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0. Introduction

Let X be a Banach space and f € L{ ([0, 00); X) such that the Laplace
transform f()\) = f0°° e Mf(t)dt exists for A > 0. Let fo, € X. We say
that f(t) is Abel convergent (A-convergent, for short) to foo as t — oo if
A — lim ) = liiigAf(A) = foo; and f is Cesaro convergent (C -convergent

: : N :
for short) if C — tll'rgof(t) = tl—l—glo?/o. f(8)ds = foo. If tli’rgof(t) = foo, then
C - tlim f(t) = foo; and if C ~ tlim f(#) = foo, then 4 — 'lim f(#) = foo. The
— 00 —00 -~ 00

converse implications are false, in general. Additional conditions which allow
the inverse implication are called Tauberian conditions, and the corresponding
statements Tauberian theorems.

Here we are interested in deducing C-convergence from A-convergence.
A known condition is that f is bounded (see {11] or [2]). We weaken this
assumption but impose conditions on f. For example we show the following.

Theorem 0.1.  Assume that the following conditions are satisfied.

(@) If@®I=0() (¢t 00);

(b) there ezists an open set Q C C containing iR such that f has a holo-
morphic extension to Q.

Then
C - tlim ft)=0.

Note that condition (b) implies that A — lim¢—.o f(t) = 0. Neither of
the conditions (a) or (b) can be omitted. However, it is shown that condition
(b) can be considerably relaxed.

If in Theorem 0.1 instead of (a) one assumes that f is bounded, one
can actually conclude that tl_lng f(#) = 0. A simple proof of this has been given

by Korevaar [6] (but it follows from much older work of Ingham [5]) and the
result has been generalized in (1], [2] and [3]. We use similar arguments based
on Cauchy’s theorem.

Applying the results to Cy-semigroups we obtain the following ergodic
theorem.
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Theorem 0.2. Let A be the generator of a Co-semigroup T = (T(1))i>0
satisfying

(0.1) IT@®I=0@) (¢ — o).

Assume that

2) 0€ p(4)

b) o(A) NiR consists of poles of the resolvent of order 1.
Then T is uniformly C -ergodic.

An example of a Cp-semigroup satisfying (0.1) (without being bounded
in general) is obtained by considering a matrix operator

A, B
(% %)
where A;,A; are generators of contraction semigroups and B is a bounded
operator. Such systems are considered in Section 3 and can be applied to

investigate the asymptotic behavior of solutions of the inhomogeneous Cauchy
problem with periodic inhomogeneity (Section 4).

1. A Tauberian Theorem

Let f € L] _([0,00); X) where X is a Banach space. We assume that

loc

(1.1) M= li?ls;}p-tl— IF Ol < oo.

Then f()\) = [i° e Mf(t)dt exists for ReA > 0 and defines a holomorphic
function on Cy := {\ € C: Re > 0}. In the following we let F(t) = fot f(s)ds.

Proposition 1.1.  Assume (in addition to (1.1)):
a) f has a continuous extension to (Cy Ui[—R, R)\{0}, where R > 0;
b) lim Af()) =0.
pe}

Then .
timsap |17 [ f(o)asl < 2.
t—sr 00 t 0 R

Proof. Let M; > M. We have to show that

1
(1.2) limsup - {|F(#)|| < 4M:/R.
t~—00 t
For this, we can assume that [|f(¢)]] < Mit (¢t > 0). In fact, by (1.1) there

exists tg > 0 such that |f(¢)|| < Myt for all t > to. Let f; = 1jg4, - f and
replace f by f = f — fi. Since fi is entire, f satisfies a) and b). More-

= 1
over, ||f(t)]| £ Mt (t > 0) by construction. Finally, limsup 7 IF@)| =
t—o0
1 b
limsup - ||/ f(s)ds]].
t—oo t 0
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By hypothesis, there exists N(t) 10 (¢t — o0) such that

(1.3) IFON € N(2) -~ for all [A] < < -

| |
where t > %
Let g := f and for ¢ > 0, g:(A) = f(;' e f(s)ds (A € C). Then g; is an entire
function and ¢,(0) = F(3).

