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Abstract. Let V : R N ---+ [0, oo]  be a measurable function, and A > 0 be a parameter. We consider 
1 the behaviour of the spectral bound of the operator ~A - AV as a function of ),. In particular, we 

give a formula for the limiting value as A ~ 00, in terms of the integrals of V over subsets of R N on 
which the Laplacian with Dirichlet boundary conditions has prescribed values. We also consider the 
question whether this limiting value is attained for finite A. 
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1. Introduction 

Let V : R N ~ [0, 0o] be a measurable function, and A > 0 be a parameter. 
Consider the Schr6dinger semigroup {S~v(t)  : t/>0} on LV(R N) (1 ~< p ~< c~) 
associated with the formal operator �89 A - A V. The spectral function sv (  A ) of V 

is the spectral bound of  �89 - AV, that is, the growth bound of  the semigroup 
S~v; s v  is a convex, decreasing, function of  A. This paper is concerned with two 
questions about the behaviour of  8v: 

(a) What  is the value of  sv (oo)  := lim;~--+oo sv(A)?  
(b) Is 8v strictly decreasing? 

It was shown in [6] that sv(A) < 0 for some (and hence all) A > 0 if  and only if 
fE V = oo for all Borel sets E such that W v \ E is transient for Brownian motion, 
or equivalently, such that AE, the Laplacian with Dirichlet boundary conditions on 
E ,  has strictly negative spectral bound. For general V, it suffices that fE V = 0o 
for all closed sets E in this class; for V in L~oc(RN), it suffices that ff~ V = oo for 
all open sets ~ in the class. 

In Section 4, we shall show that 

s v ( ~ ) = i n f { a < O "  inf [ V > 0 } .  
E69% dE 

(1.1) 
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Here, ~-,, is the class of all Borel sets E such that the spectral bound of �89 is 
greater than a. Thus (1.1) is a quantitative version of the result in [6]. 

In Section 5, we shall give some partial answers to question (b). We shall show 
that there exists V in L~oe(R N) such that sv  is eventually constant. On the other 
hand, in the case N = 1, we show that sv  is strictly decreasing if V E L ~176 (R) and 
sv( ) < o. 

Information about the spectral bound of �89 + AV, where V is non-negative, 
may be found in [25] and the references cited therein. The asymptotic behaviour of 
the semigroups generated by �89 + Am, where m is a function which changes sign, 
was studied by Simon (see [32, B5]). Recently, there has been much interest in 
whether there is a principal eigenvalue, that is, a value of ), for which the spectral 
bound is zero and is an eigenvalue [8-13, 21, 27-28]. The techniques usually 
involve studying separately the effects of the positive and negative parts of ra. In 
a separate paper [5], we shall apply the results of this paper to such questions. 

2. Prel iminaries  

First, we establish some notation. We denote by 1 the function constantly equal to 
1, and by IE  the characteristic function of a set E.  For a subset E of R N, E c will 
be the complement R N \ E.  For x in R N and r > 0, we put 

, ( x ,  {v e R N ' I y  - xl < 

All integrals over R N, or Borel subsets of R N, will be taken with respect to 
Lebesgue measure m; CON = m(B(O, 1)) will be the volume of the unit ball. 

Throughout, we shall denote by {T(t)  �9 t~>0} the Gaussian semigroup defined 
on LP(W v) for 1 ~< p ~< oo by: 

T ( t ) f  = y * pt, 

where Pt is the Gaussian kernel: pt(x l = (27rt) -N/2 e -1~12/2t. We shall also need 
the functions Ct given by: Ct(x) = f~ p~(x) ds. We shall denote the generator of 
T on L2(R N) by �89 The Gaussian semigroup is also given by: 

( T ( t ) f ) ( x )  = E ~ [f(B(t))] , 

where {B(t)  �9 t>~0} denotes Brownian motion on R N, and E ~ is expectation with 
respect to the Wiener probability measure 1 ~ corresponding to motion starting at 
X. 

For a measurable function V : R N --+ [0, oo], we shall denote the Schr6dinger 
semigroups on LP(R N) by {Sv( t )  : t>_.O}~ The semigroup may be defined by 
considering the quadratic form av on L2(R ) given by: 

D ( a v )  = {u e W"2(RN) " fRNVu2 < o0 } , 

1 
av (u )  = ~ JRN 'VuI2 + ]R~rVu2. 



THE SPECTRAL BOUND OF SCHRODINGER OPERATORS 209 

The associated positive-definite, self-adjoint, operator Hv defines a semigroup 
{e -tHv } on L2(RN), which interpolates to provide a positive, contractive, semi- 
group Sv on the LV-spaces (we do not distinguish notationally between the semi- 
groups for different values of p). The Schr0dinger semigroups may alternatively 
be defined by the Feynman-Kac formula: 

(Sv(t)f)(x) = E ~ [exp ( - f o t V ( B ( s ) ) d s ) f ( B ( t ) ) ]  

(see [23, 30]). If V ~ L~oc(RN), then av may not be densely-defined, and Sv(t) 
may not converge to the identity as t ~ 0, but this does not affect our discussion 
(see [4]). Note that if 0 ~< V1 ~< V2, then T(t)>~Sv~(t)>~Sv:(t) as operators on 
LP(RN). 

By duality and interpolation, IISv(t)IIc(L2) <<. ][Sv(t)llc(L~ ), where II" ]lC(Lp) 
denotes the LV-operator norm. Simon [31] showed that the LV-growth bound 
limt--,oo t -  l log II Sv (t)ll c(zp) is independent of p (see Lemma 3.2 below); it coin- 
cides with the supremum of the spectrum of the generator of Sv on any of the 
LV-spaces (the spectrum is also independent of p [2, 19]). We shall denote this 
spectral bound by s ( I A  - V). 

