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Abstract. Let m 2 L1
loc(R

N
); 0 6= m+ in Kato’s class. We investigate the spectral function � 7!

s(�+�m)where s(�+�m) denotes the upper bound of the spectrum of the Schrödinger operator
� + �m. In particular, we determine its derivative at 0. If m� is sufficiently large, we show that
there exists a unique �1 > 0 such that s(�+�1m) = 0. Under suitable conditions on m+ it follows
that 0 is an eigenvalue of �+ �1m with positive eigenfunction.

Key words: Principal eigenvalue, Schrödinger semigroup, exponential stability, spectral bound,
Brownian motion.

Introduction

Let m 2 L1
loc(R

N ) be such that m+ is in Kato’s class. For � > 0 we consider
the Schrödinger operator � + �m on Lp(RN ). By s(� + �m) = supf�:� 2
�(� + �m)g we denote the spectral bound of (� + �m) (which is independent
of p 2 [1;1)). The function � 2 [0;1) 7! s(� + �m) is convex, we call it the
spectral function of m. The purpose of this paper is a systematic investigation of
this function.

In Section 2 we consider the case when m > 0. Fefferman and Phong [19]
and Schechter [33] have used Fourier analysis and L2-methods to obtain some
estimates for the spectral bound. We use L1-methods (the Feynman–Kac formula
and Kashmin’skii’s lemma) to obtain a different upper bound for the spectral
function. For small values of �, our estimate is quite sharp; in particular, it enables
us to characterize when the derivative

d=d�j�=0s(� + �m+) is 0:

Criteria for s(� � �m�) < 0 (� > 0) had been given in [5], [9] and [7].
Using those and the results of Section 2, we are able to describe conditions under
which there exists a unique �1 > 0 such that s(� + �1m) = 0 (Section 3).
This is interesting for the asymptotic behavior of the semigroup et(�+�1m). Under
suitable assumptions we can show in addition that �1 is a principal eigenvalue. We
also investigate when the spectral function has a strict minimum. This is related
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to the question when s(� � �m�) is strictly decreasing which has been treated
in [7].

The motivation of this work comes from two sources. Of course the spectral
behaviour of � + �m is an important subject in mathematical physics and there
are previous results of B. Simon [34] and [35] on s(�+ �m) for small � > 0 (see
also the survey article [36]).

The study of principal eigenvalues for elliptic operators was initiated by a
famous article by P. Hess and T. Kato [21] who considered a bounded domain
and Dirichlet boundary conditions. They were interested in a nonlinear eigenvalue
problem and used the principal eigenvalue for the linearized problem in order
to study bifurcation. More recently such problems were considered on R

N by
Allegretto [2], and Brown et al., [10–13]. Their motivation comes partly from a
biological model (see, e.g. Fleming [20]). Similar questions for non-autonomous
periodic parabolic problems on R

N are considered by Daners and Koch-Medina
[14, 15] and Daners [16]. Principal eigenvalues for second order operators are also
studied by different methods by Agmon [1], Pinchover [28, 29] and Nussbaum and
Pinchover [26].

1. Preliminaries

For our purposes, the natural class of potentials is the classcKN introduced by Voigt
[40, Section 5]. It is the Banach space

cKN = fm 2 L1
loc(R

N ):m � (1B(0;1)EN ) 2 L1(RN )g

with norm kmkbKN
= km � (1B(0;1)EN )k1.

Here we denote by B(x;R) = fy 2 R
N : jx� yj < Rg the ball of center x and

radius R and by 1
 the characteristic function of a set 
. By EN we denote the
usual fundamental solution of �� = �, i.e.

E1(x) = �1
2 jxj;

E2(x) = � 1
2�

ln jxj;

EN (x) = (N � 2)�12�1��N=2�

�
N

2

�
jxj2�N (N > 3):

The kernel of the Gaussian semigroup is denoted by pt(x) = (4�t)�N=2 e�jxj
2=4t

and we define

 t(x) =

Z t

0
ps(x) ds = (4�)�N=2jyj2�N

Z 1

jyj2=t
u(N=2)�2 e�(u=4) du

(t > 0; x 2 R
N ):
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SPECTRAL FUNCTION AND PRINCIPAL EIGENVALUES 417

PROPOSITION 1.1. For m 2 L1
loc(R

n) the following are equivalent:

(i) m 2 cKN ;
(ii) m is relatively bounded with respect to �1, the Laplacian on L1(RN );
(iii) jmj �  t 2 L1(RN ) for some t > 0;
(iv) jmj �  t 2 L1(RN ) for all t > 0.

In this case, cN (m) := inf
t>0
kjmj �  tk1 = inf

R>0
k(1B(0;R)EN ) � jmjk1:

Proof. The equivalence of (i), (ii) and (iii) follows from [40, 5.1 (a)]. Prop-
erty (iii) follows trivially from (iv). We show that (ii) implies (iv). Let t > 0.
Note that  t � f =

R t
0 es�1f ds 2 D(�1) for all f 2 L1(RN ). Hence by

assumption jmj( t � f) 2 L1(RN ) for all f 2 L1(RN ). It follows by duality
that  t � jmj 2 L1(RN ).

The last identity is given in [40, 5.1 (c)]. 2

REMARK 1.2. One has k t � jmjk1 = kjmj R t0 es�1 dskL(L1) (by duality). In
particular, it follows from [40, 5.1 (b)] that

m 7! kjmj �  1k1
defines an equivalent norm on cKN .

Kato’s class in the sense of Simon [37, A2] is the closed subspace KN = fm 2cKN : cN (m) = 0g of cKN .
By �p we denote the Laplacian on Lp(:= Lp(RN )) (i.e. D(�p) = ff 2

Lp:�f 2 Lpg;�pf = �f).
Let m 2 L1

loc(R
N ) such that m+ 2 cKN ; cN (m

+) < 1 (see Proposition 1.1).
Then one defines a C0-semigroup (et(�p+m))t>0 on Lp(RN ) (1 6 p < 1) in the
following way: denote by s�lim the limit in the strong operator topology inL(Lp).
Let m+

k = inffk;m+g;m�
k = inffk;m�g. Then

et(�p+m+) = s� lim
k!1

et(�p+m
+

k
) ;

et(�p�m
+) = s� lim

k!1
et(�p�m

�

k
) ;

et(�p+m) = s� lim
k!1

et(�p+m+�m
�

k
) = s� lim

k!1
et(�p�m�+m

+

k
):

By�p+mwe denote the generator of the semigroup (et(�p+m))t>0. This notation
is symbolic; i.e., in general one has D(�p + m) � D(�p) \ D(m) with strict
inclusion. However, if p = 1, thenD(�1+m) = D(�1)\D(m) (whereD(m) =
ff 2 L1: fm 2 L1g) and D(�1 +m) = D(�1) if m� 2 L1. We refer to [40,
41] for all this.

