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Communicated by Rainer Nagel 

0. I n t r o d u c t i o n  

Let X be a Banach space and f e L~oc([0, oo); X)  such tha t  the Laplace 

t ransform f()~) = f o  e -~ t f ( t )  dt exists for A > 0. Let f ~  e X. We say 
that  f ( t )  is Abel convergent (A-convergent,  for short)  to fcr as t ~ co if 

A - lira f ( t )  :=  l imAf'(A) = f ~ ;  and f is Cesaro convergent (C-convergent t ---,oo ,M0 

for short)  if C -  lira f ( t )  := lira 1 i t  t -oo t--.oo-[ Jo f ( s )ds  = foo. If ,-~lim f ( t )  = foo, then 

C -  lim f ( t )  = foo; and  if C -  lira f ( t )  = foo, then A -  lim f ( t )  = f ~ .  The 

converse implicat ions are false, in general. Addi t ional  condit ions which allow 
the inverse implicat ion are called Tauber ian  conditions,  and the corresponding 
s ta tements  Tauber ian  theorems. 

Here we are interested in deducing C-convergence from A-convergence. 
A known condit ion is that  f is bounded (see [11] or [2]). We weaken this 

assumpt ion  bu t  impose conditions on ft. For example  we show the following. 

T h e o r e m  0.1.  Assume that the following conditions are satisfied. 

(a)  Iif(t)[I = 0( t )  (t --, oo) ; 

(b) there exists an open set f~ C C containing iR ouch that f has a holo- 
morphic extension to ft. 

Then 
C -  lira f ( t )  = O. 

t ~ o ~  

Note that  condit ion (b) implies that  A - limt~oo f ( t )  = 0. Neither of 
the condit ions (a) or (b) can be omit ted.  However, it is shown tha t  condition 
(b) can be considerably relaxed. 

If in Theorem 0.1 ins tead of (a) one assumes that  f is bounded,  one 
can actual ly  conclude that  lira f ( t )  = 0. A simple proof  of this has been given 

t ---*OO 

by Korevaar  [6] (but it follows from much older work of Ingham [5]) and the 
result  has been generalized in [1], [2] and [3]. We use similar arguments  based 
on Cauchy 's  theorem. 

Applying  the results to C0-semigroups we obta in  the following ergodic 
theorem. 
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T h e o r e m  0 . 2 .  
satisfying 

(0.1) 

Let A be the generator of a Co-semigroup T = (T(t))t>o 

liT(011 = O(t) (t ~ c~). 

Assume that 
a) 0 �9 p(A) 
b) a(A) fl iR consists of poles of the resolvent of order 1. 

Then T is uniformly C-ergodic. 

An example of a C0-semigroup satisfying (0.1) (without being bounded 
in general) is obtained by considering a matrix operator 

A = A2 ' 

where A1,A2 are generators of contraction semigroups and B is a bounded 
operator. Such systems are considered in Section 3 and can be applied to 
investigate the asymptotic behavior of solutions of the inhomogeneous Cauchy 
problem with periodic inhomogeneity (Section 4). 

(1.1) 

1. A T a u b e r i a n  T h e o r e m  

Let f 6 L~or oo); X)  where X is a Banach space. We assume that 

M := limsup 1 , - ~  ~- IIf(t)ll < cr 

Then f(A) = J~ e-xt f ( t )dt  exists for Re A > 0 and defines a holomorphic 

function on C+ := {A C C:  Re A > 0}. In the following we let F(t) = J: f(s)ds. 

P r o p o s i t i o n  1.1. Assume (in addition to (1.1)): 
a) f has a continuous extension to (C+ U i [ -n ,  R])\{0}, where R > 0; 

h) 
A l e +  

Then 

P r o o f .  

(1.2) 

1 fo' 4M l imsup I1~- f(s)dsll < - -  
t ---*OO - -  / ~  

Let M1 > M. We have to show that 

1 
l imsup ~ IIF(t)ll < 4M1/R. 

t----* oO 

For this, we can assume that IIf(t)ll < Mlt  (t > 0). In fact, by (1.1) there 
exists to > 0 such that II/(t)ll __- Mlt  for all t > to. Let f l  = 1[0,to] " f and 

replace f by ] = f - f l .  Since ~ is entire, ] satisfies a) and b). More- 
l 

over, II](t)ll -< Mlt (t > 0) by construction. Finally, l imsup ~ IlF(t)l[ = 

if, l imsup ~-II ](8)ddl. 
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By hypothesis, there exists N(t) ~ 0 (t --* co) such that 

1 1 
(1.3) IIi(A)I I _< N(t) .  -~l for all [A[ ___ T 

where t > ~.  