Let A > 0 be a parameter. The spectral function sv of V is defined by: 

sv( ) =  (�89 

By considering the case p = 2, one sees that 

sv(A) = sup IVul 2 -  ~ Vu2:u E WI'2(RN), 

fR N U  = 1}. (2.1) 

By considering the case p = ~ ,  one sees that 

sv(A) = t--.oolim l l~ ~ ess sup EX [exp ( -  ~ot V ( B( s ) ) ds) ] } z~i~tr (2.2) 

It follows easily from either (2.1) or (2.2) that sv is a convex, decreasing, function 
of ~, and that, 

if 0 ~< V1 ~< V2, then O>>.svl(A)>~sv2(A). 

If sv (~) is a pole of the resolvent of HAv on LZ(R N), then Ha v has a positive 
normalised eigenvector u in L2(R N) (see [24, Corollary 1.4, p. 166]). In these 
circumstances, we say that sv()~) is a principal eigenvalue and u is a principal 
eigenvector. 
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PROPOSITION 2.1. Suppose that lira infl~l_.+o o V(x) > 0 and that sv(co) := 
limA~oo sv(A) > -oo.  Then there exists A0 > 0 such that sv(A) is a principal 
eigenvalue of ItAv whenever A > A0. If V E L~oc(RN), then the (normalised) 
principal eigenvector is unique and strictly positive (a.e.). 

Proof. There exist a compact set K and (5 > 0 such that V~>(5 a.e. in K c. Let 
Ao = -sv(oc)fiS. If A > Ao, then 

s ( � 8 9  A(V + ~IK))  ~< s(�89 - A~fl) -- -A~ < s v ( A ) =  s(�89 - AV). 

Moreover, At51K is a relatively compact perturbation of H;,v. By [29, Corollary 2, 
p. 113], sv (A) does not belong to the essential spectrum of H~v, so it is a principal 
eigenvalue. 

If V E L~oc(RN), then S~v is irreducible [5] and the uniqueness and strict 
positivity of the principal eigenvector follow from [24, Proposition 3.5, p. 310]. 

Now, consider the case when E is a Borel subset of R N and V = XEr where 

{ ~  (zEE c) 
x ~ ( x )  = 0 (x E E). 

Then av is the form aE: 

D(~E) = WI'2(R N) n L2(E), 

1 ]R IVul2 a~(u) = - i  N 
The associated operator Hv is the pseudo-DirichletLaplacian �89 and the semi- 

group Sv is the pseudo-Dirichlet semigroup TE given by 

(TE(t)f)(x) = E~[I[,(~)EE for almost all ,<~t]f(B(t))] 

(see [4, Examples 5.6, 7.2]). We have 

-- sup {-1/R~, IVul2 : U E W I ' 2 ( R N ) ,  u = 0 a.e. in E c, 

/ R  N u 2 - - 1  } (2.3) 

= lim l l o g / e s s s u p P ~ : [ B ( s )  E Eforalmostalls<~t]). (2.4) 
t --.,oo I, xER N 

We shall denote the Dirichlet semigroup on LV(E) by {TE(t) : t~>0). This 
semigroup is associated with the quadratic form aE on L2(R N) given by: 

D(aE) = {u E WI'2(R N) : u = 0 q.e. in EC}, 

1 
aE(~) = ~ fR~ lWl2' 
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where ~ is a quasi-continuous version of u, and 'q.e.' means 'quasi-everywhere', 
that is, except on a set of capacity zero (see [17, Sect. 3], [22, Proposition 111.3.5]). 
For an open subset ~ of R N, D(an) = W~'2(f~) [15, 18]. The associated self- 
adjoint operator on L2(E) will be denoted by �89 E (the Laplacian with Dirichlet 
boundary conditions). 

PROPOSITION 2.2. Let E be the bounded Borel set in R N. Then �89 A E has 
compact resolvent. In particular, s(�89 is a principal eigenvalue. 

Proof. Let B be an open ball containing E. Then TE is dominated by TB. Since 
1AB has compact resolvent on L2(B), �89 A E has compact resolvent on L2(F) by 
the Dodds-Fremlin Theorem [1, Theorem 16.20]. 

The Dirichlet semigroup may alternatively be given by the following for- 
mula: 

(TE( t ) f ) ( x )  = Ez[I[B(s)eE for all s<~t]f(B(t))] �9 

The growth bound of TE is independent of p by Simon's argument (see Lemma 
3.2), and is therefore given by: 

{ l fR [ X Y u l 2 " u E W l ' 2 ( R N ) , u : O q . e .  i n E  c, = s u p  N 

fR v u 2 = 1 } (2.5) 

= lim - l o g  esssupPZ[B(s) E E foralls  <~ t . (2.6) 
t--+oo t I x E R  N 

Clearly, s( �89 <~ S(�89163 Equality holds if E is a regular open set [4, p. 444], 
[20, Theorem 2.1]. 

It was implicit in the proof of [6, Proposition 5.1 ] (see also Example 4.13 below) 
that, for any Borel set E, there is a Borel set F such that E C_ F, F \ E is null, 
and s ( IAE)  ~< s(�89 Since s(�89 ~< 8(�89 -- s(�89 it follows that 

= 8(�89 

3. The Class ~o 

As in the introduction, ~-a will denote the class of all Borel sets E such that 
s(1AE) > a, where s(1AE) is given by (2.5) or (2.6). In this section, we give a 
few technical results concerning this class of sets. The first shows that the essential 
supremum in (2.6) can be replaced by the supremum. 

LEMMA 3.1. Let E be a Borel subse to fR N. For t > O, 

IITE(t)IIc(L~ ) = sup I~[B(8) E E f o r a l l s  << t]. 
x E R  N 
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Proof. Let 0 < ~ < t, x E R N. By the Markov property, 

PZ[B(s) E E for all s ~< t] ~< PX[B(8) C E whenever ~ ~< s ~< t] 

= finn p6(y)PY[B(s) C E for all s ~< t - 6] dy 

= fR~p~(y)(TE(t  -- ~) l ) (y )dy  

~< IITE(t - 6)111oo 

= IITE(t-  5)llZ:(LOO ). 

