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Almost periodicity of solutions of first- and second-order Cauchy problems
on the real line is proved under the assumption that the imaginary (resp. real)
spectrum of the underlying operator is countable. Related results have been obtained
by Ruess—Vi and Basit. Our proof uses a new idea. It is based on a factorisation
method which also gives a short proof (of the vector-valued version) of Loomis’
classical theorem, saying that a bounded uniformly continuous function from R
into a Banach space X with countable spectrum is almost periodic if ¢, ¢ X. Our
method can also be used for solutions on the half-line. This is done in a separate
paper.  © 1997 Academic Press

1. INTRODUCTION

A central subject in the theory of differential equations in Banach spaces
is to find criteria for almost periodicity of solutions, see e.g. the monograph
of Levitan—Zhikov [LZ] and recent articles by Ruess—Vii [RV] and
B. Basit [ Basl].

One interesting criterion is countability of the imaginary spectrum of the
operator or the spectrum of the function. For example, by a central result
of the theory [LZ, p. 92], a bounded uniformly continuous function of R
into a Banach space X with countable spectrum is almost periodic when-
ever ¢, ¢ X. The geometric condition on X is related to Kadets’ theorem
[LZ, p. 86] on primitives of almost periodic functions.
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364 ARENDT AND BATTY

The present paper is based on a new idea of proof. We consider the shift
group (S(7)),.g on BUC(R, X) (the space of all bounded uniformly con-
tinuous functions from R into X) and the induced group (S(¢)),. on the
quotient space BUC(R, X)/AP(R, X) with generator B (where AP(R, X)
denotes the space of all almost periodic functions from R into X). Then
Kadets’ result can be reformulated by saying that ¢, ¢ X if and only if B
has no point spectrum, and we obtain the above mentioned result from a
well-known spectral property of bounded groups (Gelfand’s theorem). The
same argument also works in the situation considered by Ruess and Vi
[RV], where the geometric condition on X is replaced by an ergodicity
condition on the function. This short factorisation proof given in
Section 3 can also be applied to the inhomogeneous Cauchy problem
(Section 4). In contrast to Levitan—Zhikov [LZ, Chap. 6, Theorem 5,
p- 941 and Ruess—Vi [RV, Theorem 4.4] we do not assume that the
underlying operator generates a semigroup.

More technical problems have to be overcome in our result for the
second order Cauchy problem (Theorem 4.5) which is based on the same
technique. It implies, for example, that a bounded cosine function whose
generator has countable spectrum is almost periodic whenever ¢, ¢ X. In
Section 5 we show that every bounded uniformly continuous solution of
the first or second order Cauchy problem is almost periodic whenever the
imaginary spectrum a(A4) N iR consists merely of poles. It is remarkable
that here no geometric assumption on the space is needed.

In this paper we merely consider functions defined on the real line
(except in Section 5 where also the Cauchy problem on the half-line is
considered when the imaginary spectrum consists merely of poles). The
factorisation technique also works on the half-line and we present the
corresponding results in a separate paper [ AB2]. It should be mentioned
that those results are different since the half-line spectrum is much smaller
than the line-spectrum, in general. Also the geometric condition ¢, ¢ X is
typical for the line case and has no significance in the half-line case for the
kind of results which interest us here.

2. PRELIMINARIES

Let 4 be a linear operator on a complex Banach space X. By a(A4),
g,(A4), g,,(A), p(A) we denote the spectrum, point spectrum, approximate
point spectrum and resolvent set, respectively, of 4. For 1€ p(A4) we let
R4, A)=(1—A)"".

Assume in the following that A4 generates a bounded group U. We will
use the following well-known result.
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THEOREM 2.1 (Gelfand). The following assertions hold:

(a) o(A) £ if X#0;
(b) Ut)=1(t€R) if o(4)={0};

(c) every isolated point in a(A) is an eigenvalue.

There are many different proofs of this theorem, by the theory of spectral
subspaces (see [Arv] or [Da, Chap. 8]), or by Laplace transforms
[AP, Theorem 3.11]. Gelfand actually proved the analogous result of
Theorem 2.1 for isometric invertible operators (from which Theorem 2.1
follows by the weak spectral mapping theorem [ Na, A-III Theorem 7.4,
p. 91]). For a particularly elementary proof of this case see [AR,
Theorem 1.17.

Next we recall some facts on the Arveson spectrum of U. For fe L'(R)
one defines the operator f(U)e Z(X) by

f(U)xszOf(t) Ult)xdi  (xeX).

The Arveson spectrum of U is defined by
sp(U) = {¢eR; Ve>03f e L'(R) such that
supp Zf < (E—e, E+¢)and f(U) #0}.
Here we let ( =[*% e"f(r) dr. Then it is known that
isp(U)=a(A) (2.1)

(see [ Da, Theorem 8.19, p. 2137]).

For ye X denote by X,=5span{U(t)y:teR} the smallest closed sub-
space of X which is invariant under U. Let U,(t) = U(1), y, and denote by
A, the generator of U, on X,.

