The Spectral Function and Principal Eigenvalues for Schrödinger Operators

WOLFGANG ARENDT¹ and CHARLES J. K. BATTY²

¹Universität Ulm, Abt. Mathematik V, D-89069 Ulm, Germany ²St. John's College, Oxford OX1 3JP Great Britain

(Received: 11 August 1994; accepted: 25 January 1995)

Abstract. Let $m \in L^1_{loc}(\mathbb{R}^N)$, $0 \neq m_+$ in Kato's class. We investigate the *spectral function* $\lambda \mapsto s(\Delta + \lambda m)$ where $s(\Delta + \lambda m)$ denotes the upper bound of the spectrum of the Schrödinger operator $\Delta + \lambda m$. In particular, we determine its derivative at 0. If m_- is sufficiently large, we show that there exists a unique $\lambda_1 > 0$ such that $s(\Delta + \lambda_1 m) = 0$. Under suitable conditions on m^+ it follows that 0 is an eigenvalue of $\Delta + \lambda_1 m$ with positive eigenfunction.

Key words: Principal eigenvalue, Schrödinger semigroup, exponential stability, spectral bound, Brownian motion.

Introduction

Let $m \in L^1_{loc}(\mathbb{R}^N)$ be such that m^+ is in Kato's class. For $\lambda > 0$ we consider the Schrödinger operator $\Delta + \lambda m$ on $L^p(\mathbb{R}^N)$. By $s(\Delta + \lambda m) = \sup\{\mu: \mu \in \sigma(\Delta + \lambda m)\}$ we denote the *spectral bound* of $(\Delta + \lambda m)$ (which is independent of $p \in [1, \infty)$). The function $\lambda \in [0, \infty) \mapsto s(\Delta + \lambda m)$ is convex, we call it the *spectral function* of m. The purpose of this paper is a systematic investigation of this function.

In Section 2 we consider the case when $m \ge 0$. Fefferman and Phong [19] and Schechter [33] have used Fourier analysis and L^2 -methods to obtain some estimates for the spectral bound. We use L^{∞} -methods (the Feynman–Kac formula and Kashmin'skii's lemma) to obtain a different upper bound for the spectral function. For small values of λ , our estimate is quite sharp; in particular, it enables us to characterize when the derivative

$$d/d\lambda_{\lambda=0}s(\Delta+\lambda m^+)$$
 is 0.

Criteria for $s(\Delta - \lambda m^{-}) < 0$ ($\lambda > 0$) had been given in [5], [9] and [7]. Using those and the results of Section 2, we are able to describe conditions under which there exists a unique $\lambda_1 > 0$ such that $s(\Delta + \lambda_1 m) = 0$ (Section 3). This is interesting for the asymptotic behavior of the semigroup $e^{t(\Delta + \lambda_1 m)}$. Under suitable assumptions we can show in addition that λ_1 is a principal eigenvalue. We also investigate when the spectral function has a strict minimum. This is related to the question when $s(\Delta - \lambda m^{-})$ is strictly decreasing which has been treated in [7].

The motivation of this work comes from two sources. Of course the spectral behaviour of $\Delta + \lambda m$ is an important subject in mathematical physics and there are previous results of B. Simon [34] and [35] on $s(\Delta + \lambda m)$ for small $\lambda > 0$ (see also the survey article [36]).

The study of principal eigenvalues for elliptic operators was initiated by a famous article by P. Hess and T. Kato [21] who considered a bounded domain and Dirichlet boundary conditions. They were interested in a nonlinear eigenvalue problem and used the principal eigenvalue for the linearized problem in order to study bifurcation. More recently such problems were considered on \mathbb{R}^N by Allegretto [2], and Brown *et al.*, [10–13]. Their motivation comes partly from a biological model (see, e.g. Fleming [20]). Similar questions for non-autonomous periodic parabolic problems on \mathbb{R}^N are considered by Daners and Koch-Medina [14, 15] and Daners [16]. Principal eigenvalues for second order operators are also studied by different methods by Agmon [1], Pinchover [28, 29] and Nussbaum and Pinchover [26].

1. Preliminaries

For our purposes, the natural class of potentials is the class \widehat{K}_N introduced by Voigt [40, Section 5]. It is the Banach space

$$\widehat{K}_N = \{ m \in L^1_{\text{loc}}(\mathbb{R}^N) : m * (\mathbf{1}_{B(0,1)} E_N) \in L^\infty(\mathbb{R}^N) \}$$

with norm $||m||_{\widehat{K}_N} = ||m * (1_{B(0,1)}E_N)||_{\infty}.$

Here we denote by $B(x, R) = \{y \in \mathbb{R}^N : |x - y| < R\}$ the ball of center x and radius R and by 1_{Ω} the characteristic function of a set Ω . By E_N we denote the usual fundamental solution of $-\Delta = \delta$, i.e.

$$\begin{split} E_1(x) &= -\frac{1}{2} |x|, \\ E_2(x) &= -\frac{1}{2\pi} \ln |x|, \\ E_N(x) &= (N-2)^{-1} 2^{-1} \pi^{-N/2} \Gamma\left(\frac{N}{2}\right) |x|^{2-N} \quad (N \ge 3). \end{split}$$

The kernel of the Gaussian semigroup is denoted by $p_t(x) = (4\pi t)^{-N/2} e^{-|x|^2/4t}$ and we define

$$\psi_t(x) = \int_0^t p_s(x) \, \mathrm{d}s = (4\pi)^{-N/2} |y|^{2-N} \int_{|y|^2/t}^\infty u^{(N/2)-2} \, \mathrm{e}^{-(u/4)} \, \mathrm{d}u$$
$$(t > 0, \, x \in \mathbb{R}^N).$$

PROPOSITION 1.1. For $m \in L^1_{loc}(\mathbb{R}^n)$ the following are equivalent:

(i) m ∈ K_N;
(ii) m is relatively bounded with respect to Δ₁, the Laplacian on L¹(ℝ^N);
(iii) |m| * ψ_t ∈ L[∞](ℝ^N) for some t > 0;
(iv) |m| * ψ_t ∈ L[∞](ℝ^N) for all t > 0.

In this case, $c_N(m) := \inf_{t>0} ||m| * \psi_t ||_{\infty} = \inf_{R>0} ||(1_{B(0,R)} E_N) * |m|||_{\infty}$.

Proof. The equivalence of (i), (ii) and (iii) follows from [40, 5.1 (a)]. Property (iii) follows trivially from (iv). We show that (ii) implies (iv). Let t > 0. Note that $\psi_t * f = \int_0^t e^{s\Delta_1} f \, ds \in D(\Delta_1)$ for all $f \in L^1(\mathbb{R}^N)$. Hence by assumption $|m|(\psi_t * f) \in L^1(\mathbb{R}^N)$ for all $f \in L^1(\mathbb{R}^N)$. It follows by duality that $\psi_t * |m| \in L^{\infty}(\mathbb{R}^N)$.

The last identity is given in [40, 5.1 (c)].

REMARK 1.2. One has $\|\psi_t * |m|\|_{\infty} = \||m| \int_0^t e^{s\Delta_1} ds \|_{\mathcal{L}(L^1)}$ (by duality). In particular, it follows from [40, 5.1 (b)] that

 $m \mapsto |||m| * \psi_1||_{\infty}$

defines an equivalent norm on \widehat{K}_N .