Let g := f and for t > 0, gt(A) := J: e -x" f(s)ds (X e C). Then gt is an entire 
function and gt(O) = F(t). 

Let r > ~.  By Cauchy's theorem we have for t > r, 

1 j(]x eXtgt(A)(l+A~/R~) 2 dA F(t) = ~ t =R -~,  

o= 5-ri~i-l fr  ~" , (~)(1 + :dln~) ~ T'dA 

where F is the oriented contour consisting of the segments [ - R i , - / ] ,  [ - i , - ~ ] ,  
the semicircle [Re A > 0, IAI = 1], t he  s e g m e n t s  ~ i i [~, 7], [7,iR] and the semicircle 
[ReA > 0, IAI = R]. 

Adding up the two terms we obtain 

1 

Re A:>O 

1 
1 + R2 ] 

+ ~ '~.~;'A 

1 eXtg(A) I + R ~ ]  A 
27ri a. x=o 

_<lXl_<n 

I eAtg(~) 1 + R2 ] /~ 

1 eX*g(A) 1 + - -  
21ri R~ R 2 ] A 

~t=,x 
=: h ( t )  + h ( t ) -  s  h ( t , r ) -  h ( t ) .  

We estimate the different integrals: 
I1: Let A = Re i~ 8 e ( - ~ ,  ~). Then 

II~X'(g,(A)- g(~))ll--II f0 ~ f(t + ~)~-x" &ll 
js162 ( t 1 )  

~_M1 ( t+s)e-ReX"ds=M1 R .cosO+ R2(cosO)2 ; 

X2~ 2 1 1 
[ (  1 + I = 4(cos 0)'2; -- 

R~ ] IlXl R" \ 

Hence 
�9 4.  -Tr . R  III1(t)[] ___ ~ .  M1 ~ + ~ 
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Hence 

Hence 

Hence 

(,r 3 ~  Then I5: Let A = R e  i~ 0 E t 2 ,  5 /" 

// /o' Ile~'g,(A)ll = Ile ~' e-X'f(s)ds[[ <_ eR~"M1 e -Re' \s  - sds  

1 
---- M1 [t + - - - ~ )  ( e a ~ t ( - R e  - 1)] < M l t / ( - R e  A) 

M~ t 
= -X--" ( - c o ~  0); 

I(1 + ~5/R5)51 = 4(cos  0)5; 1 / la l  = 1/R. 

1 M1 1 M1 
IIh(t)I[< 2-~ R t 4 - R ~ R = 2 - - ~ t .  

t11/2~i :i~/~ e"' g(i~)(1 - : / R s )  5 d~/sll 

1/2~r log (Rr ) .  l imsup llf(is)ll. 
I / r < s < ~ R  

h :  

h :  

IIh(t,r)ll  _ 1/7r log (Rv).  l imsup Itf(is)ll. 
1/T<M<_R 

111/2~i f : / :  e'8' g(is)(1 - ~,:" ~ 5 ?l l  

_< 1/2~r N(T) t l r  dr/r = tN(r)/2rr. 

ll$4(t,~-)[ I ~ 1/TrN(T). t. 
h : A = 1/ t  e i~ 0 e (-~r/2, ~r/2). Then 

[e~tl <_ e; llg(A)ll < N( t ) I / IA  I = N ( t ) . t ;  1(1 +,~/R2)21 <_ 4; 
Hence 

IIh(t)l I _< 1/2~r. e .  N i t  ) �9 t .  4.  tzr 1/ t  = 2eN(t)t .  

Summing we conclude that  

lim sup IIF(t)/tll < 4 M 1 / R  + 1/TrN(T). 
t ---* O0 

ll/:q = t. 

Letting 7" -* oo gives (1.2). 

b) 

Then 

T h e o r e m  1.2. Let foo E X .  Assume that f satisfies the following conditions 
(in addition to (1.1)): 

a) There exist 6 > O, zlk e N, Izlk[ >_ 6 such that f has a continuous 
extension to C + \ ( { i , k  : k e N}  0 { 0 } )  and each i,k is a pole of order I 
47; 

~EC+ 

C -  lim f ( t )  = f ~ .  