Let 7 > . By Cauchy’s theorem we have for ¢ > r,

2 d)
o At 2 /p2\° &2
F() = 5 on © s (1+27/R?)" <,
—_1 At 2 p2)? dA
o= [ Mo (1+ 3R

where T is the oriented contour consisting of the segments [—Ri, -], [-%, -],
the semicircle [Re A > 0,|A| = 1], the segments [§, £], [£,iR] and the semicircle
[ReA > 0,|A] = R].

Adding up the two terms we obtain

2 d/\
Fit)y=55 27rz IAl=R e (gt()‘) ——g(A))( )
ReA>0
1 At AZN2Z dA
57 Joen SN+ ) T
ReA<0
1 At AZ\2 dA
577 [ nerme © 9(*)(”52“) Y
i<iaigr
1 At AZ\2 dA
57 [ mermo, © 90)(”@) Y
icnnig:
1 A AZ\2 dA
~5m 91+ R2) 5y

2m lll;lx_io
=: Il(t) + Iz(t) - I3(t, T) —_ I4(t, T) - Is(t).

We estimate the different integrals:
I;: Let A=Re*, 6€(~%,%). Then

1% (2 =g =1 [~ fie+ e as)

<M oo(lt-hs)ri'Re""d.s:M( L, L )
= L '\R cos8 " R*(cosf)?/’

(1 + A2) | = 4(cos 6)7; ﬁ:

= -

Hence . .
1L < 5 MI(E+ )4 g TR
= le(i + _1-)



ARENDT AND BATTY

I:  Let A=Re', 6€(%,3%). Then

t t
ne*‘gt(x)n=ne“ / e“*’f(s)dsIISeR“"Mx [ e sas
0

M Re ,\)[t+( Re ,\)( N =1 < Mit/(-Re )

_M t
R (=cosf) 9)
(1 + A%/R?)*| = 4(cos 6)%; 1/|A\| =1/R.
Hence
1 M] Ml

I(t <——————t —
1L < 5 taprR=2"70e

Iy: ||1/2m fl/r et g(is)(1 - s'“’/Rz)2 ds/s||
< 1/2 log (R7) - limsup || f(is)]|.
1/r<s<R

Hence
1 Is(t, 7)|| £ 1/7 log (R7) - }unsup Hf(zs)”

1/7<s|<

Lo Wu/2m [ e gGo)(1- ) %1
<1fer [ NGt arfr = eN@n

Hence
[ Is(t, 7)|| < 1/w N(7) - t.
Is:  A=1/te?, 6 € (—~n/2,7/2). Then
leX] < e flgMIl S NOL/IA = N(t) -85 J(1+X/R2?| <4 [1/A| =t
Hence
()| < 1/2m-e- N(t)-t-4-twl/t = 2eN(2)t.
Summing we conclude that

limsup || F(t)/t|| < 4My/R+ 1/xN(r).
t—oo
Letting 7 — oo gives (1.2). |

Theorem 1.2. Let foo € X. Assume that f satisfies the following conditions
(in addition to (1.1)):

a) There ezist § >0, i« €R, |7kl > & such that f has a continuous
eztension to C4\({ink : k € N} U{0}) and each inx is a pole of order 1
of fi _

b) lim A = foo
AEC+

Then
C- tl_l’rgof(t) = foo-

A special case, where (b) is satisfied, is when 0 is a pole of order 1. In that case
foo = Res(f,0).
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Corollary 1.3.  Assume that f € L1 ([0,00); X) satisfies:
a) [f()Il =0(t)  (t— o0); ~
b} every point on iR is regular or a pole of order 1 of f.
Then -
C - tlim f(t) = Res(f,0).

Theorem 0.1 of the introduction is an immediate consequence of Corol-
lary 1.3.

