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Almost periodicity of solutions of first- and second-order Cauchy problems
on the real line is proved under the assumption that the imaginary (resp. real)
spectrum of the underlying operator is countable. Related results have been obtained
by Ruess�Vu~ and Basit. Our proof uses a new idea. It is based on a factorisation
method which also gives a short proof (of the vector-valued version) of Loomis'
classical theorem, saying that a bounded uniformly continuous function from R

into a Banach space X with countable spectrum is almost periodic if c0 /3 X. Our
method can also be used for solutions on the half-line. This is done in a separate
paper. � 1997 Academic Press

1. INTRODUCTION

A central subject in the theory of differential equations in Banach spaces
is to find criteria for almost periodicity of solutions, see e.g. the monograph
of Levitan�Zhikov [LZ] and recent articles by Ruess�Vu~ [RV] and
B. Basit [Bas1].

One interesting criterion is countability of the imaginary spectrum of the
operator or the spectrum of the function. For example, by a central result
of the theory [LZ, p. 92], a bounded uniformly continuous function of R
into a Banach space X with countable spectrum is almost periodic when-
ever c0 /3 X. The geometric condition on X is related to Kadets' theorem
[LZ, p. 86] on primitives of almost periodic functions.
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The present paper is based on a new idea of proof. We consider the shift
group (S(t))t # R on BUC(R, X ) (the space of all bounded uniformly con-
tinuous functions from R into X ) and the induced group (S� (t))t # R on the
quotient space BUC(R, X )�AP(R, X ) with generator B� (where AP(R, X )
denotes the space of all almost periodic functions from R into X ). Then
Kadets' result can be reformulated by saying that c0 /3 X if and only if B�
has no point spectrum, and we obtain the above mentioned result from a
well-known spectral property of bounded groups (Gelfand's theorem). The
same argument also works in the situation considered by Ruess and Vu~
[RV], where the geometric condition on X is replaced by an ergodicity
condition on the function. This short factorisation proof given in
Section 3 can also be applied to the inhomogeneous Cauchy problem
(Section 4). In contrast to Levitan�Zhikov [LZ, Chap. 6, Theorem 5,
p. 94] and Ruess�Vu~ [RV, Theorem 4.4] we do not assume that the
underlying operator generates a semigroup.

More technical problems have to be overcome in our result for the
second order Cauchy problem (Theorem 4.5) which is based on the same
technique. It implies, for example, that a bounded cosine function whose
generator has countable spectrum is almost periodic whenever c0 /3 X. In
Section 5 we show that every bounded uniformly continuous solution of
the first or second order Cauchy problem is almost periodic whenever the
imaginary spectrum _(A) & iR consists merely of poles. It is remarkable
that here no geometric assumption on the space is needed.

In this paper we merely consider functions defined on the real line
(except in Section 5 where also the Cauchy problem on the half-line is
considered when the imaginary spectrum consists merely of poles). The
factorisation technique also works on the half-line and we present the
corresponding results in a separate paper [AB2]. It should be mentioned
that those results are different since the half-line spectrum is much smaller
than the line-spectrum, in general. Also the geometric condition c0 /3 X is
typical for the line case and has no significance in the half-line case for the
kind of results which interest us here.

2. PRELIMINARIES

Let A be a linear operator on a complex Banach space X. By _(A),
_p(A), _ap(A), \(A) we denote the spectrum, point spectrum, approximate
point spectrum and resolvent set, respectively, of A. For * # \(A) we let
R(*, A)=(*&A)&1.

Assume in the following that A generates a bounded group U. We will
use the following well-known result.
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Theorem 2.1 (Gelfand). The following assertions hold :

(a) _(A){< if X{0;

(b) U(t)=I (t # R) if _(A)=[0];

(c) every isolated point in _(A) is an eigenvalue.

There are many different proofs of this theorem, by the theory of spectral
subspaces (see [Arv] or [Da, Chap. 8]), or by Laplace transforms
[AP, Theorem 3.11]. Gelfand actually proved the analogous result of
Theorem 2.1 for isometric invertible operators (from which Theorem 2.1
follows by the weak spectral mapping theorem [Na, A-III Theorem 7.4,
p. 91]). For a particularly elementary proof of this case see [AR,
Theorem 1.1].

Next we recall some facts on the Arveson spectrum of U. For f # L1(R)
one defines the operator f (U) # L(X ) by

f (U ) x=|
+�

&�
f (t) U(t) x dt (x # X ).

The Arveson spectrum of U is defined by

sp(U)=[! # R ; \=>0 _f # L1(R) such that

supp F� f/(!&=, !+=) and f (U ){0].

Here we let (F� f )(s)=�+�
&� eisf (t) dt. Then it is known that

i sp(U)=_(A) (2.1)

(see [Da, Theorem 8.19, p. 213]).
For y # X denote by Xy=span[U(t)y : t # R] the smallest closed sub-

space of X which is invariant under U. Let Uy(t)=U(t) | Xy and denote by
Ay the generator of Uy on Xy .