A special case, where (b) is satisfied, is when 0 is a pole of order 1. In that case 

foo = aes  (f', 0). 
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C o r o l l a r y  1.3. Assume that f E L~o e ([0, oo); X )  satisfies: 
a) Ilf(t)ll = 0(t) (t --, oo);  
b) every point on i~  is regular or a pole of order 1 of 

Then 
C -  lira f ( t ) = R e s ( L O ) .  

t~OO 

Theorem 0.1 of the introduction is an immediate consequence of Corol- 
lary 1.3. 
P r o o f  o f  T h e o r e m  1.2. a) One may assume that foo = 0 considering 
f ( t )  - foo instead of f otherwise. 
b) Let R ~ {]rJkl : k E N}, R >__ 8. We will show that  

(1.4) lira sup I lF( t ) l l / t  < 4 M / R ,  
t ~OO 

where 
2,a r : :  tim sup Ilf(t)tl/t. 

t--*CX) 

Let a,  := rtes(f,i,Tk). Then f ( , X ) -  ~ has a holomorphie extension to a 

neighborhood of ir/k. Let fk( t )  := ak e i~ Then ~(,k) = ak/(A--i•k) (Re~ > 

0). The function h(t) = E fk( t)  is bounded, h is holomorphic in 0, ( f -  h)" 

has a continuous extension to (C+ U i [ - /~ ,n ] )  \ {0} and lira ~ ( f  - h ; ( ,k)  : 
~,Er 

f ~  = 0. Moreover,  l i m s u p  l lf( t)  - h(t)ll/ t  = M.  Since C -  l im h(t) = 0, it 

follows from Proposition 1.1 that 

1 1/0, l imsup I1~- F(t)}t = l imsup ]l ( f ( s )  - h(s))dsll <_ 4 M / R .  
t --+ o O  ~ ~ 0 0  

Since R can be chosen arbitrarily large, we conclude that C - lira f ( t )  = O. �9 
t~OO 

We deduce a Tauberian theorem for power series. Let an E X ,  (n E No) 
satisfy 

(1.5) lta.JI = 0(~)  (n -~ o o )  

Then p(z)  :=  ~ ar, z n converges for Izl < 1. If 
n = 0  

N--1  

C -  lira a n : =  lira 1 E 
n--*OO N ~ o o  N a n  ~ a ~ 1 7 6  

r t~0  

(for some aoo E X),  then it is easy to see that 

A ~  lira an = l i m ( 1 -  x)p(x)  = aoo, 
n - - * o o  ~c1"1 

the converse being false, in general. 
Note, in particular, if 1 is a pole of order 1 of p, then A - lira a,~ = 

Res (p, 1). 
Let F = {z 6 C :  lzl = 1}. 
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C o r o l l a r y  1.4. Let aoo E X .  Assume that (besides (1.5)) the following 
conditions are satisfied: 

a) Every point on r \ {1} is either regular or a pole of order I of p; 
b) there ezis~s ,5 > 0 such that every z E F \ {1} satisfying Iz - 11 < 6 is 

regular; 
c) lira (1 - z )p ( z )  = a ~ .  

Then 
C -  lira a , = a ~ .  

n --* r 

P r o o f .  Let f ( t )  := an for t E [n,n + 1). Then f satisfies (1.1) and ]'(A) = 
h()~)p(e - x )  (Re ,~ > 0) where h(,~) := (1 - e-X)/,~ is an entire function. Since 

C -  lira a n =  lim 1 --]0 N n - . ~  N - ~  -N f ( t )  dr, the conclusion follows from Theorem 1.2.m 

We give several comments on the preceding results. 

E x a m p l e  1.5. Let R > 0. Define f ( t )  = te int. Then M = 1 in (1.1). 
Moreover, f(A) = (,~ - iR) -2 (Re A > 0). The Cesaro means are given by 

Hence 

1 f r  1 eil~ , 1 
-t Jo f ( s ) d s = - ~  + - ~ f f  1). 

1 s  1 
l imsup 7 II f(s)dstl = ~ .  

This shows that  the estimate in Proposition 1.1 cannot be essentially improved. 
Condition b) of Theorem 1.2 is satisfied and A -  lim f ( t )  = 0. However a) does 

t~C,O 
not hold since iR is a pole of order 2. And in fact, f is not C-convergent. This 
shows that the condition on the order of the poles in Theorem 1.2 cannot be 
weakened. 

It is easy to see that  condition (1.1) implies that  every pole of ]" on iN is 
at most of order 2. In the following we show that  (under additional hypotheses 
the poles are of order 1 if f is C-convergent. 

C o r o l l a r y  1.6. Assume that f satisfies (1.1) and that every point on iN :s 
regular besides a finite number of poles. Then f is C-convergent if and only if 
all poles on iR  are of order 1. 

