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Introduction

LET A be a closed operator on a Banach space E and B a densely defined
operator on F. We are interested in the operator equation

AX + XB = Y (0.1)

where Ye%: = %(F, E) is given and X e% the solution.
This equation has been studied extensively for bounded operators (see

e.g. [Da Kr], [Lu Ro], [Ro], [Pw]). The case where A and B are
generators of Co semigroups was considered by Freeman [F], Lin and
Shaw [LS] and Ph6ng [Ph].

The purpose of this paper is to study the operator xA B on Z£ given by

(0.2)

with suitable domain. Then existence and uniqueness of solutions of the
problem (0.1) is equivalent to saying that rAB is invertible. Thus it is
natural to investigate the spectrum of this operator.

It turns out that always

O(TAJ)) (03)

(under the assumption o(A) =£ C or o(B) =£ C), so that 0 £ o(A) + o(B) is
a necessary condition for existence and uniqueness of (0.1). The proof of
(0.3) we give in Section 2 seems to be new even for bounded operators.

However, the opposite inclusion of (0.3), which is almost trivial in the
bounded case, is false, in general. This had been discovered by Ph6ng
[Ph] (even though he does not formulate it that way), see also Section 6
for counterexamples.

We establish the spectral equality

o(rA,B) = o(A) + o(B) (0.4)

in three cases:
1. A and B generate eventually norm continuous C0-semigroups;
2. one of the operators is bounded;

3. A and B generate C0-semigroups one of which is holomorphic.
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The proof of 2 and 3 is based on a complex formula expressing the
solution of (0.1) by a contour integral which is due to Rosenblum [Ro].
This formula has also been used by Ph6ng in a particular case and we
generalize his proof.

In fact, a separate appendix (Section 7) is devoted to the study of the
sum of commuting operators, one of which generates a holomorphic
semigroup. This more general context is of interest in the theory of
differential equations in Banach spaces (see Da Prato-Grisvard [Da Gr]
for a systematic study).

1. Basic properties of the operator X >-^AX + XB

Let E, F be Banach spaces and A a closed operator on E and B a
densely denned operator on F. We define the operator xA B on

= {Xe<£: XD(B)<= D(A), 3Ye 5£s.t. AXu + XBu = YuVue D(B)}

TA,B{X) = Y.

Then zA B is a closed operator on X. For all fi, A e C we have

*A-X.B-,, = T /1.fl-A-/i, (1.1)

in particular

TA-X.B+k — TA.B (1'2)

for all A e C. However, this is the only case of coincidence of two such
operators. In fact, the following holds.

PROPOSITION 1.1. Let Au A2 be closed operators on E and Blt B2

densely defined operators on F such that rAl By = TA,.B,- Then there exists
A e C such that A{ = A2 + A and B, = B2- A.

For the proof we need three lemmas. If cp e F' and x e E, then we denote
by q> <8>x e Z£ the rank-one operator y •-> (y, q>)x.

LEMMA 1.2. Let cpu q>2eF', xux2eE such that q?iJ=0, x2=£0. If
qp\®xt + q>2®x2 = 0, then there exists A e C such that x, = kx2 and

Proof. Choose rp eF' such that (x2, xp) = I. Let X = (xt,rp). Then
0 = ((y, (Pi)xt + (y, <p2)x2, xp)=k(y, <p,> + (y, cp2) for all yeF; i.e.,
(p2 = — Alp,. Choose yeF such that (y, <p,) = 1. Then *, = \ix2 where
fi — -(y, q>2). It follows from the hypothesis that fiq>, ® x2 — A<p, ®x2 =
0. Since <p, <8>x2i=0 one concludes that A = ;z.
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LEMMA 1.3. Let q>eF'\{0}, jce£\{0}. Then q> <8)x e D(zAB) if and
only if <peD(B') and xeD(A). In that case xA<B(q> <8> x) = <p <8> Ax +
B'<p®x.

Proof. Assume that X: = q> ®x e D{xAB). Since XD(B)cD{A) and
since q?#0 and D(B) is dense in F it follows that x e D(A). Let
Y = *A.B(X). Then (u, <p)Ax + (Bu, q>)x = Yu for all u e D(B). Let
\j> e E' such that (x, xp) = 1. Then

(Bu,<p) = (u, Y'y)-{u,tp){Ax,y)

for all u e D(B). It follows that <p e D(B') and B'cp = Y'V> - (/IJC, i/;)(p
(cf. [Na, B-II Lemma 2.9]). The remaining assertions are obvious.