Since TE is dominated by the Gaussian semigroup, it is a holomorphic semigroup 
on L (E) [26]. Hence s ~ IITE(*)IIc(L') ---- IITE(*)IIc(  o) is continuous for 
s > 0. Letting 6 ,L 0 gives the result. 

The next lemma is essentially due to Simon [31, Theorem 1.3]. 

LEMMA 3.2. Let r < 0. There is a constant CaN such that 

IITE(t)IIIo~ ,< cvm tN/2 e ~* (3.1) 

for all t>~ 1 and all Borel sets E with s (1AE)  <<. a. Hence 

lrC[B(s) E E fo ra l l s  <~ t] <~ caNtN/2e at 

for all x E R N, t>~ 1, and BoreI sets E not in .~ .  
Proof. Note first that T(1) is a bounded operator from L2(R N) to L~176 

with norm a := IIp1112 = N~,Nr(N/2)(27r) -N. Let a = 2 ( - a )  1/2. Let t~> 1, E be 
a Borel set with 8(�89 <<. a, zo E R N, and B = B(xo, a(t + 1)). Since TE is 
dominated by T, we obtain the following for almost all x in B(x0, a): 

0 <~ (TE(t)l)  (x) = (TE(1)TE(t-- 1)IB) ( x ) +  (TE(t)IB~) (x) 

<. ( T ( 1 ) T E ( t -  1)IB) ( z ) +  (T ( t ) l s~ ) (x )  

IITE(t - l ) l s l l 2  + fsp,(x - y )dy  ,< 

<~ otea(t-1)~lN/2(a(t + 1)) N]2 +/B(x,at)cpt(x -- y) dy 

<~ (~ e-%)lN/2(2at) N/2 e ~t + 

Z NwNtN/2 e-r2/2r N-I  dr 
+ (2r)N/2 ,~n 
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- a  1/2[.I~'~N/2~N/2 eat 

NWN d r )  t N/2 e at. 

Since x0 is arbitrary, it follows that IIr (t)lll  is bounded by (3.2). The last 
statement now follows from Lemma 3.1. 

The next lemma is analogous to the proof of [6, Proposition 4.10], but the argument 
is now more complicated. If K were allowed to depend on E,  it would be possible 
to give a much simpler proof. 

LEMMA 3.3. Let ~r < cr' < 0. There is a constant K (depending on N,  ~r, and cr ~) 
such that, for  each E in Jra', there exists x in E such that E O B(x ,  K )  E J:a. 

Proof Let CaN be as in Lemma 3.2. Choose t > 1 such that 

1 _alt CaN tN/2 e at < ~e . 

NOW, choose K such that 

1 _air P~ > K for some s ~< t] < ~e . 

Let E ETa , .  Then 

ea ' t  < eS(1AE)t  = IIZ~(t)llc(L~) 

~< NTE(t)llc(coo)= IITE(t)llloo 
= sup l ~ [ B ( s )  E E for all s ~< t]. 

xEE 

Thus there exists x in R N such that 

l~ [B(s )  E E for all s ~< t]~>a3-e a't. 

Hence 

l~ [B(s )  E E N B(x ,  K )  for all s<~t]>~�89 a't > caNtN/2e at. 

It follows from Lemma 3.2 that E N B(x ,  K)  E ~a. 

4. T h e  Value  o f s v ( o o )  

In this section, V �9 R N ~ [0, oo] will be a measurable function, and we shall 
establish the equality (1.1), where 8v(oo) = lim~--,oo sv(A) and sv(A) is defined 
by (2.1) or (2.2). However, we shall first establish a different formula for sv(oo) 
under rather special conditions on V. 
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PROPOSITION 4.1. Suppose that liminfH_.oo V(x) > O, and let E = {x 6 

R N" V(x)  = 0}. Then sv(oo) = s(1AE). Hence there is a Borel set F such that 
V = 0 a.e. in F, V > Oa.e. in F c, and sv(oo) = s(�89 

Proof. Since V = 0 in E,  it follows from either (2.1) and (2.3) or (2.2) and 
(2.4), that sV(A)~>8(1AE) for all A < oo, so sV(OO)>>,s(�89 

To prove the opposite inequality, we can assume that sv(oo)  > -oo .  By 
Proposition 2.1, there exists A0 such that, for n > A0, H~v has a (normalised) 
principal eigenvector un in L2(RN). Now 

1 12 /RN IVUn + n /RN VU2 = -sv(n)" 

It follows that supn f an  IVu~l 2 < oo and fg N Vu~ ~ 0 as n -+ 00. Thus (u,~) 
is a bounded sequence in W 1,2(RN), which is compactly embedded in L2o_(RN). 
Hence, there is a subsequence (u,~,) which converges weakly in W1,2(R ~q) and 
strongly in Ll2oc(R N) to a limit u. 

By assumption, there exist a compact set K and ~5 > 0 such that V>~5 in K ~. 
Then E !s contained in t f  and fK~ u2 <~ '5-1 fKr Vu2 ~ O. It follows that u = 0 
a.e. in I~ c. Moreover, fK(un -- u) 2 ~ 0, so fix" Vu2 = limn-+oo fg  Vu2 = O. 
Hence, u = 0 a.e. in K n E c, so u 6 L2(E) fq WL2(RN). In addition, fE u2 = 

U --  l l m n ~ c o  f K  Un - -  1. f K  2 _  �9 2 _ 

For qo in L2( E) fq wL2(RN), 

1 / R  Vun, Vqo l f R  fR 2 N = --2 N V u ' ~ ' V ~ -  NVunr  

=  V(nr) fan Un, . 

Letting r ~ c~, 

Hence u 6 D(17XE) and I ~XEU = sV(OO)u. In particular, s( l TkE)>>.sV(OO). 
The last statement follows from the remark at the end of Section 2. 