Proof of Theorem 1.2. a) One may assume that foo = 0 considering
f(#) — foo instead of f otherwise.
b) Let R ¢ {|nk|: k € N}, R > 6. We will show that

(1.4) Limsup [|F(2)||/t < 4M/R,
t—oo

where

M o= limsup | F(1)jI/t-

Let ar := Res (ﬁ ink). Then f()\) - Z—)\—_ﬁf;ﬁy has a holomorphic extension to a

neighborhood of inx. Let fx(t) :=ar ™. Then fi()) = ax/(A—inx) (ReA>

0). The function h(t) = Z fr(t) is bounded, % is holomorphic in 0, (f — hj\
Insl<R ~

has a continuous extension to (C4 U [~ R, R]) \ {0} and lim Mf—=h)(N) =

AECY

foo = 0. Moreover, limsup {|f(t) — R(t)||/t = M. Since C ~ tlirn h(t) = 0, it
t—o0 oo

follows from Proposition 1.1 that
1 t
limsup || F(8)] = limsup ||~ / (F(s) — h(s))ds]| < 4MJR.
t—00 t t—00 t Jo
Since R can be chosen arbitrarily large, we conclude that C — tlim F@E) =0 m

We deduce a Tauberian theorem for power series. Let a, € X, (n € Np)
satisfy

(1.5) llan]l = 0(n) (n — o0).
Then p(z) := Z anz" converges for |z| < 1. If
n=0

) N2
C - lim a,:= lim Z a, = Goo
n=0

n—00 N—oeco N

(for some aq € X), then it is easy to see that

A- lim a,= li%l(l —z)p(z) = oo,

n—o0

the converse being false, in general.
Note, in particular, if 1 is a pole of order 1 of p, then A — lim a, =

n—o
Res(p, 1).
Let T={z€C:|z| =1}.
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Corollary 1.4. Let aoo € X. Assume that (besides (1.5)) the following
conditions are satisfied:
a) Every point on '\ {1} is either regular or a pole of order 1 of p;
b) there ezists § > 0 such that every z € '\ {1} satisfying |z — 1| < § is
regular;
¢) lim (1 —2)p(2) = aeo.
fsi<a
Then

C—- lim a,=ag.
n—oo

Proof. Let f(t) := an for t € [n,n+1). Then f satisfles (1.1) and f()\)
R(AM)p(e=®) (Red > 0) where h()) :=(1—e*)/X is an entire function. Since

C— lim a, = hm / f(t) dt, the conclusion follows from Theorem 1.2.m
0

n-—+00

We give several comments on the preceding results.

Example 1.5. Let R > 0. Define f(t) = te'®. Then M = 1 in (1.1).
Moreover, f(A) = (A—iR)™2 (Re A > 0). The Cesaro means are given by

/ F(s)ds = — €ift ”122 (€ —1).

Hence
limsup ~ | / Cfs)dsl = L
t—-;cop t 0 - R

This shows that the estimate in Proposition 1.1 cannot be essentially improved.
Condition b) of Theorem 1.2 is satisfled and A — tlim f(t) = 0. However a) does
— 00

not hold since iR is a pole of order 2. And in fact, f is not C-convergent. This
shows that the condition on the order of the poles in Theorem 1.2 cannot be
weakened. N

It is easy to see that condition (1.1) implies that every pole of f on iR is
at most of order 2. In the following we show that (under additional hypotheses)
the poles are of order 1 if f is C-convergent.

Corollary 1.6.  Assume that f satisfies (1.1) and that every point on iR s
reqular besides a finite number of poles. Then f is C-convergent if and only if
all poles on iR are of order 1.

