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Abstract. Let V: RY — [0, co] be a measurable function, and A > 0 be a parameter. We consider
the behaviour of the spectral bound of the operator %A — AV as a function of A. In particular, we

give a formula for the limiting value as A — oo, in terms of the integrals of V' over subsets of R on
which the Laplacian with Dirichlet boundary conditions has prescribed values. We also consider the
question whether this limiting value is attained for finite A.
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1. Introduction

Let V : RV — [0,00] be a measurable function, and A > O be a parameter.
Consider the Schrodinger semigroup {Syy(2) : t>0} on LP(RV) (1 < p < o)
associated with the formal operator -;—A — AV. The spectral function sy (A) of V
is the spectral bound of %A — AV, that is, the growth bound of the semigroup
S\v; sy is a convex, decreasing, function of A. This paper is concerned with two
questions about the behaviour of sy :

(a) What is the value of sy (00) := limy_. sy (A)?
(b) Is sy strictly decreasing?

It was shown in [6] that sy (A) < O for some (and hence all) A > 0 if and only if
[z V = oo for all Borel sets E such that RV \ E is transient for Brownian motion,
or equivalently, such that A g, the Laplacian with Dirichlet boundary conditions on
E, has strictly negative spectral bound. For general V, it suffices that [ V = oo
for all closed sets E in this class; for V in L} (RY), it suffices that [, V = co for
all open sets €2 in the class.

In Section 4, we shall show that

sy(o0) = mf{a <0: Elgﬂft‘,[E V> O}. (1.1)
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Here, F, is the class of all Borel sets E such that the spectral bound of %A E 1S
greater than o. Thus (1.1) is a quantitative version of the result in [6].

In Section 5, we shall give some partial answers to question (b). We shall show
that there exists V in L&, (R™) such that sy is eventually constant. On the other
hand, in the case N = 1, we show that sy is strictly decreasing if V € L*°(R) and
sy(00) < 0.

Information about the spectral bound of %A + AV, where V is non-negative,
may be found in {25] and the references cited therein. The asymptotic behaviour of
the semigroups generated by %A + Am, where m is a function which changes sign,
was studied by Simon (see [32, B5]). Recently, there has been much interest in
whether there is a principal eigenvalue, that is, a value of A for which the spectral
bound is zero and is an eigenvalue [8-13, 21, 27-28]. The techniques usually
involve studying separately the effects of the positive and negative parts of m. In
a separate paper [5], we shall apply the results of this paper to such questions.

2. Preliminaries

First, we establish some notation. We denote by 1 the function constantly equal to
1, and by 1g the characteristic function of a set E. For a subset F of RN, Ec will
be the complement RV \ E.For z in RN and r > 0, we put

B(z,r)={yeR" : ly—z| < r}.

All integrals over RY, or Borel subsets of RY, will be taken with respect to
Lebesgue measure m; wy = m(B(0, 1)) will be the volume of the unit ball.

Throughout, we shall denote by {7'(t) : t>0} the Gaussian semigroup defined
on LP(RM) for 1 < p < oo by:

T(t)f = f * Pt
where p; is the Gaussian kemnel: py(z) = (2rt)~ /2 e~1=1*/2 We shall also need

the functions 1, given by: ¢;(z) = fg ps(z) ds. We shall denote the generator of
T on L2(RM) by %Az‘ The Gaussian semigroup is also given by:

(T()f)(=z) = E [f(B1))] ,
where {B(t) : t>0} denotes Brownian motion on R", and E® is expectation with
respect to the Wiener probability measure P* corresponding to motion starting at
z.
For a measurable function V : RV — [0, o], we shall denote the Schrodinger
semigroups on LP(RN) by {Sy(t) : t>0}. The semigroup may be defined by
considering the quadratic form ay on LZ(RN ) given by:

D(ay) = {u e WI2(RV) /RN Vu? < oo} ,

i
av(u) = ; /R Va4 /R ViR,
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The associated positive-definite, self-adjoint, operator Hy defines a semigroup
{e~tHv} on L?(R"), which interpolates to provide a positive, contractive, semi-
group Sy on the LP-spaces (we do not distinguish notationally between the semi-
groups for different values of p). The Schrédinger semigroups may alternatively
be defined by the Feynman—Kac formula:

(Sv01)(@) = B [exp (- [ V(B as) £(BO)

(see [23,30]). IfV ¢ LIIOC(RN ), then ay may not be densely-defined, and Sy (t)
may not converge to the identity as ¢ | 0, but this does not affect our discussion
(see [4]). Note that if 0 < Vi < V3, then T'(¢)> Sy, (t)>Sw,(t) as operators on
LP(RM),

By duality and interpolation, ||Sv ()|l (2 < 1SV (2)llc(ze), where || - {|¢(zr)
denotes the LP-operator norm. Simon [31] showed that the LP-growth bound
limg_,oo ¢! log ||Sv (¢)]| (z») is independent of p (see Lemma 3.2 below); it coin-
cides with the supremum of the spectrum of the generator of Sy on any of the
LP-spaces (the spectrum is also independent of p [2, 19]). We shall denote this
spectral bound by s(1A — V).

Let A > O be a parameter. The spectral function sy of V' is defined by:

sv(A) = s(3a - av).