REMARK 4.2. Suppose that liminfl~l__+oo V(x ) > 0 and that E := {x 6 R N " 
V(x) = 0} is not null. By Proposition 2.1, there exists A0 such that H~v has 
a principal eigenvector u~ whenever A > A0. Moreover, 1S, E has a principal 

eigenvector u. Suppose that TE is irreducible (for example, if E is open, connected 
and regular [14, Theorem 3.3.5]). Then u is unique, and the proof of Proposition 4.1 
shows that u;~ ~ u strongly in L2(R m) and weakly i n  WI'2(R N) as ~ ~ oo. 

The next proposition establishes one inequality in (1.1). 
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PROPOSITION 4.3. Let cr < 0, and suppose that 

inf(/EV" E E  f ~ }  = 0 .  (4.1) 

Then sv(  A )>~cr for all A > O. 
Proof Let E be any set in .T~. By Lemma 3.3, there is a bounded set F in 

f ~  such that F C E. By Proposition 2.2, the spectral bound s(�89 of �89 
is a principal eigenvalue [24, Proposition 3.5, p. 310], so there is a non-negative 
function u in D( �89 AF) such that fF u2 = 1 and �89 AFU = s( �89 AF)U. Then, for any 
fixed t > 0, 

u = e-ls(aF)tTF(t)u <~ e-atT(t)u = e-~t(pt * u). 

It follows that u(x) <~ e-~tllptll2 for almost all x. Now 

1 
8V(A)>/ --~/RN [VU' 2 -  A / F V u 2  

-2trt 2/l~, V. ~> r  Ae IIp, l12 

Taking the supremum over all E in Fr it follows from (4.1) that s(A)>~o-. 

COROLLARY 4.4. Let ~ be a regular, bounded, open, subset of R N, and cr > 
s(�89 Then 

inf{m(E \ f ~ )  E 6 ~'a} > 0. 

Proof Let V = lf~,. By Proposition 4.1, sv(oO) < cr. By Proposition 4.3, 
inf{f E V : E 6 ~o} > 0. Since fE V = m ( E  \ f~), the result follows. 

REMARK 4.5. Proposition 4.3 may alternatively be proved by the method used 
in [6, Proposition 4.8]. The argument given there shows that 

I' TE(t)I - S A v ( t ) l  <~ A T(t - s ) V l ~  ds = ,~(V1E) �9 ~t. (4.2) 

If sv(A) < (7, then we can choose t > 0 and e > 0 such that 

IIS~v(t)llloo < e < e ~t. 

Then (4.2) shows that 

inf II(V1E) * r > 0. 
E65~a 

Moreover, integrating (4.2)over E ; ' ( 1 -  e ) : =  {x 6 R N "(TE( t ) l ) (x )  > e} 
gives 

(e - IlS~v(t)llloo)m(E~(1 - ~)) <~ A t (  V. 
JE 
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A variant of [6, Lemma 4.7] shows that infEeT~ m(E~'(1 - e ) )  > 0, and Proposition 
4.3 follows. 

The proof of (4.2) in [6] used the Feynman-Kac formula. It may altematively 
be obtained by first using the variation of constants formula to show that 

Sun(t)l - Svm(t)l <~ f o ' T ( t -  s)VmSU.(S)I ds, 

for Un and Vm in L~176 and then letting Un T XEc and Vm T V, where 
XEc(X) = 0 if x E E and XEc(X) = oc if x E E c (see [4, Section 5]). 

Now we turn to the converse of Proposition 4.3. As in [6], this argument is less 
straightforward, using the strong Markov property of Brownian motion. The general 
strategy is the same as Propositions 4.9 and 4.10 of [6]. 

PROPOSITION 4.6. Let a < 0, t > 0, and suppose that 

inf {II(V1E),  Ctll~ : E ~ 7~, E closed} > 0. (4.3) 

Then sv (~ )  <<. a. 
Proof. For a > 0 and r />  0, let 

E ~  = (y  E RN : pY [fotV(B(s))ds <. a] >~ } . 

By [6, Lemma 2.1], E~,  is closed. By [6, Lemma 4.2] applied to V1E~., 

rlEX[fot(V1E~,)(B(s))ds] <<. a 

for all x in R N. Hence 

[L' ]~ [[(V1E~,) �9 Ctl[ = ess supE ~ (V1E~.)(B(s))ds <~--. 
xER2V r] 

It follows from (4.3) that there exists c~ > 0 (depending on 7?) such that 

For t ~ > 1, let 7~N(t ~) = c~Nt ~g/2 e ~t', where C~N is as in Lemma 3.2. Thus 

P~[B(s) E E . ,  for all s <~ t'] ~< 7aN(t ')  

for all t ~ > 1 and all x in R N. 
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Let (Kn) be an increasing sequence of compact sets with union E~,7, and let r,~ 
be the first hitting time of K,+. If v,~ < oo, then B(r,~) E E~,. For any x in R N, 
the strong Markov property gives: 

I ~ V(B(s))ds > []o ++,, o] 

Since E~v is closed, 

lim W[Tn < t'] 
n'-- '+ OO 

Hence 

for all x in R N. 

t fr,~+t a] 
< L~ v(B(+))d+ > 

= EZ[l[.~,,<t,]pB(r")[fotV(B(s))ds>a]] 

>>. (~ - , 7 ) ~  [+. < t'] . 

: W [B(s) E E~. for some s ~< t ' ] / > 1 -  7oN(t'). 

<~ 1 - (1 -- "yaN(t'))(1 -- ~) ~< 7aN(t') + rl 

Now, let k~>l, m~>l, and n > 1. Let r l , r2 , . . .  ,rmn be integers with 1 ~< rt < 
r2 < ... < rmn <~ (m + k)n. Lettj = ( r j -  rj_l)(t + t') ( j =  1 ,2 , . . . , r an ) ,  
where r0 = 1. The Markov property gives: 

[ fr~(t+t') V(B(s))ds <~ a (j = l ,2 , . . . ,mn)]  
px [J(rj--l)(t+t') 

<. ( 'r~u(t ' )  + ,7) ~ .  