The Arveson spectrum of y with respect to U is defined by

spU ( y) :=[! # R : \=>0 _f # L1(R) such that

supp F� f/(!&=, !+=) and f (U ){0]. (2.2)

Note that for f # L1(R), f (U ) U(t)y= f&t(U )y, where f&t (s)= f (s&t).
Since (F� f&t)(s)=eits(F� f )(s) it is clear that spU ( y)=sp(Uy). Thus, by
(2.1),

i spU ( y)=_(Ay). (2.3)
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Next we consider a special group. By BUC(R, X ) we denote the Banach
space of all bounded uniformly continuous functions on R with values in
X with the uniform norm

&u&=sup
t # R

&u(t)&.

We consider the shift group S on BUC(R, X ) given by

(S(t) u)=u(t+s) (t, s # R, u # BUC(R, X ))

and denote by B the generator of S. The domain of B consists of all
u # BUC(R, X ) & C1(R, X ) such that u$ # BUC(R, X ) and Bu=u$.

For u # BUC(R, X ) we denote by sp(u) the Arveson spectrum of u with
respect to S. Thus

i sp(u)=_(Bu), (2.4)

where Bu is the part of B in

BUC(R, X )u :=span[S(t) u : t # R].

Denote by F the Fourier transform

(Ff )(s)=|
+�

&�
e&istf (t) dt

(s # R, f # L1(R)). Then Ff =F� f8 , where f8 (s)= f (&s). Thus, for u # B,
f # L1(R),

( f (S) u)(t)=|
+�

&�
f (s) u(s+t) ds=( f8 V u)(t).

Now (2.2) becomes

sp(u)=[! # R : \=>0 _f # L1(R) such that

supp Ff/(!&=, !+=) and f V u{0].

This is sometimes called the Beurling spectrum of u. It coincides with the
Carleman spectrum (by [P, Proposition 0.5, p. 22]), that is,

sp(u)=[! # R : ! is not regular], (2.5)
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where ! # R is called a regular point if the Carleman transform

û(*)={|
�

0
e&*tu(t) dt

&|
�

0
e*tu(&t) dt

(Re *>0)

(Re *<0)

(2.6)

has a holomorphic extension to a neighborhood of i!.
The advantage of (2.5) is that it is usually easier to calculate than the

Arveson or Beurling spectrum of u. For example, suppose that U is a bounded
C0-group on X generated by A. Let y # X, and consider the function
u # BUC(R, X ) given by u(t)=U(t)y. It is immediate from the definitions
that

sp(u)=spU ( y) (2.7)

(see also [V, Theorem 3.4]). In addition,

û(*)={|
�

0
e&*tU(t)y dt

&|
�

0
e*tU(&t)y dt

=R(*, A)y (Re *>0)

=&R(&*, &A)y=R(*, A)y (Re *<0)

.

The following lemma shows that in this case, in order that i! is a regular
point of û, it suffices that a holomorphic extension of û from the right-half-
plane should exist (see also [BNR1, Theorem 2.2] or [Ne, Lemma 5.3.3]).

Lemma 2.2. Let y # X, ' # R. Assume that R(*, A)y (Re *>0) has a
holomorphic extension to a neighborhood of i'. Then i' � _(Ay); equivalently,
' � spU ( y).

Proof. Let V be a neighborhood of i' and let h : V � X be holomorphic
such that h(*)=R(*, A)y for * # V, Re *>0. Then R(*, A)y=h(*) also for
* # V, Re *<0. [In fact, (*&A) R(1, A) h(*)=R(1, A)y for Re *>0, * # V.
Since * [ (*&A) R(1, A) h(*) is holomorphic on V, the claim follows].
Thus ' is not in the Carleman spectrum of U( } ) x. The claim follows from
(2.7). K

For ' # R, x # X we denote by e' �x the periodic function

(e' �x)(t)=ei'tx (t # R).
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Linear combinations of such functions are called trigonometric polynomials.
By

AP(R, X )=span[e' �x : ' # R, x # X]

we denote the space of all almost periodic functions (where the closure is
taken in BUC(R, X )).

There are various different characterisations of AP(R, X ) (see [LZ]).
In particular, u # BUC(R, X ) is almost periodic if and only if the set
[S(t)u : t # R] is relatively compact in BUC(R, X ). For u # AP(R, X ),
' # R, we define the mean

M'u= lim
{ � �

1
2{ |

{

&{
e&i'sS(s)u ds

= lim
{ � �

1
{ |

{

0
e&i'sS(s)u ds

which exists in BUC(R, X ) (since it exists for trigonometric polynomials),
cf. Lemma 2.4. It is immediate from semigroup properties that S(t) M' u=
ei'tM'u (t # R), thus M' u=e' � (M' u)(0).

The set

Freq(u)=[' # R : M'u{0]

of all frequencies of u is countable [LZ, p. 23]. Clearly, if

p(t)= :
n

j=1

e'j �xj

is a trigonometric polynomial with 'j {'k for j{k and xj {0 for all
j=1 } } } n, then Freq( p)=['1 , ..., 'n]. More generally, one has the follow-
ing remarkable phenomenon of spectral synthesis

u # span[e' � (M' u)(0) : ' # Freq(u)] (2.8)

for all u # AP(R, X ), where the closure is taken in BUC(R, X ) [LZ, p. 24].
Thus every almost periodic function can be uniformly approximated by
trigonometric polynomials with the same frequencies. One can give the
following operator theoretic description of the frequencies.