Kato's class in the sense of Simon [37, A2] is the closed subspace $K_N = \{m \in \widehat{K}_N : c_N(m) = 0\}$ of \widehat{K}_N .

By Δ_p we denote the Laplacian on $L^p(:=L^p(\mathbb{R}^N))$ (i.e. $D(\Delta_p) = \{f \in L^p: \Delta f \in L^p\}, \Delta_p f = \Delta f\}$.

Let $m \in L^1_{\text{loc}}(\mathbb{R}^N)$ such that $m^+ \in \widehat{K}_N, c_N(m^+) < 1$ (see Proposition 1.1). Then one defines a C_0 -semigroup $(e^{t(\Delta_p+m)})_{t\geq 0}$ on $L^p(\mathbb{R}^N)$ $(1 \leq p < \infty)$ in the following way: denote by s – lim the limit in the strong operator topology in $\mathcal{L}(L^p)$. Let $m_k^+ = \inf\{k, m^+\}, m_k^- = \inf\{k, m^-\}$. Then

$$e^{t(\Delta_p + m^+)} = s - \lim_{k \to \infty} e^{t(\Delta_p + m_k^+)};$$

$$e^{t(\Delta_p - m^+)} = s - \lim_{k \to \infty} e^{t(\Delta_p - m_k^-)};$$

$$e^{t(\Delta_p + m)} = s - \lim_{k \to \infty} e^{t(\Delta_p + m^+ - m_k^-)} = s - \lim_{k \to \infty} e^{t(\Delta_p - m^- + m_k^+)}.$$

By $\Delta_p + m$ we denote the generator of the semigroup $(e^{t(\Delta_p+m)})_{t\geq 0}$. This notation is symbolic; i.e., in general one has $D(\Delta_p + m) \supset D(\Delta_p) \cap D(m)$ with strict inclusion. However, if p = 1, then $D(\Delta_1 + m) = D(\Delta_1) \cap D(m)$ (where $D(m) = \{f \in L^1: fm \in L^1\}$) and $D(\Delta_1 + m) = D(\Delta_1)$ if $m^- \in L^\infty$. We refer to [40, 41] for all this.

It follows from the definition that $e^{t(\Delta_p+m)} \ge 0$ for t > 0 (in the sense of positive, i.e. positivity preserving operators).

PROPOSITION 1.3. Let $1 \leq p \leq \infty$. The semigroup $(e^{t(\Delta_p+m)})_{t\geq 0}$ on $L^p(\mathbb{R}^N)$ is irreducible (see [25, p. 306] for the definition).

Proof. Since $0 \leq e^{t(\Delta_p - m^-)} \leq e^{t(\Delta_p + m)}$ we can assume that $m^+ = 0$. Let $V = m^-, V_k = \inf\{V, k\} \ k \in \mathbb{N}$). Then by [41, § 3] (or [30, S.16, p. 373]) $e^{t(\Delta_p - (V - V_k))}$ converges strongly to $e^{t\Delta}$ as $k \to \infty$. Now assume that $\mathcal{J} \subset L^p(\mathbb{R}^N)$ is a closed ideal invariant under $e^{t(\Delta - V)}$. Since $e^{t(\Delta - (V - V_k))} \leq e^{kt} e^{t(\Delta - V)}$, it follows that $e^{t(\Delta - (V - V_k))} \mathcal{J} \subset \mathcal{J}(t \ge 0, k \in \mathbb{N})$. Letting $k \to \infty$, one obtains $e^{t\Delta} \mathcal{J} \subset \mathcal{J}(t \ge 0)$ and so $\mathcal{J} = 0$ or $\mathcal{J} = L^2(\mathbb{R}^N)$ since $(e^{t\Delta})_{t\ge 0}$ is irreducible.

REMARK 1.4. The proof shows that $(e^{t(\Delta_p+m)})_{t\geq 0}$ is an irreducible, positive C_0 semigroup whenever $m: \mathbb{R}^N \to R$ is measurable, $m^+ \in \widehat{K}_N$, $c_N(m^+) < 1$ and $m^$ is $e^{t\Delta_p}$ -regular in the sense of Voigt [41, Definition 31]; this property is independent of $p \in [1, \infty)$, ([40], [41, 4.3]). There exists a regular $m_-: \mathbb{R}^N \to [0, \infty)$ which is nowhere integrable [38].

We define $\Delta_{\infty} + m$ as the adjoint of $\Delta_1 + m$. Thus $\Delta_{\infty} + m$ generates a weak*-continuous semigroup $(e^{t(\Delta_{\infty}+m)})_{t\geq 0}$ on $L^{\infty}(\mathbb{R}^N)$.

It has been shown by Hempel and Voigt [22] that the spectrum $\sigma(\Delta_p + m)$ is independent of $p \in [1, \infty]$.

2. The Spectral Function for Positive Potentials

Let $m \in \widehat{K}_N$. Then for $0 \leq \lambda < \lambda_0 := c_N (m^+)^{-1}$ the operator $\Delta_p + \lambda m$ is defined on $L_p(\mathbb{R}^N) (1 \leq p \leq \infty)$ and its spectrum is real and independent of p (see Section 1). By

$$s(\lambda) = s(\Delta_p + \lambda_m) = \sup\{\mu \in \sigma(\Delta_p + \lambda_m)\}\$$

we denote the *spectral bound* of $\Delta_p + \lambda m$ and we call $s: [0, \lambda_0) \mapsto \mathbb{R}$ the *spectral function* of m. In this section we investigate s in a neighborhood of 0; in particular we determine the derivative of s at 0 if m is positive.

PROPOSITION 2.1. For $0 \leq \lambda < \lambda_0$ one has the variational formula

$$s(\lambda) = \sup\left\{-\int |\nabla u|^2 + \lambda \int m u^2 : u \in \mathcal{D}_1\right\},\tag{2.1}$$

where $\mathcal{D}_1 = \{ u \in \mathcal{D}(\mathbb{R}^N); \|u\|_{L^2} = 1 \}$. In particular, *s* is a convex function on $[0, \lambda_0)$. Here $\mathcal{D}(\mathbb{R}^N)$ denotes the space of all test functions.

Proof. It follows from [40, § 5] that for $0 \le \lambda < \lambda_0$ the operator $-(\Delta_2 + \lambda m)$ is associated with the closed lower bounded form $a_{\lambda}(u, v) = \int \nabla u \nabla v - \lambda \int muv$ with domain $D(a_{\lambda}) = H^1(\mathbb{R}^N) \cap Q(m^-)$, where $Q(m^-)$ is the form domain of m^- . Since $\mathcal{D}(\mathbb{R}^N)$ is a form core of a_{λ} [24, VI Lemma 4.6, p. 349], (2.1) is the usual variational formula.

Assume that $m \in \widehat{K}_N$. Then s(0) = 0 and

$$s'(0+) = \lim_{\lambda \downarrow 0} \frac{s(\lambda)}{\lambda}$$

exists. In fact, formula (2.1) defines a convex function from $s: [0, \lambda_0) \to \mathbb{R}$. Our aim is to determine when s'(0+) = 0.

THEOREM 2.2. Let $0 \leq m \in \widehat{K}_N$. The following assertions are equivalent.