It follows from the definition that et(�p+m) > 0 for t > 0 (in the sense of
positive, i.e. positivity preserving operators).
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PROPOSITION 1.3. Let 1 6 p 61. The semigroup (et(�p+m))t>0 on Lp(RN ) is
irreducible (see [25; p: 306] for the defintion).

Proof. Since 0 6 et(�p�m
�) 6 et(�p+m) we can assume that m+ = 0.

Let V = m�; Vk = inffV; kg)k 2 N). Then by [41, x 3] (or [30, S.16, p. 373])
et(�p�(V�Vk)) converges strongly to et� as k !1. Now assume thatJ � Lp(RN )
is a closed ideal invariant under et(��V ). Since et(��(V �Vk)) 6 ekt et(��V ), it
follows that et(��(V�Vk))J � J (t > 0; k 2 N). Letting k ! 1, one obtains
et�J � J (t > 0) and so J = 0 or J = L2(RN ) since (et�)t>0 is irreducible.

REMARK 1.4. The proof shows that (et(�p+m))t>0 is an irreducible, positive C0-
semigroup wheneverm:RN ! R is measurable,m+ 2 cKN ; cN (m

+) < 1 andm�

is et�p-regular in the sense of Voigt [41, Definition 31]; this property is independent
of p 2 [1;1), ([40], [41, 4.3]). There exists a regular m�:RN ! [0;1) which is
nowhere integrable [38].

We define �1 + m as the adjoint of �1 + m. Thus �1 + m generates a
weak�-continuous semigroup (et(�1+m))t>0 on L1(RN ).

It has been shown by Hempel and Voigt [22] that the spectrum �(�p +m) is
independent of p 2 [1;1].

2. The Spectral Function for Positive Potentials

Let m 2 cKN . Then for 0 6 � < �0 := cN (m
+)�1 the operator �p + �m is

defined on Lp(RN )(1 6 p 61) and its spectrum is real and independent of p (see
Section 1). By

s(�) = s(�p + �m) = supf� 2 �(�p + �m)g

we denote the spectral bound of �p + �m and we call s: [0; �0) 7! R the spectral
function ofm. In this section we investigate s in a neighborhood of 0; in particular
we determine the derivative of s at 0 if m is positive.

PROPOSITION 2.1. For 0 6 � < �0 one has the variational formula

s(�) = sup
�
�
Z
jruj2 + �

Z
mu2:u 2 D1

�
; (2.1)

where D1 = fu 2 D(RN ); kukL2 = 1g. In particular, s is a convex function on
[0; �0). Here D(RN ) denotes the space of all test functions.

Proof. It follows from [40, x 5] that for 0 6 � < �0 the operator �(�2 + �m)
is associated with the closed lower bounded form a�(u; v) =

R rurv � �
R
muv

with domain D(a�) = H1(RN ) \ Q(m�), where Q(m�) is the form domain of
m�. Since D(RN ) is a form core of a� [24, VI Lemma 4.6, p. 349], (2.1) is the
usual variational formula. 2
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Assume that m 2 cKN . Then s(0) = 0 and

s0(0+) = lim
�#0

s(�)

�

exists. In fact, formula (2.1) defines a convex function from s: [0; �0) ! R. Our
aim is to determine when s0(0+) = 0.

THEOREM 2.2. Let 0 6m 2 cKN . The following assertions are equivalent.

(a) s0(0+) = 0;
(b) lim

t!1
sup
x2RN

1
t ( t �m)(x) = 0;

(c) lim
R!1

sup
x2RN

1
RN

R
B(x;R)m(y) dy = 0;

(d) lim
t!1

sup
x2RN

(pt �m)(x) = 0.

REMARK. In condition (b) and (d) we can replace the supremum by the essential
supremum; i.e., (b) is equivalent to lim

t!1

1
t k t � mk1 = 0 and (d) is equivalent

to lim
t!1

kpt � mk1 = 0. In fact, if 0 6 m 2 L1
loc(R

N ) and q:RN ! [0;1) is

continuous, then m � q:RN ! [0;1] is lower semi-continuous.

The equivalence of (a) and (b) follows from the following identity.

PROPOSITION 2.3. Let m 2 cKN such that m� 2 L1. Then

s0(0+) = lim
t!1

1
t

sup
x2RN

(m �  t)(x): (2.2)

Proof. Observe that s(�+�(m+c)) = s(�+�m)+�c and ((m+c)� t)(x) =
(m �  t)(x) + tc. Thus, replacing m by m + c if necessary, we can assume that
m > 0.

We will use the Feynman–Kac formula (see [40, x6]) which is usually associated
to 1

2� instead of�. Let e t(x) = R t
0 ps=2(x) ds = 2 t=2(x). Then (2.2) is equivalent

to

lim
�#0

s( 1
2�+ �m)

�
= lim

t!1

1
t
k e t �mk1: (2.3)

One has (m � e t)(x) = Ex[
R t

0 m(B(s)) ds] (x 2 R
N ), see [9, p. 462]. Let

�t = km � e tk1. Let t > 0, 0 < � < ��1
t . Then supxE

x[exp
R t

0 �m(B(s)) ds] =

�t� < 1. It follows from Khasmin’skii’s lemma [37, B.1.2, p. 461] that e
1
2 ts(2�) 6
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ket(
1
2�1+�m)kL(L1) = ket( 1

2�1+�m)1k1 = supxE
x[exp �

R t
0m(B(s)) ds] 6

1
1���t

. Thus s(�) 6 1
t log 1

1���t
. Taking the derivative at 0 with respect to �

on both sides yields s0(0+) 6 �t
t (t > 0). Hence s0(0+) 6 lim

t!1

�t
t

.

In order to show the reverse inequality let 0 < " < �0, w 2 R such that
s( 1

2�+ �m) 6 �w for all 0 6 � 6 ". Then by Jensen’s inequality,

lim
t!1

1
t

sup
x
Ex

�
�

Z t

0
m(B(s)) ds

�
6

lim
t!1

1
t

log sup
x
Ex

�
exp�

Z t

0
m(B(s)) ds

�
=

lim
t!1

1
t

log ket(
1
2�1+�m)1kL1 =

lim
t!1

1
t

log ket(
1
2�1+�m)kL(L1) = s(1

2�+ �m) 6 �w:

Hence lim
t!1

1
t k e t �mk1 6 w. This shows that lim

t!1

1
t k e t �mk1 6 s0(0+). 2

In order to prove the other equivalences of Theorem 2.2 we need some
preparation.