Proof. It is clear from Corollary 1.3 that the condition is sufficient. To prove

the converse assume that f has a finite number of poles of order 2 {in,...,inx}

on iR. If 0 is a pole of order 2, then f is not C—ergodic. Hence we may
k

assume that n; # 0 (j = 1,...,k). Let aj,...,ax € X; h(t) = Z ajte‘"i‘.
j=1
R k
Then h()) = Z aj(A —in;)"%, Re A > 0. Hence, for a suitable choice of
j=1
ai,...,ar € X \ {0}, the function (f — h) has merely regular points or first
order poles on iR. It follows from Corollary 1.3 that f — % is C-convergent.
However
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1 t k . o 1 k . o
—/ h(s)ds +Z z aje't = —Z ﬁ% (et —1) — 0 (t — oo).
tJo =1 t =1
LI _
Since Z —a;j et does not converge for ¢ — oo, it follows that h is not C-
—
Jj=1
convergent. Consequently, f is not C-convergent either. =

Remark 1.7. For power series a stronger result than Corollary 1.6 can be

oo
proved in an elementary way. Let p(z) := Z an z" be a power series with
k=0
coefficients a, € X (not necessarily satisfying (1.5)). Assume that the radius of
convergence is 1 and that every point on T' is regular or a pole. Then (@ )nen,
is C-convergent if and only if every pole on I' is of order < 1.

This can be proved in a similar way as Corollary 1.6 using that |an|| —
0 (n — o0) if p has a holomorphic extension to a neighborhood of {z € C :
lz| <1}

If we are merely interested in boundedness of the Cesaro means, the
proof of Proposition 1.1 shows that b) can be replaced by

(1.6) sup AV < o0
A€B(0,8) 4+

for some é§ > 0 in order to deduce that
1 t
(1.7) limsup |- / f(s)ds|| < o0,
t—oo L Jg

where B(0,6) = {2 €C : |z| <6}, B(0,8)+ = B(0,6§)nCs.

Condition (1.6) will be adequate for our application to semigroups in Theorem
2.1. In Proposition 1.9, we shall give a weaker condition which suffices for (1.7).
We note first a necessary condition.

Lemma 1.8. Let f € L} ([0, o0); X) satisfying (1.7). Then for every R > 0

loc

there exists M > 0 such that

~ M
(1.8) IAFI < (cos 67 where
i T T
A=A e¥, be(-53) A\|<R.

t
Proof. @ We can assume that M = sup %”/ f(8)ds|l < oo (cf. proof of
>0 0
Prop. 1.1). Then
PRI =102 [ e Ftyar]
000 1 oo
= ||,\2/ e"”t—t-F(t)dtH < |,\|2M/ e ReMy gt
0 0

_ A2 M M
~ (Re))?  (cos 6)%
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We do not know whether (1.8) for one (or all) R > 0 is sufficient for
(1.7). However, we have the following,.

Proposition 1.9.  Let f € L} _([0,00); X) such that
a) If@)| =0(t) (¢ — oo);
b) there ezist R >0, ¢ >0, € >0, such that

OIS o gyrme for alt A= N € B, R)s.

Then ,
lim sup l|| / f(8)ds]| < eo.
t—oo t Jg

Proof. We keep the notations of the proof of Proposition 1.1. Again we may

assume that F®) < Mt (¢ >0).
Let t > . Denote by T’y the contour

{A€C: D=1, Red>}UAEC: ReA=1, PSR}

Then, defining F, ¢ and g¢; as before,
2 dA
F(t) = g(0) = 1/2ri / Mg (14 X/R2)" 2,
jAl=
2 d\
0=-—1/21ri/ Mo (1+27/m2)" 2.
T

Hence AZ\2 d)
) At
F(t) = 1/2ni /m=n e (gz(A)—g(z\)) (1+R7) By
Re A>1/t
2 dA
. At 2/ p2 pod
—1/2mi /m=n gV (1+23/R) &
Re A<O
z dA
, At 2/R?
—1/2xi / per € gt(A)(1+’\ /R) Y
0<Re A</t
2 dX
. At 2/ p2 ks
—1/2mi /R'*F-’f/ Mg (1+3/R) 5

= Il(t) hnd Ig(t) - Ig(t) _ I4(t).
As in the proof of Proposition 1.1 we obtain

1/t(IROI + 1)) < 4M1 /R + 2M, [tR®.