The Arveson spectrum of y with respect to U is defined by

spY(y) :={£eR:Ve>03feL(R)such that
supp Zf< (& —e E+e¢)and f(U)#0}. (2.2)
Note that for fe L'(R), f(U)U{t)y=f_,(U)y, where f_,(s)= f(s—1t).

Since (Zf_,)(s)=e™(Ff)(s) it is clear that spY(y)=sp(U ) Thus, by
(2.1),

ispY(y)=0a(4,). (2.3)
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Next we consider a special group. By BUC(R, X)) we denote the Banach
space of all bounded uniformly continuous functions on R with values in
X with the uniform norm

l[ull = sup [[u(z)].
teR

We consider the shift group S on BUC(R, X') given by

(S(t)u)=u(t+s) (t, seR,ue BUC(R, X))
and denote by B the genecrator of S. The domain of B consists of all
ue BUC(R, X)n CY(R, X) such that «'e BUC(R, X) and Bu=1u'.

For ue BUC(R, X)) we denote by sp(u) the Arveson spectrum of u with
respect to S. Thus

isp(u)=a(B,), (24)
where B, is the part of B in
BUC(R, X), :=span{S(¢) u: t e R}.
Denote by & the Fourier transform

0

(Fs)=[ e dr

— 0

(seR, feLY(R)). Then Zf =%/, where f(s)= f(—s). Thus, for ueB,
feL'(R),

S =" fs)uls+ 1) ds= ([ u)(0)

Now (2.2) becomes
sp(u) ={&eR:Ve>03f e L'(R) such that
supp Zfc(E—e E+e)and [+ u+#0}.

This is sometimes called the Beurling spectrum of u. It coincides with the
Carleman spectrum (by [ P, Proposition 0.5, p. 221]), that is,

sp(u) = {£ e R: £ is not regular}, (2.5)
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where £ e R is called a regular point if the Carleman transform

IOC e="u(t) dt (Re 1> 0)
ay =" (2.6)
_J‘” e“u(—t)dt  (Rei<0)
0

has a holomorphic extension to a neighborhood of i.

The advantage of (2.5) is that it is usually easier to calculate than the
Arveson or Beurling spectrum of u. For example, suppose that U is a bounded
Cy-group on X generated by 4. Let ye X, and consider the function
ue BUC(R, X) given by u(t)= U(t)y. It is immediate from the definitions
that

sp(u) =spY(y) (2.7)

(see also [V, Theorem 3.4]). In addition,

j e~ “Ut)ydt =R} A)y (Rel>0)

0

[T U1y di=—R(—4 —A)y=R(, Ay (Re1<0)
0

The following lemma shows that in this case, in order that i is a regular
point of 4, it suffices that a holomorphic extension of i from the right-half-
plane should exist (see also [ BNRI1, Theorem 2.2] or [ Ne, Lemma 5.3.3]).

LemmaA 2.2, Let ye X, neR. Assume that R(1, A)y (Rei>0) has a
holomorphic extension to a neighborhood of in. Then in ¢ a(A,); equivalently,

néspY(y).

Proof. Let V be a neighborhood of ix and let /: V' — X be holomorphic
such that (1) =R(A, A)y for Ae V, Re A >0. Then R(4, A)y =h(4) also for
AeV,Re 2<0. [In fact, (A—A4) R(1, A) h(A)=R(1, A)y for Re A >0, Le V.
Since A+ (A—A) R(1, A) h(A) is holomorphic on V, the claim follows].
Thus # is not in the Carleman spectrum of U(-) x. The claim follows from

2.7). 1

For ne R, xe X we denote by e, ® x the periodic function

(e, ®x)(1)=e"'x (teR).
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Linear combinations of such functions are called trigonometric polynomials.
By

AP(R, X)=span{e, @x: 7€ R, xe X}

we denote the space of all almost periodic functions (where the closure is
taken in BUC(R, X)).

There are various different characterisations of AP(R, X') (see [LZ]).
In particular, ue BUC(R, X) is almost periodic if and only if the set
{S(t)u:reR} is relatively compact in BUC(R, X). For ue AP(R, X),
n € R, we define the mean

1 ¢° .
M, u= lim —J e "*S(s)u ds

T LT J_¢

| B
= lim ,J e "S(s)u ds
0

>0 T

which exists in BUC(R, X) (since it exists for trigonometric polynomials),
cf. Lemma 2.4. It is immediate from semigroup properties that S(z) M, u =
e"M,u (teR), thus M, u=e, ® (M,u)(0).

The set

Freq(u)={neR: M,u+#0}

of all frequencies of u is countable [ LZ, p. 23]. Clearly, if

n

p(t) = Z €y ®Xj
j=1
is a trigonometric polynomial with #; ##, for j#k and x;#0 for all
j=1---n, then Freq(p)={#,, ... n,}. More generally, one has the follow-
ing remarkable phenomenon of spectral synthesis

uespan{e, ® (M,u)(0): n e Freq(u)} (2.8)

for all ue AP(R, X'), where the closure is taken in BUC(R, X) [LZ, p. 24].
Thus every almost periodic function can be uniformly approximated by
trigonometric polynomials with the same frequencies. One can give the
following operator theoretic description of the frequencies.

