(k)) is
well-posed. Denote by S, the k-times integrated semigroup generated by A
on [0, t(k)). Then S,(r)=S\, (1) for all t€[0, t(k)), meN. Thus the
following definition is independent of ke N.

Let ¢ € 2(R). Choose &k >k, such that supp ¢ < (—o0, 7(k)) and let
G(o)=(=1) [ 6“(0) S0y dr

The clearly G e 2'(£ (X)) and (7.1) is satisfied.

Next we show that (7.6) holds for the given operator 4. In fact, let g€ 2,
xe X. Let keN such that supp ¢ = (—o0, t(k)). Then AG(g)=(—1)**"
fo o™ P(1) Sy y(Dxdt = (= 1) [ g% D)Si(t)x — (K !)x) dt =
G(¢')x — ¢(0) (where we used (2.1)). Thus (7.6) holds. In particular,

G(d)xe D _(A) forall xeX, de%, (7.8)

and A"G(¢)x=G((—1)"¢")x, me N.
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We consider the semigroup 7 on D introduced in Section 6; ie.,
T(t)x=S¥(t)x for xe D (4), 1 <t(k). It follows from the definition that

G(¢)x=Jw &) T(t)x dt (e 2, xe D (A)). (7.9)
Let ¢, Y€ Z,. Then for xe D_(A),

G(9) G)x=[ " 6(1) T(0) G()x
- jow $(1) T(2) j: W(s) T(s)x ds dt

- j: o) [ Wis) T( + ) x ds

o

=ro ¢(t)'[OO Y(s—1t) T(s)x ds dt
0 0

=[T @ T

=G *y)x.

Since D (A) is dense in X it follows that (7.2) holds.

Property (7.3) is a direct consequence of (7.8) and (7.9).

It follows from (7.9) that G(p,)x — x (n~ o) for all xe D _(A). Thus
(7.4) follows from the fact that D (A) is dense in X.

Finally, in order to show property (7.5), let x € X such that G(¢)x =0 for
all g€ Z,. Fix ke N, k=k,. It follows from [Fa, Lemma 8.1.1] that §,(-)x
coincides with a polynomial of degree less than or equal to k—1 on
(0, t(k)); ie., there exists x,eX, m=0,1,.,k—1, such that S, (s)x=
Yk xmt™ (0<t<1(k)). Since S,(0)=0 we have x,=0. It follows that
S (Dx=X _\ x (1"t (m+ 1)) (0<t<z(k)). It follows from (2.1)
that S, ,(1)xeD(4) and ALY x, (" /(m+ 1)) =207 x,, 17" —
x(t*/k1) (0 <t <(k)). Since A is closed and the function on the right hand
side is C*, we can differentiate k-times on both sides and conclude that
x,_€D(A) and Ax,_,=—x. Hence AX*3x, (" Y(m+1)))=
Ykl x,t™ Differentiating (k — 1)-times yields x, ,€D(A) and Ax, _,=
(k=10 x,_,. Going on that way we obtain x,,€D(A4) and A4x,, =
m!x,,m=1, .., k—1. Since x,=0, it follows that x,=x,=--- =x,_ ;=0
and hence x=0. We have shown that (7.5) holds. Let B be the generator
of G. We have to show that 4 = B. Let B, be defined by

D(By)={xeX: lim G(p,)x=x, lim G(—p,)xexists},

Byx=1im, , . G(—p.)x. Then by definition, B= 8,.
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Let xe D(B,). Since by the above, G(p,)xeD(A), and AG(p,)x=
G(—p,)x it follows from the closedness of 4 that B,< A. Thus Bc A.

Conversely, let xe D_(A4). Then it follows from (7.9) that G(p,)x = x
(n— o0). Hence xe D(B,) and Byx = Ax. Since D_(A) is a core of 4 we
conclude that 4 < B.

(ii)=(i). Let G be the distribution semigroup generated by 4. It
follows from (7.6) that Ge @'(Z£(X, D(A4))), where D(A) carries the graph
norm. Let 1>0. It follows from the regularity theorem for distributions
(see [Fa, Theorem 8.15]) that there exist a continuous function
S:[—1,1t]— ZL(X, D(A)) and ke N such that

G@) = (1) [ #¥(0) S dr

for all ¢ € 2 with supp ¢ = (—1, 7). Since by (7.1), supp G < [0, ocv) one has
S(t)=0 for 1<0 (see [Fa, Remark 8.1.6]). It follows from (7.6) that

(—1)* jo SRN1) AS(t)x di = — (— 1) fo $5+V() S()x dt (7.10)

for all g€ 2 with suppdc(~1,1), xeX.
Integration by parts yields

Jt $%+1(1) (I’AS(s)x ds—S(t)X) dt=0
o 0

for all xe X, ¢ € 2 with supp 4 = (0, 7).
It follows from [Fa, Lemma 8.1.1] that

t k
J AS(s)xds—S(t)x= Y 1’B,x  (xeX),
0

p=0
where B,e ¥(X), p=0,1, ., k.
Introducing this into (7.10) gives

k

(—1)* jor $40() Y 178, di=(0)]

p=0

for all ¢ € 2 with support in (—o0, 7). For pe {0, 1, ..., k} one has
jr 1P¢* 1y di = (—1)7 ' pl 4P 0).
(]

It follows that B,=0 for p<k and B, = —(1/k!)I. Consequently

k

JIAS(s)ds=S(t)—£~1 0<i<1).
0 k!

409/186,2-22
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Since by (7.7), G(¢) commutes with 4, it follows that AS(:)x = S(1) Ax
(xe D(A), 0< t<1). It follows from Remark 3.4 that C, , ,(7) is well-posed
and S is the k-times integrated semigroup on [0, ) generated by 4. |

From Theorems 2.1, 2.2, and 7.2 we obtain now the characterization
theorem due to Chazarain [Ch].

COROLLARY 7.3. Let A be a closed and densely defined operator. The
Sfollowing are equivalent.

(i) A is the generator of a distribution semigroup.

(1) There exist a>0, §>0, ke N, M >0 such that A(a, )< p(A)
and

IR, <M A (e A(n, B)).

(i) There exist a>0, §>0, ke N, M 20 such that E(a, )< p(A4)
and

IR, A<M A" (Ae E(a, B)).

Finally it follows from Theorems 7.2 and 6.1 that a densely defined
closed operator A generates a distribution semigroup if and only if 4,
generates a strongly continuous semigroup on D (in the sense of the
theory of strongly continuous semigroups on Fréchet spaces, see [Yo]).
This result is due to Ushijima [Us, Theorems 1, 27, see also Oharu [Oh2]
and Chazarain [Ch, Theorem 6.6].
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