LEMMA 1.4. Let C: D(C)—>G be a linear mapping on the vector space
G, where D(C) is a subspace of G. Assume that for all x e D{C) there
exists \{x) e C such that Cx = k{x)x. Then there exists A e C such that
Cx = kx for all x e D(C).

Proof. Let x, yeD(C), x # 0 , y^O. We have to show that X(x) =

a) Assume that x = fiy. Then k{x)x = Cx = \iCy = nk(y)y = k(y)x.
Hence k(x) = k(y).
b) Assume that x and _y are linearly independent. Then k(x + y)x +
A(or + >>).y = C(x +>) = Cx + Cy = X(x)x + \(y)y. It follows that A(x) =

Proof of Proposition 1.1. Since for O^Jte£, O^qpeF',
D(TA,.B) if and only if q> e D{B't) and x e D(Af) it follows that £>(/*,) =
D(/l2} and D(B[) = D(B'2). Moreover, for 0*x e D(/t,), 0 # q> e D(B[),
we have q> ® A^x + B[q> ®x = q> ® A2x - B2q> ®x by Lemma 1.3. Thus
(p<8>(Alx-A2x) + (B'i<p-B2(p)<8>x = 0. It follows from Lemma 1.2
that there exists A e C such that Axx — A2x = kx and B\cp — B2q> = —kq>.
Now the conclusion follows from Lemma 1.4.

Remark 1.5 (density of the domain of TAB).
a) It follows from Lemma 1.3 that D(rAB) contains the compact

operators whenever D(A) is dense, E has the approximation property
and F is reflexive. Thus, if X(F, E) = K(F, E) (the compact operators),
then xAtB is densely defined. For example, this is the case if F = lp, E = /*
1 aq <p <°o.

b) Assume now that E = F. If D(A) = E and D(B) = E, then
D(rA,B) = &. If D(A) *E and D(B) = E or D(A) = E and D(B)¥=E,
then it is clear that D{xAB) does not contain any invertible operator and
so TAIB is not densely defined. However, we do not know whether
D(TAB) is dense only if D(A) = E and D(B) = E.



136 W. ARENDT, F. RABIGER AND A. SOUROUR

2. The spectral inclusion

In this section we assume that A and B are both closed and densely
defined operators on E, and F respectively. By a(A), op(A), oap(A),
p(A) we denote the spectrum, point spectrum, approximate point
spectrum and resolvent set, respectively, of A and R(k, A) = (k— A)~l

(A e p(A)) is the resolvent. Keeping otherwise the notation of Section 1,
we prove the following inclusion.

THEOREM 2.1. Assume that o(A)J=C or o(B)J=C. Then o(A) +
o(B) c o(xAB).

At first we prove the following special case.

LEMMA 2.2. a) oap(A) + aap(B') c O(TA,B);

b) oap(A') + o.P(B)co(T/,,fl).

For this we use

LEMMA 2.3. Let C be a closed operator on a Banach space G. Assume
that <pneG' satisfying \\<pn\\ = 1 (n e N) such that

lim sup \(Cx,<pn)\ = 0.

Then 0 e CT(C).

Proof. Assume that Oep(C) and let a- = ||C~1||. Then B(0, a" ' ) : =
{y e G: \\y\\ *£ a-"1} c {Or: x e D(C), \\x\\ « 1}. Hence

ar- '= sup \(y, «pn>|-»0 (n-^oo),

contradiction.

Proof of Lemma 2.2. a) Let Xeoap(A), neaap(B'). There exist
xn e D(A) such that |K| | = 1 and \\Axn-kxn\\^0 («-*«>), ?»- e D(B').
\\<pn\\ = l, | |B>B- / i<pn | |^0(n-*cc).

