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PRINCIPAL EIGENVALUES A N D PERTURBATION 

Wolfgang Arendt and Charles J.K. Batty 

Dedicated to Professor A.C. Zaanen on the occasion of his 80th birthday. 

INTRODUCTION. In a classical article, Hess and Kato [HK] study the prob-
lem 

( Au + Xmu = 0 
1 0 < u G D(A), u / 0, 

where A is a strongly elliptic operator on a bounded open set £1 of R n with Dirichlet 
boundary conditions and m i s a continuous bounded function on £1. They show that there 
exists a unique A > 0 such that the problem (0.1) has a solution. 

This result can be reformulated by saying that there is a unique A > 0 such 
that the spectral bound + Am) of the operator A + Am on Co(O) is 0. 

The motivation of Hess and Kato was to investigate bifurcation of a nonlinear 
problem and (0.1) is obtained by linearization. 

There is also another reason to study the spectral bound : in many cases it 
determines the asymptotic behavior of the semigroup. In particular, if s(A) = 0, then, 
under suitable hypotheses, the semigroup generated by A converges to a rank-l-projection. 
We show a typical result of this sort in the first section. 

(0.1) 
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In the second section we assume that A generates a positive semigroup such 
that «s(A) < 0 and consider a positive compact perturbation B : D(A) —> E. We show that 
there exists a unique A > 0 such that s(A + AB) = 0. Continuity properties of the spectral 
bound play a role in this context. They are presented in the appendix. 

In Section 3 we consider the case where m is no longer positive. A beauti-
ful theorem due to Kato [K2] says that spectral bound s(A + Am) and type u){A + Am) 
are convex functions of A G R if E = C0(ft) and m G Ch(Q) or E = and m G L°°(Sl). 

We extend this result to the case where A is the generator of a positive Co—semi-
group on an arbitrary Banach lattice and m is in the centre of E. 

In this context the lattice structure, and Kakutani's theorem in particular, play 
an important role. First of all, it allows one to define multiplication operators abstractly 
(in the form of the centre, see Section 3 and Zaanen [Zl], [Z2]). Secondly, in the proof 
of the convexity theorem we use an interesting approximation property in Banach lattices 
due to B. Walsh [W]. We give the proof of this apparently not very well-known result in 
Appendix B. Thus our presentation of the convexity theorem is selfcontained. 

1. P E R R O N - F R O B E N I U S THEORY A N D 
P R I N C I P A L EIGENVALUES. 

The aim of Perron-Frobenius theory is to deduce asymptotic behavior from the 
location of the spectrum. We describe one particular case. 

Let E be a complex Banach lattice, e.g., E = Lp, 1 < p < oo, or E = Co(^), 
the space of all continuous functions on a locally compact space H which vanish at infinity. 

Let A be the generator of a positive semigroup T = (T(t))t>o on E (by this we 
mean a Co—semigroup throughout). We denote by cr(A) the spectrum of A and by 

(1.1) s(A) = sup {Re A : A <E cr(A)} 

the spectral bound of A. Then s(A) < oo, and if > - o o , then 5(A) G <r(A). More-
over, R(fj,, A) := ( f i - A)'1 > 0 whenever fi > 5(A) and conversely, if fi G p{A) D R such 
that R(fi, A) > 0, then // > s(A). 
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The spectral bound is the analogue of the spectral radius for unbounded oper-
ators. This is made precise by the following formula 

(1.2) r(R(/i, A)) = L - (/i > .(A)), 
fi - s(A) 

where r(B) denotes the spectral radius of B. In particular, s(A) = —oo if and only if 
A) is quasi-nilpotent. See [N] for these results. We use the following notation. An el-

ement u E E+ is called a quasi-interior point if <p E = 0 implies cp = 0. Thus, 
u is quasi-interior if and only if the principal ideal Eu = { / E E : 3 n E N | / | < nu) is 
dense in E. If E = Lp (1 < p < oo) this is equivalent to u > 0 a.e. A positive linear form 
if € E'+ is strictly positive if ( / , tp) > 0 for all / E E+, f ^ 0. We write > 0. 