Let R > 0. By a cube of length R we mean a set of the form x � QR where
x 2 R

N and QR = fy 2 R
N : 0 6 yj 6 R; j = 1; : : : ; Ng. Let m:RN ! [0;1)

be measurable. We let qR(m) = supfRQm(y) dy:Q is a cube of length Rg, i.e.,
qR(m) = k1QR

�mk1.

LEMMA 2.4. Let t > 0; R > 0. Then

kpt �mk1 6 2N ((4�t)�
1
2 +R�1)N : qR(m): (2.4)

Proof. Let c = qR(m). We have to show that (pt �m)(x) 6 c2N ((4�t)�
1
2 +

1
R)

N . Replacing m by m( : + x) if necessary we can assume that x = 0. For
n = (n1; : : : ; nN ) 2 N

N
0 we let n2 = �N

j=1n
2
j and Q(R;n) = fy 2 R

N ;Rnj 6
jyjj 6 (nj + 1)R (j = 1 6 N)g. SinceQ(R;n) is the union of 2N cubes of length
R, one has

R
Q(R;n)m(y) dy 6 c2N . Hence

(pt �m)(0) =
X
n2NN0

(4�t)�
N
2

Z
Q(R;n)

m(y) e�y
2=4t dy

6 (4�t)�N=2
X
n2NN0

e�n
2R2=4t

Z
Q(R;n)

m(y) dy
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6 (4�t)�N=2c � 2N
X
n2NN0

e�n
2R2=4t

= (4�t)�N=2c � 2N
 

1X
k=0

e�R
2k2=4t

!N

6 (4�t)�N=2c � 2N
�

1 +
Z 1

0
e�R

2u2=4t du
�N

= (4�t)�N=2c2N (1 +
p

4�tR�1)N : 2

LEMMA 2.5. Let m:RN ! [0;1) be measurable. The following are equivalent.

(i) For all t > 0 one has pt �m 2 L1;
(ii) there exists t > 0 such that pt �m 2 L1;
(iii) sup

R>1
sup
x2RN

R�N
R
B(x;R)m(y) dy <1;

(iv) there exists R > 0 such that sup
x2RN

R�N
R
B(x;R)m(y) dy <1.

Proof. (i) =) (i) and (iii) =) (iv) are trivial.
(ii) =) (iii) : Assume that pt0 �m 2 L1. Then pt �m = pt�t0 � (pt0 �m) 2 L1
and kpt �mk1 6 kpt0 �mk1 for all t > t0. Let R > t

1
2
0 . Let t = R2. Then for

x 2 R
N ,

R�N
R
B(x;R)m(y) dy 6 e

1
4 t�N=2 R

B(x;t1=2) e�jx�yj
2=4tm(y) dy

6 (4�)N=2 e
1
4 (pt �m)(x) 6 (4�)N=2 e

1
4 kpt �mk1: (2.5)

(iv) =) (i) This follows from (2.4). 2

PROPOSITION 2.6. Let 0 6 m 2 cKN . Then

(a) pt �m 2 L1 for all t > 0;
(b) sup

R>1
sup
x2RN

R�N
R
B(x;R)m(y) dy <1

(c) k t �mk1 6 (1 + t)k 1 �mk1.

Proof. It follows from the definition that m satisfies (iv) of Lemma 2.5 (see
[40, p. 183]). Hence (a), (b) are valid. We show by induction that (c) is satisfied
for t 2 [n; n + 1). This is clear for n = 0 since k t � mk1 is increasing in t.
Assume that it is true for n. Let t 2 [n+ 1; n+ 2). Since ps � pr = ps+r, one has
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pt�1 �  1 =  t �  t�1. Hence, k t �mk1 = k t�1 �m+ (pt�1 �  1) �mk1 6

k t�1 �mk1 + k 1 �mk1 6 (t+ 1)k 1 �mk1 by the inductive assumption.2

Proof of Theorem 2.2. The equivalence of (a) and (b) follows from (2.2).
(b) =) (c). First case: N > 2. Let c = (4�)�N=2 R1

1 u
N
2 �2 e�u=4 du. Then

 t(x) = (4�)�N=2jxj2�N
Z 1

jxj2=t
u
N
2 �2 e�u=4 du > ct�N=2t

whenever jxj 6 t 1
2 . Hence for t > 0; x 2 R

N ,

t�N=2
Z
B(x;t1=2)

m(y) dy 6 c�1 1
t

Z
B(x;t1=2)

m(y) t(x� y) dy

6 c�1 1
t
(m �  t)(x):

Thus (b) implies (c).
Second case: N = 1. Then  t(x) > (4�)�1=2jxj R 4

jxj2=t u
�3=2 e�u=4 du >

(4�)�1=2jxj e�1 R 4
jxj2=t u

�3=2 du = 2�1 e�1��1=2t1=2 for jxj 6 t
1
2 . Hence

t�
1
2
R
B(x;t1=2)m(y) dy 6 2e�

1
2 1
t (m �  t)(x) (t > 0; x 2 R).

(c) =) (d). By (2.4), lim
t!1

kpt �mk1 6 2NR�NqR(m) for all R > 0. Thus

(c) implies (d).
(d)=) (b). Let " > 0. By assumption, there exists � > 0 such that kpt�mk1 6

" for all t > � . Hence lim
t!1

1
t k t � mk1 6 lim

t!1
sup
x

1
t

R �
0 (ps � m)(x) ds +

lim
t!1

sup
x

1
t

R t
� (ps �m)(x) ds 6 lim

t!1

1
t (t� �)" = ". 2

COROLLARY 2.7. The set of all 0 6m 2 cKN such that d
d� j�=0+s(�+�m) = 0

is a closed cone.

Proof. It follows from Theorem 2.2 that the set in question is a cone. Let
0 6 m 2 cKN , let m1 be in the set, km � m1kbKN

6 ". Then 1
t k t � mk1 6

1
t
k t � jm � m1jk1 + 1

t
k t � m1k1 6 2k 1 � jm � m1jk1 + 1

t
k t � m1k1

(by Prop. 2.6 c) 6 constkm � m1kbKN
+ 1

t k t � m1k1 by Remark 1.2. Hence

lim
t!1

1
t k t �mk1 6 const:" 2

Of special interest is the class

KN;0 := fm 2 cKN :m is �1�compactg (2.6)
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It has been shown by Voigt [40, 5.5] that KN;0 coincides with the closure of
D(RN ) in cKN . In particular, KN;0 � KN . Let L10 (RN ) = fm 2 L1(RN ): ess.
� limjxj!1 jm(x)j = 0g.