- (a) s'(0+) = 0;(b) $\lim_{t \to \infty} \sup_{x \in \mathbb{R}^N} \frac{1}{t}(\psi_t * m)(x) = 0;$
- (c) $\lim_{R \to \infty} \sup_{x \in \mathbb{R}^N} \frac{1}{R^N} \int_{B(x,R)} m(y) \, \mathrm{d}y = 0;$
- (d) $\lim_{t\to\infty} \sup_{x\in\mathbb{R}^N} (p_t * m)(x) = 0.$

REMARK. In condition (b) and (d) we can replace the supremum by the essential supremum; i.e., (b) is equivalent to $\lim_{t\to\infty} \frac{1}{t} \|\psi_t * m\|_{\infty} = 0$ and (d) is equivalent to $\lim_{t\to\infty} \|p_t * m\|_{\infty} = 0$. In fact, if $0 \le m \in L^1_{\text{loc}}(\mathbb{R}^N)$ and $q: \mathbb{R}^N \to [0, \infty)$ is continuous, then $m * q: \mathbb{R}^N \to [0, \infty]$ is lower semi-continuous.

The equivalence of (a) and (b) follows from the following identity.

PROPOSITION 2.3. Let $m \in \widehat{K}_N$ such that $m^- \in L^\infty$. Then

$$s'(0+) = \lim_{t \to \infty} \frac{1}{t} \sup_{x \in \mathbb{R}^N} (m * \psi_t)(x).$$
(2.2)

Proof. Observe that $s(\Delta + \lambda(m+c)) = s(\Delta + \lambda m) + \lambda c$ and $((m+c)*\psi_t)(x) = (m*\psi_t)(x) + tc$. Thus, replacing m by m + c if necessary, we can assume that $m \ge 0$.

We will use the Feynman–Kac formula (see [40, § 6]) which is usually associated to $\frac{1}{2}\Delta$ instead of Δ . Let $\tilde{\psi}_t(x) = \int_0^t p_{s/2}(x) \, ds = 2\psi_{t/2}(x)$. Then (2.2) is equivalent to

$$\lim_{\lambda \downarrow 0} \frac{s(\frac{1}{2}\Delta + \lambda m)}{\lambda} = \lim_{t \to \infty} \frac{1}{t} \|\tilde{\psi}_t * m\|_{\infty}.$$
(2.3)

One has $(m * \tilde{\psi}_t)(x) = E^x [\int_0^t m(B(s)) ds]$ $(x \in \mathbb{R}^N)$, see [9, p. 462]. Let $\alpha_t = \|m * \tilde{\psi}_t\|_{\infty}$. Let $t > 0, 0 < \lambda < \alpha_t^{-1}$. Then $\sup_x E^x [\exp \int_0^t \lambda m(B(s)) ds] = \alpha_t \lambda < 1$. It follows from Khasmin'skii's lemma [37, B.1.2, p. 461] that $e^{\frac{1}{2}ts(2\lambda)} \leq 1$

 $\|\mathbf{e}^{t(\frac{1}{2}\Delta_{\infty}+\lambda m)}\|_{\mathcal{L}(L^{\infty})} = \|\mathbf{e}^{t(\frac{1}{2}\Delta_{\infty}+\lambda m)}\mathbf{1}\|_{\infty} = \sup_{x} E^{x}[\exp \lambda \int_{0}^{t} m(B(s)) \, \mathrm{d}s] \leq$ $\frac{1}{1-\lambda\alpha_t}. \text{ Thus } s(\lambda) \leqslant \frac{1}{t} \log \frac{1}{1-\lambda\alpha_t}. \text{ Taking the derivative at 0 with respect to } \lambda$ on both sides yields $s'(0+) \leqslant \frac{\alpha_t}{t}$ (t > 0). Hence $s'(0+) \leqslant \frac{\lim_{t \to \infty} \alpha_t}{t}.$ In order to show the reverse inequality let $0 < \varepsilon < \lambda_0, w \in \mathbb{R}$ such that $s(\frac{1}{2}\Delta + \lambda m) \leqslant \lambda w$ for all $0 \leqslant \lambda \leqslant \varepsilon$. Then by Jensen's inequality,

$$\begin{split} & \overline{\lim_{t \to \infty} \frac{1}{t} \sup_{x} E^{x} \left[\lambda \int_{0}^{t} m(B(s)) \, \mathrm{d}s \right] \leqslant} \\ & \overline{\lim_{t \to \infty} \frac{1}{t} \log \sup_{x} E^{x} \left[\exp \lambda \int_{0}^{t} m(B(s)) \, \mathrm{d}s \right] =} \\ & \overline{\lim_{t \to \infty} \frac{1}{t} \log \| \mathrm{e}^{t(\frac{1}{2}\Delta_{\infty} + \lambda m)} \mathbf{1} \|_{L^{\infty}} =} \\ & \overline{\lim_{t \to \infty} \frac{1}{t} \log \| \mathrm{e}^{t(\frac{1}{2}\Delta_{\infty} + \lambda m)} \|_{\mathcal{L}(L^{\infty})} = s(\frac{1}{2}\Delta + \lambda m) \leqslant \lambda w. \end{split}$$

Hence $\lim_{t\to\infty} \frac{1}{t} \| \widetilde{\psi}_t * m \|_{\infty} \leq w$. This shows that $\lim_{t\to\infty} \frac{1}{t} \| \widetilde{\psi}_t * m \|_{\infty} \leq s'(0+)$.

In order to prove the other equivalences of Theorem 2.2 we need some preparation.

Let R > 0. By a cube of length R we mean a set of the form $x - Q_R$ where $x \in \mathbb{R}^N$ and $Q_R = \{y \in \mathbb{R}^N : 0 \leq y_j \leq R, j = 1, \dots, N\}$. Let $m: \mathbb{R}^N \to [0, \infty)$ be measurable. We let $q_R(m) = \sup\{\int_O m(y) \, dy: Q \text{ is a cube of length } R\}$, i.e., $q_R(m) = \|1_{Q_R} * m\|_{\infty}.$

LEMMA 2.4. Let t > 0, R > 0. Then

$$\|p_t * m\|_{\infty} \leq 2^N ((4\pi t)^{-\frac{1}{2}} + R^{-1})^N \cdot q_R(m).$$
(2.4)

Proof. Let $c = q_R(m)$. We have to show that $(p_t * m)(x) \leq c 2^N ((4\pi t)^{-\frac{1}{2}} +$ $(\frac{1}{R})^N$. Replacing m by m(. + x) if necessary we can assume that x = 0. For $n = (n_1, \dots, n_N) \in \mathbb{N}_0^N$ we let $n^2 = \sum_{j=1}^N n_j^2$ and $Q(R, n) = \{y \in \mathbb{R}^N; Rn_j \leq N_j \in \mathbb{R}^N\}$ $|y_j| \leq (n_j + 1)R \ (j = 1 \leq N)$. Since Q(R, n) is the union of 2^N cubes of length R, one has $\int_{Q(R,n)} m(y) \, dy \leq c 2^N$. Hence

$$(p_t * m)(0) = \sum_{n \in \mathbb{N}_0^N} (4\pi t)^{-\frac{N}{2}} \int_{Q(R,n)} m(y) \, \mathrm{e}^{-y^2/4t} \, \mathrm{d}y$$
$$\leqslant (4\pi t)^{-N/2} \sum_{n \in \mathbb{N}_0^N} \mathrm{e}^{-n^2 R^2/4t} \int_{Q(R,n)} m(y) \, \mathrm{d}y$$

$$\leq (4\pi t)^{-N/2} c \cdot 2^{N} \sum_{n \in \mathbb{N}_{0}^{N}} e^{-n^{2}R^{2}/4t}$$

$$= (4\pi t)^{-N/2} c \cdot 2^{N} \left(\sum_{k=0}^{\infty} e^{-R^{2}k^{2}/4t}\right)^{N}$$

$$\leq (4\pi t)^{-N/2} c \cdot 2^{N} \left(1 + \int_{0}^{\infty} e^{-R^{2}u^{2}/4t} du\right)^{N}$$

$$= (4\pi t)^{-N/2} c 2^{N} (1 + \sqrt{4\pi t} R^{-1})^{N}.$$

LEMMA 2.5. Let $m: \mathbb{R}^N \to [0, \infty)$ be measurable. The following are equivalent.