P r o o f .  It is clear from Corollary 1.3 that  the condition is sufficient. To prove 
the converse assume that  f has a finite number of poles of order 2 ( i rh , .  �9 �9 ir/k } 
on ilR. If 0 is a pole of order 2, then f is not C - e r g o d i c .  Hence we may 

k 

assume that  r/j 7~ 0 (j = 1 , . . . , k ) .  Let a l , . . . , a k  E X ;  h(t) = ~ a j t e  inst. 
j = l  

k 
Then h($)  = Z aj(,~ - it/i) -2, Re A > 0. Hence, for a suitable choice of 

j - - 1  

a l , . . . , a k  E X \ {0}, the function ( f  - h ;  has merely regular points or first 
order poles on JR. It follows from Corollary 1.3 tha t  f - h is C-convergent.  
H o w e v e r  
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l~ot ~ i . l ~ a j .  -~ h ( s ) d s +  - -  aje ' ' i t = -  (e ' ~ ` - 1 ) ~ 0  ( t ~ c ~ ) .  
j = l  T]j t .= rlj 

k 

Since E --i aj e init does not converge for t ~ oo, it follows tha t  h is not C-  
j = l  7}j 

convergent. Consequently, f is not C-convergent  either. �9 

R e m a r k  1.7. For power series a s tronger result than  Corollary 1.6 can be 
o o  

proved in an e lementary  way. Let p(z) :=  E an z n be a power series with 
k = 0  

coefficients a ,  E X (not necessarily satisfying (1.5)). Assume that  the radius of 
convergence is 1 and tha t  every point  on F is regular  or a pole. Then (an)neNo 
is C-convergent  if and only if every pole on F is of order  < 1. 

This can be proved in a similar way as Corollary 1.6 using tha t  [la,[I --* 
0 (n --~ oo) if p has a holomorphic extension to a neighborhood of {z E C : 
Izl < 1}. 

If we are merely interested in boundedness  of the Cesaro means,  the 
proof  of Proposi t ion 1.1 shows that  b) can be replaced by 

(1.6) sup I1~]'(~)11 < oo 
X~B(o,O+ 

for some 6 > 0 in order  to deduce tha t  

(1.7) l imsup  II f0)d~ll < ~ ,  

where B(0, 6) = {z e C : Izl < 6}, B(0, 6)+ = B(0, 6) n C+. 
Condit ion (1.6) will be adequate  for our appl icat ion to semigroups in Theorem 
2.1. In Proposi t ion 1.9, we shall give a weaker condit ion which suffices for (1.7). 
We note first a necessary condition. 

L e m m a  1.8. Let f E L~o r  satisfying (1.7). Then for every R > 0 
there exists M >_ 0 such that 

(1.8) 

P r o o f ,  

Prop.  1.1). Then 

II~i(~)ll = II ~2 . / ~  

laP. M 
= (Re.X)' 2' 

M 
[[mf(~)ll ~ (cos 0) --------~ wh~re 

7r 7r 
, ~= l~ le  ~~ 0 ~ ( - ~ , ~ ) ,  I~I<R.  

We can assume that  M = sup 1 II f0 t ,>0 T f(s)d~ll < oo (cf. proof of 

e -a t  F(t)dtl l  

1 F(t)dtl l  < IAI2 M fo ~ e -~'t t ~ 

M 
(cos 0)2" 

e - R e  Xt t d t  
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We do not know whether  (1.8) for one (or all) R > 0 is s~m~ient for 
(1.7). However, we have the following. 

Proposition 1.9. Let f �9 L~o c ([0, co); X )  such that 
a) Ilf(t)ll = 0(t)  (t --, oo); 
b) there ezist R > 0, c > 0, e > 0, such that 

I1,~.?(~)11 < (COS 0) 1-r 
for all A = I~1 ~,o e B(0, R)+. 

Then 

lim sup 1 i t  ,--oo T II f(s)dsll < oo.  

P r o o f .  We keep the notat ions of the proof of Proposit ion 1.1. Again we may  
assume tha t  IIf(t)ll --- Mlt  (t > 0). 
Let t > -~. Denote by Ft the contour 

1 1 
{ A ~ C :  IAI= 1, R e A >  T } U { A E C  : Re A =  ~-, [ A I < R  }. 

Then,  defining F, g and gt as before, 

F(t)  = gt(O) = 1/2rri fix eXt g'(A)(1 + A2/R2)~ d A_~ 
i=a A ' 

t ) ~  " 

Hence 

F ( t ) = 1 / 2 7 r i  e X ' ( g t ( A ) - g ( A ) ) ( l +  R2 ] --~ 
> / 

-- 1/27ri I•tTgo -~- 

-- 1/27ri I~i=R eXt gt(A) I + A2/R e dA 
A <Re A<l]t 

Re x = l / t  "~ 

= :  & ( O  - I 2 ( t )  - I 3 ( t )  - & ( t ) .  

As in the proof  of Proposi t ion 1.1 we obtain 

1/t(llIl(t)ll + II&(t)[I)___ 4M1/R + 2M1/tR ~. 

z3(t): 
The remaining integrals are est imated as follows. 