An operator B E C{E)+ is strictly positive (we write B > 0) if Bf is a 
quasi-interior point for all / E E+, f ^ 0. 

We say that the semigroup T is irreducible if A) > 0 for all /i > s(A). 

The following definition is central for our purposes. 

D E F I N I T I O N 1.1. We say that 0 is a principal eigenvalue if 
(a) there exists e > 0 such that {A E cr(A) : Re A > —e} = {0} and 
(b) 0 is a pole of the resolvent. 

Note that 5(A) = 0 whenever 0 is a principal eigenvalue. If 0 is a principal 
eigenvalue and T satisfies a regularity condition, then T has a very specific asymptotic 
behavior : it converges to a rank-l-projection. 

We say that T is eventually norm continuous if there exists t0 > 0 such 
that lim ||T(£0 +1) — T(^o)|| = 0 ; e.g., a holomorphic semigroup satisfies this condition. 

T H E O R E M 1.2. Let T be irreducible and eventually norm continuous. As-
sume that 0 is a principal eigenvalue. Then there exists a unique quasi-interior point 
uo E D(A) such that Auq = 0, ||iio|| = 1 and a unique 0 <C <fo E D(Af) satisfying A'lfo = 0 
and (uo^ipo) = 1. Moreover there exist 8 > 0 , M > 0 such that 

(1.2) | |T(t ) -<po® foil < Me~6t (t > 0). 

We call uq the principal eigenvector of A and (fo the principal eigenfunctional of 
A!. By P = (F 0 ®UQ we mean the rank-1-operator Pf = ( / , <PO)UQ. 
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R E M A R K 1.3. Note that 0 is the only eigenvalue with a positive eigenvector. 
In fact, assume that 0 < v G D(A), Av = fiv. Then fj,(v,po) = (Av,<p0) = (v,A'<po) = 0. 
Hence (JL = 0 or (v, ip0) = 0 (which implies v = 0 since ^ 0). 

Let / G D(A). Then u(t) = T(t)f is the unique solution of the problem 

u G C1([0, oo); E); 
( p , u(t)eD(A) (t> 0); 
^ w ' ( t) = Au(t) (t > 0); 

k t/(0) = / . 

Note that in the situation of Theorem 1.2 T(t)uo = wo- The estimate (1.2) implies that 
every solution converges to the stationary point t/o, i.e. 

lim T(t)f = (f,<p0)u0. t—>00 

Next we give a criterion for 0 to be a principal eigenvalue. 

T H E O R E M 1.4. Assume that T is irreducible and holorrtorphic. Assume that 
a(A) = 0. If 
(a) R(fi,A) is compact for (some) fi G p(A) or 
(b) s(A — B) < 0 for some compact operator B : D(A) —> E, 
then 0 is a principal eigenvalue. 

Here we consider D(A) as a Banach space with the graph norm | | / | |a := 
||/|| \\Af\\. Then R(fJ>,A) is an isomorphism from E onto D(A) (// > s(A)). To say 
that B : D(A) —> E is compact is equivalent to BR(fjt,A) : E E being compact for 
one (equivalently all) // G p(A). 

Note that, if B : D(A) —* E is compact, then by a result of Desch-Schappacher 
[DSl] A — B generates a holomorphic semigroup. 

Theorems 1.2 and 1.4 are variants of the Perron-Frobenius theory developed in 
[N]. An essential argument is the cyclicity of the boundary spectrum, a result which is 
due to G. Greiner and is analogous to results of Lotz for bounded positive operators and 
of Perron-Frobenius for positive matrices (see [N] and [S] for details and bibliographical 
notes). 
We give the proofs (based on [N]) in order to be complete. 