Let Ar
n = (pn®JcB. Then PC| | = 1, and by Lemma 1.3, XneD(tA,B)

and r^.^A,,) = B > n <8>xn + «pn ®/tA:n. Hence

Consequently, A + /J6 av(t^ i B) .
b) Assume that Aeaop(/1'), fieottp(B). Let yneD(B), q?neD(>i')

such that 11̂ 11 = 11̂ 11 = 1, \\ByH-nyn\\^0 and | | ^ > B -A<pn||-*0
(n->oo). We define ^B e <£' by <pn(T)=(Tyn, q>n). Then ||*n | | = l (as
is easy to see); moreover,

sup \{xA
D C )
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In fact, let X e D{xA,B), \\X\\ *£ 1. Then

= \{AXyn, cpn) + {XByn, <pn) - (A + n){Xyn, q>n)\

= \(Xyn, A'q>n-\<pn) + {Byn-nyn, X'cpn)\

It follows from Lemma 2.3 that X + fi e o(xAB).

LEMMA 2.4. Let M, N be closed subsets of C such that
Then M + Nc(9M + N)U(M + 3N).

Proof. Let m e int M, ne int N. Let r, Re (0, °°] be the largest radii
such that B(m, r) c M, B(n, R)cN (where B(m, r) = {ze C: \m - z\ =e
r})-

Assume that r =s R. Since M ¥= C or N ± C it follows that r < ». Then
there exists a e 3Af such that |m — or| = r. Since /J + m — a e B{n, r) c
B{n, R) <= N, it follows that m+n = a + (n + m-a)edM + N.
Similarly, one obtains m + n e M + 9N in the case r > R.

Proof of Theorem 2.1. It is well-known that da(A) c oap(A) D oap(A').
Consequently by Lemma 2.2a), do(A) + oap{B') <z oap(A) + oap\B') a
a{xA,B) and by Lemma 2.2b), 9o(A) + oap(B) cz o^A') + oap(B) c
a{xAB). Since o(B)cz oap(B) U aap(B') we have shown that
do(A) + o(B) c a{xAB). One shows similarly that o(A) + do(B) c
O(TAB). NOW it follows from Lemma 2.4 that o(A) + o(B) c O(TAB).

We do not know whether o(xAB) = C if a(/t) = o(B) = C.

3. Laplace transform methods
In the present and next two sections we want to show invertibility of

A — xAB. By Theorem 2.1 a necessary condition is that A £ o{A) + o(B).
But we do not know whether o(A) + o(B)=£C implies p(xAB)J=0, in
general. However, if A and B are generators of semigroups, then several
methods exist to show invertibility for certain A. In this section we use the
Laplace transform. We show that xAB is the generator of a (non-strongly
continuous) semigroup whose Laplace transform is the resolvent of xAtB.

Assume that A generates the C0-semigroup T = (T^)),^, on E and B
the Co-semigroup 5 = (5(f)),,0 on F. We define the semigroup
U: [0,oo)-*iC = if(F, £)by

U{t)X = T(t)XS(t) (X e X).

Then U(0) = Ix (the identity on £) and U(t)U(s) = U(t + s) (t, s > 0).
U is not strongly continuous, in general, but for X e X, f e F, U()Xf is
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strongly continuous. For A e C we define the operator I e~XsU(s) ds on
if by o

/ t

( [ e'^Uis) ds W ) = [ e~XsU{s)X ds (Xe%)
0 0

where the integral on the right hand side converges strongly in E.

PROPOSITION 3.1. Let A e C.
i

a) LetXe<£. Then [t~XsU{s)X ds eD{rA,B) and
o

t

(•CA.B - A) [ e~XsU(s)X ds = e-k'U(t)X -X (t s* 0)
o

b) Let X e D(xAB). Then

- A) ds = e-x'U(t)X -X (t^ 0).

The proof is based on Lemma 3.3 which has been shown by Ph6ng
[Ph]. It can be obtained as a consequence of the following general
formulation of differentiation of products whose proof we can omit.

LEMMA 3.2. Let K, L be topological vector spaces and let /?: K x L—*
C be a sequentially continuous bilinear form. Let x e C\[a, b], K), y e

C\[a, b], L), /( /) = fi(x(t), y(t)). Then f e C'([«, b], C) and ±

LEMMA 3.3. Let X e i?(F, £), ueD(B), u'e D(A'), / ( / ) =

e C'([0, <»), C) and^-f(t) = (T(t)XS(t)Bv, u')
dt

+ (T(t)XS(t)Bv,A'u').

Proof. Letting K = F, and L = E' with the &>*-topology, fi(y,x') =
(Xy, x'), x(t) = S(t)v, y(t) = T(t)'u', the assertion follows from Lemma
3.2.