Proposition 2.3. Let u # AP(R, X ). Then

(a) iFreq(u)=_p(Bu);

(b) iFreq(u)=sp(u).
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Proof. (a) If ' # Freq(u), then M'(u)=e' � (M'u)(0) # D(Bu) and
BuM'(u)=i'M'(u). Conversely, if M'(u)=0, then M'(g)=0 for all
g # BUC(R, X )u . Hence no such g can be eigenvector of Bu associated
with i'.

(b) Let ' � Freq(u). Let =>0 such that ['&=, '+=] & Freq(u)=<.
Then for f # L1(R) with supp Ff/('&=, '+=) one has f V (e* �x)=
(Ff )(*) e* �x=0 for all * # Freq(u), x # X. It follows from (2.8) that
f V u=0. Thus ' � sp(u). K

Finally, we mention a simple result from ergodic theory which is easy to
prove.

Lemma 2.4. Assume that A generates a bounded group U on X. Let
x # X. Then limt � � 1�t �t

0 U(s) x ds exists if and only if limt � � 1�2t
�t

&t U(s) x ds exists and both limits coincide in that case.

3. SPECTRAL CHARACTERISATION OF ALMOST
PERIODIC FUNCTIONS

In this section we present the factorisation method to give new proofs of
diverse vector-valued versions of Loomis' theorem.

As before we consider the shift group S on BUC(R, X ) with generator B.
Since S leaves AP(R, X ) invariant there is an induced C0-group on
Y :=BUC(R, X )�AP(R, X ) given by

S� (t) ?(u)=?(S� (t)u)

(t # R, u # B) where ? : BUC(R, X ) � BUC(R, X )�AP(R, X ) denotes the
quotient mapping. Its generator is denoted by B� .

Proposition 3.1. The following are equivalent.

(i) Whenever f # AP(R, X ) and F(t)=�t
0 f (s) ds is bounded, then

F # AP(R, X );

(ii) 0 � _p(B� );

(iii) _p(B� ) is empty;

(iv) X does not contain c0 .

Proof. (i) O (ii). Let g # BUC(R, X ) and suppose that ?(g) # D(B� ),
B� (?(g))=0. Then S(t) g& g # AP(R, X ). Hence

f :=BR(1, B) g=lim
t � 0

t&1R(1, B)(S(t) g& g) # AP(R, X ).
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Hence F(t)=�t
0 f (s) ds=(R(1, B) g)(t)&(R(1, B) g)(0) is bounded. By (i),

F # AP(R, X ), so R(1, B) g # AP(R, X ). Hence R(1, B� ) ?(g)=?(R(1, B) g)
=0. Since R(1, B� ) is injective, it follows that ?(g)=0.

(ii) O (iii). Let ! # R. Then (Vu)(t)=ei!tu(t) defines an isomorphism
on BUC(R, X ). Since AP(R, X ) is invariant under V and V&1, there
is an induced isomorphism V� on BUC(R, X ) given by V� ?(g)=?(Vg).
Since VS(t) V&1=e&i!tS(t), it follows that V� S� (t) V� &1=e&i!tS� (t). Hence
0 # _p(B� ) if and only if i! # _p(B� ).

(iii) O (i). Suppose that f # AP(R, X ) such that F is bounded. Then
F # D(B) and BF= f. Thus B� ?(F )=0. By (iii), ?(F )=0; that is,
F # AP(R, X ).

(iv) O (i). This is a result of Kadets [LZ, Theorem 2, p. 86].

(i) O (iv). See the example [LZ, p. 81]. K

Now we obtain a very transparent operator theoretic proof of the follow-
ing theorem [LZ, Chap. 6.4, Theorem 4] (the result is due to Loomis in
the scalar case).

Theorem 3.2. Assume that X does not contain c0 . Let u # BUC(R, X )
and assume that sp(u) is countable. Then u # AP(R, X ).

Proof. It follows from the definition of the Arveson spectrum that
spS� (?(u))/sp(u). In fact, let ! # R"sp(u). Then there exists =>0 such that
f (S)u=�+�

&� f (t) S(t)u dt=0 whenever f # L1(R), supp F� f/(!&=, !+=).
It follows that f (S� ) ?(u)=?( f (S)u)=0. Hence ! � spS� (?(u)). Thus
spS� (?(u)) is countable. Now assume that u � AP(R, X ). Then u� :=?(u){0
and Yu� =span[S� (t)u� : t # R]{0. Then _(B� u� )=i spS(u� ) by (2.3). Thus
_(B� u� ) is non-empty and countable. So it contains an isolated point i'. By
Gelfand's theorem i' # _p(B� u� )/_p(B� ). This contradicts Proposition 3.1. K

Remark 3.3. One sees from the proof that it suffices that

spAP(?(u))=[! # R : \=>0 _f # L1(R), such that

supp Ff/(!&=, !+=) and f V u � AP(R, X )]

is countable in order to conclude that u # AP(R, X ) (still assuming that
c0 /3 X ). This is contained in [LZ, Chap. 6.4, Theorem 4].

More generally, one obtains the following.

Theorem 3.4. Let E and G be closed, translation-invariant subspaces of
BUC(R, X ) and suppose that

(a) G�E;
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(b) G contains all those constant functions which belong to E;

(c) E and G are invariant by multiplication by ei! } for all ! # R;

(d) whenever f # G and F # E, where F(t)=�t
0 f (s) ds, then F # G.