The remaining integrals are estimated as follows.
Is(t): Let A= Re’®, 0 <cos < 1/Rt. Then |e}|=eRcos 8t ¢

lge(Ml = | ] e f(s)ds]| < My / oRe Ao o4
< M;/R*(cos 8)?;
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(1 4+ X2/R?)?| = 4(cos 6)?, 1/|A| =1/R. Thus
1/t ||| €£1/t-1/2x-e-4My/R*-1/R - 2R arc sin 1/Rt
=4Me/(nt R?) - arc sin 1/ Rt.
I(t): Let A=1+4is. Then |\ = (1/t® +s?)'/? and
llgII < /1Al (A[/Re X)!1 7€ = c|]A|7¢ (Re A)*~2.

Thus
lgOVI/IAT S A1 (Re )7 = et =4(1/#? 4 $2)0+9/2
= ct?(14¢252) 70,
I(1+X2/RPP| < 4; [N =e.
Hence

R
1L ()] < 1/27 - 4ec / 2. (1 4+ t2s2)~(+a/2g
-R

Rt
=1/7r-2-e-c-t-/ (1 +r2)~0+9/2 g4y
—R-t
< const - t.
Adding up one sees that

limsup 1/t|F(t)| < oo. =
t—o0

2. Ergodic Cy-semigroups

Let T = (T(t))i»0 be a Co-semigroup with generator A. By p(A4) we
denote the resolvent set of A and by R(A,4) = (A— A)"! (A € p(4)) its
resolvent. Then T is called Abel-ergodic (briefly A-ergodic) if (0,00) C p(A)
and A — tl_l_.I{.lo T(t) = 1/\11101 AR(), A) = P exists strongly. In that case one has

X = N(A) ® R(A) (where N(A) :={z € D(A), Az =0}, R(A)={Az:z¢€
D(A)} and P is the projection onto N(A) along this decomposition).
It is well-known that T is A-ergodic if and only if

(2.1) (0,00) C p(A), sup || ()\R(/\,A)) || < oo and
0<AL1
(2.2) N(A) separates N(4').

Note that (2.2) follows from (2.1) if X is reflexive. We refer to [2] and [7] for

these results. The semigroup is called Cesaro ergodic (or also C -ergodic or mean-
t

1
ergodic or simply ergodic) if C — tlim () = tlim 7 / T(s)ds exists strongly.
— 00 nde ] 0
Of course, in that case, T is A-ergodic as well and C—tlim ) = A——}_i»r& T(¢).

We are interested in the converse implication.
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Theorem 2.1.  Assume that
a) |T@) =0(t) (¢ — o0);
b) There ezists § > 0 such that sup  ||AR(), A)|| < oo;
AGB(Oy&)‘i’
c) N(A) separates N(A');
d) Every A € o(A) NiR\ {0} is a pole of order I of the resolvent of A.
Then T is C'— ergodic.

Remark 2.2. ’
1) If T is bounded, conditions (b) and (d) are far too strong. However, it
will be shown below that they cannot be omitted if ||T(t)|| growth like

t.
2) It is easy to see that (b) implies that there exists § € (T, ) such that
£(6) N B(0,6) C p(A) and sup IIAR(X, A)|] < oo where £(8) =

AER(0)NB(0,5)
{A e C\ {0} : larg A| < 6}.
3) It is not difficult to see that the formally weaker condition ||AR(A, A)|| <
¢/(cos )¢ for A = |A|e*’ € B(0,6)+ implies condition (b) of Theorem
2.1 (cf. Proposition 1.9) in the case of resolvents.

Proof. It follows from (a) that {Re A > 0] C p(A4) and from (b) and (c)
that T is A—ergodic. It follows from the remark preceding Lemma 1.8 (or

1 t
Proposition 1.9) that sup |]? / T(s)ds]| < oo. Since T(t)z = = on N(4) and
t>1 0

N(A) ® R(A) = X, it suffices to show that C — tlim T(t)r = 0 for ¢ € R(A).

Let z = Ay where y € D(A). Then AR(\, A)z = MN2R(A\, A)y — Ay (Re A > 0).