Hence 

PX [ /(m+k)n(t+t') V ( B( s) ) ds <~ 

~< 1 ~ [For some 1 ~< rl < r2 < . . .  rmn <<. (m + k)n, 

f(~,(~+t') ] ~,-l)(t+~,) V(B(s))ds ~< a (j  = 1 ,2 , . . .  ,mn) 
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((m + k)n ) ,7)r~. ~< ('~N(t') + 
mn 

<~ ~ ~, mmk k (~/aN(tt) + 

for some constant c, by Stirling's formula. Thus 

(S~v((m + k)n(t + t ' ) ) l ) ( x )  

= v(B(~)) 

<~ e -n'~otk + - ~  mmkk j (faN(if) + 

It fol lows that 

sv(.~) = lim 

<<. 

logllS~v((m + k)n(t + t'))ltl~ 
n-.~ (m + k)n(t + t') 

1 

(m+k)( t+t ' )  

max{-Aak, log { (m+k)m+kmmkk (7aN(tt)+rl)m}}, (4.4) 

SO 

~v(~) ~< (m + k) log(m + k) - m log m - k log k + m log (%N( t ' )  + r/) 

( m + k ) ( t + t  I) 

k log m k log k 1 r e + k +  
- t + t ~  log m m + k  m + k  

m } 
- F ~ - - - ~  I o g ( % r N ( / ' )  + r/) . 

Letting r/--+ 0 and m ~ ~ gives: 

~v(~) ~< IOg%N(t ' )  

t + t  ~ 
2 log CoN + N log t' + 2at' 

m 

2(t + t ' )  

Letting t I --~ r gives: 

s v ( ~ )  <~ G. 
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REMARK 4.7. It follows from (4.4) that if m, k, r/, a,  and t' are chosen so that 

(m + k) r~+k 
mmkk ('yaN(t t) + rl) m < 1, 

then the right-hand derivative of sv at A = 0 satisfies: 

kT/ inf I I ( V I E ) ,  ~11oo (4.5) ~(0+)  .< - (m + k)(t + t,) E~Zo 

for all t > 0. We have not attempted to optimise either (3.1) or (4.5). 

The next step is to convert the condition (4.3) into the condition infEcT~ 
fE V > 0. This is achieved in the following proposition, analogous to [6, Proposi- 
tion 4.10]. 

PROPOSITION 4.8. Let a < a '  < 0, t > 0, and suppose that there is a constant 
c > 0 such that fE V>>.c for all (closed) sets E in fo .  Then there is a constant 
c' > 0 such that II(VIE,) �9 Ct[l~o~c' for all (closed) sets E' in ~ , .  

Proof. Let K be as in Lemma 3.3, 7 = inflYl,<K+l Ct(Y) > 0, and c' = c 7. Let 

E '  C ~ , .  By Lemma 3.3, there exists x0 in E t such that E := E~MB(xo, K) E fa .  
By assumption, fE V>~c. If x E B(xo, 1), then 

( (v~ , ) ,  ~,)(~) = ~[, v(~) , , (x  - y)dy>~ ~[ V(~)~dy~' .  

THEOREM 4.9. Let V : R N ~ [0, or be measurable, and t > O. Then 

= < 0 

i.f{ <o 
E closed 

= i n f { a  < 0" E6f~inf II(V1E)* Ctl]oo > 0} 

f 
i n f ~ a < 0 "  inf 

( EE~'cr 
E closed 

II(V1E) * r > o}.  

Proof. This follows immediately from Propositions 4.3, 4.6, and 4.8. 

COROLLARY 4.10. Let V E L~oc(RN). Then 

sv(cc) = inf (~  < O" inf { f  v " ~ ~ 3ra,f~open} > 0 } .  
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Proof The proof is similar to [6, Corollary 3.8]. Let E E Fa and E > 0. For each 
n>~O, there is an open set fln such that En := {x E E : n  <. [a:[ 4 n + l }  C_ 9in and 
ff~n V < fen V+E2-n 'Let f~  = U~=0 ~2n.Then E C_ f~,so f~ E ~ ,  9. is open, and 
ff2 V < fE V + e. Thus inf{ fa V :  ~t E 5ro, f~ open} = inf{ fE V : E E .To }. 

In the one-dimensional case, a Borel set E belongs to 5ro if and only if E contains 
an interval of length greater than 7r(-2a)-U2.  Thus Theorem 4.9 reduces to the 
following. 

COROLLARY 4.11. Suppose that N = 1. Then 

7r 2 

sy  ( o o )  - - 2d2, 

where d = inf {6 > 0" infxeR fzx+a V > 0}. 

For V E L~176 it was shown in [3, Theorem 1.2, Proposition 1.4], [6, Propo- 
sition 4.19] that a condition involving the integrals of V over balls determines 
whether sv(A)  < 0 or not. The following example shows that in the formulae for 
sv(oc)  given in Theorem 4.9, it is not possible to restrict attention to balls E if 
N>~2. 

EXAMPLE 4.12. Suppose that N~>2. There exists V in L~'(RN)+ such that 

(i) F o r a l l 6 > 0 ,  inf f V > 0 ,  
~EI~ N JB(~,8) 

(ii) sv(co)  > --oo. 

We construct V as follows. 
L e t I =  (0,1) N ,Fn  = {x E I ' 2 n z  E Z N) (n>~0),anda < 8( �89 

claim that there exist open subsets f~,~ of I such that fl,~+l C_ f~n, P,~ C_ f ~ ,  and 
s( �89  > a for all n~>0. We take f~0 = I. Given f~n such that s ( �89 > a, 
let 

U 

Now, s(�89 A~,+, ) ~ s(�89 Aft) as e ~ 0 (this can easily be seen, either by variational 
arguments, or from properties of Brownian motion for N>~2). We may therefore 
choose f~n+l = f~+ l  for e > 0 sufficently small that s(�89 ) > a. Thus we 
have constructed (f/n), by recursion. 

Now let el = ( 1 , 0 , 0 , . . . , 0 )  E R N, and put 

2 -n  i f x - n e l  E gn; n = 0 , 1 , 2 , . . .  
V(x)  = 1 otherwise. 
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One sees that (i) holds. Moreover, if we take En = {x E R N : x - nel E f~}, 
then s ( � 8 9  s(�89 > a, so E,~ E .T~ for all n. However, f E V  << 2-'~. It 
follows from Proposition 4.3 that ,v(~)>>.a. 