- (i) For all t > 0 one has $p_t * m \in L^{\infty}$;
- (ii) there exists t > 0 such that $p_t * m \in L^{\infty}$;
- (iii) $\sup_{R \ge 1} \sup_{x \in \mathbb{R}^N} R^{-N} \int_{B(x,R)} m(y) \, \mathrm{d}y < \infty;$

(iv) there exists R > 0 such that $\sup_{x \in \mathbb{R}^N} R^{-N} \int_{B(x,R)} m(y) \, dy < \infty$.

Proof. (i) \Longrightarrow (i) and (iii) \Longrightarrow (iv) are trivial. (ii) \Longrightarrow (iii) : Assume that $p_{t_0} * m \in L^{\infty}$. Then $p_t * m = p_{t-t_0} * (p_{t_0} * m) \in L^{\infty}$ and $\|p_t * m\|_{\infty} \leq \|p_{t_0} * m\|_{\infty}$ for all $t \geq t_0$. Let $R \geq t_0^{\frac{1}{2}}$. Let $t = R^2$. Then for $x \in \mathbb{R}^N$,

$$R^{-N} \int_{B(x,R)} m(y) \, \mathrm{d}y \leqslant e^{\frac{1}{4}} t^{-N/2} \int_{B(x,t^{1/2})} e^{-|x-y|^2/4t} m(y) \, \mathrm{d}y$$
$$\leqslant (4\pi)^{N/2} e^{\frac{1}{4}} (p_t * m)(x) \leqslant (4\pi)^{N/2} e^{\frac{1}{4}} \| p_t * m \|_{\infty}.$$
(2.5)

(iv) \implies (i) This follows from (2.4).

PROPOSITION 2.6. Let $0 \leq m \in \widehat{K}_N$. Then

- (a) $p_t * m \in L^{\infty}$ for all t > 0;
- (b) $\sup_{R \geqslant 1} \sup_{x \in \mathbb{R}^N} R^{-\check{N}} \int_{B(x,R)} m(y) \, \mathrm{d}y < \infty$
- (c) $\|\psi_t * m\|_{\infty} \leq (1+t) \|\psi_1 * m\|_{\infty}$.

Proof. It follows from the definition that m satisfies (iv) of Lemma 2.5 (see [40, p. 183]). Hence (a), (b) are valid. We show by induction that (c) is satisfied for $t \in [n, n + 1)$. This is clear for n = 0 since $\|\psi_t * m\|_{\infty}$ is increasing in t. Assume that it is true for n. Let $t \in [n + 1, n + 2)$. Since $p_s * p_r = p_{s+r}$, one has

 $\begin{array}{l} p_{t-1} * \psi_1 = \psi_t - \psi_{t-1}. \text{ Hence, } \|\psi_t * m\|_{\infty} = \|\psi_{t-1} * m + (p_{t-1} * \psi_1) * m\|_{\infty} \leqslant \\ \|\psi_{t-1} * m\|_{\infty} + \|\psi_1 * m\|_{\infty} \leqslant (t+1)\|\psi_1 * m\|_{\infty} \text{ by the inductive assumption. } \Box \end{array}$

Proof of Theorem 2.2. The equivalence of (a) and (b) follows from (2.2). (b) \Longrightarrow (c). First case: $N \ge 2$. Let $c = (4\pi)^{-N/2} \int_1^\infty u^{\frac{N}{2}-2} e^{-u/4} du$. Then

$$\psi_t(x) = (4\pi)^{-N/2} |x|^{2-N} \int_{|x|^2/t}^{\infty} u^{\frac{N}{2}-2} e^{-u/4} du \ge ct^{-N/2} t$$

whenever $|x| \leq t^{\frac{1}{2}}$. Hence for $t > 0, x \in \mathbb{R}^N$,

$$\begin{split} t^{-N/2} \int_{B(x,t^{1/2})} m(y) \, \mathrm{d}y &\leqslant \ c^{-1} \frac{1}{t} \int_{B(x,t^{1/2})} m(y) \psi_t(x-y) \, \mathrm{d}y \\ &\leqslant \ c^{-1} \frac{1}{t} (m \ast \psi_t)(x). \end{split}$$

Thus (b) implies (c).

Second case: N = 1. Then $\psi_t(x) \ge (4\pi)^{-1/2} |x| \int_{|x|^2/t}^4 u^{-3/2} e^{-u/4} du \ge (4\pi)^{-1/2} |x| e^{-1} \int_{|x|^2/t}^4 u^{-3/2} du = 2^{-1} e^{-1} \pi^{-1/2} t^{1/2}$ for $|x| \le t^{\frac{1}{2}}$. Hence $t^{-\frac{1}{2}} \int_{B(x,t^{1/2})} m(y) dy \le 2e\pi^{\frac{1}{2}} \frac{1}{t} (m * \psi_t)(x)$ $(t > 0, x \in \mathbb{R})$.

(c) \implies (d). By (2.4), $\lim_{t\to\infty} ||p_t * m||_{\infty} \leq 2^N R^{-N} q_R(m)$ for all R > 0. Thus (c) implies (d).

 $(\mathbf{d}) \Longrightarrow (\mathbf{b}). \text{ Let } \varepsilon > 0. \text{ By assumption, there exists } \tau > 0 \text{ such that } \|p_t * m\|_{\infty} \leqslant \\ \varepsilon \text{ for all } t \geqslant \tau. \text{ Hence } \lim_{t \to \infty} \frac{1}{t} \|\psi_t * m\|_{\infty} \leqslant \lim_{t \to \infty} \sup_x \frac{1}{t} \int_0^\tau (p_s * m)(x) \, \mathrm{d}s + \\ \lim_{t \to \infty} \sup_x \frac{1}{t} \int_\tau^t (p_s * m)(x) \, \mathrm{d}s \leqslant \lim_{t \to \infty} \frac{1}{t} (t - \tau) \varepsilon = \varepsilon.$

COROLLARY 2.7. The set of all $0 \leq m \in \widehat{K}_N$ such that $\frac{d}{d\lambda}_{|\lambda=0+} s(\Delta + \lambda m) = 0$ is a closed cone.