So the function f(t) := T(f)z satisfies the hypotheses of Theorem 1.2 (with

foo =0). Consequently, C — tlim T(t)z = 0. ]
—00

Lemma 2.3. Assume that in € iR is a pole of order k > 2 of the resolvent.
Then T is not C -ergodic.

Proof. There exists £ € D(AF) such that (4 —in)f 'z #£0, (A—in)kz =0
(see e.g. [Na, A-IIL. 3-6]). Hence e~ ""'T(t)z = z + t(A — in)z + f;T(A — i)z +
+ t¥=1/(k — 1)}(A — in)¥ 2. This implies that T(t)z is not C-convergent.m

Theorem 2.4.  Assume that ||T(t)|| = 0(t) (f — o) and that o(A4) NiR
consists of poles of the resolvent only. Then the following are equivalent:

(i) T 1s C-ergodic;

(ii) Every point in o(A) NiR is a pole of order 1;

(iii) T is uniformly C-ergodic; i.e. fo' T(s)ds converges in the operator

norm.

Proof. (i) implies (ii) by Lemma 2.3. Assume (ii). We are going to show (iii).
For that we can assume that 0 € p(A4) (considering otherwise the restriction of T

to (I — P)X, where P is the residue at 0). Let M = hmsup IT()|l/t. Let R >0
such that +iR ¢ o(A). For z € X, lz|| <1, let f(t) = T(t)z. Then by the

proof of Theorem 1.2 limsup 7 ||/ T(s)z ds|| < 4M/R, uniformly in «. Since
t—o0 0

1 t
R can be chosen arbitrarily large, it follows that tlim r { / T(s)ds]|=0. =
oo o
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We continue with some comments and examples.

Remark 2.5.
a) If ||T(t)|| =0(¢) (t— o0) and 0 € p(A) or 0 is a pole of the resolvent of

1, .
order 1, then sup 7 Il / T(s)ds|| < oo. This can be seen in a direct way
t>0 1]

(instead of applying Proposition 1.1). In fact, one can assume 0 € p(A4)
(cf. proof of Theorem 2.4). Then } fot T(s)ds = L(A71T(t) — A7Y).
b) If ||T(t)|| = o(t) (¢ — oo0) and 0 € p(A), the above argument shows
that without any further hypotheses T' is uniformly C-ergodic.
The following example shows that the growth condition ||T(2)|| = 0(t) (¢ — o0)
is essential in the results of this section.

Example 2.6. There exists a Cg-semigroup T satisfying ||T(t)|| = 0(z*) (t —
1
o0), o(A) NiR = @, but sup %”/ T(s)ds|| = oo.
>0 0
Let H = ®renf?(3) and let A = (A4, )nen with maximal domain, where

An 10
Ao=10 X 1 ].
0 0 A,

A generates the Cy-semigroup T(t) = (Tn(%))nen, where

1t /2
T.)=e*{0 1 ¢t |.
0 0 1

Now let A, = —n%- + in.
It is easy to see that

2

Il;%f fo T(s)dsuzn;}z— /0 Ta(s)ds]| — 00 (n — o).

However, 0(A) = {—2; +in : n € N} so that o(4) NiR = Q.

Finally, we mention, that in Theorem 2.4 in general one has no stronger
convergence than in the sense of Cesaro. In fact, in [1] an example is given where
IT®N =0() (t— o), o(A)NiR =, but T(¢) does not converge strongly.

3. Application to Triangular Systems

Let A; and A; be the generators of bounded Cj-semigroups T} =
(T1(%))ex0 and T = (T3(t))e>0 on X3 and X3, respectively. Let B € £(Xz,X1)
and consider the operator

(3.1) A=(? Z)

with domain D(A4) = D(A:) x D(Az) on X = X; x X;. Such operators have
been studied recently by Nagel [9], and Phong [10]. The resolvent of A is given

by
R()\ A R()\, A1) BR()\ Ag)
R()\,A)=( ( 0 ) Rl()\,Ag) ? )
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(A € p(A1) N p(A2)). Since R(A, A;)B R(), A;) is the Laplace transform of
Ti2(t) = _[: Ty(t — s)B T3(s) ds, the operator A generates the Cp-semigroup

Ty(t) Tyt
o= (B0 Tl

(cf. [9]). Clearly |[T(¢)|| =0(¢) (t — o0), but T is not bounded in general.