Proof of Proposition 3.1. Replacing A by A — A we can assume A = 0.

Let V(t) = [ U(s) ds.
o

a) Let X e %. Let v e D(B). It follows from Lemma 3.3. that
(U(t)Xv, u') - (Xv, u') = (V(t)XBv, u') + (V(t)Xv,A'W) (3.1)
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for f3=0 and all u'eD{A'). Consequently, by [Na, B-II Lemma 2.9]
V(t)Xv € D(A) and A V(t)Xv + V(t)XBv = U(t)Xv - Xv. This implies
that V(t)X e D(rA B) and zAiBV{t)X = U(t)X - X, which is assertion a),

b) Let X e D(rA B), xA B(X) = Y. Then by Lemma 3.3, for all
veD(B), u'eD(A'),

(V(t)Yv, u') = j (T(s)YS(s)v,u')ds

{(T(s)AXS(s)v, u') + (T(s)XBS(s)v, u')) ds
i= J

0

= ( T ( t ) X S ( t ) v , u ' ) - (Xv, u ' ) = (U(t)(X)v, u ' ) - ( X v , u ' ) .

Hence V(t)Y = X - X. This is assertion b).

We define the growth bound co{xAB) by

a>(TA.B): = \nt\w eR: supe - " \\U(t)\\ <°o} = Jim (log \\U(t)\\)/t

(cf. [Hi Ph, Theorem 7.6.1]). Similarly,

f l
a)(A) = \nf\w eR: supe""" | | r (0 | | <°°[.

The following proposition is due to Freemann [F]. For the sake of
completeness we include the proof.

PROPOSITION 3.4. Q)(xA,fl) = (o(A) + (o(B).

Proof. Choosing X = q><8)u with q>eF', ueE, \\q>\\^l, ||u||=el
one sees that \\U(t)\\ = \\T(t)\\ \\S(t)\\(t^0). Hence (o(xA,B) =

Jim l- (log (||7(011 ||5(0ll)) = Jimy (log ||7(011 + log ||5(r)ll = a>(A) + a>{B).

By s(zA ,fl) = sup {Re A: A G O(TAB)} we denote the spectral bound of
rA.B-

PROPOSITION 3.5. s(A) + S(B)=S:S(TA B)^ (O(TAB).

Proof, a) It follows from Theorem 2.1 that S(A)+S(B)^S(TAB).
t

b) Let ReA>(u(T/4,fl) = (u(/4) + ft>(B). Then Q: = lim I e~XsU(s)ds
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exists and lim (A - xAB) \ e'^U^X ds = lim {X - e~x'U(t)X) = X by
0

Proposition 3.La). Since A - xAB is closed it follows that QX e D(xAJ})
and (k-TA.B)QX = X for all Xe<£, and by Proposition 3.1.b)

if XeD(xA,B). Hence. Xe p(rA,B) and

Remark 3.6. It follows from the proof that Re A > a){xA B)

J t—x J
(I 0

(with convergence in the operator norm). Denote by abs (xA,B) =

infJReA: I e~x'U(t)dt converges strongly in i ? | the abscissa of the

Laplace transform. Then e x'U(t) dt converges (even in operator

norm) for Re A >abs(T^,s) and does not converge (even not strongly)
if ReA<abs(r /,. f l) (see [Hi Ph, Sec. 6.2]). Moreover, fl(A) =

J e~k'U(t)dt is holomorphic in [Re A >abs (TA,B)]- Since /?(A) coin-
cides with (A-T^a)" ' for Re A large, one has /?(A) = (A - xA fl)~'
whenever Re A > abs (xAB).

An individual version of the following proposition has been proved by
Ph6ng [Ph; Theorem 3].

PROPOSITION 3.7. If M:= sup I U(s) ds\\ < °°, then 0 e p(xA B).
<=•» IIJ II

Proof. The hypothesis implies that abs(r/, B ) « 0 (see [Hi Ph, Sec.
6.2]). It follows from the hypothesis that for A >0, ||/?(A, r ^ H =

"*1 f U(s) ds d/1eT"U{f) dt\\ = A I e"" I U(s) ds dt\\ «s M. Hence
0 0

[dist (a(xA.B), A)]"' = r(R(X, xA.B)) ^ \\R(X, xA.B)\\ « M

(where r(K) denotes the spectral radius of a bounded operator K).
Hence dist (o(xA.B), 0) >0, i.e. 0 $ o(xAB).