Proof. It follows from Theorem 2.2 that the set in question is a cone. Let $0 \leq m \in \widehat{K}_N$, let m_1 be in the set, $||m - m_1||_{\widehat{K}_N} \leq \varepsilon$. Then $\frac{1}{t} ||\psi_t * m||_{\infty} \leq \frac{1}{t} ||\psi_t * m - m_1||_{\infty} + \frac{1}{t} ||\psi_t * m_1||_{\infty} \leq 2||\psi_1 * |m - m_1||_{\infty} + \frac{1}{t} ||\psi_t * m_1||_{\infty}$ (by Prop. 2.6 c) $\leq \text{const} ||m - m_1||_{\widehat{K}_N} + \frac{1}{t} ||\psi_t * m_1||_{\infty}$ by Remark 1.2. Hence $\overline{\lim_{t \to \infty} \frac{1}{t}} ||\psi_t * m||_{\infty} \leq \text{const.} \varepsilon$

Of special interest is the class

$$K_{N,0} := \{ m \in K_N : m \text{ is } \Delta_1 - \text{compact} \}$$

$$(2.6)$$

It has been shown by Voigt [40, 5.5] that $K_{N,0}$ coincides with the closure of $\mathcal{D}(\mathbb{R}^N)$ in \widehat{K}_N . In particular, $K_{N,0} \subset K_N$. Let $L_0^{\infty}(\mathbb{R}^N) = \{m \in L^{\infty}(\mathbb{R}^N): \text{ess.} - \lim_{|x|\to\infty} |m(x)| = 0\}.$

EXAMPLE 2.8. (cf. [40, 5.6]). Let $\frac{N}{2} if <math>N \ge 2$, and $1 \le p < \infty$ if N = 1. Then $L^p + L_0^\infty \subset K_{N,0}$. In fact, by Hölder's inequality $L^p \hookrightarrow \widehat{K}_N$. Since $\mathcal{D}(\mathbb{R}^N)$ is dense in L^p , it follows that $L^p \subset \overline{\mathcal{D}}^{K_N}$.

LEMMA 2.9. Let $m \in K_{N,0}$, $q \in L^1_{loc}(\mathbb{R}^N)$, such that $|q| \leq |m|$. then $q \in K_{N,0}$.

Proof. There exists $g \in L^{\infty}$ such that gm = q. Since by assumption, $m(1 - \Delta_1)^{-1}$ is compact, it follows that $q(1 - \Delta_1)^{-1} = gm(1 - \Delta_1)^{-1}$ is compact. \Box

COROLLARY 2.10. If $m \in K_{N,0}$, then

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}s(\Delta + \lambda m) = 0.$$

Proof. (a) If $m \in L^p, N , it follows from Theorem 2.2 (applying criterion (c)) that <math>\frac{d}{d\lambda}_{|\lambda=0+} s(\Delta + \lambda m) = 0$. By Corollary 2.7 the same remains true if $0 \leq m \in K_{N,0}$.

(b) Let $m \in K_{N,0}$. Since $\sigma_{ess}(\Delta_1) = \sigma_{ess}(\Delta_1 + \lambda m^-)$ it follows that $s(\Delta - \lambda m^-) \ge 0$ ($\lambda > 0$). Hence by (a), $0 \le \lim_{\lambda \downarrow 0} \frac{s(\Delta - \lambda m^-)}{\lambda} \le \lim_{\lambda \downarrow 0} \frac{s(\Delta + \lambda m)}{\lambda} \le \lim_{\lambda \downarrow 0} \frac{s(\Delta + \lambda m^+)}{\lambda} = 0$. We have shown that $\frac{d}{d\lambda}|_{\lambda = 0+} s(\Delta + \lambda m) = 0$. The proof is finished by replacing m by -m.

REMARKS 2.11. (a) If $N \ge 3$ and $m \in K_{N,0}$ a much stronger result than Corollary 2.10 is true: There actually exists $\lambda_1 > 0$ such that $s(\Delta + \lambda m) = 0$ for all $\lambda \in [-\lambda_1, \lambda_1]$. In fact, $s(\Delta + \lambda m) > 0$ implies that $s(\Delta + \lambda m) \in \sigma_{ess}(\Delta_1 + \lambda m) = \sigma_{ess}(\Delta_2 + \lambda m)$ (cf. Remark 3.4). Now the claim follows from the Cwikel–Lieb– Rosenbljum bound [31, p. 101].

(b) If $N \ge 3$, $m \in L^{N/2-\varepsilon} \cap L^{N/2+\varepsilon}$ for some $\varepsilon > 0$, then Simon ([34], see also [35, Theorem 1.2], [36, Theorem 1.4], [37, Theorem B.5.2]) showed that for some $\lambda_1 > 0$ one has $s(\Delta + \lambda m) = 0$ for all $\lambda \in [0, \lambda_1]$ and he showed in addition that $\sup_{t\ge 0} \|e^{t(\Delta_p + \lambda m)}\|_{\mathcal{L}(L^p)} < \infty$ $(1 \le p \le \infty)$ for all $\lambda \in [0, \lambda_1)$. The situation is much different for N = 1, 2:

(c) Let $N = 1, m \in L^1(\mathbb{R})$ such that $\int m > 0$. Then $s(\Delta + \lambda m) > 0$ for all $\lambda > 0$. In fact, let $u \in \mathcal{D}(\mathbb{R})$ such that $0 \leq u(x) \leq 1$ $(x \in \mathbb{R})$ and u(x) = 1 (|x| < 1). Let $u_n(x) = u(\frac{x}{n})$. Then $0 \leq u_n \leq 1, u_n(x) \to 1, \int |\nabla u_n|^2 \to 0$ $(n \to \infty)$. Hence $\lim_{n \to \infty} (-\int |\nabla u_n|^2 + \lambda \int u_n^2 m) = \lambda \int m > 0$ and so $s(\Delta + \lambda m) > 0$ whenever $\lambda > 0$. (d) Let N = 2 and $0 \leq m \in \widehat{K}_N$, *m* continuous, $m \neq 0$. Then $s(\Delta + \lambda m) > 0$ for all $\lambda > 0$. In fact, there exists $0 \leq q \leq m$, $0 \neq q \in \mathcal{D}(\mathbb{R}^N)$. By [31, Theorem XIII.11, p. 100], $s(\Delta + \lambda q) > 0$ ($\lambda > 0$).

(e) Other related results for N = 1, 2 are [31, Theorem X.III.110, p. 338 and Notes p. 363] and [10, Theorem 3.2].

EXAMPLES 2.12. (a) If $m \in L^1(\mathbb{R}^N)$, then m satisfies condition (c) and (d) of Theorem 2.2. However $L^1(\mathbb{R}^N)$ is not contained in \widehat{K}_N . E.g. let 2 < a < N, $m(x) = |x|^{-a} \mathbf{1}_{B(0,1)}(x)$. Then $m \in L^1(\mathbb{R}^N) \setminus \widehat{K}_N$.

(b) Let $0 \leq m \in L^{\infty}$ such that there exist $j_0 \in \{1, \ldots, N\}, -\infty < a < b < \infty$ such that supp $m \subset \Omega := \{x : a < x_{j0} < b\}$. Then s'(0+) = 0. This can be seen by applying criterion (c) of Theorem 2.2. On the other hand, it is easy to see that $1_{\Omega} \notin K_{N,0}$ if $N \geq 2$.

(c) On has $L^{N/2} \not\subset \widehat{K}_N$ for N = 4. In fact, it is easy to see that $m(x) = -|x|^{-2}(\log |x|)^{-1} \mathbb{1}_{B(0,1/2)}$ is in $L^2(\mathbb{R}^4)$ but $m \notin \widehat{K}_4$ (cf. [37, A4]).