By considering the case p = 2, one sees that

A) = Y a [ vl we WY
sv(A) = supg =3 | [Vl Ve v e WH(RT,

N
/ u? = 1}. .1
R

By considering the case p = oo, one sees that

1 t
sy(A) = lim —logq esssupE” [exp (— / V(B(s)) ds)] . (2.2)
t—oo 1 z€RN 0
It follows easily from either (2.1) or (2.2) that sy is a convex, decreasing, function
of A, and that,

if 0 < V1 <V, then 02sy,(A)2sy(A).

If sy () is a pole of the resolvent of Hyv on L*(RN), then H v has a positive
normalised eigenvector u in LZ(RN) (see [24, Corollary 1.4, p. 166]). In these
circumstances, we say that sy () is a principal eigenvalue and u is a principal
eigenvector.
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PROPOSITION 2.1. Suppose that liminf;_,, V(z) > 0 and that sy(cc) :=
lim) .00 sv(A) > —00. Then there exists Ay > O such that sy () is a principal
eigenvalue of Hyy whenever A > Xo. If V € L} (RN ), then the (normalised)

loc
principal eigenvector is unique and strictly positive (a.e.).

Proof. There exist a compact set K and § > 0 such that V>é a.e. in K°. Let
Ag = —sy(00)/8.If A > Ag, then
S(AA — AV + 81k)) < s(3A — A61) = =X6 < sy(X) = s(FA — AV).
Moreover, Ad1 is a relatively compact perturbation of H,y. By [29, Corollary 2,
p. 113], sy (A) does not belong to the essential spectrum of Hv, so it is a principal
eigenvalue.
IfV e LIIOC(RN ), then Syv is irreducible [5] and the uniqueness and strict

positivity of the principal eigenvector follow from {24, Proposition 3.5, p. 310].
Now, consider the case when F is a Borel subset of RV andV = XE<, Where

o (z € E°)
xge(e) = {O (z € E).

Then ay is the form ag:
D(ag) = WI2(RN)n L2(E),

~ 1 2
as(u) = ~3 [, 1Vul
The associated operator Hy is the pseudo-Dirichlet Laplacian %5 E» and the semi-
group Sy is the pseudo-Dirichlet semigroup Tg given by
(TE(t)f)(z) = Ez[l[B(s)eE for almost all sgt]f(B(t))]
(see {4, Examples 5.6, 7.2]). We have
sxpe(N) = s(3AE)

1 .
= sup{—i /RN |Vu|?:u € WIHRY),u=0ae.in E°,

/RN u? = 1} (2.3)

1 .
= lim —logX esssup P*[B(s) € E for almostall s <] ;. (2.9
t—oo ¢ z€RY

We shall denote the Dirichlet semigroup on LP(E) by {Tg(t) : t>0}. This
semigroup is associated with the quadratic form ag on L2(R") given by:

D(ag) = {u € WHA(RN): % = 0q.e. in E°},

as(w) = 3 [ IVal,
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where % is a quasi-continuous version of «, and ‘q.e.” means ‘quasi-everywhere’,
that is, except on a set of capacity zero (see [17, Sect. 3], [22, Proposition II1.3.5]).
For an open subset 2 of R, D(aq) = W,*(Q) [15, 18]. The associated self-
adjoint operator on L2(E) will be denoted by %A E (the Laplacian with Dirichlet
boundary conditions).

PROPOSITION 2.2. Let E be the bounded Borel set in RN. Then 1A has

compact resolvent. In particular, s( %A E) is a principal eigenvalue.

Proof. Let B be an open ball containing E. Then T, is dominated by T'5. Since
1Ap has compact resolvent on L2(B), 1A has compact resolvent on L2(F) by
the Dodds—Fremlin Theorem [1, Theorem 16.20].

The Dirichlet semigroup may alternatively be given by the following for-
mula:

(Te()f)(z) = E*[1{B(s)eE for an sg f(B(1))]-

The growth bound of Tg is independent of p by Simon’s argument (see Lemma
3.2), and is therefore given by:

s(3Ag) = sup {—-l /RN [Vu|?: uw € WH(RN),% = 0q.e. in E°,

2
/ u? = 1} (2.5)
RN

1
= lim =log {ess supP?[B(s) € FE forall s t]} . (2.6)
t—oo i N

z€R
Clearly, s(%A E) < s(%& £ ). Equality holds if E is a regular open set [4, p. 444],
[20, Theorem 2.11].

It was implicitin the proof of [6, Proposition 5.1] (see also Example 4.13 below)
that, for any Borel set F, there is a Borel set F such that E C F, F'\ E is null,
and s(1Ag) < s(1AF). Since s(3AF) < s(3AF) = s(1AE), it follows that
s(3AE) = s(3AF).

3. The Class 7,

As in the introduction, F, will denote the class of all Borel sets £ such that
s(AAE) > o, where s(3Ag) is given by (2.5) or (2.6). In this section, we give a
few technical results concerning this class of sets. The first shows that the essential
supremum in (2.6) can be replaced by the supremum.

LEMMA 3.1. Let E be a Borel subset of RY. Fort > 0,

|ITe(t)l| gLy = sup P?[B(s) € E forall s < t].
z€RN
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Proof.Let 0 < & < t, z € RY. By the Markov property,

P®[B(s) € Eforall s < t] < P*[B(s) € E whenever § < s < ]

= /Rnps(y)Py[B(s) € Eforalls <t~ é]dy

= [ Ps()(Te(t - )18 dy
< Te(t - 61|00
= [IT&(t - 8)llc(ze)-

Since T is dominated by the Gaussian semigroup, it is 2 holomorphic semigroup
on L'(E) [26]. Hence s — [ Te(s)llczyy = |TE(s)l|c(z) is continuous for
s > 0. Letting § | O gives the result.