EXAMPLE 4.13. Let E be a Borel subset of R N, and 

{oo (zeE ~) 
v ( z )  = xEo(z)= o (z e E). 

The associated semigroup is the pseudo-Difichlet semigroup TE. Theorem 4.9 
gives 

s(17XE) = sup{s(1AF):  F \  E is null}. 

Thus, there is a sequence (Fn) such that Fn \ E is null, and s(1AF,,) T s(�89 
If F = E O Un~>] Fn, then E C_ F, F \ E is null, and s(�89 = s(�89 The 
existence of such a set F is implicit in the proof of [6, Proposition 5.1] (see also 
[4, Example 5.5] and the references cited therein). 

Now suppose that W : E --+ [0, oo] is measurable, and put 

{~ (x E E ~) 
v(x )  : w ( z )  (x e E). 

Then TAg is a Schr6dinger semigroup on LP(E) with pseudo-Dirichlet boundary 
conditions and with potential ,kW. Theorem 4.9 says that the limit, as )` ~ oo, of 
the spectral bound of this semigroup is given by 

inf {a < O'inf { f F W  : F E ~'~,E\ Fisnull} > O}. 

5. Strict Monotonicity of s v  

We turn now to the question whether sv()`) attains its limiting value sv(oO) or 
whether on the contrary sv is strictly decreasing. We begin by considering the 
situation of Proposition 4.1. 

PROPOSITION 5.1. Suppose that V E L~oc(R N) and l iminfN~oo V(x) > O. 
Then sv is strictly decreasing. 

Proof We may assume that sv(oo) > -oo.  By Proposition 2.1, there exists 
)`0 > 0 such that 1-1~v has a (normalised) strictly positive principal eigenvector u:~ 
whenever )`>/)`0. Suppose that )`0 ~< )`1 < ),2. Then 

1 
sv(A1) ~> --~/RN ]~7U,k2] 2 -  )`I/RN Vu2 2 
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1 
> --~fRNIVU~i2--A2/I, NVU~ 

= sv(h). 

Thus sv  is strictly decreasing on [A0, oo). Since sv is convex, it follows that it is 
strictly decreasing on [0, oo). 

Next, we give a partial result, similar to Proposition 4.3, for bounded V. 

PROPOSITION 5.2. Suppose that V E L~176 and that there exist a < 0 and 
a sequence (En)n>~l of Borel sets such that 

(I) En e ~%, 
(2) fE, V - - - * O a s n ~ o o .  

Then, forany ~ > -~/iiVi]~, 

~v(~)~> lim sup~(�89 - ~iiYllool~.~). 
n---~ o o  

Proof. We may assume that I[Vlioo = 1. Fix A > - a .  Let Enr = E f l  B(0, r). 
A s r ~  ~ ,  

s( 1 ~AE,,,) T s(�89 s ( 1 A -  ALE,%) T s( 1A - A1E~). 

Thus we may choose r (depending on n) such that, if Fn = Enr, then Fn E . ~  
and 

s~ : :  s ( 1 A -  A1Ff) > s ( � 8 9  A1E~) -  2 -n.  

If W~ = 1Eft, then sw,,(c~))s(�89 > a. By Proposition 2.1, �89 - AW,, has 
a (normalised) principal eigenvector u~. As in Proposition 4.3, un E L~176 

Ilu~lloo < e-~llp~ll2, and 
1 

sv(A)>~ - ~  fan IVu~12 -A faN Vu[ 

1 

J Ff 

- ~ e-2~tllp, II ~ [~ W. /> 8n 
n 

Letting n ~ oo, the result follows. 

COROLLARY 5.3. Suppose that N = 1, V E L~176 and sv(oo) < O. Then 
sv(  A ) > sv(  oo ) for all O < A < oo. Hence, sv  is strictly decreasing. 

Proof. Let 6 = r ( - 2 s v ( o o ) )  -1/2. By Corollary 4.11, there exist xn in R and 

6~ > 0 such that 6~ T 6 and f~"+~" V ~ 0 as n ~ oo. Let E,~ = (xn, xn + 6). 
d X r l  
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Since V is bounded, it follows that fE,, V ~ 0. Moreover, ,s(1AE,,) = .sv (oo) for 
all n. It now follows from Propositions 5.2 and 5.1 that 

8v(,X)~>s(�89 ,XllVll~X(o,6)o) > s(�89 8v(~) 

whenever-~v(oo)/llVIl~o < ;~ < oo. 

We do not know whether Corollary 5.3 remains true if N/> 2 (we shall return to this 
question in Remark 5.8). However, we shall now show that it may be false if V 
is in L~oc(R N) for any N~>I. This depends on a 'decoupling' construction, which 
shows that given two or more potentials ~ ,  one can, by moving the potentials far 
apart, construct a potential whose spectral function behaves in a similar way to the 
maximum of the spectral functions sv~. 

In what follows, the first coordinate of a point x in R N will be denoted by ~, 
and el will denote the point (1,0, 0 , . . . ,  0) in R N. 

PROPOSITION 5.4. Let V1, V2 E L~176 a, b E R, ands > O. There exist W 
in L~176 and e > a - b such that 

(1) IlVClloo .< max(llVtlloo, llV21loo), 
(2) W ( x )  = VI(X) lye <~ a, 
(3) W ( x  +ce l )  = V2(x) if~>>.b, 
(4) sw(1)  ~< max(svl(1),sv~(1)) + c. 

Proof For n~> 1, let cn = a + n + 2 - b, and define Wn as follows: 

VI(X) i f~  ~< a 

W.(x) = max(llglll~, Nvziloo) if a < ~ < a + n + 2 

V2(z - cnel) if ~>a + n + 2. 

We will show that lim sup,~oo sw,  (1) ~< max(sv~ (1), sv~(1)). It then follows that 
we may take W = Wn and c = c,~ for n sufficiently large. 