Remark 3.8 (integrated semigroups), a) It is obvious from the preced-

ing that V(t) = I U(s) ds defines a locally Lipschitz continuous once
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integrated semigroup (V(0)/*o on !£ and TAB is its generator (see [Ar],
[Ne], [Ke Hi] for this notion). This had been pointed out before by
Neubrander [Ne, Example 9.3].

b) The argument given in the proof of Proposition 3.7 shows more
generally that the generator of a bounded once integrated semigroup is
invertible.

4. Eventually norm continuous semigroups

The spectral equality O(TAB) = O(A) + O(B) will be established in
special case's in the present and next section.

THEOREM 4.1. Let A and B be generators of eventually norm con-
tinuous semigroups on E and F, respectively. Then

A semigroup T = (T(t)),,t) on E is called eventually norm continuous if
T: [t<t, »)—>i?(£) is continuous for the operator norm for some f,,>0.
Such a semigroup has two remarkable spectral properties:

{A e o(A): Re A3=&} is bounded for all b e R, (4.1)

where A is the generator of T, and the spectral mapping theorem holds,
i.e.,

a(r(0)\{0}=e'o ( / l ) (/>0) (4.2)

(see [Na, A-II Theorem 1.20 and A-III.6.6] for example). For the proof
of Theorem 4.1 we will use the following property which holds without
assumptions on the semigroup.

PROPOSITION 4.2. Let A e o{xAB). Then e'A e o(U(t)) (t 5=0).

/Voo/. Let f3=0, AeC such that e'xep(U(t)). Let R =

e '^L/^Jds^-e '^L/^) )" 1 . It follows from Proposition 3.1 that fl =

lx-xA.Byl.

t

Proof of Theorem 4.1 a) One has o(U(t)) c o(T(t)) • o(S(t)) (f?0).
In fact, let L{t)X = T(t)X and /?(/)* = XS(t) (X e <£). Then U(t) =
L(t)R(t) = R(t)L(t). It follows from Gelfand's theorem that o(U(t))cz
o(R(t))a(L(t)) = o(S(t))o(T(t)).

b) Let A eo(TAB). Then e'keo(U(t)) by Proposition 4.2. It follows
from a) and (4.2) that e 'Ae e'(a(/l)+a(fl)) for all /2=0. Thus, for all r > 0
there exist a, e o(A), 8, e o(B), k,eZ such that f(A — a, — B,) = Tjiik,. In
particular, Re A = Re a, + Re 8,. Since o(A) and o(B) are situated in left
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half-planes, there exists beH such that Rea,?fc and Re/3,s=Z> for all

/ > 0. It follows from (4.1) that sup \a, + B,\ < °°. Consequently, for / > 0
<>o

sufficiently small one has k, = 0 i.e. A = a, + ft,.
Remark. Note that under the hypothesis of Theorem 4.1 o(A) + a{B)

is closed because of (4.1).

5. Holomorphic semigroups
Throughout this section A is a closed operator on E and B a densely

defined operator on F. If one of the operators is bounded, then the
spectral equality holds without any further assumptions on the other
operator.

THEOREM 5.1. Let A be a closed operator on E, and B a densely defined
operator on F. If A or B is bounded, then

O(TA.B) = o(A) + a(B).

THEOREM 5.2. Assume that there exist R^O, O < 0 ' < 0 < n / 2 , Ms*0
such that

A e p(A) and ||Afl(A, A)\\^M whenever |A| 2* R, |arg A| mt/2 + 6
and

A e p(B) and ||Afl(A, B)|| ̂  M whenever |A| > R, |arg A| =£ n/2 - 0'.
Then

o(rA,B) = o(A) + o(B).

Remark. If D(A) is dense, the assumption on A is equivalent to saying
that A generates a holomorphic C0-semigroup (cf. [Na, A-II, Theorem
1.14]).

Remark 5.3. Theorem 5.2 remains true if the hypotheses on A and B
are exchanged.

COROLLARY 5.4. Assume that A and B generate C0-semigroups. If one
of the semigroups is holomorphic, then

O(TA.B) = o(A) + o(B).