P R O O F OF T H E O R E M 1.2. It follows from [N, C-III, Prop. 3.5, p. 310] 
that 0 is a pole of order 1 and that the residue is of the form P = ipo 0 uq with , uq as 
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in the statement of the theorem. By [N, A-III, Theorem 3.3], P is the spectral projection 
corresponding to {0}. Let A\ be the generator of Ti(t) = T(t)with F = (I - P)E. 
Then s(Ai) < 0. Since Ti is eventually norm continuous one has = w(A\) (the 
type of Ti). Thus, if 8 is such that s(Ai) < —6 < 0, then there exists M > 0 such that 
||Ti(t)|| < Me~6t (t > 0). This implies (1.2). 0 

P R O O F OF T H E O R E M 1.4. Let e > 0 be arbitrary in the first case and 
s(A - B) < -e < 0 in the second. It follows from [Kl, IV §5.6, p. 242-244] that the set 
H = {FI G CR(A) : Re /i > — e} consists of isolated points which are poles of the resolvent 
of A. Since T is eventually norm-continuous the set H is compact [N, A-II, Theorem 1.20, 
p. 38]. Thus H is finite. By cyclicity [N, C-III, Theorem 3.12, p. 315] a (A) H iK is 
unbounded or reduced to {0}. Since H is compact, it follows that <T(A) fl zR = {0}. Hence 
0 is a principal eigenvalue. 0 

R E M A R K . Theorem 1.4 remains true if T is merely eventually norm-
continuous. In that case A — B is not necessarily the generator of a semigroup in the case 
(b), see Desch-Schappacher [DS2]. 

2. P O S I T I V E COMPACT P E R T U R B A T I O N . 

Let A be the generator of a positive irreducible holomorphic semigroup on 
a Banach lattice E . We consider perturbations of the form A + AB (A > 0), where 
B : D(A) —» E is linear, compact ( D ( A ) being considered with the graph norm) and 
positive (i.e. 0 < / G D(A) implies Bf > 0). 

Then A + XB generates a holomorphic semigroup for all A > 0 by a result of 
Desch-Schappacher [DS1] (see also [KS]). This semigroup is positive and irreducible (see 
proof of Theorem 2.4). 

We assume throughout that B ^ 0. Under these conditions we show the follow-
ing. 

T H E O R E M 2.1. Assume in addition to the hypotheses made above that 
s(A) < 0. Then there exists a unique Ao > 0 such that s(A + \oB) is a principal eigenvalue. 

COROLLARY 2.2. Under the hypotheses of Theorem 2.1 there exists a 
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unique Ao > 0 such that the problem 

fO <ueD(A), ||u|| = l 
\ Au + A 0 Bu = 0 

has a solution. Moreover, this solution u is unique and u is a quasi interior point. 

P R O O F . This follows from Theorems 2.1, 1.2 and Remark 1.3. 0 

The proof of Theorem 2.1 consists of several steps. 

We investigate the function 
5 : [0,oo)->[a(A),oo) 

A s(A 4- AB). 

Since B is positive, the function s is increasing : 

(2.1) 0 < Ai < A2 implies s(Ai) < s(A2). 

P R O O F . Let fj, > max {s(Ai),s(A2)}. Then 

R(H, A + A 2 B ) - R(N, A + A i B ) = A + A 2 £ ) ( A 2 - A i ) £ # ( / i , A + A i B ) > 0 . 

Hence 0 < R(fi, A + AxB) < R(/JL, A + A2B) and by (1.2), 

fj, — s(A + X\B) = ^ A + * ^ A + = + W 0 

Next we show that 

(2.2) lim s(A + AB) = oo. 
A—>-oo 

This depends heavily on irreducibility (see Remark 2.7 below). In fact, we use the following 

deep theorem due to de Pagter [P] : 

T H E O R E M 2.3. Let K be a positive compact operator on E. If K is irre-
ducible, then r(K) > 0. 

R E M A R K . A positive operator K £ C(E) is called irreducible if (e t K ) t >o is 
irreducible, i.e. if R(fi,K) >> 0 for \i > r(K). From the Neumann series one sees that K 
is irreducible whenever K > 0. 