There exists un in C ~ ( R  N) such that fgN u 2 = 1 and 

1 iRN IW~IZ-- fRW.U2.>~W.(1)--2 -". (5.1) 

Le t7  = max(NVliloo, IIV211oo) + 2. Then swn(i)~>2 - 7, so 

Hence there exists r ,  E { 1 ~ 2 , . . . ,  n} such that 

/: ( lVu,,i 
+rn- -  1 ~<~<a+rn+2 T~ 



224 WOLFGANG ARENDT AND CHARLES J. K. BATTY 

Let r R ~ [0, 1] be a fixed C~176 such that 

Let 

As n 

Let 

1 i f t  ~<-1 

cp(t)= 0 i f 0 ~ < t ~ < l  

1 if  t>_.2. 

v . ( x )  = - ( a  + 

----+ (X)~ 

o. 

Vnl  = Vn l [~<~+rn] ,  

Vn2 = Vn l [~>a+rn ] .  

Since W~>~V1 on supp vnl, 

1 iVvnll  2 Why21 <. sV,(1) 2~ vn l  
2 /v ~v 

= sv,(1) v n. 
<~aTrn 

Since Wn>~Vn2 on suppv~2, where V'~2(x) = V2(x - c~el), 

1 iVvn212 Wnv2 2 <~ sv.2(1 ) u v"2 
- - 2  N N 

= sv2(1 )  ~ + r .  v~.  

Adding (5.3) and (5.4) gives 

1 ---~ fR~ IVV~IZ-- /R~W~v~ <~ max(sv,(1),sv~(1)) faNv]. 
Letting n ~ eo, using (5.1) and (5.2), gives 

lim supsw,,(1) ~< max(svl(1),sv2(1)). 
n-"+ OO 

(5.2) 

(5.3) 

(5.4) 
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PROPOSITION 5.5. Let (V,~)n>~l be a sequence in L ~ ( R N ) + ,  (Kn)n>~l be a 
sequence o f  compact sets in R N, and (trn)n~>l be a sequence o f  real numbers such 
that svn ( 1 ) < Crn <<. trn+ l for  all n>>. 1. There exist sequences ( an )n>>.o and ( Cn )n>~ l 
in R, and (Wn)n>~l in L~176 such that, for  all n>>.l, 

( 1 ) an-  1 < ~ "~- Cn < an - 1 for  all x in I f  n, 
(2) IIWnlloo maxl~<j~<n IIV lloo, 
(3) W~+l(x) = Wn(z )  if~ < an, 
(4) W n ( z  + cnel) = Vn(z) i f z  E l(n, 
(5) sw,~(1)< crn. 

Proof. Choose a0 and al such that a0 < ~ < al - 1 for all z in K1. Let el = 0, 
W1 = V1. Then (1), (2), (4) and (5) are satisfied for n = 1. 

Let m/>0. Suppose that am and Wm have been chosen so that (1), (2), (4) and 
(5) hold for n = 0, 1 , . . . ,  m and (3) holds for n = 0, 1 , . . . ,  m -  1. Choose bm such 
that ~ > b m  for all z in Km+l. By Proposition 5.4, there exist Wm+l in L~176 
and em+l > am - b m  such that (2), (4) and (5) hold for n = m + 1 and (3) holds 
for n = m. Choose am+l such that ~ + em+l < am+l - 1 for all z in Km+l. Then 
(1) holds for n = m + 1. 

By recursion, the proof is complete. 

PROPOSITION 5.6. Let (Vn)n>~i be a sequence in L~176 and ~r be a real 
number such that 8vn (1) < ~r for  all n>~ 1. There exists W in L~oc(RN)+ such that 
sw(1)  ~< cr and sw(oo)>~ lim supn~oo svn(oo). Ifsupn IIVnlloo < oo, then W may 
be chosen to be in L ~ ( R N ) .  

Proof. There exist un in C ~ ( R  N) such that fR N u 2 = 1 and 

~ 

Let Kn = supp un and an = or. Let (an), (Cn), and (Wn) be as in Proposition 
5.5, and let W ( x )  = limn_c~ Wn(z)  (this exists by (3) of Proposition 5.5, since 
an > an-1 + 1, so an ~ oo as n ~ oo). If u E C ~ ( R  N) and fRN u 2 = 1, then 
for all sufficiently large n, W = Wn on supp u, so 

1 
- - - ~ / R N I V ~ J 2 - - / R N W l t 2  ~< SW,,(1) < Or. 

Hence sw(1)  ~< a .  

Let ~n(X) = un(x - c n e l ) .  Then 

s w ( n )  
1 

= - 2  
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1 
>1 s y , ( n ) - -  

n 

1 
> 

where we used (4) of  Proposition 5.5 in the second line. Letting n ~ oo, it fol lows 
that sw(c~)>~ lim sup,~oo sy,~(oo). 

EXAMPLE 5.7. Let N~>I. There exists V in L~c(RN)+ such that sv(A) = 
sv(1)  < 0 for all A~>l. We construct V as follows. 

L e t a  = s(1AB), where B = B(0,  1).Let B= = B(0, 1 - 2 - = ) ,  sos(1AB,~) = 

a(1 - 2-~)  -2. By Proposition 4.1, SlB,~ (A) ~ a(1 - 2-n)  -2 as A ---, c~, so we 

may choose ~ > 0 such that SlB ~ (/3~) < a. Now Proposition 5.6 may be applied 

with V~ =/~nlB,~. It shows that there exists V in L~oc(RN)+ such that sy (1 )  ~< a 

and sv(eo)>~ lim s u p ~ o  o s(�89 = a. 

REMARK 5.8. The potential V constructed in Example 5.7 is necessarily unbound- 
ed, since/3n ~ oo. Although we do not know whether Corollary 5.3 is valid if 
N > 1, we can illuminate the question as follows. 

For a < 0 and A > 0, let 

v(a,  A) = inf{s(1A - All, c) �9 f~ 6 .T,, f /bounded open}. 