The next lemma is essentially due to Simon [31, Theorem 1.3].

LEMMA 3.2. Let o < Q. There is a constant c, N such that

ITe(®)1]c0 < cont™? e G.1)
for allt>1 and all Borel sets E with s(%AE) < 0. Hence

P°(B(s) € E forall s < 1] < cont™Nl2 et

forallx € RY, t>1, and Borel sets E not in F,.

Proof. Note first that T'(1) is a bounded operator from L2(RY) to L®(RY),
withnorm a := [[pi[l, = NonT(N/2)(27)~N. Leta = 2(—0)'/2 Let 21, E be
a Borel set with s(%AE) <o,z0€ RV, and B = B(zg,a(t + 1)). Since Tg is
dominated by T', we obtain the following for almost all z in B(z¢, a):

0< (Te()1) (2) = (Te(1)Te(t - 1)1B) (=) + (Te(t)1s:) (z)
(T()Tx(t - 1)1p) (z) + (T(t)15<) (x)

o |Ta(t = sl + [ pde-v)dy

IN

N

N

ae"(t‘l)w}v/z(a(t + 1))N/2 + f pi(z — y)dy
B(z,at)
@ e“’w,lv/z(Zat)N/z e’t +

NuntM? oo ) Ny
T anr /atlfz oo

IN
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1/2
< ae aw / (2a)N/2tN/2 et +

( gr “)’1{)’/2 ( / e /4N -1 dr) N2 ot (3.2)

Since z¢ is arbitrary, it follows that || TE(%)1||s is bounded by (3.2). The last
statement now follows from Lemma 3.1.

The next lemma is analogous to the proof of {6, Proposition 4.10], but the argument
is now more complicated. If K were allowed to depend on E, it would be possible
to give a much simpler proof.

LEMMA 3.3. Let o0 < ¢’ < 0. There is a constant K (depending on N, o, and o')
such that, for each E in F,, there exists z in E such that EN B(z,K) € F,.
Proof. Let ¢, be as in Lemma 3.2. Choose ¢ > 1 such that

Now, choose K such that
PY[|B(s)| > K for some s < t] < le”".

Let F € F,.. Then

, 1
et < 2890 = | Tp(0)ll (r2)
< ITeleeey = 1TE()1]leo

= sup P*[B(s) € E forall s < t].
z€E

Thus there exists z in R such that
P°[B(s) € Eforalls < t]> %
Hence
P*[B(s) € EN Bz, K) for all s<t]>1e? > e ntV/2e%t.

It follows from Lemma 3.2 that E N B(z, K) € F,.

4. The Value of sy (c0)

In this section, V : RN — [0, oo] will be a measurable function, and we shall
establish the equality (1.1), where sy (00) = limy_,o sv(A) and sy () is defined
by (2.1) or (2.2). However, we shall first establish a different formula for sy (o)
under rather special conditionson V.
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PROPOSITION 4.1. Suppose that liminf,_o, V(z) > 0, and let E = {z €
RY : V(z) = 0}. Then sy(o0) = 3(%55) Hence there is a Borel set F such that
V =0ae. inEV >0ae in F°, and sy(o0) = s(3AF).

Proof.Since V. = 0 in E, it follows from either (2.1) and (2.3) or (2.2) and
(2.4), that sy (A\)2s(3AE) for all A < 00, 50 sy (00)23(3AE).

To prove the opposite inequality, we can assume that sy(oco0) > —oo. By
Proposition 2.1, there exists Ag such that, for n > Ag, H,yv has a (normalised)
principal eigenvector u,, in L2(RY). Now

1
5 /RN |V, | + n/RN Vul = —sy(n).

It follows that sup,, [gv [Vun|? < co and fgw Vu2 — 0as n — oo. Thus (u,)
is a bounded sequence in W'2(RN), which is compactly embedded in L2 (RN).
Hence, there is a subsequence (u,,) which converges weakly in WI’Z(R?V ) and
strongly in L2 (RV) to a limit u.

By assumption, there exist a compact set K and § > 0 such that V>é in K°.
Then E is contained in K and [ u2 < 67! [rc Vu2 — 0. It follows that w = 0
ae. in K¢ Moreover, [;(un, — u)? — 0, 50 [i Vu? = lim,_o0 [ Vu = 0.
Hence, u = 0 ae. in K N E°, so u € LA(E) N WH4RY). In addition, [ u? =
Jie v? = limgyeo f5 u2 = 1.

For ¢ in L*(E) N W12(RY),

1 1
_E/RN Vu,, Ve _E/RN Vi, qu—/RN Vg, @

= sv(nr)/RN Un, P-

Letting r — oo,

1
—3 /RN VuVp = sy(00) /RN uep.

Hence u € D(%EE) and %Z&Eu = sy(oo)u. In particular, s(%ﬁE)st(oo).
The last statement follows from the remark at the end of Section 2.

REMARK 4.2. Suppose that lim infj;_,., V(z) > O and that E := {z € RV :
V(z) = 0} is not null. By Proposition 2.1, there exists Ag such that Hy has
a principal eigenvector uy whenever A > Ao. Moreover, %AE has a principal
eigenvector u. Suppose that T is irreducible (for example, if E is open, connected
and regular [14, Theorem 3.3.5]). Then v is unique, and the proof of Proposition 4.1
shows that uy — u strongly in L2(R") and weakly in W'?(RN) as A — oo.