P R O O F OF (2.2). Assume that there exists fi0 such that s(A + AB) < /i0 

for all A > 0. Let fi > fi0. Then for A > 0, 

R(fi, A + \B) = #(//, A) + A A + AB)BR{^ A) > AR(fi, A)BR(fi, A) 
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(see the proof of (2.1)). Hence 

—— > TT r^T = rtRQji, A + AB)) > Ar(K) li-po ~ fjL-s(A + XB) v " ~ K } 

for all A > 0, where K — A)BR(n, A). Consequently, r(K) = 0. However, K is 
compact and strictly positive, and thus irreducible. This is impossible by de Pagter's 
theorem. 0 

Next we show that 

(2.3) s is continuous on [0, oo). 

P R O O F . We know that s is increasing and 5(0) = s(A) < 0. Let 
A0 := sup {A > 0 : 5(A) = 5(A)}. It follows from Proposition A1 a) in Appendix A 
that lim 5(A) < s(A0) = s(A). Thus s is continuous at A0 and on [0, A0]. If A > A0, 

AJ,A0 

s(A + AB) > 5(A). Thus s(A + AB) is an isolated point in the spectrum of A + AB. So 
continuity in A follows from Proposition A1 b). 0 

It follows from (2.2), (2.3) and the assumption s(A) < 0 that there exists Ao > 0 
such that s(A + A 0B) = 0. Then 0 is a principal eigenvalue of A + A0B by Theorem 1.4. 

Finally, it follows from Proposition A2 that 

(2.4) < whenever A0 < Ai < A2. 

This shows uniqueness of Ao and the proof of Theorem 2.1 is finished. 

More generally, our arguments show the following. 

T H E O R E M 2.4. Let A be a resolvent positive densely defined operator (see 
Appendix A) such that 
(a) s(A) < 0 ; 

(b) sup \\fJtR(fi, A)|| =: M < 00 ; 
n>o 

(c) R(/JL,A)^0 (II> 0) . 

Let B : D(A) —> E be positive, compact and ^ 0. 
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Then A + AB is resolvent positive for all A > 0. The function 6(A) = + AB) 
is continuous on [0,oo), strictly increasing and lim 5(A) = 00. In particular, there exists 

\—KX) 
a unique Aq > 0 such that s(A + XQB) = 0. 

P R O O F , a) We show that A + XB is resolvent positive for all A > 0. In fact, an 
argument given by Desch-Schappacher [DS1] can be adapted to the situation considered 
here. We can assume A = 1. Since 5(A) < 0, one may consider the equivalent norm 
IMId(A) : = l l ^ l l o n It follows from (b) that 

lim ||#(/i, A)X\\D{A) = lim ||AR(/x, A)x\\ = lim \\FIR(^ A)x - x\\ = 0 (x G E). 
fl—•OO (I—•OO fl—•oo 

Since 

s u p \\R(fJL,A)\\C(E,D(A)) = s u p \\AR(NYA)\\ = s u p \\FIR(FI,A) - I\\ < M + 1 < 00, 
n> 0 fi> 0 n>0 

it follows that lim \\R(/JL, A)X\\D^ = 0 uniformly for x in compact subsets of E. Since 

B : D(A) —• E is compact, we conclude that 

( / i ^ o o ) . 

Hence there exists /x0 > 0 such that ||i?(/i, A)B\\C(D(A)) < \ whenever FI> FIO. This implies 
that (I - R(FI, A)B) is invertible in C(D(A)) and 

0 0 

(I - A)B)~1 = A)B)n > 0-
n = 0 

Hence 

in - (A + B))-1 = [(^ - A)(I - Rift, A)B)}~1 = (I - A)B)~1 R A ) 

exists and is positive for all fi > fiQ. 