EXAMPLE 2.8. (cf. [40, 5.6]). Let N
2 < p < 1 if N > 2, and 1 6 p < 1 if

N = 1. Then Lp + L10 � KN;0. In fact, by Hölder’s inequality Lp ,! cKN . Since

D(RN ) is dense in Lp, it follows that Lp � DKN .

LEMMA 2.9. Let m 2 KN;0; q 2 L1
loc(R

N ), such that jqj 6 jmj. then q 2 KN;0:

Proof. There exists g 2 L1 such that gm = q. Since by assumption, m(1 �
�1)

�1 is compact, it follows that q(1��1)
�1 = gm(1 ��1)

�1 is compact. 2

COROLLARY 2.10. If m 2 KN;0, then

d
d�
s(� + �m) = 0:

Proof. (a) If m 2 Lp; N < p < 1, it follows from Theorem 2.2 (applying
criterion (c)) that d

d� j�=0+s(�+�m) = 0. By Corollary 2.7 the same remains true
if 0 6 m 2 KN;0.

(b) Let m 2 KN;0. Since �ess(�1) = �ess(�1 + �m�) it follows that s(� �
�m�) > 0 (� > 0). Hence by (a), 0 6 lim

�#0

s(���m�)
� 6 lim

�#0

s(�+�m)
� 6

lim
�#0

s(�+�m+)
� = 0. We have shown that d

d� j�=0+s(� + �m) = 0. The proof

is finished by replacing m by �m. 2

REMARKS 2.11. (a) If N > 3 and m 2 KN;0 a much stronger result than
Corollary 2.10 is true: There actually exists�1 > 0 such that s(�+�m) = 0 for all
� 2 [��1; �1]. In fact, s(�+�m) > 0 implies that s(�+�m) 2 �ess(�1+�m) =
�ess(�2 + �m) (cf. Remark 3.4). Now the claim follows from the Cwikel–Lieb–
Rosenbljum bound [31, p. 101].
(b) If N > 3, m 2 LN=2�" \ LN=2+" for some " > 0, then Simon ([34], see also
[35, Theorem 1.2], [36, Theorem 1.4], [37, Theorem B.5.2]) showed that for some
�1 > 0 one has s(� + �m) = 0 for all � 2 [0; �1] and he showed in addition that
supt>0 ket(�p+�m)kL(Lp) <1 (1 6 p 61) for all � 2 [0; �1).
The situation is much different for N = 1; 2:
(c) LetN = 1,m 2 L1(R) such that

R
m > 0. Then s(�+�m) > 0 for all � > 0.

In fact, let u 2 D(R) such that 0 6 u(x) 6 1 (x 2 R) and u(x) = 1 (jxj < 1). Let
un(x) = u(xn). Then 0 6 un 6 1; un(x) ! 1;

R jrunj2 ! 0 (n ! 1). Hence
lim
n!1

(� R jrunj2 + �
R
u2
nm) = �

R
m > 0 and so s(� + �m) > 0 whenever

� > 0.
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(d) Let N = 2 and 0 6 m 2 cKN , m continuous, m 6= 0. Then s(� + �m) > 0
for all � > 0. In fact, there exists 0 6 q 6 m, 0 6= q 2 D(RN ). By [31,
Theorem XIII.11, p. 100], s(� + �q) > 0 (� > 0).
(e) Other related results forN = 1; 2 are [31, Theorem X.III.110, p. 338 and Notes
p. 363] and [10, Theorem 3.2].

EXAMPLES 2.12. (a) If m 2 L1(RN ), then m satisfies condition (c) and (d) of
Theorem 2.2. However L1(RN ) is not contained in cKN . E.g. let 2 < a < N ,
m(x) = jxj�a1B(0;1)(x). Then m 2 L1(RN )ncKN .
(b) Let 0 6 m 2 L1 such that there exist j0 2 f1; : : : ; Ng;�1 < a < b < 1
such that supp m � 
 := fx : a < xj0 < bg. Then s0(0+) = 0. This can be seen
by applying criterion (c) of Theorem 2.2. On the other hand, it is easy to see that
1
 62 KN;0 if N > 2.
(c) On has LN=2 6� cKN for N = 4. In fact, it is easy to see that m(x) =

�jxj�2(log jxj)�11B(0;1=2) is in L2(R4) but m 62 cK4 (cf. [37, A4]).

The main point in this section is to characterize when s0(0+) = 0 (Theorem 2.2),
and that is what is needed in Section 3. However, our arguments allow us also to
estimate s(�+�m) for fixed � by averages ofm over balls. This is of independent
interest and we want to give more details.

In the remainder of this section we assume that 0 6 m 2 cKN and let �0 =
cN (m)

�1. For convenience, we denote by

am(R) = sup
x2RN

1
RN

Z
B(x;R)

m(y) dy (0 < R <1)

the upper bound of the averages ofm over balls of radiusR. It is not difficult to see
that there exists a constant � > 0 (depending only on the dimension N ) such that

am(R1) > k am(R2) if 0 < R1 6 R2: (2.7)

THEOREM 2.13. One has

s(�)

�
6 c1am(R) (2.8)

provided 0 < �;R satisfies one of the following conditions:

�k R2 �mk1 6
1
2 it (2.9a)

�c01

Z R

0
ram(r) dr 6 1

2 : (2.9b)

Here c1; c
0
2 > 0 are constants which depend only on the dimension N .
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Proof. By the proof of Proposition 2.3 we have s(�) 6 1
t logf(1 � �k t �

mk1)�1g if �k t � mk1 < 1. Lemma 2.4 implies that kps � mk1 6 const
am(s

1=2). Hence (in view of (2.7)) s(�) 6 1
t log[f1 � �(k � � mk1+ const

(t � �)am(�
1=2))g�1] provided that 0 < � < t and � is sufficiently small. If

�k � �mk1 6
1
2 we may choose t > � such that � const (t � �)am(�

1=2) = 1
4

and deduce that there exists a constant c1 > 0 (depending only on N ) such that

s(�) 6 c1�am(R) (2.10)

whenever�k R2�mk1 6
1
2 . By Proposition 1.1, given 0< � < �0

2 = (2 cN (m))�1,
we always find R > 0 such that �k R2 �mk1 6

1
2 . Lemma 2.4 shows that

k R2 �mk1 6

Z R2

0
kpt �mk1 dt

6 const:
Z R2

0
t�N=2qt1=2(m) dt

6 const:
Z R

0
r am(r) dr: 2

The estimates given by Theorem 2.13 are quite sharp. This is shown by the following
(much easier) lower estimate.

PROPOSITION 2.14. For all 0 < � < �0 there exists R� > 0 such that

c0am(R�) 6
s(�)

�
: (2.11)

Here c0 > 0 depends only on N .