Let A = Re  i~ 0 < cos0 < 1/Rt. Then leXtl = e nc~ o.t < e; 

f0' f0' Ilat(m)ll = 11 ~-x ,  f(a)ds[l  <__ M1 e-Re X-~ s da 

_ M1/n2(cos 0)2; 
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I(1 + A~IR~)~I = 4 ( c o s  0) ~, I /IAI = I / R .  T h u s  

l i t  IIG(~)ll -< l i t .  1/2 ,r  �9 e .  4 M l l  R2 . I l R .  2R arc s in  1/Rt 
= 4M~el(~rt R2)  �9 arc  s in l l R t .  

I4(t): Let  A = ~ + i s .  T h e n  IAI = ( l i t  2 + s 2 )  ' /~ and  

IIg(~)ll <-- ~/1~1" (IAI/Re ~)'-" = ~iAI-' (Re A),-1.  

Thus 
IIg(~)ll/l~l _< cl;1-1-'  (he ; ) , -1  = c t l - e ( l / t  2 + s2)-(1+,>/2 

= ct2(1 + t 2 s2)-(1+') /2;  

I(1 + ~2/R2)21 ~ 4; I~'1 = e. 

Hence 

R 

III,(t)ll ~ 1 / 2 ~ .  4ec. /_ t 2. (1 + t2s2)-(l+')/2ds 
R 

= 1/Tr- 2.  e-  c .  t . (1 + r2) -(l+e)/2 dr 
R. t  

< const �9 t. 

Adding up one sees that 

limsup 1/tllF(t)ll < oo. 
t ~ O O  

2. E r g o d l c  C 0 - s e m i g r o u p s  

Let T = (T(t))t>o be a C0-semigroup with generator  A. By p(A) we 
denote the  resolvent set of A and by R(A,A)  = (A - A) -1 (A E p(A)) its 
resolvent. Then T is called Abel-ergodic (briefly A-ergodic) if (0, oo) C p(A) 
and A - lira T(t) := l imAR(A,A)  = P exists strongly. In that  case one has 

t~oo Al0 

x = N ( A )  �9 R(A)  (where N(A)  := {z e D(A), Az = 0}, R(A) = { A ~ :  �9 e 
D(A)} and P is the project ion onto N(A) along this decomposit ion).  
It is well-known tha t  T is A-ergodic  if and  only if 

(2.1) (0, oo) C p(m), sup II ( .kR(A,A))II < oo a n d  
0<;~<l 

(2.2) N(A) separates  N(A'). 

Note tha t  (2.2) follows from (2.1) if X is reflexive. We refer to [2] and [7] for 
these results.  The semigroup is called Cesaro ergodic (or also C-ergodic or mean- 

ergodic or s imply ergodic) if C -  lira T(t) = lim -1 --/t T(s)ds exists strongly. 
t --+ oo t~or t ~ t i  

Of course, in that  case, T is A-ergodic  as well and C -  lira T(t) = A -  lira T(t). 
t ~ O O  t ~ O 0  

We are interested in the converse implication.  
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T h e o r e m  2.1. Assume that 
a) IIT(t)ll = 0(t) (t--* ~ ) ;  
b) There exists ~ > 0 such that sup IIAR(A,A)II < r162 

X~B(0,6)+ 
c) N ( A )  separates N(A' ) ;  
d) Every A E a(A)  fq iR  \ {0} is a pole of order 1 of the resolvent of A. 

Then T is C-ergodic .  

R e m a r k  2.2.  
1) If T is bounded,  conditions (b) and (d) are far too strong. However, it 

will be shown below tha t  they cannot be omit ted if IlT(t)l[ growth like 
t. 

2) It is easy to see that  (b) implies that  there exists 19 E (~,Tr) such that  
~(8) M B(O, ~) C p(A) and sup lIAR(A, A)] I < c~ where E(8) = 

x~(a)nB(0,~) 
{A e c \ {0} : larg AI < e}. 

3) It is not difficult to see that  the formally weaker condition lIAR(A, A)I I _< 
c/(cos/~)1-,  for A = IAI e ie e B(0,(~)+ implies condition (b) of Theorem 
2.1 (cf. Proposit ion 1.9) in the case of resolvents. 

P r o o f .  It follows from (a) that  [Re A > 0] C p(A) and from (b) and (c) 
tha t  T is A - e r g o d i c .  It follows from the remark preceding Lemma 1.8 (or 

Proposition 1.9) that sup II T(s)  d~ll < ~ .  Since T(t)~ = x on N ( A )  and 

N ( A ) @ R ( A )  = X ,  it suffices to show that  C ' -  lim T( t )x  = 0  for x E R(A). 