b) Note that 

0 0 

R(FI, A + B) = i*(/i, A) + ^ A)B)N R(FI, A) > A) > 0 (// > FI0). 
n= 1 

The remaining arguments axe the same as above. 0 

R E M A R K 2.5. The proof also shows that 

l im \\/JIR(FI; A + A 5 ) | | < 0 0 (A > 0). 
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R E M A R K 2.6. Also in the situation of Theorem 2.4 we can conclude that 
there exists a unique Ao > 0 such that the problem 

f ( A + \0B)u = 0 
1 J \ t i G D ( A ) , t i > 0 , | H | = l 

has a solution. And, as before, this solution u is unique and u is a quasi interior point. 
However, we do not know whether, in the general situation considered in Theorem 2.4, 0 
is a principal eigenvalue. As before, the boundary spectrum cr(A + Ao#) fl zR is cyclic (by 
the proofs given in [N]). But it is not clear whether a(A + XoB) fl zR is bounded (which 
is needed to conclude that a(A + A0J9) fl z'R = {0}). 

R E M A R K 2.7. In Theorem 2.1 and 2.4 irreducibility is essential. In fact, if 

E = R 2 , A = , B = ^ , then s(A + AB) = - 1 for all A > 0. 

3. K A T O ' S C O N V E X I T Y T H E O R E M . 

If B is a multiplication operator, then the function A s(A + \B) is continuous 
even if no assumption of compactness and on the sign of B is made. This follows from the 
following theorem due to T. Kato [K2]. 

T H E O R E M 3.1. Let A be the generator of a positive semigroup on E = 
Lp (1 < p < oo) or E = C0(ft) (̂ ft locally compact). 

Then the functions 

m i—• s(A + m) and 

m i—• cj(A + m) 

from L°° (resp. C6(f t)) into [—00,00) are convex. 

Here we identify m G L°° (resp. m E C6(ft)) with the multiplication operator 

/ 1—• mf on Lp (resp. Co (ft)). Moreover, we use the following definition of convexity : 

A function s defined on a vector space Z with values in [—00,00) is called con-
vex if either s(m) = — 00 for all m E Z or s(m) > — 00 for all m E Z and 
s(Smi + (1 — 0)7712) < 9s(mi) + (1 — 0) 5(7712) whenever 0 < 6 < 1, mi,rri2 E Z. 
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The case Co (ft) is of particular interest. It seems to play a special role con-
cerning de Pagter's theorem. In fact, in this case, it is very easy to see that every positive 
irreducible operator on Co (ft) has strictly positive spectral radius even without compact-
ness assumptions (cf. [S, V. 6.1], [N, B-III. Prop. 3.5a] and the proof below). Thus, as 
a consequence of Kato's theorem, one obtains the same conclusions as in Theorem 2.4 in 
the case where E = Co (ft) and B is a positive multiplication operator : 

COROLLARY 3.2. Let A be the generator of a positive irreducible semigroup 
on Co(ft), ft locally compact. Assume that s(A) < 0. Let 0 < m E C6(ft) , m ^ 0. Then 
there exists a unique A > 0 such that s(A + Am) = 0. 

P R O O F , a) If K is a strictly positive operator on Co (ft), then r(K) > 0. In 
fact, let / E Co (ft) be of compact support such that f > 0, | | / | | = 1. Since Kf 0, there 
exists c > 0 such that Kf > c f . Consequently, Knf > cnf (n E N), and so | | l f n | | > cn. It 
follows that r(K) > c. 

b) Now the proof of (2.2) shows that lim s(A + Am) = oo. Since the function A i—• 
A—»-oo 

s(A + Am) is convex and s(A) < 0, the claim follows. 0 

It has been pointed out by Kato, that Theorem 3.1 remains true on similar 
spaces where multiplication operators can be defined. The purpose of this section is to 
show that, indeed, the theorem remains true on arbitrary Banach lattices if multiplication 
operators are replaced by operators in the centre. 

Let E be an arbitrary real Banach lattice. By 

Z(E) := {T E C(E) : 3 c > 0 \Tx\ < c\x\ (x E E)} 

we denote the centre of E. It is remarkable that Z(E) can be described purely in terms 
of orthogonality in the lattice sense : 

Z(E) = {T : E E linear : |z| A |y| = 0 \Tx\ A \y\ = 0}, 

see Zaanen [Z2] for proofs and further results. 