For the proofs denote by LA the operator on 3! = S£{F, E) given by

LAX = AX

and by RB the operator on X defined by

D(RB) = {Xe%: BYeX XBu = Yu

RBX=Y.
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Then LA and RB are commuting operators on t£. In fact, p(A) a p(LA)
and R{k, LA)X = R(k, A)X (kep(A)); similarly, p(B)<=p(RB) and
K(A, RB)X = XR(k, B) for all A e p(B).

It is clear that xAB is an extension on LA + RB, and that xAB =
LA + /?B whenever one of the operators is bounded.

Now the proofs of Theorem 5.1, 5.2, Remark 5.3 and Corollary 5.4
follow from the results on commuting operators in the Appendix.

Remark 5.5. Assume that E = F. Under the hypothesis of Theorem 5.2
D(TA.B) is n o t dense in J? unless both operators are bounded. In fact,
assume that A is unbounded. It follows from Remark 7.4 that D{xA B) c
D(LA). It follows from the definition that D(LA) does not contain any
invertible operator. Hence D(LA) is not dense in i? and D(xAB) is not
either. Assume now that A is bounded and B unbounded. Then D(xAB)
is not dense by Remark 1.5.

It is of interest to know under which condition xAB has compact
resolvent. In that case Fredholm's alternative holds for equation (0.1).

The following result is due to Voigt [Vo].
PROPOSITION 5.6. Let G be a Banach space and let K: [a, b]—>&(G) be

b

strongly continuous and let K(>x = I K(s) x ds (x e G). If K(s) is compact
a

for all s e [a, b] then K() is compact.

Using this, we obtain
PROPOSITION 5.7. Assume that the hypotheses of Theorem 5.2 are

satisfied. If A and B have compact resolvent, then xA B has compact
resolvent.

Proof. The operator X<-+R(k, A)XR(X, -B): %^>& is compact by
[Bo Dn, §33 Theorem 3]. Assuming 0$o(A) + o(B) we have by the

proof of Theorem 7.3, R(0, xAB)X = 1/2™ f fl(A, A)XR{k, -B) dA. So

^(0> XA.B) is compact by Proposition 5.6.
•x.

Remark 5.8. One sees in a similar way that R(k, xA B)= I e~k'U(t)dt
o

is compact if y4 and B generate compact C()-semigroups (i.e. T(t) and S(t)
axe, compact for t > 0).

6. Counterexamples
In the particular cases considered in Sections 4 and 5 o(A) + o(B) was

closed. Of course, this is not always the. case:

Example 6.1. Let E = F = I2 and Ax = ((-(1/n) + in)xn)neN with max-
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imal domain. Let B=-A. Then (o(A) + o(B)) DjR = 0 but x'Z •
o(A) + o(B). Hence il<=o(tAB).

In the following we show by several examples that in general

o(xA.B)<f:o(A) +

Example 6.2. Let A be the generator of a C0-group such that
o(A) = 0. Then o(A) + o(-A) = 0 but Oea(xA,.A) since I e D(xA,-A)
and TAI_A(I)=0. For a concrete example see [HI Ph, 23.16, p. 665].

Example 6.3. Let A be the generator of a C0-semigroup on a Hilbert
space H. Then, by a result of Groh and Neubrander [Gr Ne, 4.1 Bern.3],
[Na, D-IV Remark 2.1b]), ^ (T , , . ^ ) = OJ(XA.,A). NOW choose A such that
s(A)<co(A) (see [Na, A-III Example 1.4]). Since s(A) = s(A*) and
a>(A) = co(A*), it follows that s(A) + s(A*) < o>(A) + (o(A*) =
O)(TA-.A) =S(TA.,A). This shows that o(xA..A)<j:o(A) + o(A*).

Remark 6.4. If A generates a Co-semigroup on a Hilbert space and
S(XA'.A)<0, then the above mentioned result of Groh and Neubrander
implies that a>(A) = {(o(xA-mA) < 0.

Example 6.5 (cf. Ph6ng [Ph, Example 10]). Let A be the generator of
a contraction semigroup on a Hilbert space H such that s(A) < (o(A) = 0
(see e.g. [Na, A-III Example 1.4]). Moreover, consider the translation
group on F = CU(R, H), the space of all uniformly continuous bounded
//-valued functions on R with supremum norm, with generator B = d/d/.
Then 0ea{xAiB) (see Ph, Example 10]). Thus, s(A) + S(B)<S(TAB) =
co(rA.B) = 0; i.e., a(xA.B) <£ a(A) + o(B).