The main point in this section is to characterize when $s'(0_+) = 0$ (Theorem 2.2), and that is what is needed in Section 3. However, our arguments allow us also to estimate $s(\Delta + \lambda m)$ for fixed λ by averages of m over balls. This is of independent interest and we want to give more details.

In the remainder of this section we assume that $0 \leq m \in \widehat{K}_N$ and let $\lambda_0 = c_N(m)^{-1}$. For convenience, we denote by

$$a_m(R) = \sup_{x \in \mathbb{R}^N} \frac{1}{R^N} \int_{B(x,R)} m(y) \,\mathrm{d}y \qquad (0 < R < \infty)$$

the upper bound of the averages of m over balls of radius R. It is not difficult to see that there exists a constant $\lambda > 0$ (depending only on the dimension N) such that

$$a_m(R_1) \ge k a_m(R_2) \quad \text{if} \quad 0 < R_1 \le R_2.$$
 (2.7)

THEOREM 2.13. One has

$$\frac{s(\lambda)}{\lambda} \leqslant c_1 a_m(R) \tag{2.8}$$

provided $0 < \lambda$, R satisfies one of the following conditions:

$$\lambda \|\psi_{R^2} * m\|_{\infty} \leqslant \frac{1}{2} \quad \text{it} \tag{2.9a}$$

$$\lambda c_1' \int_0^R r a_m(r) \, \mathrm{d}r \leqslant \frac{1}{2}. \tag{2.9b}$$

Here $c_1, c'_2 > 0$ *are constants which depend only on the dimension* N.

Proof. By the proof of Proposition 2.3 we have $s(\lambda) \leq \frac{1}{t} \log\{(1 - \lambda \| \psi_t * m \|_{\infty})^{-1}\}$ if $\lambda \| \psi_t * m \|_{\infty} < 1$. Lemma 2.4 implies that $\| p_s * m \|_{\infty} \leq \text{const} a_m(s^{1/2})$. Hence (in view of (2.7)) $s(\lambda) \leq \frac{1}{t} \log[\{1 - \lambda (\| \psi_\tau * m \|_{\infty} + \text{const} (t - \tau)a_m(\tau^{1/2}))\}^{-1}]$ provided that $0 < \tau < t$ and λ is sufficiently small. If $\lambda \| \psi_\tau * m \|_{\infty} \leq \frac{1}{2}$ we may choose $t > \tau$ such that $\lambda \text{ const} (t - \tau)a_m(\tau^{1/2}) = \frac{1}{4}$ and deduce that there exists a constant $c_1 > 0$ (depending only on N) such that

$$s(\lambda) \leqslant c_1 \lambda a_m(R) \tag{2.10}$$

whenever $\lambda \|\psi_{R^2} * m\|_{\infty} \leq \frac{1}{2}$. By Proposition 1.1, given $0 < \lambda < \frac{\lambda_0}{2} = (2 c_N(m))^{-1}$, we always find R > 0 such that $\lambda \|\psi_{R^2} * m\|_{\infty} \leq \frac{1}{2}$. Lemma 2.4 shows that

$$\begin{split} \|\psi_{R^2} * m\|_{\infty} &\leqslant \int_0^{R^2} \|p_t * m\|_{\infty} \, \mathrm{d}t \\ &\leqslant \text{ const. } \int_0^{R^2} t^{-N/2} q_{t^{1/2}}(m) \, \mathrm{d}t \\ &\leqslant \text{ const. } \int_0^R r \, a_m(r) \, \mathrm{d}r. \end{split}$$

The estimates given by Theorem 2.13 are quite sharp. This is shown by the following (much easier) lower estimate.

PROPOSITION 2.14. For all $0 < \lambda < \lambda_0$ there exists $R_{\lambda} > 0$ such that

$$c_0 a_m(R_\lambda) \leqslant \frac{s(\lambda)}{\lambda}.$$
 (2.11)

Here $c_0 > 0$ depends only on N.

Proof. Let $0 \leq \varphi \in \mathcal{D}(\mathbb{R}^N)$ such that $\varphi(y) = 1$ if $|y| \leq 1$. Let $x \in \mathbb{R}^N$, R > 0 and put $u(y) = \varphi(R^{-1}(y-x))$. Then (2.1) gives $-R^{N-2} \|\nabla\varphi\|^2 + \lambda \int_{B(x,R)} m(y) \, dy \leq s(\lambda) R^N$. Choosing $c_0 = \|\varphi\|^2 + \|\nabla\varphi\|^2$ and $R = R_\lambda = s(\lambda)^{-1/2}$ gives (2.11).

REMARK. Since (2.1) defines a convex and hence continuous function on $(-\infty, \lambda_0)$ one has $\lim_{\lambda \to 0} s(\lambda) = 0$ and thus $\lim_{\lambda \to 0^+} R_{\lambda} = \infty$. This gives another proof of (a) \Longrightarrow (c) in Theorem 2.2. Estimates similar to (2.8) but with L_1 -averages (considered here) replaced by L_p -averages (1 are obtained by Fefferman–Phong (see [19]) and Schechter [33]. In fact, they show that

$$s(\lambda) \leqslant \sup_{R>0} \left\{ C_p \lambda \sup_{x \in \mathbb{R}^N} \left(\frac{1}{R^N} \int_{B(x,R)} m(y)^p \, \mathrm{d}y \right)^{1/p} - \frac{1}{R^2} \right\}$$
(2.12)

where C_P is a constant depending on p and N, see [19, Theorem 5, p. 145], [33, Corollary 3.3]. Schechter's proof of (2.12) showed that

$$1 \leqslant C_p' \lambda \sup_{r \leqslant s(\lambda)^{-\frac{1}{2}}} r^2 \sup_{x \in \mathbb{R}^N} \left(\frac{1}{R^N} \int_{B(x,R)} m(y)^p \, \mathrm{d}y \right)^{\frac{1}{p}}$$

[33, Theorem 3.2], from which it is easy to deduce that

$$s(\lambda) \leqslant C_p'' \lambda \sup_{x \in \mathbb{R}^N} \left(\frac{1}{R^N} \int_{B(x,R)} m(y)^p \, \mathrm{d}y \right)^{1/p}$$
(2.13)

provided that

$$C_p' \lambda \sup_{r \leqslant R} r^2 \sup_{x \in \mathbb{R}^N} \left(\frac{1}{R^N} \int_{B(x,R)} m(y)^p \, \mathrm{d}y \right)^{1/p} < 1.$$

The estimates (2.12) and (2.13) are sometimes infinite – there exist functions in K_N which are not in L_{loc}^p for any p > 1. On the other hand, there are some functions not in \widehat{K}_N for which (2.12) and (2.13) are finite (see Example 4.3).

3. Potentials with Changing Sign

Throughout this section we assume that $m \in L^1_{loc}(\mathbb{R}^N)$ such that $0 \neq m^+ \in K_N$. Then $\lambda_0 = c_N(m^+)^{-1} = \infty$ (Section 2). By $s(\lambda) = s(\Delta + \lambda m) = \sup\{-\int |\nabla u|^2 + \lambda \int m u^2 : u \in D_1\}$ ($\lambda \ge 0$) we denote the spectral function. Since $m^+ \ne 0$, there exists $u \in D_1$ such that $\int m u^2 > 0$. Consequently, $\lim_{\lambda \to \infty} s(\lambda) = \infty$. Since *s* is convex, there are three different possible cases: $1.s(\lambda) > 0$ for all $\lambda > 0$; 2. there exists $\lambda_0 > 0$ such that $s(\lambda) = 0$ on $[0, \lambda_0]$; 3. there exists a unique $\lambda_1 > 0$ such that $s(\lambda_1) = 0$.