Example 3.1. Assume that X; = X»; A; = Ay, B = I. Then Ti2(t) =
tTi(%).

Now we obtain the following results for ergodicity of T.

Theorem 3.2.  Assume that every iy € iR is a pole of order ki(n) of R(}, A;)
and ki(n) + k2(n) €1 for all n € R. Then T is uniformly C— ergodic.

Here a pole of order 0 is by definition a regular point.

Proof. The hypothesis implies that every point on iR is a pole of R(}, 4) of
order < 1. So the claim follows from Theorem 2.4.

Assume that S is a bounded holomorphic Cj-semigroup with generator
B. Then the following are equivalent:
(1) S is A—ergodic;
(ii) S is C—ergodic;
(i) tl_Lrgo S(t) exists strongly.

In fact, there exists M > 0 such that |tBS(t)| < M (¢ > 0). Hence

tlir{.lo S(t)e = 0 for £ € R(B) and so for ¢ € R(B). Thus, if § is A—ergodic,
ie. if X = N(B) & R(B), then tlirn S(t) = P strongly, where P denotes the

projection onto N(B) along this decomposition.

This clarifies the asymptotic behavior if T3 and T, are both bounded
holomorphic Cy—semigroups. If merely one of them is holomorphic one can
apply the results of Section 2.

Theorem 3.3.  Assume that A; (or A; ) generates a bounded holomorphic
A— ergodic Co— semigroup and that R(\, A) (resp. R(\, A;)) has merely poles
of order <1 on iR and 0 € p(Az) (resp. 0 € p(A1)). Then T is C'— ergodic.

Proof. We merely consider the first case. Since T) is a bounded holomorphic

Co—semigroup one has d(4;)NiR C {0} and sup ||AR(\ A;)| < oo. Thus
Re A>0

A satisfies the hypotheses of Theorem 2.1. n

It is interesting that by applying our results to the system (3.1) (with
A1 = A;) one may recover results for a given semigroup T as is shown in the
following theorem. Alternatively, one may apply the Tauberian theorem of [1]
(see also [2]).
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Theorem 3.4. Let A, be the generator of a bounded Cy-semigroup Ty and
t
assume that iR C p(A;). Then tlim / Ti(s)ds = R(0,A;) in the operator

norm.
Proof. Let Si(¢t) = fot Ti(s)ds. Consider the system (3.1) with 4, = A
and B = I. Then T(t);2 = tTi(t) (see Example 3.1) and fot Ti2(8)ds =
tS1(t) — fﬂt S1(s)ds. It follows from Theorem 2.4 that

IS1(¢) = 1/t /0 Si(s)ds|| = 00 (t — o).
But S1(t)/t = 1/t(A]' Tu(t) — A]') = 0 (t = o). Hence

1/t /Ot Si1(s)ds = 1/t(AT* Si(t) ~t ATY) — —AT' = R(0, 4;)

in norm. Thus tlim S1(t) = R(0, A;) in norm. n

Remark 3.5. Theorem 3.4 is no longer true if 0 € p(A;) but o(4;)NIR # O
as the example X = C, A; =1 shows. However, the following holds.

Let A be the generator of a bounded semigroup T and S(t) = fot T(s)ds. If
0 € p(A), then R(0,4) = C — tlim S(t) strongly. In fact, C — tlim S(t)z =
— 00 —00

C- tlim Tt)A e —A"'z = A tlim T(t)A 'z~ A~ 'z (since T is bounded)
= lﬁgl ARMA 'z - ATz =-A4""2 (z € X).

4. Periodic Inhomogeneities

Our last application concerns the asymptotic behavior of solutions of the
inhomogeneous Cauchy problem with periodic inhomogeneity.