Let �9 = Ay where y e D(A).  The~ AR(A, A)~ = A~R(,X, A)~ - Ay (Re a > 0). 
So the function f ( t )  := T( t )x  satisfies the hypotheses of Theorem 1.2 (with 
f ~  = 0). Consequently, C - lim T( t )x  = O. �9 

L e m m a  2.3.  Assume that ir I E i]~ is a pole of order k >_ 2 of the rcsolvent. 
Then T is not C-ergodic. 
P r o o f .  There  exists x E D ( A  k) such that  (A - i , l ) k - l x  ?~ O, (A - ir?)kx = 0 

t 2 
(see e.g. [Na, A-III.  3-6]). Hence e-iUtT(t)x = x + t (A - i~)x + v. (A - i~)2x + 
�9 .. q- t k - 1 / ( k  -- 1)!(A - i r l )k- lx .  This implies that  T( t )x  is not C-convergent.m 

T h e o r e m  2.4.  Assume that IIT(t)I] = O(t) (t ~ c~) and that a(A)  M iR  
consists of poles of the rcsolvent only. Then the following are equivalent: 

(i) T is C-ergodic; 
(ii) Every point in a(A)  M iR  is a pole of order 1; 

(iii) T is uniformly C-ergodic; i.e. ~ f t  T(s)ds  converges in the operator 
n o r m .  

P r o o f .  (i) implies (ii) by Lemma  2.3. Assume (ii). We are going to show (iii). 
For tha t  we can assume that  0 E p(A) (considering otherwise the restriction of T 
to ( I - P ) X ,  where P is the residue at 0). Let M = l imsup IIT(t)ll/t. Let R > 0 

such that +iR ~ o(A). For ~ ~ X,  Ilxll - 1, let f(t) : =  T(t)x. Then by the 

proof of Theorem 1.2 lira sup 1 --/or ,--oo t- II ~o T(s)x  dsll _< 4 M / R ,  uniformly in x. Since 

R can be chosen arbitrari ly large, it follows that  lira 1 - -  /t t - ~  T IIJ0 T ( s ) d s [ l = 0 "  �9 
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We continue with some comments and examples. 

R e m a r k  2.5. 
a) If IIT(t)ll = 0(t) (t - ,  co) and 0 e p(A) or 0 is a pole of the resolvent of 

order 1, then sup 1 i t  ~>_0 7 II ,u  T(s) dsII < co. This can be seen in a direct way 

(instead of applying Proposition 1.1). In fact, one can assume 0 E p(A) 
(cf. proof of Theorem 2.4). Then ~ f t  T(s)ds = ~(A -1 T(t) - A - l ) .  

b) If IIT(t)ll - o(t) (~ - ,  co) and 0 E p(A), the above argument shows 
that  without any further hypotheses T is uniformly C-ergodic. 

The following example shows that  the growth condition IIT(t)ll = 0(t) (t --, co) 
is essential in the results of this section. 

E x a m p l e  2.6. There exists a C0-semigroup T satisfying IIT(t)ll = 0(t 2) 

co), a(A) g l iN=O,  but sup 1 [ L t -  t>0 ~-[ .o  T(s)ds[[ = co. 

Let H = @,eN ~2(3) and let A = (A , ) , eN with maximal domain, where 

A .  = )~. 1 . 
0 A,, 

A generates the C0-semigroup T(~) = (T . (~ ) ) . eN ,  where 

(t --~ 

T . ( t )  = e x"~  1 . 

0 

Now let An - 1 - -  -n--~ + i n .  

It is easy to see that  

n2 1 / (  
II T(s) dsll ~_ ll-~ T.(s)dsll ~ oo (n ~ co). 

However, o(A)  = { - . A  + i . :  . e N} so tha t  ~(A) n iR = O. 
Finally, we mention, that  in Theorem 2.4 in general one has no stronger 

convergence than in the sense of Cesaro. In fact, in [1] an example is given where 
I[T(t)ll = O(t) (t ~ co), a(A) f3 iR = 0 ,  but  T(t) does not converge strongly. 

3. A p p l i c a t i o n  t o  T r i a n g u l a r  S y s t e m s  

Let A1 and A2 be the generators of bounded Co-semigroups T1 = 
(Tl(t))t>o and T2 = (T2(t))t>_0 on Xl  and X2, respectively. Let B e f~(X2,Xl) 
and consider the operator 

B 

with domain D(A) = D(A1) x D(A2) on X = X1 x X2. Such operators have 
been studied recently by Nagel [9], and Phong [10]. The resolvent of A is given 
by 

R()~,A) = " ( R(A, A1) R(A, A1)B R(A,A~) "~ 
0 R(~,A2) ] k 
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(A �9 p(A1)t~ p(A2)). Since R(A, A1)BR(A,  A2) is the Laplace t ransform of 
T12(t) = f :  T1 ( t -  s)B T2(s)ds,  the operator  A generates the C0-semigroup 

T ( t ) = ( T l ( t )  0 T12(t) ) T2(t) 

(cf. [9]). Clearly HT(t)II = O(t) (t --* co), but  T is not bounded in general. 