Clearly, v(a,  A )>/max( a, - A ). 
Consider the hypothesis 

For all cr < 0 and A > 0, v(g, A) > a. (5.5) 

We do not know whether (5.5) is true. Suppose for the moment that it is. For any 
a > 0 ,  

and v is continuous with respect to A. Given a < 0 and A > 0, it now follows 
from (5.5) that by taking al = a a  and letting a .~ 1, we can find al < a such that 
V(al, A) > a. Let V 6 L~176 and suppose that sv(~) < 0. By Corollary 
4.10, there is a sequence (fL~) of  bounded open sets such that s(�89 ~ sv(oO) 
and fn ,  V ~ 0. Given A > 0, as above there exists al < sv(Cr such that 
b'(O'l, "~llVll~) > ~V(Or Then, for all large n, fL~ 6 .~"0" 1 , SO 

~(�89 - AllVllool~)~>v(cr,, AIIVII~) > ~v(oo). 

By Proposition 5.2, sv(A) > sv(ee) .  
On the other hand, suppose that (5.5) is false (for some N>~2). Then there exist 

a < 0, A0 > 0 and a sequence (f~n) of bounded open sets such that s(�89 ~ a 
and s (1A - A 0 1 ~ )  ~ a. Choose 0 < a,~ < 1 such that 

1 s(�89 s(�89 c~a.  
- -  - -  < < a, - -  A o l f ~ )  < 
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Let Vn = O~n2A01c~,[2~. Then 

8V.(1) s ( � 8 9  ~ola~,) 

1 
- > - .  

a 2 n 

A0 
sup,, IlVnll  = sup~ o~2 < oc. 

It then follows from Proposition 5.6 that there exists V in L~176 such that 
sv(A) = a for all A)I .  

Thus, given N ) 2 ,  the question whether Corollary 5.3 holds is equivalent to the 
question whether (5.5) is true. 

6. Generalisations 

6.1. ELLIPTIC OPERATORS 

It should be clear to the reader that all the results of this paper remain true if the 
operator �89 is replaced throughout by any symmetric, strongly elliptic, operator 
H on RN: 

N 

H = ~ Di(aijDj), 
i,j=l 

where a~ 3 = aji E L~176 N) and there is a constant 7 > 0 such t h a t  ~i,j=lN 
aij(x)~i~j>~7 EN1 ~2 for all x in R N and ~ in R N. The quadratic form 

1 fRN Ivul2 
is replaced by the form 

N 

fRN aiS(Diu)(Dju), 
i,j=l 

Brownian motion is replaced by the diffusion process associated with H [17], and 
the class 9t-~ is defined in terms of H instead of �89 Since the heat kernel satisfies 
Gaussian bounds [14], Simon's argument (see Lemma 3.2) shows that the spectral 
bound of the semigroups o n  LP(R N) is independent of p; in fact, the spectrum is 
independent of p [2]. 

Now, suppose that 

N N 

H = y~ Di(aijDj) + E biDi +c 
i,j=l i=1 
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is non-symmetric and strongly elliptic, and the coefficients belong to L~ 
If the coefficients are sufficiently smooth and r is sufficiently negative, then H is 
associated with interpolating semigroups on LP(RlV) for each 1 <~ p ~< co, and 
with a diffusion process [22]. Then Theorem 4.9 remains valid, provided that the 
spectral function sv (A) is now interpreted as the spectral bound of the appropriate 
semigroup on L~176 (it is no longer clear that the spectral bound is independent 
of p). The quadratic form technique involved in the proof of Proposition 4.3 is 
no longer appropriate, but it can be replaced by the argument outlined in Remark 
4.5. 

6.2. SINGULAR POTENTIALS 

Another generalisation is to allow singular potentials. Thus the function V can 
be replaced by a positive measure # (defined on Borel subsets of R N, but not 
necessarily a-finite) such that # (E)  = 0 for all polar sets E (for details of this 
case, see, for example, [7, 33, 35]). The quadratic form av is replaced by the form 
a~,, given by 

D(a ) : {u c WI'2(R T) " dr < 

a,(~) = �89 fR" IW'l 2 dx + fRN ~2 dr .  

where ~ is a quasi-continuous version of u. Then 

1 
s,(A) = sup(--~/RNIVUIEdx--A/RN~2d~'u ~ WI'2(RN), 

/R N u2 dx = l } 

= lim 1 log l e ss  supE~ [exp(-A~,(t))] } ,  
t--*oo ~, xERN 

where {A,( t )  : t>~0} is the additive process associated with # (see [34, Section 
4]). Theorem 4.9 remains valid in this context in the form 

s~(e~) = in f{a  < 0 : inf{~(E) : E ~ ~'~} > 0 ) .  

To prove this version of Theorem 4.9, one has to establish the identity 

E ~ [At,(t)] = fR N et(x - y) dr(y) .  (6.1) 

If # is a Dynkin measure, this is given by [16, Theorem 8.4]. The general case fol- 
lows by various approximation arguments. Once (6.1) is established, the necessary 
modifications to the proof of Theorem 4.9 are fairy routine. 
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Suppose that V : R N ~ [0, ~ ]  is measurable. If # is defined by 

#(E) : s v dx, 

then we return to the situation considered in Section 4. 
Next, suppose that ft is an open subset o fR N and V" ~2 --+ [0, 0o] is measurable. 

Define # by 

f fE V dz if E\ f t  is polar, 
# (E)  

0o otherwise. 

Then the semigroups being considered are the Schr6dinger semigroups on LP(fl) 
with potential AV and with Dirichlet boundary conditions on ft. Formally, the 
generator is �89 - AV, where Aa is the Laplacian with Dirichlet boundary 
conditions on fL Let sva(A) be the spectral bound of the generator. Once again, 
this quantity is independent ofp.  The result which Theorem 4.9 gives is 

lim sva(A) = inf {cr < O" inf ( j  V dx : E E ~ ,E\ f t i spolar}  > O} . 
A----~ oo 
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