The next proposition establishes one inequality in (1.1).
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PROPOSITION 4.3. Let o < 0, and suppose that

inf{/EV:EE}}}:O. 4.1

Then sy(A)>o forall X > 0.

Proof.Let E be any set in F,. By Lemma 3.3, there is a bounded set F’ in
F, such that F C E. By Proposition 2.2, the spectral bound s(%AF) of %AF
is a principal eigenvalue [24, Proposition 3.5, p. 310], so there is a non-negative
function u in D(JAp) such that f; u? = 1 and 1Apu = s(3AF)u. Then, for any
fixedt > 0,

U= e_%s(AF)tTp(t)u < e T (t)u = e (py * u).
It follows that u(z) < €~%||p¢|2 for almost all z. Now

1 2 2
sv(A) > ) RNIVuI —ALVU

> oAl [ V.
E

Taking the supremum over all E in F,, it follows from (4.1) that s(A)>0.

COROLLARY 4.4. Let Q be a regular, bounded, open, subset of RN, and 0 >
8(%AQ). Then
inf{m(E\Q): E € F,} >0.
Proof.Let V = 1ge. By Proposition 4.1, sy(c0) < o. By Proposition 4.3,
inf{{pV : E € F,} > 0.Since {p V = m(E \ Q), the result follows.

REMARK 4.5. Proposition 4.3 may altematively be proved by the method used
in [6, Proposition 4.8]. The argument given there shows that

Te(t)l — Syw(t)l < /\/Ot T(t—s)V1igds = A(V1g) * ;. 4.2)

If sy(A) < o, then we can choose ¢ > O and £ > O such that
153w ()1l < € < €7

Then (4.2) shows that
AL I(VLE) * #tlloo > 0.

Moreover, integrating (4.2) over Ef(1 —¢) := {z € RN : (Tg(t)1)(z) > ¢}
gives

(¢ = ISw O lw)m(Ei(1 - &) < At [ V.
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A variant of [6, Lemma4.7] shows thatinf ge , m( E}(1—¢)) > 0, and Proposition
4.3 follows.

The proof of (4.2) in [6] used the Feynman—Kac formula. It may alternatively
be obtained by first using the variation of constants formula to show that

t
Sy — Sy, (D)1 < / T(t — $)V,uSu, (s)1ds,
0

for U,, and V,,, in L°°(RN)+, and then letting U, 1 xgc and V;,, T V, where
xe<(z) = 0if z € E and xg(z) = oo if z € E° (see [4, Section 5]).

Now we turn to the converse of Proposition 4.3. As in [6], this argument is less
straightforward, using the strong Markov property of Brownian motion. The general
strategy is the same as Propositions 4.9 and 4.10 of [6].

PROPOSITION 4.6. Let 0 < 0, t > 0, and suppose that

inf {||(V1E) * ¥i||oo : E € Fy, E closed} > 0. 4.3)

Then sy(x) < 0.
Proof.For > 0 and n > 0, let

i
Eon = {y eRN:pY [/ V(B(s))ds < a] 217} .
0
By [6, Lemma 2.1}, E,,, is closed. By [6, Lemma 4.2] applied to V1g,,,,
t
nE* [/ (V1E,,)(B(s)) ds] £a
0
for all z in R"V. Hence
t o
(V1) 5 il = esssupE? | [ (Vi )(B)ds] < 2.
RN 0 n

It follows from (4.3) that there exists @ > 0 (depending on 7) such that
Eun ¢ Fs.
For t’ > 1, let v,n(t') = caNt'N/2 et where ¢, is as in Lemma 3.2. Thus
P?[B(s) € Eyy forall s < t'] < von(t)

forall ¢ > 1 and all z in RV.
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Let (K,) be an increasing sequence of compact sets with union E, , and let 7,,
be the first hitting time of K,,. If 7, < o0, then B(7,) € EZ,. For any z in RN,
the strong Markov property gives:

t+t/
P Vo V(B(s))ds > a}

A\

pe [rn <t / :"H V(B(s))ds > a]

= E° [1[,"<t,1PB<Tﬂ) [ /0 t V(B(s))ds > aH

(1-7)P° [ < 1]

A\

Since E,y is closed,
nll'rgoP” [ <t] =P [B(s) € Eg,, for some s t’] =1 — yon(t').
Hence

pe [ ARTEOTE a] < 1= (1= 1w = 1) < Yon(t') + 7

forall z in RV,

Now, let k>1, m>1,and n > 1. Let r|, 7, ..., 7y, be integers with 1 < 7y <
<. ... <Tmp<(m+E)nLett; =(r;—rj-)t+t) (G=1,2,...,mn),
where 7o = 1. The Markov property gives:

7y (t+t')
P’”[/( N V(B(s))ds< a (j:l,2,...,mn)}

ry—1)(t+¢)

— E* |EB®) |4 " EB(®) |4 "
[ [ [f0+ V(B(s))dssa] [fo" V(B(s))dsga]

.. EB(tmn) [1 [ v<B(s>>ds<a]] ) } ”

< (Yon () + )™

Hence
(m+k)n(t+t')
- / V(B(s))ds < nka
0
< P‘”[Forsomel KT <1< Py < (M +Ek)n,

7y (t+1')
/ V(B(s))dsga(j:1,2,...,mn)]
(ry=1)(t+¢")
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< ((m+k)n

mn

) (70N(t,) + ﬂ)mn

¢ (m+k\Y?[(m+E)y"tk\" o
<o (Ct) (T) ent® 4w

for some constant ¢, by Stirling’s formula. Thus

(Sav((m + k)n(t + ¢'))1) (z)