E x a m p l e  3.1.  Assume tha t  X1 = X2; A1 = A2, B -- I .  Then T12(t) ~- 
tT~(t). 

Now we obtain the following results for ergodicity of T. 

T h e o r e m  3.2.  Assume that every i71 E iR ia a pole of order ki(~) of R(A, Ai) 
and kl(y) + k2(v) <_ 1 for all ~ E a.  Then T is uniformly C -  ergodic. 

Here a pole of order 0 is by definition a regular point. 

P r o o f .  The  hypothesis implies that  every point on iR is a pole of R(A, A) of 
order _< 1. So the claim follows from Theorem 2.4. �9 

Assume tha t  S is a bounded holomorphic C0-semigroup with generator  
B. Then the following are equivalent: 

(i) S is A-e rgod ic ;  
(ii) S is C - e r g o d i c ;  

(iii) tli_m S(t)  exists strongly. 

In fact, there exists M _> 0 such that  ]lt BS(t) l l  _< M (t > 0). Hence 
lira S(t)x -- 0 for x �9 R(B)  and so for x �9 R(B).  Thus, if S is A-e rgod i c ,  

i.e. if X ---- N ( B )  @ R(B),  then lira S(t) = P strongly, where P denotes the 

projection onto N ( B )  along this decomposition. 
This  clarifies the asymptot ic  behavior if T1 and T2 are both bounded 

holomorphic Co-semigroups .  If merely one of them is holomorphic one can 
apply  the results of Section 2. 

T h e o r e m  3.3.  Assume that A1 (or A2 ) generates a bounded holomorphic 
A -  ergodic Co-  semigroup and that R(A, A2) (resp. R(A, A~)) has merely poles 
of order < 1 on iR and 0 G p(A2) (resp. 0 G p(A1)). Then T is C -  ergodic. 

P r o o f .  We merely consider the first case. Since T1 is a bounded holomorphic 
C 0 - s e m i g r o u p  one has a(A1) n iR C {0} and sup llAR(A, AI)II < co. Thus  

Re A>O 

A satisfies the hypotheses of Theorem 2.1. �9 

It is interesting tha t  by applying our results to the system (3.1) (with 
A1 = As ) one may  recover results for a given semigroup T1 as is shown in the 
following theorem. Alternatively, one may  apply the Tauber ian theorem of [1] 
(see also [2]). 
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T h e o r e m  3.4.  Let A1 be the generator of a bounded Co-semigroup T1 and 

/o' assume that iR C p(A1). Then lim Tl ( s )ds  = R(O, A1) in the operator 

n o r m .  

P r o o f .  Let Sl( t )  = f2 Tl (s )ds .  Consider the system (3.1) with A2 = A1 

and B = I .  Then T(t)12 = tT l ( t )  (see Example  3.1) and f t  Ta2(s)ds = 

t S l ( t )  - f :  S l ( s )ds .  It follows from Theorem 2.4 that  

f liSa(t) - 1/t  Sl(s)dsl l  --, co (t --, cr 

But S l ( t ) / t  = 1 / t (A71T l ( t )  - A~ 1) --* 0 (t ~ c~). Hence 

/o' 1/t  S , ( s ) d s  = 1 / t ( A 7 1 S I ( t )  - t A ~  1) --* - A F  1 

in norm. Thus lim S l ( t )  = R(O,A , )  in norm. 
f ~ O O  

= R(0, A1) 

R e m a r k  3.5.  Theorem 3.4 is no longer true if 0 E p(A1) but  a(A1) f-1 i R r  
as the example X = C, A1 = i shows. However, the following holds. 
Let A be the generator  of a bounded semigroup T and S(t)  = f t  T ( s )ds .  If 
0 e p(A), then R(0, A) = C -  lira S(t)  strongly. In fact, C -  lira S(t )x  = 

t ~  t ~ O O  

C -  lim T ( t ) A - l x  - A - i x  = A -  l im T ( t ) A - l x  - A - I x  (since T is bounded)  
t --* r It ~ C x )  

= lim A R ( A ) A - l x -  A - i x  = - A - i x  (x E X) .  
Al0 

4. P e r i o d i c  I n h o m o g e n e i t l e s  

Our  last appl icat ion concerns the  asymptot ic  behavior  of solutions of the 
inhomogeneous Cauchy problem with periodic inhomogeneity. 