ProOPOSITION 2.3. Let ue AP(R, X). Then
(a) iFreq(u)=0,(B,);

(b) iFreq(u)=sp(u).
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Proof. (a) If neFreq(u), then M,(u)=e,® (M,u)(0)eD(B,) and
BM,(u)=iyM,(u). Conversely, if M, (u)=0, then M,(g)=0 for all
ge BUC(R, X),. Hence no such g can be eigenvector of B, associated
with ix.

(b) Let ;7¢Freq( ). Let €>0 such that [y —¢, 7 +¢] nFreq(u) = .
Then for feL'(R) with supp Zfc(n—e,n+e) one has f* (e, ®x)=
(Ff) L) e, ®x= 0 for all AeFreq(u), xeX. It follows from (2.8) that
fxu=0. Thus n¢sp(u). |

Finally, we mention a simple result from ergodic theory which is easy to
prove.

LEMMA 2.4. Assume that A generates a bounded group U on X. Let
xeX. Then lim,_ l/ljO s)xds exists if and only if lim,_  1/2¢
|, Uls) x ds exists and both lzmlts coincide in that case.

3. SPECTRAL CHARACTERISATION OF ALMOST
PERIODIC FUNCTIONS

In this section we present the factorisation method to give new proofs of
diverse vector-valued versions of Loomis’ theorem.

As before we consider the shift group S on BUC(R, X') with generator B.
Since S leaves AP(R, X) invariant there is an induced C,-group on
Y:=BUC(R, X)/AP(R, X') given by

S(t) n(u) = n(S(t)u)

(teR, ue B) where n: BUC(R, X) > BUC(R, X)/AP(R, X) denotes the
quotient mapping. Its generator is denoted by B.

ProrosiTiON 3.1.  The following are equivalent.

(1) Whenever fe AP(R, X) and F(t jo s)ds is bounded, then
Fe AP(R, X);
(i) O0¢o,(B);
(111) a,,(E’) is empty;
(iv) X does not contain c,.

Proof. (i)=(ii). Let ge BUC(R, X) and suppose that n(g)e D(B),
B(n(g))=0. Then S() g — g€ AP(R, X). Hence

f:=BR(1,B) g=1lim t~'R(1, B)(S(t) g — g) € AP(R, X).

t—0
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Hence F(1) =} f(s)ds=(R(1, B) g)(t) — (R(1, B) g)(0) is bounded. By (i),
Fe AP(R, X) so R(1, B) ge AP(R, X). Hence R(1, B) n(g) =n(R(1, B) g)
=0. Since R(1, B) is injective, it follows that n(g)=0.

(ii) = (iii). Let ¢eR. Then (Vu)(¢) = e*“'u(t) defines an isomorphism
on BUC(R, X). Since AP(R, X) is invariant under ¥ and V', there
is an induced isomorphism ¥V on BUC(R, X) given by I77z(_g)=7z( Vg).
Since VS(t) V- !=e"*'S(¢), it follows that VS(¢) V' =e'S(¢). Hence
Oeap(ﬁ) if and only if ifea,,(l?).

(ii1) = (i). Suppose that f'e AP(R, X') such that F is bounded. Then
FeD(B) and BF=f Thus Br(F)=0. By (iii), n(F)=0; that is,
Fe AP(R, X).

(iv)=(i). This is a result of Kadets [ LZ, Theorem 2, p. 86].

(1)=(iv). See the example [LZ, p. 81]. |

Now we obtain a very transparent operator theoretic proof of the follow-
ing theorem [LZ, Chap. 6.4, Theorem 4] (the result is due to Loomis in
the scalar case).

THEOREM 3.2. Assume that X does not contain c,. Let ue BUC(R, X)
and assume that sp(u) is countable. Then ue AP(R, X).

Proof. Tt follows from the definition of the Arveson spectrum that
sp>(n(u)) = sp(u). In fact, let & e R\sp(u«). Then there exists &> 0 such that

Syu=[*Z f(t) S(t)udt =0 whenever fe L'(R), supp Zfc(&—e, & +e).
It follows that f£(S)n(u)=n(f(S)u)=0. Hence ¢&¢spS(n(u)). Thus
spS(n(u)) is countable. Now assume that u¢ AP(R, X). Then i :=n(u) #0
and Y,=span{S(t)ii:te R} #0. Then o(B,)=isp*(i) by (2.3). Thus
o(B,) is non-empty and countable. So it contains an isolated point i5. By

u

Gelfand’s theorem iy € ap(gﬁ) c ap(E). This contradicts Proposition 3.1. ||
Remark 3.3. One sees from the proof that it suffices that

spap(m(u))={£eR:Ve>03f e L'(R), such that
supp Zfc(E—e E+e)and fxrud AP(R, X)}

is countable in order to conclude that ue AP(R, X) (still assuming that
¢o ¢ X). This is contained in [ LZ, Chap. 6.4, Theorem 4].

More generally, one obtains the following.