Let u # E have countable reduced spectrum

spG (u) :=[! # R : \=>0 _f # L1(R) such that

suppF� f/(!&=, !+=) and f V u � G].

Then u # G.

Proof. Consider the translation group S on E, and the induced group
S� on E� =E�G with generator B� . Then spG (u)=spS� (?(u))=&i_(B� u� ) where
B� u� is the restriction of B� to E� u� =span[S� (t)u� : t # R]. As in Proposition 3.1,
it follows from (d) that _p(B� )=<, and the proof is completed as in
Theorem 2.2. K

We call u # BUC(R, X ) totally ergodic if

M'u= lim
{ � �

1
2{ |

{

&{
ei'sS(s)u ds

exists in BUC(R, X ) for all ' # R.
Note that M'u # ker(B&i'), or equivalently, S(t) M' u=ei'tM'u. Thus

M'u=e' � (M' u)(0).

Corollary 3.5. Let u # BUC(R, X ) with countable reduced spectrum
spAP(u). Assume that

(a) u(R) is relatively weakly compact in X; or
(b) u is totally ergodic.

Then u # AP(R, X ).

Proof. In the case (a) we choose E=[u # BUC(R, X ) : u(R) is relatively
weakly compact]. It is shown in [LZ, Theorem 2, p. 86] that Theorem 3.4(d)
is satisfied. In the case (b) we choose E=[ f # BUC(R, X ) : f is totally
ergodic]. In order to show condition (d) of Theorem 3.4 to hold, let f # E

such that F # E. Then

(S(s) F&F )(t)=|
t+s

0
f (r) dr&|

t

0
f (r) dr

=|
t+s

t
f (r) dr=|

s

0
(S(r) f )(t) dr.
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Thus S(s) F&F=�s
0 S(r) f dr # AP(R, X ) for all s # R. Consequently,

M0F&F= lim
{ � �

1
2{ |

{

&{
(S(s) F&F ) ds # AP(R, X ).

Since M0F # AP(R, X ), it follows that F # AP(R, X ). In both cases we
choose G=AP(R, X ) and apply Theorem 3.4. K

Part (a) of Corollary 3.5 is proved in [LZ, Theorem 4, p. 92], part (b)
is due to Ruess�Vu~ [RV, Section 3], see also [Bas1, Bas2]. The proofs
given there are very different from ours, though.

4. ALMOST PERIODIC SOLUTIONS

The factorisation technique introduced in the previous section can be
used to prove almost periodicity of solutions of some first- and second-
order inhomogeneous Cauchy problem.

Throughout this section A denotes a closed, linear operator on a Banach
space X. We first consider the Cauchy problem

(CP) u* (t)=Au(t)+8(t) t # R

where 8 : R � X is continuous. By a mild solution of (CP) we understand
a continuous function u : R � X such that

|
t

0
u(s) ds # D(A)

and

u(t)&u(0)=A |
t

0
u(s) ds+|

t

0
8(s) ds (4.1)

for all t # R.

Remark 4.1. (a) u is called a classical solution, if u # C 1(R, X ),
u(t) # D(A) (t # R) and (CP) is satisfied. Integrating (CP) one sees that
every classical solution is a mild solution. Conversely, if u is a mild solution
and u # C1(R, X ), then u is a classical solution.

(b) If A generates a C0-semigroup (T(t))t�0 , then it is easy to see
that a continuous function u : R � X is a mild solution of (CP) if and
only if

u(t)=T(t&s) u(0)+|
t

s
T(t&r) 8(r) dr
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whenever t�s, t, s # R. This is taken as a definition in [LZ, p. 93] and
[RV]. One advantage of our approach is that A does not need to generate
a C0-semigroup.

We are interested in almost periodic solutions of (CP). In the
homogeneous case they can be described by the eigenvectors of A.

Proposition 4.2. Let u : R � X. The following are equivalent.

(i) u # AP(R, X ) and u is a solution of (CP) with 8#0.

(ii) u # span[e' �x : x # D(A), Ax=i'x], where the closure is taken
in BUC(R, X ).

Proof. Since the uniform limit of solutions is a solution, (ii) implies (i).
Assume now that u # AP(R, X ) is a solution of the homogeneous problem.
Then v(t)=e&'tu(t) defines a solution of v* (t)=(A&i') v(t). Thus
1�2{ (A&i') �{

&{ e&i'su(s) ds=1�2{ (e&i'{u({)&e+i'{u(&{)) � 0 ({ � �).
This implies that (M'(u))(0) # D(A) and (A&i') M'(u)(0)=0. Now the
claim follows from (2.8). K

Next assume that 8 is bounded. Let u # BUC(R, X ) be a solution of
(CP). Taking Laplace transforms in (4.1) one obtains that û(*) # D(A) and

û(*)=R(*, A) u(0)+R(*, A) 8� (*) (4.2)

(Re *>0, * # \(A)) where û is defined by (2.6). Now assume that 8=0.
Then

û(*)=R(*, A) u(0) (Re *{0)

It follows from (2.5) that

i sp(u)/_(A) & iR.

Thus, in the homogeneous case 8=0, we obtain the following result
immediately from Theorem 3.2 and Corollary 3.5.