- E° [exp (—A /0 (e n(e+) V(B(s))ds)]

<ok 4 (m ) (m+ B () + ).

n1/2 m mmkk
It follows that
() = lim OIS (mt Rin(i + €)1
n—0oo (m+k)n(t+ 1)

1
S M+ R+ 0)

max{—)\ak,log{w(%mt') + U)m}}, (4.4)

mm k.k

SO

< (m + k)log(m + k) — mlogm — klogk + mlog(v,n(t") + 1)
) (m+k)(t+ 1)

1 kE k1l klogk
{logm+ " ogm og

sy(o0)

t+t m m+k_m+k
m
1 N (t .
=2 loglan() + 1)}

Letting 7 — 0 and m — oo gives:

logv,n(t") 2logesn + Nlogt' + 20t
< = .

Letting t' — oo gives:

sv(o0) < 0.
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REMARK 4.7. It follows from (4.4) that if m, k, n, o, and t’ are chosen so that

m+ k m+k
(—m,;lzT——(%N(t') +n)" <1,
then the right-hand derivative of sy at A = 0 satisfies:
k
s (04+) < i A0 (V1) # oo (4.5)

(mtk)t+t)E
for all ¢ > 0. We have not attempted to optimise either (3.1) or (4.5).

The next step is to convert the condition (4.3) into the condition infgex,
[V > 0. This is achieved in the following proposition, analogous to [6, Proposi-
tion 4.10].

PROPOSITION 4.8. Let 0 < 0’ < 0, t > 0, and suppose that there is a constant
¢ > 0 such that [V >c for all (closed) sets E in F,. Then there is a constant
¢ > Osuchthat ||(V1g) * ¥¢|co >’ for all (closed) sets E' in Fyi.

Proof.Let K be as in Lemma 3.3, v = infj, ¢ 41 ¥:(¥) > 0,and ¢’ = ¢y. Let
F’ € F,.ByLemma3.3, there exists zgin E'suchthat £ := E'NB(zo, K) € F,.
By assumption, [ V>c. If 2 € B(zo, 1), then

(Vip) 8@ = [ Vyita -y [ V.

THEOREM 4.9. Let V: RN — [0, o] be measurable, and t > 0. Then

sy(o0) = 1nf{ : 1nf V> O}
E
:mf{a<0 1nf/V>0}
E closed
- mf{cr <0 nf (Vg) * tellr > 0}

= inf{a <0: Elenjfa HV1g) * Y| > O}.

E closed

Proof. This follows immediately from Propositions 4.3, 4.6, and 4.8.

COROLLARY 4.10. LetV € L} (RN). Then

sv(oo)::inf{a<0:inf{/V:QE]’U,Qopen} >O}.
Q
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Proof. The proof is similar to [6, Corollary 3.8]. Let E € F, ande > 0. Foreach
n20, there is an openset 0, suchthat £, := {z € £ :n < |z|] < n+1} C Q, and
fa, V < [g, V+e27". LetQ = U;2 o Qn. Then E C Q,50Q € F,,Qis open, and
fQV < fEV+£ Thus inf{f, V : Q € F,,Qopen} = inf{ [V : E € F,}.

In the one-dimensional case, a Borel set E belongs to F, if and only if F contains
an interval of length greater than 7(—20)~!/2. Thus Theorem 4.9 reduces to the
following.

COROLLARY 4.11. Suppose that N = 1. Then

T2

i) =@

where d = inf {§ > 0 : inf.er [+ V > 0},

ForV ¢ L (RN ), it was shown in [3, Theorem 1.2, Proposition 1.4], [6, Propo-
sition 4.19] that a condition involving the integrals of V' over balls determines
whether sy () < O or not. The following example shows that in the formulae for
sy (o0) given in Theorem 4.9, it is not possible to restrict attention to balls E if
N22.

EXAMPLE 4.12. Suppose that N >2. There exists V in L°(R), such that

(i) Forall § > 0, inf V>0,
zeRVN JB(z,5)
(ii) sv(o0) > —oo0.

We construct V' as follows.

Let I = (0,)N, T, ={z € I : 2" € Z"} (n>0),and ¢ < s(3A1). We
claim that there exist open subsets 2,, of I such that 2, C 2, ', C €, and
s(%AQn) > o for all n>0. We take Qy = I. Given Q,, such that S(%AQH) > o,
let

Q1 = U\ U B(z,¢).

l‘ern+l

Now, s(3 Ags, ) — s( Agq) as € | O (this can easily be seen, either by variational
arguments, or *from properties of Brownian motion for N >2) We may therefore
choose Q41 = €5, for ¢ > O sufficently small that s(3Aq,,,) > 0. Thus we
have constructed ( Qn), by recursion.

Now lete; = (1,0,0,...,0) € RV, and put

V(z) 27" ifx —ne € Q,;n=0,1,2,...
) =
1 otherwise.
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One sees that (i) holds. Moreover, if we take E, = {z € RN iz —ne € Q. }
then s(1Ag,) = s(3Aq,) > 0,50 E, € F, for all n. However, [p V <27".It
follows from Proposition 4.3 that sy (c0)>0.

EXAMPLE 4.13. Let E be a Borel subset of R, and

v {2 0

The associated semigroup is the pseudo-Dirichlet semigroup Tgz. Theorem 4.9
gives

s(AAg) = sup{s(3AF): F\ Eisnull}.