Let A; be the generator of a bounded Cjy-semigroup Ty = (71(2))i>0 on
X;. Let 7 > 0. We consider the space

X2 :=Cr(R,X1)={f : R - X; continuous : f(s+ 7) = f(s) for all s € R}
as well as the subspace X, = {f € X2 : Myf =0} where Mo f =1/7 for f(s)ds

is the mean of f.
We consider the inhomogeneous Cauchy problem

(CP) { Z((Ot)) = ;M(t) +f(t) (¢20)

with f € X5, z € X;. The function
t
w(®) = Ty (t)z + / Ty(t - s) f(s) ds
0

(t > 0) is called the mild solution of (CP).
For f € X, we define the first moment M, f € X; of f by M f =1/7 for tf(¢t)dt.

363



ARENDT AND BATTY

Theorem 4.1.  Assume that
a) 2 i/7-Z\ {0} C p(A1);
b) every point on o(A1)NIR i3 a pole of order 1 of the resolvent of A;. Let
P = Res (R(A, 41),0).
Then
C - tlixglo u(t) = P(z — My f)

whenever z € X3, f € )?2.
Moreover, if P =0, i.e. if 0 € p(A1), then

C - 111120 u(t) = R(O, A])Mof
for all f € X,.

Remark 4.2.

1. Since 0 is a pole of order < 1 of the resolvent of A;, T} is A—ergodic
and 4 — tlim Ti(t) = P (= Res (R(), A1),0)). Since T is bounded,
—00

it follows that C — tlim Ty(t) = P.
—oQ

2. Assume that P # 0. Let £ = Pz # 0 and f(t) = z. Then u(t) :=
(1 +¢t)z is not C—convergent.

Theorem 4.3. Assume that T 1s a bounded holomorphic, C— ergodic semi-
group. Let P :=C — tlirn Ti(t). Then
— 00

C — lim u(t) = P(z — Mif)

forallz € X1, feX,.

For the proofs we consider the Cy—semigroup T; on X, given by
(B()f)(s) = f(t+s)  (f€Xz, £20, sER)

and denote by Aj its generator.

It is easy to see that o(Az) = {27i & : n € Z} and (R(}, A2)f)(s)
(1 — e *)"t [ e~ f(s + t)dt. Each value 2rin/T is a pole of order 1 of
R()\Az) and C — tlgg() T(t) = A - tli‘rg’ Ty(t) = Qu, where (Qof)(s) =
L [T f(t)dt. So N(A2) = {f € Xz : f = constant} and X, = (I — Qo) Xa.
We denote by Tg the restriction of T3 to )~(2 and by /’{2 its generator. Then

0 € p(42).
Let B € £L(X2,X)) be given by Bf = f(0) and consider the operator

_ (4 B
(% 5)

on X = X; x X, which generates the semigroup

T(t) = (T‘ét) Ir_;i:((tt))) :

i
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where T12(t)f = f; Ti(t — 8)BTy(s)fds = fot Ti(t — 8) f(s)ds, so that u(t) =
Ti(t)z + Tiz2(t)f = (T(t)(z, f))1. Denote by T the restriction of T to X :=
X1 @& X,. -

It is easy to see that R(0, Ay) is given by

(RO.EN =1/ [ 1fs+0d  (eR)

for all f € X;. Thus

(4.1) BR(0,4;) = — M.

Proof of Theorem 4. 1. It follows from Theorem 3.2 that T is C —ergodic.
Moreover,

C ~ lim T(t)y = A — Jlim (T(t)hz = lim AR()\, A;1)BR(A, A7)
= PBR(0,A;) = —PM;.

This proves the first claim.
If 0 € p(A1), then Theorem 3.2 implies that T is C'—ergodic. Then

C— Jim T(the = A~ lim Tn(t)=lim R(\, 41)BAR(), 42)
= R(O,A])B Qo = R(O,Al )Mo | |

Theorem 4.3 follows in the same way from Theorem 3.3.

Remark 4.4. In a different context, the analogous semigroup T on X; & X3,
X, = UCB(R, X)), has been used by Phong [10] in order to investigate the
inhomogeneous Cauchy problem related to 4;.
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