For our purposes the following theorem is important. It is a consequence of 
Kakutani's representation theorem (see Zaanen [Z2] and Meyer-Nieberg [MN]). 

T H E O R E M 3.3. The space Z(E) is a closed subalgebra of C(E). Moreover, 
there exists a compact space K and a lattice and algebra isomorphism </> : C(K) —> Z(E). 
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In the concrete cases considered in Theorem 3.1 the centre consists precisely of 
all multiplication operators : 

E X A M P L E 3.4. a) Let 0 be locally compact, E = C0(fi). Then Z(E) is 
isomorphic to C6(f i) identifying elements of C6(ft) with multiplication operators on E. 

The space Cb(£l) being isomorphic (as Banach lattice and algebra) to the space 
C(/?0), this yields a proof of Theorem 3.3 in this concrete case. 

b) Let (0 , £ , / i ) be a a—finite measure space and E = Lp(£l), 1 < p < oo. Then Z(E) is 
isomorphic to L°° (by action as multiplication operators). Again L°° is isomorphic to a 
space C(K), K compact. 

The results reported in Example 3.4 are due to Zaanen [Zl], see also Zaanen 
[Z2], 

Now we can formulate the following more general version of Kato's theorem : 

T H E O R E M 3.5. Let A be the generator of a positive semigroup on a Banach 
lattice E. Then the functions 

M s(A + M) and 

+ M) 

from Z(E) into [ — 0 0 , 0 0 ) are convex. 

For the proof we use the following defintion. Let —oo<a<b<oo] £(E)+ = 

{Q e C(E) : Q > 0}. 

D E F I N I T I O N 3.6. (a) A function q : (a, b) -> [0,00) is superconvex if 
log q is convex. 

(b) A function Q : (a, 6) —> C(E)+ is superconvex if (Q(-)x^x') is superconvex for all 
x e E+, x' e E'+. 

The following properties are immediately clear. 

L E M M A 3.7. (a) Let Qi,<?2 : (a,b) —> C(E)+ be superconvex and let 
a,/3 > 0. Then aQi + superconvex. 
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(b) Let Qn : (a, b) —> £(E)+ be superconvex. Assume that Qn(X) converges to Q(A) in the 
weak operator topology for all A E (a, b). Then Q(A) superconvex. 

It is clear that the product of two numerical-valued superconvex functions is 
super-convex. Walsh's approximation theorem (Theorem B.l) allows one to extend this to 
operator-valued functions : 

P R O P O S I T I O N 3.8. Let QI,Q2 : (a,b) £(E)+ be superconvex. Then 
A i—> Qi(A) Q2(X) is superconvex. 

P R O O F , (a) Let y E E+,y' E E'+. Then for all x E E A 
® 2/)Q2(A)z ,x ') = (Q 2 (A )z ,y ' ) (<2i(A)y,:r') is superconvex. 

(b) By Theorem B1 there exists a net Ra in P (see Appendix B for the definition) which 
converges strongly to the identity. It follows from (a) and Lemma 3.7 that Qi(-) RA Q2(M) 
is superconvex for all a . Hence the limit Qi(-) Q2O) 1S superconvex by Lemma 3.7. 0 

COROLLARY 3.9. If Q : (a, b) —> C(E)+ is super-convex, then the spectral 
radius r(Q(-)) is superconvex. 

P R O O F . Let B+ = {x E E+ : ||z|| < 1}, B'+ = {x' E E'+ : | |s ' | | < 1}. By 
Proposition 3.8, the function A 1—• (Q(\)nx,x') is superconvex for all x E x' E B'_ 
Hence 

A 1 • r(Q(A)) = lim ^ ( A ) ! 1 ' " 
n—>-oo 

= lim ( sup {Q(\)n x,x')\1,n 
n — • 0 0 \ X £ B + / 

is superconvex. 0 

P R O O F OF T H E O R E M 3.5. Let M E Z(E). 
(a) We show that the function A 1—• eXM : R —• £(E) is superconvex. Let x E E+, 
x' E E+. There exists an algebra isomorphism from Z(E) onto C(K). In particular, 
e+W = <t>(eN) (N E Z(E)). 