Proof. Let 0 6 ' 2 D(RN ) such that '(y) = 1 if jyj 6 1. Let x 2
R
N ; R > 0 and put u(y) = '(R�1(y � x)). Then (2.1) gives �RN�2kr'k2 +
�
R
B(x;R)m(y) dy 6 s(�)RN . Choosing c0 = k'k2 + kr'k2 and R = R� =

s(�)�1=2 gives (2.11). 2

REMARK. Since (2.1) defines a convex and hence continuous function on (�1; �0)
one has lim

�!0
s(�) = 0 and thus lim

�!0+
R� =1. This gives another proof of (a) =)

(c) in Theorem 2.2.
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Estimates similar to (2.8) but with L1-averages (considered here) replaced by Lp-
averages (1 < p <1) are obtained by Fefferman–Phong (see [19]) and Schechter
[33]. In fact, they show that

s(�) 6 sup
R>0

8<
:Cp� sup

x2RN

 
1
RN

Z
B(x;R)

m(y)p dy

!1=p

� 1
R2

9=
; (2.12)

where CP is a constant depending on p and N , see [19, Theorem 5, p. 145], [33,
Corollary 3.3]. Schechter’s proof of (2.12) showed that

1 6 C 0
p� sup

r6s(�)
�

1
2

r2 sup
x2RN

 
1
RN

Z
B(x;R)

m(y)p dy

! 1
p

[33, Theorem 3.2], from which it is easy to deduce that

s(�) 6 C 00
p� sup

x2RN

 
1
RN

Z
B(x;R)

m(y)p dy

!1=p

(2.13)

provided that

C 0
p� sup

r6R

r2 sup
x2RN

 
1
RN

Z
B(x;R)

m(y)p dy

!1=p

< 1:

The estimates (2.12) and (2.13) are sometimes infinite – there exist functions inKN

which are not in Lploc for any p > 1. On the other hand, there are some functions
not in cKN for which (2.12) and (2.13) are finite (see Example 4.3).

3. Potentials with Changing Sign

Throughout this section we assume that m 2 L1
loc(R

N ) such that 0 6= m+ 2
KN . Then �0 = cN (m

+)�1 = 1 (Section 2). By s(�) = s(� + �m) =
supf� R jruj2+� R mu2:u 2 D1g (� > 0)we denote the spectral function. Since
m+ 6= 0, there exists u 2 D1such that

R
mu2 > 0. Consequently, lim

�!1
s(�) =1.

Since s is convex, there are three different possible cases: 1:s(�) > 0 for all � > 0;
2. there exists �0 > 0 such that s(�) = 0 on [0; �0]; 3. there exists a unique �1 > 0
such that s(�1) = 0.

We are interested in finding conditions for the third case to occur. Since s(��
�m�) 6 s(� + �m) a necessary condition is that s(��m�) < 0. We recall the
results from [5], [9] and [7] characterizing this condition.
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THEOREM 3.1. 1. Let m� 2 L1 +L1. Then s(��m�) < 0 if and only if there
exists R > 0 such that

inf
x2RN

Z
B(x;R)

m�(y) dy > 0:

2. In general one has s(��m�) < 0 if and only if
R

m

� =1whenever
 � R
N

is open such that s(�
) = 0. Here �
 denotes the Dirichlet Laplacian on L2(
),
i.e. ��
 is associated with the form a(u; v) =

R ru rv;Q(a) = H1
0 (
).

Note that condition (b) in the following theorem has been investigated in Section 2.

THEOREM 3.2. Let m 2 L1
loc(R

N ) such that 0 6= m+ 2 KN . Assume that

(a) s(��m�) < 0 and
(b) d

d� j�=0+
s(� + �m+) = 0.

Then there exists a unique �1 > 0 such that s(� + �1m) = 0.

Proof. By convexity, (a) is equivalent to d
d� j�=0+

s(�� �m�) < 0. It follows

from the definition that s(� + �m) 6 1
2(s(�� 2�m�) + s(� + 2�m+)). Hence

d
d� j�=0+

s(� + �m) 6 d
d� j�=0+

s(� � �m�) + d
d� j�=0+

s(� + �m+) < 0. Now

the claim follows by convexity since lim
�!1

s(� + �m) =1.

From the proof it is apparent that the theorem remains true if we replace (a) and
(b) by the weaker condition

d
d� j�=0+

s(� + �m+) +
d

d� j�=0+
s(�� �m�) < 0: (3.1)

In (2.2) we gave an exact formula for the first term: lim
t!1

1
t km+ �  tk1. In [7,

Remark 4.7] an upper estimate for the second is given.
Theorem 3.2 implies that (et(�p+�m))t>0 is exponentially stable for � < �1,

and unbounded for � > �1. Similar results have been obtained formerly ([11,
Theorem 4.2], [15, Theorem 7.7]); however, our condition (b) is much more general
than those given in these papers.

Next we establish existence of a principal eigenvalue.

THEOREM 3.3. Let m 2 L1
loc(R

N ) such that 0 6= m+. Assume that

(a) s(��m�) < 0;
(b) m+ 2 Lp + L10 where1 > p > N

2 if N > 2; p > 1 if N = 1.
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Then there exists a unique�1 > 0 such that s(�+�1m) = 0. Moreover, there exists
a unique 0 6 u 2 D(�2+�1m) such that kukL2 = 1 and (�2 +�1m)u = 0. One
has u(x) > 0 a.e. and u 2 D(�p + �1m); (�p + �1m)u = 0 for all 1 6 p 61.
Finally, 0 is a pole of � 7! R(�;�p+ �1m) of order one with residue P = u
 u.

Proof. In view of Example 2.8, it follows from Corollary 2.10 that d
d� j�=0+

s(�+

�m+) = 0. Thus the first assertion follows from Theorem 3.2. Moreover, m+

defines a compact mapping from D(�1) (with the graph norm) to L1. Since
D(�1 � �1m

�) = D(�1) \ D(m�) ,! D(�1), it follows that m+R(�;�1 �
�1m

�) is compact. HenceR(�;�1 +�1m)�R(�;�1 ��1m
�) = �1R(�;�1 +

�1m)m
+R(�;�1��1m

�) is compact. It follows that 0 is a pole of the resolvent of
�1 +�1m. Since (et(�1+�1m))t>0 is positive and irreducible, the pole is of order 1
and the residue is a strictly positive rank 1 projection P (see [25, C-III. Prop. 3.5,
p. 310]).