Let A~ be the generator  of a bounded C0-semigroup 2"1 = (Tl(t))t_>0 on 
X1. Let ~- > 0. We consider the space 

X2 := C , ( R , X 1 )  = { f  : R --* X1 continuous : f ( s  + r)  = f ( s )  for all s E R} 

as wel las  the subspaee )~2 := { f  E X2 : M a r  = 0} where M o f  = 1 / r  f o  f ( s )  ds 
is the mean of f .  

We consider the inhomogeneous Cauchy problem 

u ' ( t )  = Au(t) + f(t)  (t >_ O) 
(CP)  u(O) x 

with f E X2, x E Xx.  The function 

u(t) : Tx(t)z A- r l ( t  - s) f ( s )  ds 

(t _> 0) is called the mild solution of (GP). 
For f E X2 we define the first moment M l f  E Xl of f by M l f  = 1/r fo tf(t)dt. 
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T h e o r e m  4.1. Assume that 
a) 2~r i / v .  Z \  {0} C p(A1); 
b) every point on ,(A~) n iR is a pore of order S of the ~esolve,t of A,. Let 

P = Res (R(A, A, ), 0). 
Then 

C -  lim u ( t ) = P ( x - M l f )  
t ~ O 0  

whenever x �9 X1, f �9 -~2. 
Moreover, / / P  = 0, i.e. if 0 �9 p(A1), then 

C -  lim u(t) = R(O, A 1 ) M o f  
t ~ O 0  

for all f �9 X2. 

R e m a r k  4.2.  
1. Since 0 is a pole of order < 1 of the resolvent of A1, T1 is A-ergodic  

and A -  lira Tl(t) = P (= Res (R(~,A1),0)). Since T1 is bounded, 
t---*OO 

it follows that C -  lim Tl(t) = P. 
t "--*OO 

2. Assume that P # 0. Let x = Px  # 0 and f ( t )  - x. Then u(t) := 
(1 + t ) x  is not C-convergent .  

T h e o r e m  4.3. Assume that T1 is a bounded holomorphic, C-ergodic semi- 
group. Let P := C -  lim Tl(t). Then 

t "-'* O0 

C -  lim u(t)=P(x-Mlf) 
t ~-* O0  

for all z �9 X1, f �9 52. 

For the proofs we consider the C0-semigroup T2 on X2 given by 

(T~(t)/)(,) = / ( t  + s) ( f  �9 X~, t > O, ~ �9 ~) 

and denote by A2 its generator. 
It is easy to see that a(A2) = {2~i ~ : n �9 Z} and (R()%A2)I)(s) = 

(1 - e-x~) -1 fo  e - x t f ( s  + t)dt. Each value 27rin/v is a pole of order 1 of 
R(A, A2) and C -  lira T2(t) = A -  lim T2(t) = Q0, where (Qof)(s)  - 
1 r fO f( t)dt .  So N(A2) = { f  �9 X2 : f -  constant} and -~2 = ( I - Q o ) Z 2 .  
We denote by T2 the restriction of T2 to -~2 and by A2 its generator. Then 
0 �9 P(A2). 

Let B �9 L:(X2, X1) be given by B f  = f(0) and consider the operator 

(A, 
A =  A2 

on X = X 1 X X 2 which generates the semigroup 

T=(t) ) '  
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where T12(t): = f;  Tl(t - s)BT2(s)y ds = fd Tl(t - s ) f (s )ds ,  so that u(t) = 
T~(t)x + T12(t)f = (T( t ) (x , f ) ) l .  Denote by T the restriction of T to )~ := 
X1 * -~2. 
It is easy to see that R(0,-42) is given by 

f 0  I" 
(R(0,.42)f)(s) = - l / r  t f (s  + t) dt (s e R) 

for all f E )(2. Thus 

(4.1) BR(0, A2) = -M1.  

P r o o f  of  T h e o r e m  4. 1. It follows from Theorem 3.2 that T is C-ergodic .  
Moreover, 

C -  lim T(t)12 = A -  lira (T(t))12 = lim XR(X, A1)BR(X, A2) 
t ~ o o  t ~ o r  XJ, O 

= PBR(O,X ) = - P M 1 .  

This proves the first claim. 
If 0 E p(A1), then Theorem 3.2 implies that T is C-ergodic .  Then 

C -  lim T(t)12 = A -  lira T21(t)= lim R(X, A1)BXR(X, A2) 
t---*oo t---*oo XIO 

= R(0, A~)B Q0 = R(0, Ax )M0. 

Theorem 4.3 follows in the same way from Theorem 3.3. 

R e m a r k  4.4. In a different context, the analogous semigroup T on X1 @ X2, 
X2 = UCB(R,X1),  has been used by Phong [10] in order to investigate the 
inhomogeneous Cauchy problem related to A1. 
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