We are interested in finding conditions for the third case to occur. Since $s(\Delta - \lambda m^-) \leq s(\Delta + \lambda m)$ a necessary condition is that $s(\Delta - m^-) < 0$. We recall the results from [5], [9] and [7] characterizing this condition.

THEOREM 3.1. 1. Let $m^- \in L^1 + L^\infty$. Then $s(\Delta - m^-) < 0$ if and only if there exists R > 0 such that

$$\inf_{x \in \mathbb{R}^N} \int_{B(x,R)} m^-(y) \,\mathrm{d} y > 0.$$

2. In general one has $s(\Delta - m^-) < 0$ if and only if $\int_{\Omega} m^- = \infty$ whenever $\Omega \subset \mathbb{R}^N$ is open such that $s(\Delta_{\Omega}) = 0$. Here Δ_{Ω} denotes the Dirichlet Laplacian on $L^2(\Omega)$, i.e. $-\Delta_{\Omega}$ is associated with the form $a(u, v) = \int \nabla u \nabla v, Q(a) = H_0^1(\Omega)$.

Note that condition (b) in the following theorem has been investigated in Section 2.

THEOREM 3.2. Let $m \in L^1_{loc}(\mathbb{R}^N)$ such that $0 \neq m^+ \in K_N$. Assume that

 $\begin{array}{l} \text{(a)} \ s(\Delta-m^-)<0 \ and \\ \text{(b)} \ \frac{\mathrm{d}}{\mathrm{d}\lambda}_{|\lambda=0_+}s(\Delta+\lambda m^+)=0. \end{array} \end{array}$

Then there exists a unique $\lambda_1 > 0$ such that $s(\Delta + \lambda_1 m) = 0$.

Proof. By convexity, (a) is equivalent to $\frac{\mathrm{d}}{\mathrm{d}\lambda}_{|\lambda=0_+} s(\Delta - \lambda m^-) < 0$. It follows from the definition that $s(\Delta + \lambda m) \leq \frac{1}{2}(s(\Delta - 2\lambda m^-) + s(\Delta + 2\lambda m^+))$. Hence $\frac{\mathrm{d}}{\mathrm{d}\lambda}_{|\lambda=0_+} s(\Delta + \lambda m) \leq \frac{\mathrm{d}}{\mathrm{d}\lambda}_{|\lambda=0_+} s(\Delta - \lambda m^-) + \frac{\mathrm{d}}{\mathrm{d}\lambda}_{|\lambda=0_+} s(\Delta + \lambda m^+) < 0$. Now the claim follows by convexity since $\lim_{\lambda \to \infty} s(\Delta + \lambda m) = \infty$.

From the proof it is apparent that the theorem remains true if we replace (a) and (b) by the weaker condition

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}_{|\lambda=0_{+}}s(\Delta+\lambda m^{+}) + \frac{\mathrm{d}}{\mathrm{d}\lambda}_{|\lambda=0_{+}}s(\Delta-\lambda m^{-}) < 0.$$
(3.1)

In (2.2) we gave an exact formula for the first term: $\lim_{t\to\infty} \frac{1}{t} ||m^+ * \psi_t||_{\infty}$. In [7, Remark 4.7] an upper estimate for the second is given.

Theorem 3.2 implies that $(e^{t(\Delta_p + \lambda m)})_{t \ge 0}$ is exponentially stable for $\lambda < \lambda_1$, and unbounded for $\lambda > \lambda_1$. Similar results have been obtained formerly ([11, Theorem 4.2], [15, Theorem 7.7]); however, our condition (b) is much more general than those given in these papers.

Next we establish existence of a principal eigenvalue.

THEOREM 3.3. Let $m \in L^1_{loc}(\mathbb{R}^N)$ such that $0 \neq m^+$. Assume that

(a)
$$s(\Delta - m^-) < 0$$
;
(b) $m^+ \in L^p + L_0^{\infty}$ where $\infty > p > \frac{N}{2}$ if $N \ge 2, p \ge 1$ if $N = 1$.

Then there exists a unique $\lambda_1 > 0$ such that $s(\Delta + \lambda_1 m) = 0$. Moreover, there exists a unique $0 \leq u \in D(\Delta_2 + \lambda_1 m)$ such that $||u||_{L^2} = 1$ and $(\Delta_2 + \lambda_1 m)u = 0$. One has u(x) > 0 a.e. and $u \in D(\Delta_p + \lambda_1 m), (\Delta_p + \lambda_1 m)u = 0$ for all $1 \leq p \leq \infty$. Finally, 0 is a pole of $\mu \mapsto R(\mu, \Delta_p + \lambda_1 m)$ of order one with residue $P = u \otimes u$.

Proof. In view of Example 2.8, it follows from Corollary 2.10 that $\frac{d}{d\lambda}|_{\lambda=0_+} s(\Delta + \lambda m^+) = 0$. Thus the first assertion follows from Theorem 3.2. Moreover, m^+ defines a compact mapping from $D(\Delta_1)$ (with the graph norm) to L^1 . Since $D(\Delta_1 - \lambda_1 m^-) = D(\Delta_1) \cap D(m^-) \hookrightarrow D(\Delta_1)$, it follows that $m^+ R(\mu, \Delta_1 - \lambda_1 m^-)$ is compact. Hence $R(\mu, \Delta_1 + \lambda_1 m) - R(\mu, \Delta_1 - \lambda_1 m^-) = \lambda_1 R(\mu, \Delta_1 + \lambda_1 m) m^+ R(\mu, \Delta_1 - \lambda_1 m^-)$ is compact. It follows that 0 is a pole of the resolvent of $\Delta_1 + \lambda_1 m$. Since $(e^{t(\Delta_1 + \lambda_1 m)})_{t \ge 0}$ is positive and irreducible, the pole is of order 1 and the residue is a strictly positive rank 1 projection P (see [25, C-III. Prop. 3.5, p. 310]).

We show that 0 is also a pole of order 1 in $L^p(1 . Note that the spectrum is independent of <math>p$ and the resolvents are consistent (see [3]). Let $\varepsilon > 0$ such that $\mu \in \rho(\Delta + \lambda_1 m)$ whenever $0 < |\mu| \leq \varepsilon$. Then $\int_{|z|=\varepsilon} \frac{R(z,\Delta_1+\lambda_1 m)}{z^n} dz = 0$ for $n = 1, 2, \ldots$. It follows that $\int_{|z|=\varepsilon} \frac{R(z,\Delta_p+\lambda_1 m)}{z^n} dz = 0$ for $n = 1, 2 \ldots$ and all $p \in [1, \infty]$. Thus 0 is a pole of order 1 in L^p . Similarly one sees that the residues P_p in L^p are consistent. Since $\Delta_2 + \lambda m$ is self-adjoint it follows that $P_2 = u \otimes u$ with u(x) > 0 a.e., $||u||_{L^2} = 1$

REMARK 3.4. By the argument used in the proof one sees the following. Let A_p be operators on L^p with $\rho(A_p)$ connected and independent of $p \in [1, \infty]$. Assume that the resolvents $R(\lambda, A_p)$ are consistent for one (equivalently all) $\lambda \in \rho(A_p)$. Then $\sigma_{\text{ess}}(A_p)$ is independent of $p \in [1, \infty)$. Here $\sigma_{\text{ess}}(A_p) = \mathbb{C} \setminus \rho_{\text{ess}}(A_p)$ where $\rho_{\text{ess}}(A_p)$ consists of all points λ in \mathbb{C} such that $\lambda \in \rho(A_p)$ or λ is a pole of the resolvent with finite dimensional residue. Concerning the assumption of consistency see [3].