THEOREM 3.4. Let & and % be closed, translation-invariant subspaces of
BUC(R, X') and suppose that

(a) 9c<é;
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(b) ¥ contains all those constant functions which belong to &;
(¢) & and % are invariant by multiplication by e for all & € R;
(d) whenever f€% and Fe &, where F(t)= ff) f(s)ds, then Fe 9.

Let ue & have countable reduced spectrum
spy(u) :={&eR:Ve>03feL'(R) such that
suppZ fc(E—¢ E+e)and fxug¢ 9y,
Then ue 9.

Proof. Consider the translation group S on &, and the induced group
S on & = &/% with generator B. Then sp,(u) =sp(n(u)) = —io(B,) where
B, is the restriction of B to &,=3span{S(¢)i: te R}. As in Proposition 3.1,
it follows from (d) that ap(f?) =, and the proof is completed as in
Theorem 2.2. |

We call ue BUC(R, X) totally ergodic if

: 1 ! ins
M, u= lim 2—! e"™S(s)u ds

T 2T J_¢

exists in BUC(R, X') for all e R.
Note that M, ueker(B—in), or equivalently, S(¢) M,u=e"" M,u. Thus
M,u=e, ® (M,u)0).

COROLLARY 3.5. Let ue BUC(R, X) with countable reduced spectrum
spap(ut). Assume that
(a) u(R) is relatively weakly compact in X; or
(b) u is totally ergodic.

Then ue AP(R, X).

Proof. In the case (a) we choose & = {ue BUC(R, X): u(R) is relatively
weakly compact}. It is shown in [ LZ, Theorem 2, p. 86] that Theorem 3.4(d)
is satisfied. In the case (b) we choose & ={feBUC(R, X):f is totally
ergodic}. In order to show condition (d) of Theorem 3.4 to hold, let f'e &
such that Fe &. Then

(St) =P =] " firydr=| sty ar

[ ar= st o a
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Thus S(s) F— F= jf) S(r) fdre AP(R, X) for all s e R. Consequently,

1 T
MyF—F= lim 2—[ (S(s) F—F) dse AP(R, X).

T LT J_ ¢

Since M Fe AP(R, X'), it follows that Fe AP(R, X'). In both cases we
choose ¥ = AP(R, X') and apply Theorem 3.4. ||

Part (a) of Corollary 3.5 is proved in [ LZ, Theorem 4, p. 92], part (b)
is due to Ruess—Vii [RV, Section 3], see also [ Basl, Bas2]. The proofs
given there are very different from ours, though.

4. ALMOST PERIODIC SOLUTIONS

The factorisation technique introduced in the previous section can be
used to prove almost periodicity of solutions of some first- and second-
order inhomogeneous Cauchy problem.

Throughout this section 4 denotes a closed, linear operator on a Banach
space X. We first consider the Cauchy problem

(CP) u(t) = Au(t) + @(t) teR

where @: R — X is continuous. By a mild solution of (CP) we understand
a continuous function #: R — X such that

jt u(s)dse D(A)
and

u(t) —u(0) = 4 j'u(s) ds—i—fr@(s) ds (4.1)

for all reR.

Remark 4.1. (a) u is called a classical solution, if ue CY(R, X),
u(t)e D(A) (teR) and (CP) is satisfied. Integrating (CP) one sees that
every classical solution is a mild solution. Conversely, if « is a mild solution
and ue CY(R, X), then u is a classical solution.

(b) If A generates a Cy-semigroup (7(¢)),=,, then it is easy to see
that a continuous function u: R— X is a mild solution of (CP) if and
only if

w(t)=T(t—s) u(0)+f T(—r) (r) dr

s
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whenever >, t,s€ R. This is taken as a definition in [LZ, p. 93] and
[RV]. One advantage of our approach is that 4 does not need to generate
a C,-semigroup.

We are interested in almost periodic solutions of (CP). In the
homogeneous case they can be described by the eigenvectors of A.

ProrosiTION 4.2.  Let u: R— X. The following are equivalent.

(1) ue AP(R, X) and u is a solution of (CP) with ® =0.
(i) uespan{e, ® x: x€ D(A), Ax=inx}, where the closure is taken
in BUC(R, X).

Proof. Since the uniform limit of solutions is a solution, (ii) implies (i).
Assume now that ue AP(R, X) is a solution of the homogeneous problem.
Then ov(t)=e "u(t) defines a solution of ©(t)=(A—in)v(t). Thus
12t (A—in) . e ™u(s) ds=1/2t (e~ "u(t) —e " u(—1)) >0 (- ).
This implies that (M, (u))(0)e D(A) and (A4 —in) M,(u)(0)=0. Now the
claim follows from (2.8). ||

Next assume that @ is bounded. Let ue BUC(R, X)) be a solution of
(CP). Taking Laplace transforms in (4.1) one obtains that %(4) e D(A4) and

4(2)=R(1, A) u(0) + R(A, A) ®(1) (4.2)

(ReA>0, Aep(A4)) where @ is defined by (2.6). Now assume that @ =0.
Then

#(A)=R(4, A) u(0) (Re 4#0)
It follows from (2.5) that
isp(u)ca(4)niR.