Theorem 4.3. Assume that 8 # AP(R, X ). Moreover, assume that
_(A) & iR is countable. Let u # BUC(R, X ) be a solution of (CP). Then
u # Ap(R, X ) provided one of the following conditions is satisfied.

(a) c0 �3 X;

(b) u is totally ergodic; or,

(c) u(R) is relatively weakly compact.
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In the inhomogeneous case the idea of the proof consists in factoring out
the inhomogeneity:

Proof. For s # R let us(t)=u(t+s) (t # R). Replacing u by us in (4.2)
one obtains

us@(*)=R(*, A) u(s)+R(*, A) 8s@(*) (4.3)

(Re*>0, s # R). Now, as in Section 3, consider the shift groups S on
BUC(R, X ) and S� on Y=BUC(R, X )�AP(R, X ) with generators B and B� ,
respectively. Note that us@(*)=��

0 e&*tu(s+t) dt=(R(*, B)u)(s), and
similarly, 8s@(*)=(R(*, B) 8)(s). Thus (4.3) becomes

R(*, B)u=R(*, A) b u+R(*, A) b R(*, B) 8. (4.4)

Since 8 # AP(R, X ), one has ?(R(*, A) b R(*, B) 8)=0. Thus

R(*, B� ) ?(u)=?(R(*, B)u)=?(R(*, A) b u)

has a holomorphic extension to i' whenever i' � _(A). It follows from
Lemma 2.2 that i spAP(u)=i spS� (?(u))/_(A) & iR. Thus spAP(u) is
countable and the claim follows from Remark 3.3 and Corollary 3.5. K

In the case where A generates a C0-semigroup, Theorem 4.3 is contained
in [LZ, Theorem 5, p. 94] in the cases (a) and (c) and due to Ruess�Vu~
[RV] in the case (b). The proof given there are based on harmonic
analysis. Our proof, using Laplace transform and factorisation, works also
for the second-order Cauchy problem, but needs further arguments.

Consider the second-order Cauchy problem

(CP2) {u� (t)=Au(t)+8(t) (t # R)
u(0)=x, u* (0)= y,

where 8 : R � X is continuous and x, y # X. By a mild solution of (CP2) we
understand a continuous function u : R � X such that �t

0 (t&s) u(s) ds
# D(A) and

u(t)=x+ty+A |
t

0
(t&s) u(s) ds+|

t

0
(t&s) 8(s) ds (t # R). (4.5)

Remark 4.4. If u is a classical solution of (CP2) (i.e., u # C2(R, X )),
u(t) # D(A) and (CP2) holds for all t # R), then u is a mild solution (as can
be seen by integrating (CP2)). Conversely, if u is a mild solution and
u # C2(R, X ), then u is a classical solution.
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In the following we will frequently use the notation us=S(s)u for
u # BUC(R, X ).

Theorem 4.5. Let 8 # AP(R, X ). Assume that _(A) & (&�, 0] is count-
able. Let u # BUC(R, X ) be a mild solution of (CP2). Then u # AP(R, X )
provided one of the conditions (a), (b), (c) of Theorem 4.3 satisfied.

Proof. Replacing t by t+s and by s in (4.5) and subtracting yields after
a change of variable

u(t+s)&u(s)=ty+A {|
t

0
(t&r) us(r) dr+tv(s)=

+|
t

0
(t&r) 8s(r) dr+t9(s)

(t # R, s # R) where 9(s)=�s
0 8(r) dr, v(s)=�s

0 u(r) dr. Taking Laplace
transforms we obtain

us@(*)=
u(s)

*
+

y
*2+A {us@(*)

*2 +
v(s)
*2 =

+
8s@(*)

*2 +
9(s)

*2 (Re *>0),

where us(t)=u(s+t). Thus if Re *>0 and *2 # \(A), then

R(*2, A) us@(*)=
1
*

R(*2, A) u(s)+
R(*2, A)y

*2

+
1
*2 AR(*2, A) us@(*)+

1
*2 AR(*2, A) v(s)

+
1
*2 R(*2, A) 8s@(*)+

1
*2 R(*2, A) 9(s).

Consequently,

us@(*)=*R(*2, A) u(s)+R(*2, A)y+R(*2, A) 8s@(*)+ fs (*), (4.6)

where fs (*)=AR(*2, A) v(s)+R(*2, A) 9(s). Now let ' # R such that
&'2 # \(A). Let r>0 such that *2 # \(A) whenever |*&i'|�2r or
|*+i'|�2r. We show that for |i'&*|<r, the function g(*) given by
g(*)(s)= fs (*) is in BUC(R, X ) and * [ g(*) is holomorphic. Let * # C,
|*&i'|=2r.
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First case. Re *>0. Then

fs(*)=us@(*)&R(*2, A) 8s@(*)&*R(*2, A) u(s)&R(*2, A)y.

Hence & fs(*)&�c1 �Re *+c2 , where

c1=&u&�+&8&� sup
|+&i'|=2r

Re +>0

&R(+2, A)&,

c2= sup
|+&i'|=2r

Re +>0

[&+R(+2, A)& &u&�+&R(+2, A)y&]

Second case. Re *<0. Let *1=&*. Since fs(*)= fs(*1), Re *1>0,
|*1&(&i')|=2r the analogous estimate gives

& fs(*)&�
c1

Re *1

+c2 .