We show that 0 is also a pole of order 1 in Lp(1 < p 6 1). Note that the
spectrum is independent of p and the resolvents are consistent (see [3]). Let " > 0
such that � 2 �(�+�1m) whenever 0 < j�j 6 ". Then

R
jzj="

R(z;�1+�1m)
zn

dz = 0

for n = 1; 2; : : :. It follows that
R
jzj="

R(z;�p+�1m)
zn dz = 0 for n = 1; 2 : : : and all

p 2 [1;1]. Thus 0 is a pole of order 1 in Lp. Similarly one sees that the residues
Pp in Lp are consistent. Since �2 + �m is self-adjoint it follows that P2 = u
 u

with u(x) > 0 a.e., kukL2 = 1 2

REMARK 3.4. By the argument used in the proof one sees the following. Let
Ap be operators on Lp with �(Ap) connected and independent of p 2 [1;1].
Assume that the resolvents R(�;Ap) are consistent for one (equivalently all) � 2
�(Ap). Then �ess(Ap) is independent of p 2 [1;1). Here �ess(Ap) = C n�ess(Ap)
where �ess(Ap) consists of all points � in C such that � 2 �(Ap) or � is a pole
of the resolvent with finite dimensional residue. Concerning the assumption of
consistency see [3].

As a consequence of Theorem 3.3 one has

ket(�p+�1m) � u
 ukL(Lp) 6M e�"t (t > 0)

for some " > 0 (cf. [8, Theorem 1.2]). Thus et(�p+�1m)f ! (
R
fu)u (t ! 1)

in Lp(RN ) (1 6 p < 1). This means that the solutions of the diffusion equation
with excitation m+ and absorption m� converge to an equilibrium. With the help
of the parameter �1 > 0 one has adjusted the excitation-absorption term m such
that it is in equilibrium with the diffusion.

REMARK 3.5. (continuity of the principal eigenvector).
If et(�1+�1m) leaves C0(R

N ) invariant and is strongly continuous, then the spec-
trum in C0(R

N ) is the same as in Lp (cf. [23]) and one has u 2 C0(R
N ). This is
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the case, e.g. if m 2 L1(RN ) by a recent result of Ouhabaz et al. [27].

REMARK 3.6. (uniqueness of the principal eigenvalue). In the situation of Theo-
rem 3.2, �1 is the unique � > 0 such that the problem

P (�; p)

8<
:
u 2 D(�p + �m); u > 0; u 6= 0;

�pu+ �mu = 0

has a solution for some p 2 [1;1). We give the short argument for complete-
ness: Let � > 0 such that P (�; p) has a solution u. Then s(�p + �m) > 0. If
s = s(�p + �m) > 0, then, since s 62 �ess(�p + �m), there exists 0 < ' 2 Lp

0

such that (�p + �m)0' = s'. Then ' is strictly positive by irreducibility. Hence
0 = h(�p + �m)u; 'i = shu; 'i. Since hu; 'i > 0, this implies s = 0. 2

The idea of using relative compactness of perturbation in order to establish a
principal eigenvalue is standard (see, e.g. [31]). In this context, using s(��m�) <
0, it was first used by Brown et al. (see [11, Theorem 4.2], where m+ is supposed
to be of compact support). Similar results in the non-autonomous case are [15,
Theorems 7.7 and 7.8]. Principal eigenvalues are obtained by Brown and Tertikas
[13, Theorem 4.5] and Daners [16, Theorem 1.3] under more general conditions,
but they may no longer belong to Lp.

Next we consider the case when s(��m�) = 0.

PROPOSITION 3.7. Let m 2 L1
loc(R

N ) where N > 3 and assume that

(a) m+ 2 LN=2+" \ LN=2�" for some " > 0 and
(b) s(��m�) = 0.

Let �0 := supf� > 0: s(� + �m+) = 0g. Then �0 > 0 and 0 is not an eigenvalue
of �p + �m in Lp(RN ) for any � 2 [0; �0) and any p 2 [1;1).

We use the following special case of [4, Theorem 1.3].

PROPOSITION 3.8. Let S; T be C0-semigroups on a space Lp(1 < p <1) with
generatorsA and B, respectively, such that 0 6 S(t) 6 T (t) and s(A) = s(B) =
0. Assume that T is bounded and S is irreducible. If 0 is an eigenvalue of A, then
A = B.

Proof of Proposition 3.7. We know from Remark 2.11 (a) or (b) that �0 > 0.
Assume that �1 2 (0; �0) is an eigenvalue of �p + �1m where 1 < p < 1.
By Simon’s theorem (Remark 2.11 b) one has sup

t>0
ket(�p+�1m

+)kL(Lp) < 1. It

follows from Proposition 3.8 that �p + �1m
+ = �p + �1m; i.e. m� = 0. Let
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�1 < �2 < �0. Then it follows in a similar way that �p + �1m = �p + �2m,
hence m = 0, a contradiction. Since by [40, 6.3], et(�1+�1m)L1 � L2, it follows
that 0 is not an eigenvalue of �1 + �1m either. 2

REMARK 3.9. The situation considered in Proposition 3.7 is different for p =1.
In fact, assume that N > 3 and m 2 LN=2�" \ LN=2+" for some " > 0 so that the
assumptions of Proposition 3.7 are satisfied. Let 0 < � < �0. Then there exists a
strictly positive  2 L1(RN ) such that

(�1 + �m) =  : (3.2)

Moreover, ker (�1 + �m) = R .

In fact, it has been shown by Simon [34, Theorem 3.4] that there exists ' 2
L1 6= 0 such that T (t)0' = ' (t > 0) where T (t) = et(�1+�m), and also that
dim ker (�1+�m) = 1. We show that a strictly positive eigenvector exists. Define

 2 L1(RN )0 = L1(RN ) by hf;  i := LIM
t!1

hf; T (t)0j'ji where LIM denotes

a Banach limit on L1(0;1). Since j'j 6 T 0(t)j'j one has hf;  i > hf; j'ji for

f > 0 so that  6= 0. Since hf; T (s)0 i = LIM
t!1

hf; T (t + s)0j'ji = hf;  i it

follows that T (s)0 =  (s > 0) which is (3.2). 2

Next we come back to the situation considered in Theorem 3.2. We know that
s(�+�1m) = 0 and s(�+�m1) < 0 for � 2 (0; �1). Since the spectral function
is continuous, it has a minumum on [0; �1]. We investigate when this minimum is
strict.

THEOREM 3.10. Let m 2 L1
loc(R

N ) such that 0 6= m+. Assume in addition that

(a) � 7! s(�� �m�) is strictly decreasing and
(b) m+ 2 Lq(RN )+L10 (RN ) where1 > q > N

2 (ifN > 2) and q > 1 ifN = 1.