Thus, in the homogeneous case @ =0, we obtain the following result
immediately from Theorem 3.2 and Corollary 3.5.

THEOREM 4.3. Assume that ®e€ AP(R, X). Moreover, assume that
o(A) iR is countable. Let ue BUC(R, X') be a solution of (CP). Then
ue Ap(R, X') provided one of the following conditions is satisfied.

(a) ¢o Z4X;
(b) wu is totally ergodic; or,
(c) u(R) is relatively weakly compact.



374 ARENDT AND BATTY

In the inhomogeneous case the idea of the proof consists in factoring out
the inhomogeneity:

Proof. For seR let ulz)=u(t+s) (teR). Replacing u by u, in (4.2)
one obtains

(A =R(A, A) u(s)+ R(2, A) D(2) (4.3)

(ReA>0, seR). Now, as in Section 3, consider the shift groups S on
BUC(R, X) and S on Y=BUC(R, X)/AP(R, X) with generators B and B,
respectively. Note that (1) = [ e *u(s+1) dt = (R(A, B)u)(s), and
similarly, @\S(/l) =(R(4, B) @)(s). Thus (4.3) becomes

R(A, B)u=R(A, A)ou+ R(4, A) > R(4, B) ®. (4.4)
Since @ € AP(R, X'), one has n(R(A, A)° R(A, B) @) =0. Thus
R(, B) n(u) =n(R(1, B)u) =7n(R(\, A)ou)

has a holomorphic extension to iz whenever in¢a(A4). It follows from
Lemma 22 that ispap(t)=isp>(n(u))ca(Ad)niR. Thus spap(u) is
countable and the claim follows from Remark 3.3 and Corollary 3.5. |

In the case where 4 generates a C,-semigroup, Theorem 4.3 is contained
in [LZ, Theorem 5, p. 94] in the cases (a) and (c) and due to Ruess—Vi
[RV] in the case (b). The proof given there are based on harmonic
analysis. Our proof, using Laplace transform and factorisation, works also
for the second-order Cauchy problem, but needs further arguments.

Consider the second-order Cauchy problem

i(t) = Au(t) + D(1) (teR)

Ccp

B {u a0
where @: R —» X is continuous and x, y € X. By a mild solution of (CP,) we
understand a continuous function u: R— X such that j"(’) (t—s) u(s) ds
e D(A) and

W) =x+1y+ 4 j’(z—s) u(s) ds+f (t—s)B(s)ds  (teR). (45)

Remark 4.4. 1If u is a classical solution of (CP,) (ie., ue C¥(R, X)),
u(t)e D(A) and (CP,) holds for all € R), then u is a mild solution (as can
be seen by integrating (CP,)). Conversely, if u is a mild solution and
ue C*(R, X), then u is a classical solution.
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In the following we will frequently use the notation u,=S(s)u for
ue BUC(R, X).

THEOREM 4.5. Let @€ AP(R, X). Assume that c(A) N (— oo, 0] is count-
able. Let ue BUC(R, X') be a mild solution of (CP,). Then ue AP(R, X)
provided one of the conditions (a), (b), (c) of Theorem 4.3 satisfied.

Proof. Replacing ¢ by ¢t + s and by s in (4.5) and subtracting yields after
a change of variable

u(t+s)—u(s)=ty+ A {r(t—r) () dr+ tu(s )}
+f%z—r)¢¢ryh+zwm)

(teR, seR) where ¥(s)= |} &( = [ u(r) dr. Taking Laplace
transforms we obtain

o)1)y 2 4 {ED, 1)

Lo AP

22 22
@,(1)  ¥(s)
FERY

(Re 2> 0),

where u,(t) =u(s +t). Thus if Re />0 and 4% p(A4), then

R(2 A
$)+ (lz)y

+47ARM2A)QU)+;QARUZ A) v(s)

43 RO, A) B0) + 53 RO, 4) #1s)
Consequently,
W(A) =AR(A%, A) u(s) + R(2%, A)y + R(A% A) D) + f.(A), (4.6)

where f,(1)=AR(A% A)v(s)+ R(1% A) P(s). Now let neR such that
—n?ep(A). Let r>0 such that A>ep(A) whenever |1—in|<2r or
|2+ in| <2r. We show that for |iy—A| <r, the function g(1) given by
gA)(s)=f,(A) is in BUC(R, X) and A+>g(4) is holomorphic. Let 1€ C,
|A—in|=2r
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First case. Re 4 >0. Then

[(2)=T(2) = R(32, A) Dy(4) — iR(J2, A) u(s) — R(2, A)y.
Hence | f(A)]| <c¢,/Re A+ c,, where

ey =lul.+ 12l sup [R(u> A,

I —in| =2r

Re >0
ca= sup  {[uR(p? A)| Jull .+ [R(u? A)p}
lu—inl=2r
Reu>0

Second case. Re . <0. Let A, = —A4. Since f,(4)=f,(4,), Re 4, >0,
|4, — (—in)| = 2r the analogous estimate gives

C
Re 4,

[f(D] < +c5.
In both cases

fo(i)ngﬁ forall seR  if |i—iy| =2,

where ¢ e R is such that

¢
+c, < |7 whenever |y —in| =2r.