In both cases

& fs(*)&�
c

|Re *|
for all s # R if |*&i'|=2r,

where c # R is such that

c1

|Re +|
+c2�

c
|Re +|

whenever |+&i'|=2r.

By the lemma below we conclude that

& fs(*)&�
4
3

c
r

whenever * # C, |*&i'|�r, s # R.

It is clear from the definition that g(*) is uniformly continuous for all
* # B� (i', r). We have seen that &g(*)&�4�3 c�r for * # B� (i', r). Since for all
s # R the function * [ g(*)(s) is holomorphic in B(i', r) one concludes as
in [BNR2, Proposition 3.2] or [Ne, Lemma 5.3.3] that g : B(i', r) �
BUC(R, X ) is holomorphic. Denote by S the translation group on
BUC(R, X ) as before and by B its generator. Then (4.8) can be rewritten
as

R(*, B)u=*R(*2, A) b u+R(*2, A)y+ g(*)

+R(*2, A) b R(*, B) 8.
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Considering again the operator B� on Y=BUC(R, X )�AP(R, X ) we obtain

R(*, B� ) ?(u)=?(R(*, B)u)

=?(*R(*2, A) b u+R(*2, A)y+ g(*))

since R(*2, A) b R(*, B) 8 # AP(R, X ) whenever |*&i'|<r. Hence R(*, B� )
?(u) has a holomorphic extension to B(i', r) with values in Y. By
Lemma 2.2 this implies that ' � spAP(u).

We have shown that spAP(u)/[' # R : &'2 # _(A)]. Thus spAP(u) is
countable. It follows from Remark 3.3 (resp. Corollary 3.5) that
u # AP(R, X ). K

Lemma 4.6. Let U/C be an open neighborhood of i'. Assume that
B� (i', 2r)/U. Let h : U � X be holomorphic such that

&h(z)&�
c

|Re z|
if |z&i'|=2r, Re z{0.

Then &h(z)&�4�3 c�r for all z # B� (i{, r).

The proof of this lemma is contained in the proof of [BNR1,
Theorem 2.2] or [Ne, Lemma 5.3.1].

Also in the case of the homogeneous second order Cauchy problem,
almost periodic solutions are uniform limits of trigonometric polynomials
with eigenvectors of A as coefficients.

Proposition 4.7. Assume that 8#0. Let u # AP(R, X ) be a solution of
(CP2). Then

u # span[e' �x : ' # R, x # D(A), Ax+'2x=0]

Proof. Let ' # R, z=lim: a 0 :û(:+ i') = (M' u)(0). Since û(*) =
*R(*2, A)x+R(*2, A)y (Re *>0, * # \(A)), one has ((i'+:)2&A)
:û(:+i')=:(:+i')x+:y � 0 (: a 0) and consequently (&'2&A)
:û(:+i') � 0 (: a 0). Since A is closed, this implies that z # D(A) and
(&'2&A) z=0. Now the claim follows from (2.8). K

Next assume that for all x # X and y=0 there exists a unique bounded
solution u( } , x) of (CP2). This is equivalent to saying that A generates a
bounded cosine function. In fact, C(t)x :=u(t, x) defines a bounded
operator on X. Moreover, C : R � L(X ) is strongly continuous, bounded
and

*R(*2, A)x=|
�

0
e&*tC(t)x dt (Re *>0, x # X ).

377FIRST-, SECOND-ORDER CAUCHY PROBLEMS



File: 505J 326616 . By:DS . Date:14:07:07 . Time:06:01 LOP8M. V8.0. Page 01:01
Codes: 3082 Signs: 2011 . Length: 45 pic 0 pts, 190 mm

Then C(0)=I, 2C(t) C(s)=C(t+s)+C(t&s) (t, s#R). Since C is bounded,
one has _(A)/(&�, 0].

We say that C is almost periodic if C( } )x # AP(R, X ) for all x # X. It
follows from Theorem 4.5 that C is almost periodic whenever c0 �3 X and
_(A) is countable. As in the case of bounded groups almost periodicity can
be described by ``complete point spectrum,'' i.e., totality of the eigenvectors.

Proposition 4.8. Let C be a bounded cosine function on a Banach space
X. Then C is almost periodic if and only if

span[w # D(A) : _' # R such that Aw=&'2w])X. (4.7)

Proof. If C is almost periodic, then by Proposition 4.7, C( } )x #
span(e' �w : ' # R, w # D(A), Aw=&'2w], where the closure is taken in
BUC(R, X ). Hence x=C(0)x # span[w # D(A) : _' # R, Aw=&'2w] in X.
Conversely, let x # D(A) such that Ax=&'2x. Then C(t)x=(cos 't)x.
Thus if x # span[w # D(A) : _' # R, Aw=&'2w]=: Y, then C( } )x is almost
periodic. Since Y is dense, the claim follows. K

Proposition 4.9. Assume that A generates a bounded cosine function C
on a Banach space X. Assume furthermore that

(a) c0 /3 X,

(b) _(A) is countable, and

(c) 0 � _(A).

Then, for all x, y # X, the homogeneous problem (CP2) has a unique solution,
and this solution is almost periodic.