Thus, there is a sequence (F},) such that F}, \ E is null, and s(3AF,) T s(1Ag).
If F = EU U, Fn, then E C F, F\ Eis null, and s(1Ag) = s(}AF). The
existence of such a set F' is implicit in the proof of [6, Proposition 5.1] (see also
[4, Example 5.5] and the references cited therein).

Now suppose that W : E — [0, oo] is measurable, and put

oo (z € E°)
Vie)= { W(z) (z € E).

Then Ty is a Schrédinger semigroup on L?( E') with pseudo-Dirichlet boundary
conditions and with potential AW . Theorem 4.9 says that the limit, as A — oo, of
the spectral bound of this semigroup is given by

inf{o<0:inf{/W:Fe]—},E\Fisnull}>O}.
F

S. Strict Monotonicity of sy

We turn now to the question whether sy () attains its limiting value sy (oco) or
whether on the contrary sy is strictly decreasing. We begin by considering the
situation of Proposition 4.1.

PROPOSITION 5.1. Suppose that V € L} (RY) and liminfi,_,o, V(z) > 0.
Then sy is strictly decreasing.

Proof. We may assume that sy (co) > —oo. By Proposition 2.1, there exists
Ao > O such that H v has a (normalised) strictly positive principal eigenvector u
whenever A>Ag. Suppose that Ay < A; < Az. Then

1 2 2
Sv()\l) P _5 N |Vu,\2| —I\IAN V’u,)‘2
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1

> ‘E/RN Vs, |2 — ,\2/RN v,

= SV()\2).
Thus sy is strictly decreasing on [Ag, 00). Since sy is convex, it follows that it is
strictly decreasing on [0, c0).
Next, we give a partial result, similar to Proposition 4.3, for bounded V.
PROPOSITION 5.2. Suppose thatV € L=(RYN), and that there exist o < 0 and
a sequence (Ey )n31 of Borel sets such that

(1) E, € Fs,
(2) J[g,V —=0asn — cc.

Then, forany A > —0/||V||cos
sv(A)zlimsups(3A — A|V||oo 152 ).
n—r00

Proof. We may assume that ||V]||. = 1. Fix A > —o. Let E,, = E N B(0,r).
Asr — oo,

s(3AE,, ) Ts(AAE),  s(3A - Mg ) T s(3A - Algg).
Thus we may choose r (depending on n) such that, if F;, = E,., then I, € F,
and

sn 1= 8(1A = Alpg) > s(3A — Algg) — 27"

If W,, = 1pe, then sw, (00)>s(3AF,) > o. By Proposition 2.1, LA, — AW, has
a (normalised) principal eigenvector u,. As in Proposition 4.3, u, € L®(RN ),
[|ttnloo < € *|ps]|2, and

1 2 2
() > =3 [ 1Vu) —,\/RN Va2

1
5 1 vn"‘—,\/ 2—,\/V2
> RN| ) Fgun oVt

> 5= Aepl} [ V.
En

Letting n — oo, the result follows.

COROLLARY 5.3. Suppose that N = 1, V € L*®(R)4, and sy(o0) < 0. Then
sv(A) > sy(o0) forall0 < X < co. Hence, sy is strictly decreasing.

Proof Let § = m(—2sy(00))~'/2. By Corollary 4.11, there exist z,, in R and
6, > O such that §,, T 6 and f;:”" V - 0asn — oo. Let E, = (¢, 2n + 90).



THE SPECTRAL BOUND OF SCHRODINGER OPERATORS 223

Since V' is bounded, it follows that f; V — 0. Moreover, s(3Ag,) = sy (oo) for
all n. It now follows from Propositions 5.2 and 5.1 that

sv(N)25(3A = M|Vlleo(0,5)) > 5(38(0,6)) = sv(o0)
whenever —sy (00)/||V||eo < A < 0.

We do not know whether Corollary 5.3 remains true if NV >2 (we shall return to this
question in Remark 5.8). However, we shall now show that it may be false if V
isin Lfo"c(RN ) for any N >1. This depends on a ‘decoupling’ construction, which
shows that given two or more potentials V;, one can, by moving the potentials far
apart, construct a potential whose spectral function behaves in a similar way to the
maximum of the spectral functions sy, .

In what follows, the first coordinate of a point z in RV will be denoted by ¢,

and e; will denote the point (1,0,0,...,0)in R".

PROPOSITION 5.4. Let Vi,V3 € L®(RV)4, a,b € R, and e > 0. There exist W
in L°(RN)4 and ¢ > a — b such that

(1) [Wlloo < max([|Vi]loo, [|V2lloo )
(2) W(z) =Vi(z)ifE<a,

(3) W(z + cer) = Va(z) if £2b,

(4) sw(1) < max(sv(1), s1,(1)) +&.

Proof.For n>1,letc, = a + n + 2 — b, and define W,, as follows:

Vi(z) ifé<a
Wa(z) = { max(||Villeo, [|V2lleo) if 6 < <a+n+2
Va(z — cner) if £2a+n + 2.