By the Riesz representation theorem there exists a positive Borel measure fj, on 
K such that 

(Nx,x')= f <f>(N)dfjt, (NeZ(E)). 
JK 
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Let Ai, A2 S R , 0 < 0 < 1, Mi = AiM, M2 = A2M. Then by Holder's inequality, 

(e«M1+(l-»)M2 ^ = J ^eeMl+(l-0)M2) d f i 

= J ( e ^ y y d f i 

< ( J e d ^ ) 9 . (J e+W dfi)1'" 

= ({eMl x,x'))9((eM> x,^))1-9. 

(b) Let t > 0, M € Z(E). By (a) the function A extM is superconvex. It fol-
lows from Lemma 3.7 and Proposition 3.8 that also the function A i-f e

t ( A + X M ) = $ — 
Urn (e*/nA

 e
x t / n M ) n is superconvex. 

n—+ao 

(c) It follows from (b) and Corollary 3.9 that the function A r(e<A + A M)) = e
u ; ( A + A M ) is 

superconvex. Hence u(A + AM) is convex in A. 

(d) Let A0 > 0. We show that s(A+\M) is convex in A € ( -A 0 , A0). Let w > u;(A)+A0 \\M\\. 
There exists c > 0 such that | |e t(A + A M) | | < cewt (t > 0) for all A £ ( -A 0 , A0). 

It follows from (b) and Lemma 3.7 that 

A i—• R(fJ>, A + AM) = f°° e ^ V ( A + A M ) 

Jo 

is super convex on (—A0, A0) whenever fi> w. 

By Corollary 3.9, r(R(fi,A + AM)) is super convex and a fortiori convex in 
A G (—A0, A0). Consequently, /i2 r(R(fi, A + AM)) - // = - // = s(A + AM)(l -
S(A+^XM) )~1 i s convex in A € (—Ao, Ao) for all fx > w. Letting fi —> oo one concludes that 
s(A + AM) is convex. 

e) Let M i ,M 2 6 Z{E\ 0 < 0 < 1. It follows from (d) that 
A s(A + B(A)) is convex where J9(A) = M2 + A(Mi - M2). In particular, 

s(A + 6Ml + (1 - 0)M2) = s(A + B{01 + (1 - 0)0)) 

< 8s{A + B( 1)) + (1 - 8) s(A + £(0)) 

= 8s{A + Mi) + (1 - 8) s(A + M2). 

This proves convexity of M i—> s(A + M). 
In the same way (c) implies convexity of M k U;(A + M). <0> 
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R E M A R K : As pointed out by Kato [K2, p. 268], it follows from Theorem B1 
that (weak) superconvexity as defined here (Definition 3.6 (b)) is equivalent to (strong) 
superconvexity in the sense of [K2, p. 26]. This simplifies the proof (but is restricted to 
Banach lattices). Otherwise, the arguments given here are those of Kato besides (a) in the 
proof of Theorem 3.5 which establishes the link with the abstract setting. 

For positive perturbations which are not multiplication operators, the function 
A i—• s(A + AB) is not convex, in general : 

E X A M P L E 3.9. Let E = R\ A= ^ . Then 

6(A + AB) = y/2 + A is a concave function. 0 

R E M A R K 3.10. We have considered a real Banach lattice E. Of course, the 
spectrum is understood with respect to the corresponding complexifications. However, for 
a resolvent positive operator A on E one always has 5(A) = inf {// E R : (A — A ) - 1 

exists and (A — A ) - 1 > 0 for all A > //} ; this expression involves only the real space and 
real operators. 

A P P E N D I X A. T H E S P E C T R A L B O U N D OF R E S O L V E N T 
P O S I T I V E OPERATORS 

Let A be a Banach lattice. An operator A on E is called resolvent posit ive if 
there exists Ao E R such that (A0,00) C p{A) and i?(A, A) > 0 for all A > Ao. The spectral 
bound of such an operator can be defined as in Section 1 and has the same properties (see 
[A]). We need the following continuity property of the spectral bound. 