Proof. Let S(t)y=�t
0 C(s)y ds. Then the solution of (CP2) is given

by u(t) = C(t)x+S(t)y. Since C(t)x = x+A �t
0 (t& s) C(s)x ds = x+

A �t
0 S(s)x ds, �t

0 S(s)x ds=A&1(C(t)x&x) is bounded. It follows from
Taylor's formula that [S(t) : t # R] is bounded as well. Thus each solution
of (CP2) is bounded. Since d�dt S(t)y=C(t)y is bounded S( } )y #
BUC(R, X ) for all y # X. Let x # D(A). Then d�dt C(t)x=AS(t)x=S(t) Ax
is bounded. Hence C( } )x is uniformly continuous. Since D(A) is dense, it
follows that C( } )x is uniformly continuous for all x # X. Thus each solution
is in BUC(R, X ) and the claim follows from the previous results. K

Example 4.10. Condition (a) cannot be omitted in Proposition 4.9.
In fact, let X=c :=[(xn)n # N /C : limn � � xn exists]. Define A # L(X )
by Ax=(&:2

n xn)n # N where :n # R"[0] such that :n {:m for n{m,
:=limn � � :n exists and :{0. Then A generates the bounded cosine
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function C given by C(t)x=((cos :nt)xn)n # N . Let e # c be the constant-
1-function. Then u(t)=C(t) e=(cos :nt)n # N is not almost periodic (since
it does not have relatively compact range or by Proposition 4.7). However,
(b) and (c) are satisfied. Remark: the space c is isomorphic to c0 .

5. IMAGINARY SPECTRUM CONSISTING OF POLES

If the imaginary spectrum _(A) & iR of the operator A consists only of
poles then one obtains total ergodicity automatically. So our results can be
simplified considerably in this case. This situation is frequent in applica-
tions. For instance, A may have compact resolvent or the essential spectral
bound might be negative. We define

AP(R+ , X )=span[e' �x : ' # R, x # X],

where (e' �x)(t)=ei'tx and the closure is understood in BUC(R+, X ).
Every function u # AP(R+ , X ) has a unique extension to an almost peri-
odic function on the line. By

AAP(R+ , X )=C0(R+, X )�AP(R+ , X )

we denote the space of all asymptotically almost periodic functions. This is
a closed subspace of BUC(R+ , X ). It is known that u # BUC(R+ , X ) is
asymptotically almost periodic if and only if [u{ : {�0] is relatively com-
pact in BUC(R+ , X ) ([F, Chap. 9]). Let A be a linear closed operator
on X. First we consider the Cauchy Problem on the half line

(CP+) {u* (t)=Au(t) (t�0)
u(0)=x,

where x # X. By a weak solution of (CP+) we understand a continuous
function u=R+ � X such that �t

0 u(s) ds # D(A) and

A |
t

0
u(s) ds=u(t)&x (t�0).

Thus A generates a C0-semigroup T if and only if (CP+) has a unique
solution for all x # X. In that case the solution u is given by u(t)=T(t)x.
First we consider a special case which can be proved directly.

Proposition 5.1. Let A be the generator of a bounded C0 -semigroup T.
If A has compact resolvent, then T is asymptotically almost periodic (by this
we mean that T( } )x # AAP(R+ , X ) for all x # X ).
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Proof. (a) Let x # D(A). We show that T( } )x # AAP(R+ , X ). For
that, let tn # R+ (n # N). We have to show that there exists a subsequence
(tnk)k # N such that T(tnk+ } )x converges in BUC(R+ , X ). Let * # \(A).
Since R(*, A) is compact, there exists a subsequence (tnk)k # N such that
y=limk�� T(tnk)x=limk�� R(*, A) T(tnk)(I&A)x exists. Thus T(tnk+})x
converges to T( } )y in BUC(R+ , X ).

(b) It follows from (a) and the density of D(A) in X that
T( } )x # AAP(R+ , X ) for all x # X. K

For individual solutions, this simple proof does not work any more.

Theorem 5.2. Assume that _(A) & iR consists only of poles of the resol-
vent. Let u # BUC(R+ , X ) be a solution of (CP+). Then u # AAP(R+, X ).

Proof. Since u is a solution one has û(*)=R(*, A) u(0) for all *>0,
* # \(A). Since by hypothesis _(A) & iR consists of isolated points in the
spectrum of A, _(A) & iR is countable. Thus the sep sp+(u) of all ' # R
such that û does not have a holomorphic extension close to i' is countable.
So it follows from [AB2, Corollary 2.4] or [BNR2, Theorem 4.1] (see also
[Ne, Theorem 5.3.5]) that u # AAP(R+ , X ), once we have shown that u is
totally ergodic. For that, we have to show that :us@(:+i') converges
uniformly in s # R+ as : a 0 for all ' # R. Since us@(:+i')=R(:+i') u(s),
this is clear if i' # \(A). Assume that i' # _(A). Denote by P the spectral
projection associated with i'. Since R(*, A)(I&P) has a holomorphic
extension close to i', it follows that :R(:+i')(I&P) u(s) converges
uniformly to 0 as : a 0. It remains to show that :R(:+i') Pu(s) converges
uniformly in s # R+ as : a 0. Since P commutes with the resolvent of A, also
Pu is a mild solution of (CP+). Thus, replacing X by PX, we can assume
that P is the identity. But then A is bounded and (A&i')m=0,
(A&i')m&1{0, where m is the order of the pole i' (see, e.g., [Na, A-III.
3.6, p. 72]). It follows that

u(t)=ei't :
m&1

k=0

tk

k!
(A&i')k x.