7. Appendix: The sum of commuting operators
Let A and B be operators on a Banach space G with non-empty

resolvent set.

PROPOSITION 7.1. The following are equivalent.
(i) R{X, A)R(ji, B) = R(JM, B)R(k, A) for some (all) kep(A), fie

p(B).
(ii) x e D(A) implies R(jt, B)x e D(A) and AR(n, B)x = R((x, B)Ax

for some (all) n e p(B).

This is well-known and easy to prove.
We say that A and B commute if the equivalent conditions

of Proposition 7.1 are satisfied. The operator A + B is defined by
(A + B)x = Ax + Bx with domain D(A + B) = D(A) n D(B).

THEOREM 7.2. Assume that A and B commute and that one of the
operators is bounded. Then o(A + B) c o(A) + o(B).
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Proof. We assume that B is bounded. Let us assume that 0 $ a(A) +
o(B); i.e. o(A) n (-a(B)) = 0 . We have to show that 0 e p(A + B).

There exists a compact set K with oriented (piecewise C1-) boundary F
such that

cr(-B)cint/L(=A:<=CW(/l) (7.1)

(where int K denotes the interior of K), see e.g. [Bo Do, Chapter I § 6].
Let

J (7.2)
r

Then Q e i?(G), QG <= D(/l). Since A and B commute we have

(A + B)R(k, A)R(k, -B) = R(k, A) - R(k, -B)

(use AR(k, A) = AK(A, A) - I, BR(k, -B) = I- A/?(A, -B)).

Since by Cauchy's theorem, I R(k, A) dA = 0, it follows that
r

(A + B)Qx = --!-. I R(k, -B)xdX = -x (xeG),
2ni J

by Dunford's spectral calculus. Since Q commutes with A + B, it follows
that Q = -(A + B)-'.

In certain cases, even if both operators are unbounded, formula (7.2)
can still be used for suitable contours. However, it will represent the
resolvent of a certain extension of A + B. For 6 e (0, JI), R>0 we let
E (6>, R) = {z e C: |z |^f l

THEOREM 7.3. Let A and B be commuting operators on G. Assume that
there exist R>0 and 6 e (0, n/2) such that

and sup \\kR(k, A)\\<°°
\T(BnR)

and there exists 0 < 8' < 8 such that
1Z(ji/2-8',R)cp(B) and sup \\kR(k, B)\\ <«>.

kZ<n8\R)

Then there exists a unique extension {A + B)~ of A + B such that
(w, °°) c p((A + B)~) for some w e R and (.4 + B)~ commutes with A.

Moreover

(7.3)

If D(A) is dense, then (A + B)~ is the closure of A + B.
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Remark. During the work on this manuscript the authors learnt that J.
Priiss proved the spectral inclusion (7.3) by the same arguments in a
different context (see [Pr, Section 8.3]).

The operator (i4 + B)~ will be defined as the closure of A + B for a
certain topology. We define the topology 3~A on G induced by the norm
ll-rll^/,:

=: ll^(^» -̂ )*ll> where kep(A). It is easy to see that different A
yield equivalent norms. Note that (G, || \\g-A) is not complete, in
general.

Let C be an operator on G. We say that C is A-closable if xn—*0,
xn e D(C), Cxn—*y for 9~A implies y = 0. In that case, the A-closure CA

of C is the operator on G defined by

D(CA) = {xeG: 3xne D(C), *„->*, 3y e G s.t. Cxn-*y for JA),

CAx = y.

C is called A-closed if CA = C. It is obvious that every /4-closed operator
is closed. Moreover, if C is A -closable, then C is closable and C <= CA.

We will show that under the hypotheses of Theorem 7.3 A + B is
A -closable and A + Zf4 is the unique extension commuting with A.

Proof of Theorem 1.3. Let fj. e C\(cr(/4) + o(B)). We show that A + B
is A -closable and n e p(A + #*). Replacing A by A — n we can assume
that fi = 0. In fact, .4 - /* satisfies the same condition as A with 6
replaced by any 6" < 6. Thus o(A) D o(-B) = 0 .