P R O P O S I T I O N A l . Let An , A be resolvent positive operators. Assume that 
there exists n > sup ({s(An) : n E N}U{s(A)}) such that lim \\R(/jl, AN)—R(FI, A)\\ = 0. 

n — • 0 0 

Then 
a) lim s(An) < 5(A) and, 

n—>-oo 
b) if s(A) is an isolated point in cr(A), then lim s(An) = 5(A). 

n — • 0 0 

PROOF, a) This follows from the upper continuity of the spectral radius [Au, 
Theoreme 3, p. 6] and (1.2). 

b) The assertion follows from a) and (1.2) together with the corresponding result 
for bounded operators [Au, Theoreme 4, p. 8]. 0 
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Next we formulate a result on strict monotonicity of the spectral bound. The 
argument is the same as in [AB, Theorem 1.3]. 

P R O P O S I T I O N A2. Let A\,A2 be resolvent positive operators with dense 
domain such that 

0 < R(A, Ai) < R(A, A2) for A > max {s(A1), s(A2)}. 

Assume that 
(a) A\ A2 and 
(b) s(Ai) is a pole of the resolvent of Ai, i = 1,2. 

Then s(Ai) < s(A2). 

A P P E N D I X B. WALSH'S A P P R O X I M A T I O N P R O P E R T Y A N D 
S U P E R C O N V E X I T Y . 

Let E be a real Banach lattice. By P we denote the cone of all positive oper-
n n 

ators on E which are of the form ^ x\ (g) X{ (i.e. x i—• ^ (x, x\) X{) with X{ £ E+, x\ £ 
i=i i=1 E+ i = 1,... ,n. 

The following approximation property is due to B. Walsh [W]. 

T H E O R E M B l . The identity I is in the closure of P with respect to the 
strong operator topology. 

For completeness we include Walsh's proof. It depends on 

L E M M A B2. The assertion of Theorem Bl holds i f f for every operator 
n n 

R — x[ 0 R > 0 implies ^ x\) > 0. 
1=1 »=i 

PROOF. The dual space of CS(E) is E' ® E, the duality being defined by 
(T, x'®x) = {Tx, x') (see [SI, p. 139]). 

a) Assume that I £ P. Then there exists R € E' <g> E such that (p, R) > 0 for 
n n 

all p e P but (/ , R) < 0. Write R = ^ x'j ® Then 0 > (J, R) = ^ (xjix'j)-
j=1 3=1 

On the other hand let p = y' ® y with y' £ E'+, y G Then p E P. Thus 0 < (p, R) = 
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n n 

= (®i,y') = (Ry,y')- Since y' G y G 22+ are arbitrary this 
i=i j=i 
implies that 22 is a positive operator. 

n 

b) Conversely, suppose that 22 = ^ x'j 0 Zj > 0. Then (Ry^y1) > 0 for all 
j=i _ 

y G 22+, G 22+. Thus 0 < (p,R) for all p G P. Hence, if / G P , then it follows that 
n 

0 < (2",2?) = 0 
>=1 

P R O O F OF T H E O R E M B l . a) One easily verifies that the theorem holds 
if E = C(K), K compact ; see [S2, IV. Theorem 2.4, p. 239]. 

n 

b) Let E be arbitrary. Let R = ^ ^ x'j®xj be positive. By Lemma Bl it suffices 
i=1 

n n 

to show that ^ ^ (2; ,̂ Xj) > 0. Let u = ^ \xj\. Then R leaves Eu invariant. By Kakutani's 
j=1 j=1 

theorem Eu is isomorphic to a space C(2iT). Thus we can assume that E = C(K). Now the 
claim follows from a) and the other implication of Lemma B2. 0 

R E M A R K . Walsh [W] actually shows that Theorem Bl holds in an ordered 
Banach space E with normal and generating cone if and only if E' is a lattice. 
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