1
[Re | Re |

By the lemma below we conclude that

whenever AeC, |A—in|<r, seR.

) 4
1A <3

e

It is clear from the definition that g(/) is uniformly continuous for all
/€ B(in, r). We have seen that |g(A)| <4/3 ¢/r for /e B(in, r). Since for all
s€ R the function 4+ g(1)(s) is holomorphic in B(in, r) one concludes as
in [ BNR2, Proposition 3.2] or [Ne, Lemma 5.3.3] that g: B(in, r)—
BUC(R, X) is holomorphic. Denote by S the translation group on
BUC(R, X') as before and by B its generator. Then (4.8) can be rewritten

as

R(J, Byu= R(J% A)ou+ R(J% A)y + g(1)
+R(2% A)oR(}, B) ®.
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Considering again the operator B on Y= BUC(R, X)/AP(R, X) we obtain
R(A, B) n(u) =n(R(1, B)u)
=n(AR(A* A)ou+ R(J*, A)y + g(A))

since R(A%, A)oR(/, B) ® € AP(R, X) whenever |1 —in| <r. Hence R(/, B)
7n(u) has a holomorphic extension to B(in,r) with values in Y. By
Lemma 2.2 this implies that # ¢ sp p(u).

We have shown that spp(u) ={neR: —n?e€a(A)}. Thus spap(u) is
countable. It follows from Remark 3.3 (resp. Corollary 3.5) that
ue AP(R, X). |

_ Lemma 4.6, Let U=C be an open neighborhood of in. Assume that
B(in, 2r)c U. Let h: U— X be holomorphic such that

C . .
HMZ)\KM if |z—inl=2r, Rez#0.

Then ||h(z)|| <4/3 ¢/r for all z e B(it, r).

The proof of this lemma is contained in the proof of [BNRI,
Theorem 2.2] or [ Ne, Lemma 5.3.1].

Also in the case of the homogeneous second order Cauchy problem,
almost periodic solutions are uniform limits of trigonometric polynomials
with eigenvectors of 4 as coefficients.

PrOPOSITION 4.7.  Assume that @ =0. Let ue AP(R, X) be a solution of
(CP,). Then

uespanie, @ x:neR, xe D(A), Ax +n’x =0}

Proof. Let neR, z=lim, ,oi(a+in)=(M,u)0). Since a(1)=
AR(Z:, A)x+ R(A*, A)y (ReA>0, Aep(A)), one has ((in+a)*—A)
oo+ i) =a(x +ig)x+ay—0 (x]0) and consequently (—z*—A)
adi(c+i7) >0 (a|0). Since A4 is closed, this implies that ze D(A4) and
(—#n?—A)z=0. Now the claim follows from (2.8). ||

Next assume that for all xe X and y =0 there exists a unique bounded
solution u(-, x) of (CP,). This is equivalent to saying that A generates a
bounded cosine function. In fact, C(¢)x:=u(t, x) defines a bounded
operator on X. Moreover, C: R - £(X) is strongly continuous, bounded
and

o0

JR(I2, A)xzj e “C(t)xdi  (ReA>0,xeX).

0
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Then C(0) =1, 2C(¢) C(s) = C(t + s) + C(t — s) (¢, seR). Since C is bounded,
one has g(4)=(—o0,0].

We say that C is almost periodic if C(-)xe AP(R, X) for all xe X. It
follows from Theorem 4.5 that C is almost periodic whenever ¢, € X and
o(A) is countable. As in the case of bounded groups almost periodicity can
be described by “complete point spectrum,” i.e., totality of the eigenvectors.

ProrosiTION 4.8.  Let C be a bounded cosine function on a Banach space
X. Then C is almost periodic if and only if

span{w e D(A): In € R such that Aw= —n*w})X. (4.7)

Proof. 1If C is almost periodic, then by Proposition 4.7, C(-)xe
span(e, @ w:neR, we D(A), Aw= —n’w}, where the closure is taken in
BUC(R, X). Hence x=C(0)xespan{we D(A4): e R, Aw= —n’w} in X.
Conversely, let xe D(A) such that Ax= —#x. Then C(¢)x = (cos 5?)x.
Thus if xespan{we D(A4): e R, Aw= —n*w} =: Y, then C(-)x is almost
periodic. Since Y is dense, the claim follows. ||

PROPOSITION 4.9.  Assume that A generates a bounded cosine function C
on a Banach space X. Assume furthermore that

(a) ¢y £ 4,
(b) o(A) is countable, and
(¢c) 0¢a(A).

Then, for all x, y € X, the homogeneous problem (CP,) has a unique solution,
and this solution is almost periodic.