Then there exists a unique �0 > 0 such that

s(� + �0m) = min
�>0

s(� + �m):

REMARK. Condition (a) is discussed in detail in [7]. For example, it is shown
that if N = 1 and m� 2 L1(R), then (a) holds. Condition (b) implies that
m+ 2 KN .

Proof. Assume that min
�>0

s(� + �m) is not strict. Then there exist 0 < � < �0,

c < 0 such that c = s(� + �m) for � 2 (�0 � �; �0 + �). Since s(�� �m�) is
strictly decreasing by hypothesis, it follows that s(���m�) < s(�+�m) for � 2
(�0��; �0+�). Since �ess(�+�m) = �ess(���m�) (cf. Remark 3.4), it follows
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that c is an eigenvalue of�2+�0m. Thus there existsu 2 D(�2+�0m); kuk2 = 1,
such that �u + �0mu = cu. Consequently, �jruj2 + �0

R
mu2 = c. Since

c = s(� + �m) it follows that c + (� � �0)
R
mu2 = � R jruj2 + �

R
mu2 6 c

if j� � �0j < �. This implies
R
mu2 = 0. Hence � R jruj2 + �

R
mu2 = c =

s(� + �m) if j� � �0j < �. This implies that �u + �mu = cu if j� � �0j < �

(since, ifB is a form positive operator, and u 2 D(B) such that (Bu j u) = 0, then
Bu = 0). This implies thatmu = 0. Hence �2u = cu, which is a contradiction.2

Finally, we show that it can happen that the minimum of s(� + �m) is negative
but not strict.

THEOREM 3.11. There existsm 2 L1loc(R
N ) such thatm+ 6= 0,m+ has compact

support and

�1 = min
�>0

s(� + �m) = s(� + �m) (� 2 [1; 2]);

Moreover, s(�� �m�) = �1 for all � > 1.

Proof. (a) It suffices to show that there exists a non-empty open setE, 0 6 V 2
L1loc(R

N ), " > 0 such that s(���V ) > �1 (� > 0), s(��V +"1E) 6 �1,V = 0
on E. In fact, this implies that s(�) := s(� + �( "21E � V )) > s(�� �V ) > �1
for all � > 0 and s(1) 6 s(� � V + "1E) 6 �1, s(2) = s(� + "1E � 2V ) 6
s(� + "1E � V ) 6 �1, so that s(�) = �1 for � 2 [1; 2] by convexity. Then m =
"
21E � V fulfills the requirements.
(b) Let 
n = fx 2 R

N : an < jxj < bng where 0 < an < bn < an+1; lim
n!1

bn =

1, such that s(�
n) < s(�
n+1); lim
n!1

s(�
n) = �1. We construct 0 6 Vn 2
L1(RN ) and " > 0, such that

Vn = 0 on
n[
j=1


j;

Vn+1 = Vn for jxj 6 bn;

s(�� Vn + "1E) 6 �1 (n 2 N);

where E = 
1. Then, letting V (x) = Vn(x) for jxj 6 bn we obtain V 2 L1loc(R
N )

which satisfies the requirements of (a). In fact, s(� � �V ) > sup
n2N

s(�
n) = �1

since V = 0 on 
n for all n 2 N. Since for every compact setK � R
N there exists

n 2 N such that VjK = VnjK , it follows from the variational formula that

s(�� V + "1E) 6 sup
n2N

s(�� Vn + "1E) 6 �1:
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We construct the potentials Vn. By [7, Proposition 4.1], lim
b!1

s(� � b1Ec) =

s(�E) < �1. Let b > 0; " > 0 such that s(� � b1Ec) + " < �1, and let
V1 = b1Ec . Assume that V1; : : : ; Vn are constructed. For K 2 N let

Uk(x) =

8>>>>><
>>>>>:

Vn(x) if jxj 6 bn;

k if bn < jxj < an+1;

0 if an+1 6 jxj 6 bn+1;

k if jxj > bn+1:

We show that there exists k 2 N such that s(� � Uk + "1E) < �1 and choose
Vn+1 := Uk. Assume on the contrary that �1 6 s1 := inf

k
sk where sk =

s(� � Uk + "1E). Since sk is in the approximate point spectrum there exists
uk 2 H1(RN ) such that kukkL2 = 1 and

�uk � Ukuk + "1Euk � skuk = vk ! 0 (3.3)

(k !1). In particular,� R jrukj2�R Uku2
k+"

R
E u

2
k�sk ! 0 (k !1). Hence

(uk) is bounded in H1(RN ) and we can assume that uk ! u (k ! 1) weakly
in H1(RN ). Since the embedding of H1(B(0; R)) in L2(B(0; R)) is compact,
it follows that uk ! u strongly in L2(B(0; R)) for all R > 0. Since Uk � k

on F = fx: bn < jxj < an+1 or jxj > bn+1g, it follows that u = 0 in F . In
particular, uj
n+1

2 H1
0 (
n+1). Moreover, uk ! u inL2(RN ). Passing to the limit

for k !1 in (3.3) shows that�u�s1u = 0 inD(
n+1)
0. Since s(�
n+1) < �1

and s1 > �1, it follows that uj
n+1
= 0 a.e. Thus u 2 H1

0 (B(0; bn)). It follows
from (3.3) that �u � Vnu + "1Eu � s1u = 0 in D(RN )0. Since s1 > �1 >

s(�� Vn + "1E) it follows that u = 0. This is a contradiction, since kukkL2 = 1
(k 2 N) and uk ! u in L2(RN ). 2

4. More General Potentials on L2(RN )

In some cases one can define the semigroup (et(�2+m))t>0 on L2(RN ) by form-
methods, but it no longer has extensions to all Lp(RN ) (1 6 p < 1). Let m 2
L1

loc(R
N ). At first we consider the positive part ofm and, in contrast to the approach

in Sections 1–3, we define the spectral function by the variational formula

s(� + �m+) = sup
�
�
Z
jruj2 + �

Z
m+u2:u 2 D1

�
; (4.1)

(� > 0) and let �1(m+) = supf� > 0: s(� + �m+) <1g.
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PROPOSITION 4.1. One has �1(m+) > 0 if and only if H1(RN ) � Q(m+). In
that case, for 0 6 � < �1(m

+), a+� (u; v) =
R ruru � �

R
m+uv; Q(a+� ) =

H1(RN ) defines a closed, symmetric, lower bounded form. Moreover, one has
�1(m

+) =1 if and only if m+ has form bound 0 with respect to ��2.
Proof. (a) If � > 0 such that c := s(� + �m+) <1, then

�

Z
m+u2

6 ckuk2
L2 +

Z
jruj2 6 (c+ 1)kuk2

H1

(u 2 D(RN )). Let u 2 H1(RN ). There exist un 2 D(RN ) such that un ! u in
H1(RN ) and a.e. It follows from Fatou’s lemma that �

R
m+juj2 6

liminf
n!1

�
R
m+u2

n 6 (c + 1)kuk2
H1 . Hence H1 � Q(m+). Conversely, if H1 �

Q(m+), it follows from the closed graph theorem that there exists a constant
c > 0 such that

R
m+u2 6 ckuk2

H1 = c(
R jruj2 + R

u2) (u 2 H1). Hence
s(� + �m+) 6 1 whenever 0 6 � 6 1

c
.