We will show that lim sup,,_, ., sw, (1) < max(sy,(1), sy;(1)). It then follows that
we may take W = W,, and ¢ = ¢, for n sufficiently large.
There exists u,, in C°(RY) such that [z~ u2 = 1 and

1

=3 Jox |Vun|2—/RN Woulzsw, (1) — 27", (5.1)

Let v = max(||Vi]|co, || V2||co) + 2. Then swn(1)>2 — 7, so
1 2, .2
/RN (UVual? +42) <.
Hence there exists 7, € {1,2,...,n} such that

3y

1 2 2

/ (§|Vun| + un) <—.
a+rn—1€Eé€a+rn+2 n
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Let ¢: R — [0, 1] be a fixed C°°-function such that

1iftg—1
i £iL
oty = § 00

1 if t>2.
Let

vn(2) = (€ = (a + n))un(z).

Asn — oo,

/RN(un — vn)2 — 0, /RN |Vau, — an|2 — 0,

/N Wa(u2 — v2) — 0. (5.2)
R

Let

Unt = Vn lecasrn]s
Un2 = Unligzar,)-

Since W,,>V1 on supp vn1,
1
=3 Jen Ianllz—/RN Wk <3V1(1)/RN Va1

= sv;,(1) / vl (5:3)
é{<atrn

Since W, >V, on supp vn2, where Vnz(x) = Va(z — cney),

1 2 2 2
_5 o |an2| - /RN W < 8‘7"2(1)/1;1\{ U2

= sy,(1) / v2, (5.4)
£2atrn

Adding (5.3) and (5.4) gives

1
5 o |V’vn|2 _ /RN anﬁ < max(sy,(1), s%,(1)) /RN v%.
Letting n — o0, using (5.1) and (5.2), gives

lim sup sw, (1) < max(sy,(1), sy, (1)).

Nn—+00
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PROPOSITION 5.5. Let (Vy)ny1 be a sequence in L°(RN )4, (Kn)ns1 be a
sequence of compact sets in RY, and (0n)n>1 be a sequence of real numbers such
that sy, (1) < 0n, < Ony1 for all n>1. There exist sequences (an)n30 and (¢, )nx1
in R, and (W, )n»1 in L°(RN) 4 such that, for all n31,

(1) ap1 < €+ cp < an—1forallzin K,
(2) Whlleo < maxigjgn [|Vjll oo
(3) Whyi(z) = Wa(z) f§ < an,
(4) Wo(z + cner) = Vi(z) ifz € Ky,
( ) swa(1) < o

Proof. Choose ag and a; such that ag < € < a; — 1 forall z in K. Let¢; = 0,
W1 = Vi. Then (1), (2), (4) and (5) are satisfied for n = 1.

Let m>0. Suppose that a,, and W, have been chosen so that (1), (2), (4) and
(5)holdforn = 0,1,...,mand (3) holdsforn = 0,1, ..., m — 1. Choose b,, such
that £ > b,, forall z in K, 4. By Proposition 5.4, there exist Wi, 41 in L(RV ),
and ¢4 > am — by, such that (2), (4) and (5) hold for » = m + 1 and (3) holds
forn = m. Choose a,,, 41 suchthat £ + ¢, 41 < @41 — 1 forall z in K, 1. Then
(1) holds for n = m + 1.

By recursion, the proof is complete.

PROPOSITION 5.6. Let (Vy)n>1 be a sequence in L°(RN); and o be a real
number such that sy, (1) < o for all nz1. There exists W in L{S,(RN), such that
sw(1) < o and sw(o0)z limsup,_, ., sv, (00). Ifsup,, ||[Valleo < 00, then W may
be chosen to be in L°(RN),

Proof. There exist u,, in C2°(R"V) such that fg~ u2 = 1 and

1

1
) IVun|2 - n/ Vatn2sv,(n) — e

Let K,, = suppu, and 0, = 0. Let (ay,), (¢,), and (W, ) be as in Proposition
5.5, and let W(z) = lim,_o, Wy(z) (this exists by (3) of Proposition 5.5, since
Gn > Gn1 + 1,50 ap, — 00 as n — o). If u € C(RY) and fRN u? = 1, then
for all sufficiently large n, W = W,, on suppu, so

1

~3 |V 1> - / Wu? < sw, (1) < 0.

Hence sw(l) <0
Let Uy, (2) = un(2 — cye1). Then

1

sw(n) > —3 |vun|2~ n/ w2
— 1 lV |2 / V
= -3 Un|®— n u
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> sv,(n) - %

1
> —_—
Z Sv, (Oo) n’
where we used (4) of Proposition 5.5 in the second line. Letting n — o0, it follows
that sy (c0)> limsup,_, ., sy, (00).

EXAMPLE 5.7. Let N3>1. There exists V in L (RN), such that sy()) =
sv(1) < O forall A>1. We construct V' as follows.

Leto = s(%AB),whereB = B(0,1).Let B, = B(0,1-27"),s05(3AB,) =
o(1 — 27*)~2. By Proposition 4.1, s1,,, (A) = o(1 = 27")"2as A — oo, so we
may choose 3,, > 0 such that sy - (Br) < 0. Now Proposition 5.6 may be applied

with V,, = B,1p¢. It shows that there exists V' in Lﬁ;’c(RN )+ such that sy (1) < o
and sy (co0)> limsup,_,, s(1Ap,) = 0.

REMARK 5.8. The potential V constructed in Example 5.7 is necessarily unbound-
ed, since 8, — oo. Although we do not know whether Corollary 5.3 is valid if
N > 1, we can illuminate the question as follows.

Foro < 0and A > 0, let

v(a,A) = inf{s(1A — A1qc) : © € F,, 2 bounded open}.