Choose a rectifiable path y0 lying in {z e p(A) Dp(fl): |z| «/?} with
initial point fle~/(3I/2+9) and end point /?e

/ ( j t /2+e). Consider the oriented
contour To consisting of {re-'<

jr/2+e»: r3=/?}( To and {re'<*'2+e>: r^R).
Then there exists a partition C = Q _ u r n U Q + where Q+ , Q_ are open
such that int (E (6 + nil, /?))<= Q+ and {re'": r^R, a e (0 +
JT/2, 3n/2- 0)}c£2_. Thus {Aea(/1): |A|3=/?}c=Q_ and {Aea(-
B):
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There exist compact sets K+, /C_ with oriented boundary T+ and T_
respectively (piecewise of class C1), and such that

Q_ D CT(-B) C int K_cK_<= Q_\o(A)

and

Q+ n o(A) <= int K+ <= K+ C Q + \a ( - f l )

(see e.g. [Bo Du, I. § 6]).

Let T = To U ( - r_ ) U r + . Since sup |A|2 \\R(k, A)R(k, -B)\\< °°,

define bounded operators on G such that lim Q, = Q strongly. Denote by
I 10

the semigroup generated by A. Then

3~A-MmT(t)x=x (7.4)

for all xeG (cf. [Si, Prop. 1.1, Prop. 1.2]) and WmT(t)x = x for

xeD(A).
Since A and B commute we have (A + B)R(k, A)R(X, -B) =

, /I) - /?(A, - B ) . Hence Q,x e D(>1 + fl) for all x e G and

=-^-: f e^A, A)xdX-~ f eA'/?(A, -B)xdX.
2m J 2ni J

Since I eA'/?(A, — fl) dA = 0 by Cauchy's theorem, we conclude that
r

(A + B)Q,x = T(t)x (t>0,xeG) (7.5)

Moreover, for *eD(/4 + fl), g,(i4 + fi)jt = (A + B)Q^c. Letting t-*0,
we obtain Q(A + B)x = x. Since Q commutes with A and B we conclude
that

(A + B)Qx = Q(A + B)x = x {x e £>(/! + B)) (7.6)
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Next we show that Q is injective. In fact, let Qx = 0. Then for
piep(A)C\p(B), by (7.6), R(ji,A)R(ji, B)x = (A + B)QR(p,A)RQt, B)x =
0. Hence x = 0.

We show that A + B is /4-closable. Let A e p(A). Let xn e D(A + B)
such that xn-*0 and R(k, A)(A + B)xn->R(X, A)y. Then

R(X, A)Qy = QR(X, A)y = lim QR(k, A)(A + B)xn = lim R(X, A)xn = 0.

Since Q and R{k, A) are injective it follows that y = 0. Now let x e G.
Then Q,x-> Qx(t J, 0), Q,x e D(,4 + B) and T,, - lim (A + B)Q,x = xA-

0

lim T(t)x=x. Hence £ r e D(A + BA) and (/I + BA)Qx = x.

Conversely, let JC e D(^ + BA). Let xn e D(A + B) such that xn^>x and
+ B)xn -> R(k, A)(A + BA)x. Then

, A)Q(A + BA)x = lim QR{X, A)(A + B)xn

Hence £?(/! + fl^)x = jt. We have shown that (A + ff4)"1 = Q. If D(A) =
X, then lim (/t + B)Q,x = lim r(/)x =x for xeG. So Qx e D(/l + B).

Hence A + B = (A + B)A in that case.
Finally, we show uniqueness. Let C be an extension of A + B

commuting with A such that (w, °°) c p(C). Replacing Aby A — fi and C
by C - (J. we can assume that 0 e p(C), 0 <£ a(/4) + a(B).

Let xeG. Then CQ^ = (/4 + B)Q,x = T(t)x. Hence Qtx = C~lT(t)x

(t>0). Consequently, Qx = lim Qjc - lim C"T(r)jt = C~lx since
I I 0 /-»O

lim T(t)x = x and C commutes with A. Thus -7?(0, A + BA) = Q = C~l.
I 1 0

Consequently, C = A + BA.

Remark 7.4. It follows from the proof that D((A + B)~) = range Q c

The second named author wishes to thank the "Equipe de
Mathe~matiques de Besanc.on" for the warm hospitality during his visit to
Besancpn.
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