Since u is bounded, one concludes that x # ker(A&i'). Thus u(t)=ei'tx
(t�0). Consequently, :us@(:+i')=ei'sx for all :>0, s�0, and the claim
is proved. K

Remark 5.3. Let u # AAP(R+ , X ) be a solution of (CP+). Let u=
u0+u1 where u0 # C0(R+ , X ), u1 # AP(R, X ) (extended to R). Then u0 is
a solution of (CP+) and u1 is a solution of the homogeneous problem (CP)
on the line.
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Proof. For ' # R let

x'=(M' u1)(0)= lim
{ � �

1
2{ |

{

&{
e&i'su1(s) ds

= lim
{ � �

1
{ |

{

0
e&i'su1(s) ds

= lim
{ � %

1
{ |

{

0
e&i'su(s) ds.

Since u is a solution, one has

1
{

(A&i') |
{

0
e&i'su(s) ds=

1
{

(e&i'{u({)&u(0)) � 0 ({ � �).

Since A is closed, this implies that x' # D(A) and (A&i')x'=0. It follows
that u1 # span[e' �x : ' # R, x # D(A), Ax=i'x] by spectral synthesis
(2.8). Thus u1 is a solution on the line. K

Using Theorem 4.3 in the homogeneous case, one obtains a similar result
on the line:

Theorem 5.4. Assume that _(A) & iR consists only of poles of the resol-
vent. Let u # BUC(R, X ) be a solution of the homogeneous Cauchy problem
(CP) on the real line. Then u # AP(R, X ).

The proof is completely analogous and can be omitted.
Finally, we consider the homogeneous second order Cauchy problem.

Theorem 5.5. Assume that _(A) & (&�, 0] consists only of poles of the
resolvent. Let u # BUC(R, X ) be a solution of (CP2) with 8=0. Then
u # AP(R, X ).

Proof. In view of Theorem 4.5 it suffices to show that u is totally
ergodic on R.

(a) Let P0 be the spectral projection with respect to 0. We show that
P0u is constant and so totally ergodic. Since P0u is a solution, we can
assume in this part of the proof that P0 is the identity (replacing X by P0X
otherwise). Then A is a bounded operator and Am=0, where m is the order
of the pole. Thus

u(t)= :
m&1

k=0
{ t2k

(2k)!
Akx+

t2k+1

(2k+1)!
Aky=

is a polynomial. Since u is bounded, it follows that u(t)#x (t # R).
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(b) It remains to show that (I&P0)u is totally ergodic. Replacing X
by (I&P0)X in this part of the proof, we can assume that P0=0; that is,
0#\(A). Let v(s)=�s

0 u(r)dr. By (4.7), û has a holomorphic extension near 0.
It follows from [Kor] or [AP, Remark 3.2] that sups�0 &v(s)&<�.
Replacing u by t [ u(&t) one sees that also sups<0 &v(s)&<�. Thus
v # BUC(R, X ). For s # R we let us(t)=u(t+s) (t # R). Let ' # R; we have
to show that :us@(i'+:) converge uniformly in s # R as : a 0. By (4.8) we
have

:us@(i'+:)=:(i'+:) R((i'+:)2, A) u(s)

+:R((i'+:)2, A)y+:AR((i'+:)2, A) v(s)

(s # R, :>0).
Thus the limit exists uniformly in s as : a 0 if &'2 # \(A). Now let

&'2 # _(A). Denote by Q the spectral projection with respect to &'2. Then
by the previous case, (I&Q)u is uniformly ergodic in i'. It remains to
show that Qu is uniformly ergodic in i'. Again, for this part, we may now
assume that Q is the identity (replacing X by QX otherwise). Then A is
bounded, _(A)=[&'2] and &'2 is a pole of the resolvent of A.

Consider the operator B=( 0
A

I
0) on X_X. Then

w(t) :=\u(t)
u* (t)+=etB \x

y+ (t # R).

Moreover, _(B)/[\i'] and

R(*, B)=\*R(*2, A)
AR(*2, A)

R(*2, A)
*R(*2, A)+

for * � [\i']. Thus R( } , B) has a pole in [\i']. The function u is
bounded by hypothesis. Hence u� (t)=Au(t) (t # R) is bounded as well. This
implies that u* is bounded. Thus w # BUC(R, X_X ). It follows from
Theorem 5.3 that w # AP(R, X_X ), and in particular, that w is totally
ergodic on R. Thus u is totally ergodic on R as well. K

If A generates a cosine function then (CP2) is well-posed; i.e., for every
x, y # X there exists a unique mild solution u of (CP2). In fact, u is given
by

u(t)=C(t) x+S(t)y,

where S(t)=�t
0 C(s) ds.
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Corollary 5.6. Let A be the generator of a bounded cosine function C.
Assume that _(A) consists of poles only. Then C( } ) is almost periodic. If in
addition 0 # \(A), then every solution of (CP2) is almost periodic.

Proof. If 0 # \(A) it has been shown in the proof of Proposition 4.9 that
each solution is in BUC(R, X ). So the result follows from Theorem 5.4. If
0 # _(A) one uses a spectral projection and argues as before. K
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