Clearly, v(o, A)> max(o, —A).
Consider the hypothesis

Forallo < Oand A > 0,v(0,A) > 0. (5.5)

We do not know whether (5.5) is true. Suppose for the moment that it is. For any
a >0,

av(o,al) = v(ao, A),

and v is continuous with respect to A. Given ¢ < 0 and A > 0, it now follows
from (5.5) that by taking oy = ao and letting & | 1, we can find o1 < o such that
v(o1,A) > 0. Let V € L=°(RV),, and suppose that sy (co) < 0. By Corollary
4.10, there is a sequence (€2, ) of bounded open sets such that s(1Agq, } — sy(o0)
and [ V — 0. Given A > 0, as above there exists o1 < sy(o0) such that
v(o1, A|V||eo) > sy (o0). Then, for all large n, 0, € F;,, 50
(38 = MV lleoLag)2v (01, Al[Vlleo) > v (00)-

By Proposition 5.2, sy (A) > sy (o0).

On the other hand, suppose that (5.5) is false (for some N >2). Then there exist
o < 0, Ag > 0 and a sequence ({2,,) of bounded open sets such that S(%Agn) lo
and s(1A — Algg) — 0. Choose 0 < a,, < 1 such that

s(30,)

1
og— =<~ <o, s(%A—/\OIQ%)<a,21cr.

2
n af
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LetV, = a;z)\olangﬁ. Then

IA = Nlge
sv,(1) = —————-S(z olas) <

SVn(n)BS(%AanQn) =

= 20
supy, [|Valleo = sup oz <
It then follows from Proposition 5.6 that there exists V in L°(R"), such that
sy(A) = o forall A>1.
Thus, given N >2, the question whether Corollary 5.3 holds is equivalent to the
question whether (5.5) is true.

6. Generalisations
6.1. ELLIPTIC OPERATORS

It should be clear to the reader that all the results of this paper remain true if the
operator %A is replaced throughout by any symmetric, strongly elliptic, operator
H onRV:

N
H = Di(a;;D;),
Q=1

where a,, = aj; € L®(RY) and there is a constant ¥ > 0 such that fog-:l

ai;(2)6&2y TN € forallz in RY and ¢ in R". The quadratic form

1 2
5 R |Vu]

is replaced by the form

N
> /N a;j(Diu)(Dju),
ij=17R
Brownian motion is replaced by the diffusion process associated with H [17], and
the class F, is defined in terms of H instead of %A. Since the heat kernel satisfies
Gaussian bounds [14], Simon’s argument (see Lemma 3.2) shows that the spectral
bound of the semigroups on L”(RN ) is independent of p; in fact, the spectrum is
independent of p [2].

Now, suppose that

N N
H = Z Di(aiij) + ZbiDi +c

i,5=1 i=1
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is non-symmetric and strongly elliptic, and the coefficients belong to L°°(RN ).
If the coefficients are sufficiently smooth and ¢ is sufficiently negative, then H is
associated with interpolating semigroups on LP(RY) for each 1 < p < oo, and
with a diffusion process [22]. Then Theorem 4.9 remains valid, provided that the
spectral function sy () is now interpreted as the spectral bound of the appropriate
semigroup on L>°(RY ) (it is no longer clear that the spectral bound is independent
of p). The quadratic form technique involved in the proof of Proposition 4.3 is
no longer appropriate, but it can be replaced by the argument outlined in Remark
4.5.

6.2. SINGULAR POTENTIALS

Another generalisation is to allow singular potentials. Thus the function V' can
be replaced by a positive measure x (defined on Borel subsets of RY, but not
necessarily o-finite) such that u(E) = 0 for all polar sets E (for details of this
case, see, for example, [7, 33, 35]). The quadratic form ay is replaced by the form
a,, given by

D(a,) = {ve W'(RY): fu i dp < o0},
a,(v) = 3 fgv [Vul*dz + fgv @ dp.

where % is a quasi-continuous version of u. Then

su(A) = sup{—-% /RN |Vu|? dz — )\fRN W duu e WH(RY),

/ wrdz = 1}
RN

= lim llog {ess supE”® [exp(—Au(t))]} ,
t—oo 1 z€RN

where {A,(t) : t>0} is the additive process associated with u (see [34, Section
4]). Theorem 4.9 remains valid in this context in the form

su(00) =inf{o < 0:inf{u(E): E € F,} > 0}.
To prove this version of Theorem 4.9, one has to establish the identity

E°[A,(1)] = fRN Pz — y) du(y)- (6.1)
If 1 is a Dynkin measure, this is given by [16, Theorem 8.4]. The general case fol-

lows by various approximation arguments. Once (6.1) is established, the necessary
modifications to the proof of Theorem 4.9 are fairly routine.
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Suppose that V: RN — [0, o] is measurable. If p is defined by

wE) = [vas,

then we return to the situation considered in Section 4.
Next, suppose that  is an open subset of RV and V : Q — [0, 00} is measurable.
Define i by

Jg V dz if E\Q is polar,
00 otherwise.

wE) = {

Then the semigroups being considered are the Schrodinger semigroups on LP((2)
with potential AV and with Dirichlet boundary conditions on 2. Formally, the
generator is %Ag — AV, where Aq is the Laplacian with Dirichlet boundary
conditions on 2. Let syq(A) be the spectral bound of the generator. Once again,
this quantity is independent of p. The result which Theorem 4.9 gives is

/\lim sva(A) = inf{a <0: inf{/ Vdz: E € F,, E\Qis polar} > 0} .
—00 E
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