(b) Assume that �1 = �1(m
+) > 0 and let 0 < � < �1(m

+). Choose � > 0
such that �(1+�) < �1, let s := s(�+ �(1+�)m+). Then� R jruj2 + �(1+
�)
R
m+u2 6 s

R
u2 (u 2 H1). Hence

(1 + �)

Z
jruj2 � �(1 + �)

Z
m+u2 + (s+ �)

Z
u2
> �kuk2

H1 :

and a+� (u; u) +
s+�
1+�

R
u2 > �

1+�kuj2H1 . This implies that a+� is closed and lower
bounded.
(c) If s(�) := s(� + �m+) < 1 for all � > 0, then � R jruj2 + �

R
m+u2 6

s(�)kuk2
2 and so

R
m+u2 6 1

�

R jruj2 + s(�)
�
kuk2

L2 (u 2 H1). Thus m+ has form
bound 0 with respect to ��2.

Conversely, assume that m+ has form bound 0 with respect to ��2; i.e. for all
" > 0 there exists � > 0 such thatZ

m+u2
6 "

Z
jruj2 + �

Z
u2 (u 2 H1):

Then� R jruj2 +� R m+u2 6 (�� 1
")
R
m+u2 + �

" 6
�
" for all u 2 D1 whenever

� 6 1
" . 2

Assume that �1(m+) > 0. Let 0 < � < �1(m
+). Then a�(u; v) = a+� (u; v) +

�
R
m�uv,Q(a�) = H1(RN )\Q(m�) defines a closed, lower bounded form. We

define�(�2 + �m) on L2(RN ) as the operator associated with the form a�. Thus
�2+�m is self-adjoint and generates aC0-semigroup (et(�2+�m))t>0 onL2(RN ).
It follows from [24, Lemma 4.6, p. 349] that D(RN ) is a form core of �2 + �m.
Thus

s(�2 + �m) = sup
�
�
Z
jruj2 +

Z
�mu2:u 2 D1

�
(4.2)
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is the spectral bound of �2 + �m if 0 6 � < �1(m
+).

EXAMPLE 4.2. LetN > 3; 0 6 m 2 LN=2(RN ). Then�1(m) =1. In fact, since
H1(RN ) � L2N=(N�2), it follows that LN=2 ,! L(H1(RN );H�1(RN )). Since the
injection H1(B(0; R)) ,! L2(B(0; R)) is compact for all R > 0, it follows that
m 2 K(H1(RN );H�1(RN )) (the compact operators) wheneverm 2 D(RN ). The
test functions being dense inLN=2, it follows thatLN=2 � K(H1(RN );H�1(RN )).
By [31, Problem 39, p. 369] this implies that each m 2 LN=2 is relatively form
compact with respect to ��2 and has relative form bound 0.

EXAMPLE 4.3. LetN > 3;m(x) = jxj�2. By Hardy’s inequality (see [17] or [18,
XVIII (7.47), p. 754]) there exists �0 > 0 such that

�0

Z juj2
jxj2 6

Z
jruj2 (u 2 D(RN )): (4.4)

Let us assume that �0 > 0 is optimal (e.g. �0 = 2:25 if N = 5, see [30, p. 172]). It
follows from the definition that s(�) 6 0 for � 2 [0; �0)), hence by Theorem 3.1,
s(�) = 0 for � 2 [0; �0]. We show that s(�) =1 for � > �0, i.e. �0 = �1(m). In
fact, let � > 0 such that s := s(�+�m) <1. We show that s(�+�m) 6 0. One
has � R jruj2 + �

R
u2

x2 6 s
R
u2 (u 2 D(RN )). Replacing u by u�(x) = u(�x),

this yields,

��2
Z
jruj2 + ��2

Z
u2

x2 6 s

Z
u2 (u 2 D(RN ))

for all � > 0. It follows that

�
Z
jruj2 + �

Z
u2

x2 6 0 (u 2 D(RN )): 2

Next we prove the analogous result of Theorem 3.3 on L2(RN ) if m+ 2 LN=2.
Note that by Example 2.12 (c) one has m+ 62 cKN , in general.

THEOREM 4.4. Let N > 3, m 2 L1
loc(R

N ) such that 0 6= m+ 2 LN=2. If
s(��m�) < 0, then the conclusions of Theorem 3.3 hold for p = 2.

Proof. It follows from Example 4.2 that �ess(� + �m+) = �ess(�) for � > 0.
Thus, if s(� + �m+) > 0, then s(� + �m+) is an eigenvalue. It follows from
the Cwickel–Lieb–Rosenbljum-bound ([31, p. 101]) that s(� + �m+) = 0 for
� 2 [0; �0] for some �0 > 0. Now the proof of Theorem 3.2 and Theorem 3.3 can
be used for this case.

The following example shows that if �1(m+) < 1 it may happen that s(� +
�m) < 0 for all 0 < � < �1(m

+).
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EXAMPLE 4.5. Let N > 3, q1(x) = jxj�2; q2 2 L1(RN );m = q1 � q2. Denote
by �0 > 0 the best constant in Hardy’s inequality (4.4). Then the following holds:

(a) One has s(�2 + �m) <1 if and only if � 6 �0.
(b) If s(�2 � q2) = 0, then for all � 2 [0; �0), s(�2 + �m) = 0 and 0 is not an

eigenvalue of �2 + �m.
(c) Assume that N > 5. If s(�2 � q2) < 0, then s(�2 + �m) < 0 for all

� 2 [0; �0].

Proof. (a) Let � > 0 such that s(�2 + �m) < 1. Then s(�2 + �q1) 6
s(�2 + �m) + �kq2k1 <1. Hence � 6 �0 (see Example 4.3).
(b) is shown as Proposition 3.7.
(c) Assume that 0 < � 6 �0 such that s(�2 + �m) = 0. Then s(�2 + �m) =
0 > s(�2 � �q2). Hence by [31, Example 9, p. 119], �ess(�2 + �m) �
(�1; s(�2 � �q2)]. Thus 0 is an eigenvalue of �2 + �m. But s(�2 + �q1) = 0.
It follows from Proposition 3.8 that �2 + �q1 = �2 + �m, a contradiction. 2
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