Proof. Let S(t)y= fo s)y ds. Then the solution of (CP,) is given
by u(l) = (C(t )x+S( )y. Since C(t)x=x+ A4 jo (t—s)C(s)xds =x+
A [ S(s)xds, [ S(s)xds=A""(C(t1)x—x) is bounded. It follows from
Taylor’s formula that {S(7): te R} is bounded as well. Thus each solution
of (CP,) is bounded. Since d/dtS(t)y=C(t)y is bounded S(-)ye
BUC(R, X) for all ye X. Let xe D(A). Then d/dt C(t)x = AS(t)x=S(t) Ax
is bounded. Hence C(-)x is uniformly continuous. Since D(A) is dense, it
follows that C(-)x is uniformly continuous for all x € X. Thus each solution
is in BUC(R, X) and the claim follows from the previous results. [i

ExampLE 4.10. Condition (a) cannot be omitted in Proposition 4.9.
In fact, let X=c:= {(x,)pen =C:lim, , . x, exists}. Define 4e€ £ (X)
by Ax=(—a}x,),cn Where o, eR\{0} such that a, #a, for n#m,
o =lim o, exists and a#0. Then A generates the bounded cosine

n— oo
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function C given by C(#)x=((cosa,t)x,),n- Let e€c be the constant-
I-function. Then u(z) = C(t) e=(cos a,,t), . n 1S Not almost periodic (since
it does not have relatively compact range or by Proposition 4.7). However,
(b) and (c) are satisfied. Remark: the space ¢ is isomorphic to ¢,.

5. IMAGINARY SPECTRUM CONSISTING OF POLES

If the imaginary spectrum a(A4) N iR of the operator A consists only of
poles then one obtains total ergodicity automatically. So our results can be
simplified considerably in this case. This situation is frequent in applica-
tions. For instance, 4 may have compact resolvent or the essential spectral
bound might be negative. We define

AP(R,, X)=span{e, ® x: 7€ R, x€ X},

where (e, ® x)(1)=e"x and the closure is understood in BUC(R,, X).
Every function ue AP(R,, X') has a unique extension to an almost peri-
odic function on the line. By

AAP(R,, X)=CyR,, X)®AP(R ., X)

we denote the space of all asymptotically almost periodic functions. This is
a closed subspace of BUC(R ., X). It is known that ue BUC(R, , X) is
asymptotically almost periodic if and only if {u,: 7>0} is relatively com-
pact in BUC(R,, X) ([F, Chap. 9]). Let A be a linear closed operator
on X. First we consider the Cauchy Problem on the half line

u(t) = Au(t) (t=0)
cp
0 {0
where xe X. By a weak solution of (CP_.) we understand a continuous
function u =R, — X such that [} u(s) dse D(A4) and

y j'u(s) ds=u(t)—x  (t>0)
0

Thus A generates a C,-semigroup 7 if and only if (CP,) has a unique
solution for all x e X. In that case the solution u is given by u(z)= T(?)x.
First we consider a special case which can be proved directly.

PROPOSITION 5.1. Let A be the generator of a bounded C,-semigroup T.
If A has compact resolvent, then T is asymptotically almost periodic (by this
we mean that T(-)xe AAP(R, , X) for all xe X).
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Proof. (a) Let xeD(A). We show that T(-)xe AAP(R_, X). For
that, let 7, e R, (ne N). We have to show that there exists a subsequence
(t,)ren such that T(z, + -)x converges in BUC(R , X). Let Aep(4).
Since R(4, A) is compact, there exists a subsequence (7, ). such that
y=1lim,_ T(z,)x=1lim,_, R(A, 4) T(t, ) — A)x exists. Thus Tz, +-)x
converges to 7(-)y in BUC(R, , X).

(b) It follows from (a) and the density of D(A) in X that
T(-)xe AAP(R,, X) for all xe X. ]

For individual solutions, this simple proof does not work any more.

THEOREM 5.2. Assume that a(A) N iR consists only of poles of the resol-
vent. Let ue BUC(R, , X) be a solution of (CP_ ). Then ue AAP(R _, X).

Proof. Since u is a solution one has #(4) = R(4, 4) u(0) for all 1> 0,
A€ p(A). Since by hypothesis g(A4) N iR consists of isolated points in the
spectrum of A4, g(A) niR is countable. Thus the sep sp, (u) of all yeR
such that 4 does not have a holomorphic extension close to iz is countable.
So it follows from [ AB2, Corollary 2.4] or [ BNR2, Theorem 4.1] (see also
[ Ne, Theorem 5.3.5]) that ue AAP(R ., X'), once we have shown that u is
totally ergodic. For that, we have to show that i (a+iy) converges
uniformly in se R, as o |0 for all e R. Since % ( + in) = R(ot + in) u(s),
this is clear if iy e p(A). Assume that inea(A). Denote by P the spectral
projection associated with ixn. Since R(A, A)(I— P) has a holomorphic
extension close to i, it follows that aR(a+in)(I— P)u(s) converges
uniformly to 0 as o | 0. It remains to show that aR(e + in) Pu(s) converges
uniformly in s€ R, as « | 0. Since P commutes with the resolvent of 4, also
Pu is a mild solution of (CP ). Thus, replacing X by PX, we can assume
that P is the identity. But then A is bounded and (A4 —iy)"=0,
(A —in)™~'#0, where m is the order of the pole in (see, e.g., [ Na, A-IIL
3.6, p. 72]). It follows that

m—1 Lk

ut)=em Y % (A—in) x.
k=0 :

Since u is bounded, one concludes that x eker(4 —in). Thus u(t) =e"'x
(1=0). Consequently, airy(o + i) = e™x for all «>0, s>0, and the claim
is proved. ||

Remark 53. Let ue AAP(R,, X) be a solution of (CP_). Let u=
uy+u, where u, € Co(R ., X), u, e AP(R, X) (extended to R). Then u, is
a solution of (CP ) and u, is a solution of the homogeneous problem (CP)
on the line.
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Proof. For neR let

x,=(M,u;)(0) = lim —j sy (s) ds

> 2T

1 A
lim *f e "u,(s)ds

t—>oo T Y0

1 T
— lim ff ~insy(s) ds.

>0 T

Since u is a solution, one has

l(A —in) jf e "u(s) ds =l (e 7" u(t) —u(0)) -0 (t— o).
T 0 T

Since A is closed, this implies that x, € D(A) and (4 —in)x, =0. It follows
that u, espan{e, @x:neR, xe D(4), Ax=inx} by spectral synthesis
(2.8). Thus u, is a solution on the line. ||

Using Theorem 4.3 in the homogeneous case, one obtains a similar result
on the line:

THEOREM 5.4. Assume that a(A) N iR consists only of poles of the resol-
vent. Let ue BUC(R, X) be a solution of the homogeneous Cauchy problem
(CP) on the real line. Then ue AP(R, X).

The proof is completely analogous and can be omitted.
Finally, we consider the homogeneous second order Cauchy problem.

THEOREM 5.5.  Assume that o(A) N (— o0, 0] consists only of poles of the
resolvent. Let ue BUC(R, X) be a solution of (CP,) with @=0. Then
ue AP(R, X).

Proof. In view of Theorem 4.5 it suffices to show that u is totally
ergodic on R.
(a) Let P, be the spectral projection with respect to 0. We show that
Pyu is constant and so totally ergodic. Since P,u is a solution, we can
assume in this part of the proof that P, is the identity (replacing X by P, X
otherwise). Then A4 is a bounded operator and 4™ =0, where m is the order
of the pole. Thus

m—1 t2k . t2k+l B
un=x {(Zk)! At 4 y}

k=

is a polynomial. Since u is bounded, it follows that u(¢) =x (e R).
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(b) It remains to show that (/— P,)u is totally ergodic. Replacing X
by (I—Py) X in this pdrt of the proof, we can assume that P,=0; that is,
0ep(A). Let v(s jo r)dr. By (4.7), i1 has a holomorphic extension near 0.
It follows from [Kor] or [AP, Remark 3.2] that sup,., ||v(s)| < o0.
Replacing u by f+—u(—1t) one sees that also sup,_, |[v(s)]| <oo. Thus
ve BUC(R, X). For seR we let u(t)=u(t+s) (e R). Let € R; we have
to show that ai;(in + a) converge uniformly in se R as o | 0. By (4.8) we
have

ity (in + o) = alin + o) R((in + )%, A) u(s)
+aR((in+a)? A)y +aAR((in + a)% A) v(s)

(seR, a>0).

Thus the limit exists uniformly in s as «|0 if —#?ep(4). Now let
—n?ea(A). Denote by Q the spectral projection with respect to —#> Then
by the previous case, (I— Q)u is uniformly ergodic in ix. It remains to
show that Qu is uniformly ergodic in in. Again, for this part, we may now
assume that Q is the identity (replacing X by QX otherwise). Then A is
bounded, a(A4)={ —#»?} and —5” is a pole of the resolvent of 4.

Consider the operator B=(9 ) on X x X. Then

W) = <ZE§;> —e'® <;> (teR),

Moreover, o(B) < { +in} and

2 12

RG. B) = </1R()v2, A)  R(4 ;A) >
AR(A*, A) AR(2%, A)

for A¢{+in}. Thus R(-, B) has a pole in {+iy}. The function u is
bounded by hypothesis. Hence #i(7) = Au(¢) (t € R) is bounded as well. This
implies that # is bounded. Thus we BUC(R, X x X). It follows from
Theorem 5.3 that we AP(R, X x X)), and in particular, that w is totally
ergodic on R. Thus u is totally ergodic on R as well. ||

If A generates a cosine function then (CP,) is well-posed; i.e., for every
X, y € X there exists a unique mild solution u of (CP,). In fact, u is given
by

u(t)=C(t) x+ S(1)y,

where S(7) = [} C(
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COROLLARY 5.6. Let A be the generator of a bounded cosine function C.
Assume that a(A) consists of poles only. Then C(-) is almost periodic. If in
addition 0 € p(A), then every solution of (CP,) is almost periodic.

Proof. 1f 0 e p(A) it has been shown in the proof of Proposition 4.9 that
each solution is in BUC(R, X). So the result follows from Theorem 5.4. If
0eo(A) one uses a spectral projection and argues as before. ||
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