As a consequence of Theorem 3.3 one has

$$\|e^{t(\Delta_p + \lambda_1 m)} - u \otimes u\|_{\mathcal{L}(L^p)} \leqslant M \ e^{-\varepsilon t} \tag{$t \ge 0$}$$

for some $\varepsilon > 0$ (cf. [8, Theorem 1.2]). Thus $e^{t(\Delta_p + \lambda_1 m)} f \to (\int f u) u$ $(t \to \infty)$ in $L^p(\mathbb{R}^N)$ $(1 \leq p < \infty)$. This means that the solutions of the diffusion equation with excitation m^+ and absorption m^- converge to an equilibrium. With the help of the parameter $\lambda_1 > 0$ one has adjusted the excitation-absorption term m such that it is in equilibrium with the diffusion.

REMARK 3.5. (continuity of the principal eigenvector).

If $e^{t(\Delta_{\infty}+\lambda_1m)}$ leaves $C_0(\mathbb{R}^N)$ invariant and is strongly continuous, then the spectrum in $C_0(\mathbb{R}^N)$ is the same as in L_p (cf. [23]) and one has $u \in C_0(\mathbb{R}^N)$. This is

the case, e.g. if $m \in L^{\infty}(\mathbb{R}^N)$ by a recent result of Ouhabaz *et al.* [27].

REMARK 3.6. (uniqueness of the principal eigenvalue). In the situation of Theorem 3.2, λ_1 is the unique $\lambda > 0$ such that the problem

$$P(\lambda, p) \begin{cases} u \in D(\Delta_p + \lambda m), & u \ge 0, \quad u \ne 0, \\ \Delta_p u + \lambda m u = 0 \end{cases}$$

has a solution for some $p \in [1, \infty)$. We give the short argument for completeness: Let $\lambda > 0$ such that $P(\lambda, p)$ has a solution u. Then $s(\Delta_p + \lambda m) \ge 0$. If $s = s(\Delta_p + \lambda m) > 0$, then, since $s \notin \sigma_{ess}(\Delta_p + \lambda m)$, there exists $0 < \varphi \in L^{p'}$ such that $(\Delta_p + \lambda m)'\varphi = s\varphi$. Then φ is strictly positive by irreducibility. Hence $0 = \langle (\Delta_p + \lambda m)u, \varphi \rangle = s\langle u, \varphi \rangle$. Since $\langle u, \varphi \rangle > 0$, this implies s = 0. \Box

The idea of using relative compactness of perturbation in order to establish a principal eigenvalue is standard (see, e.g. [31]). In this context, using $s(\Delta - m^-) < 0$, it was first used by Brown et al. (see [11, Theorem 4.2], where m^+ is supposed to be of compact support). Similar results in the non-autonomous case are [15, Theorems 7.7 and 7.8]. Principal eigenvalues are obtained by Brown and Tertikas [13, Theorem 4.5] and Daners [16, Theorem 1.3] under more general conditions, but they may no longer belong to L^p .

Next we consider the case when $s(\Delta - m^{-}) = 0$.

PROPOSITION 3.7. Let $m \in L^1_{loc}(\mathbb{R}^N)$ where $N \ge 3$ and assume that

(a)
$$m^+ \in L^{N/2+\varepsilon} \cap L^{N/2-\varepsilon}$$
 for some $\varepsilon > 0$ and
(b) $s(\Delta - m^-) = 0$.

Let $\lambda_0 := \sup\{\lambda \ge 0: s(\Delta + \lambda m^+) = 0\}$. Then $\lambda_0 > 0$ and 0 is not an eigenvalue of $\Delta_p + \lambda m$ in $L^p(\mathbb{R}^N)$ for any $\lambda \in [0, \lambda_0)$ and any $p \in [1, \infty)$.

We use the following special case of [4, Theorem 1.3].

PROPOSITION 3.8. Let S, T be C_0 -semigroups on a space $L^p(1 with generators <math>A$ and B, respectively, such that $0 \leq S(t) \leq T(t)$ and s(A) = s(B) = 0. Assume that T is bounded and S is irreducible. If 0 is an eigenvalue of A, then A = B.

Proof of Proposition 3.7. We know from Remark 2.11 (a) or (b) that $\lambda_0 > 0$. Assume that $\lambda_1 \in (0, \lambda_0)$ is an eigenvalue of $\Delta_p + \lambda_1 m$ where 1 . $By Simon's theorem (Remark 2.11 b) one has <math>\sup_{t \ge 0} \|e^{t(\Delta_p + \lambda_1 m^+)}\|_{\mathcal{L}(L^p)} < \infty$. It follows from Proposition 3.8 that $\Delta_p + \lambda_1 m^+ = \Delta_p + \lambda_1 m$; i.e. $m^- = 0$. Let $\lambda_1 < \lambda_2 < \lambda_0$. Then it follows in a similar way that $\Delta_p + \lambda_1 m = \Delta_p + \lambda_2 m$, hence m = 0, a contradiction. Since by [40, 6.3], $e^{t(\Delta_1 + \lambda_1 m)}L^1 \subset L^2$, it follows that 0 is not an eigenvalue of $\Delta_1 + \lambda_1 m$ either.

REMARK 3.9. The situation considered in Proposition 3.7 is different for $p = \infty$. In fact, assume that $N \ge 3$ and $m \in L^{N/2-\varepsilon} \cap L^{N/2+\varepsilon}$ for some $\varepsilon > 0$ so that the assumptions of Proposition 3.7 are satisfied. Let $0 < \lambda < \lambda_0$. Then there exists a strictly positive $\psi \in L^{\infty}(\mathbb{R}^N)$ such that

$$(\Delta_{\infty} + \lambda m)\psi = \psi. \tag{3.2}$$

Moreover, ker $(\Delta_{\infty} + \lambda m) = \mathbb{R}\psi$.

In fact, it has been shown by Simon [34, Theorem 3.4] that there exists $\varphi \in L^{\infty} \neq 0$ such that $T(t)'\varphi = \varphi$ $(t \ge 0)$ where $T(t) = e^{t(\Delta_1 + \lambda m)}$, and also that dim ker $(\Delta_{\infty} + \lambda m) = 1$. We show that a strictly positive eigenvector exists. Define $\psi \in L^1(\mathbb{R}^N)' = L^{\infty}(\mathbb{R}^N)$ by $\langle f, \psi \rangle := \lim_{t \to \infty} \langle f, T(t)' |\varphi| \rangle$ where LIM denotes a Banach limit on $L^{\infty}(0, \infty)$. Since $|\varphi| \le T'(t) |\varphi|$ one has $\langle f, \psi \rangle \ge \langle f, |\varphi| \rangle$ for $f \ge 0$ so that $\psi \ne 0$. Since $\langle f, T(s)'\psi \rangle = \lim_{t \to \infty} \langle f, T(t + s)' |\varphi| \rangle = \langle f, \psi \rangle$ it follows that $T(s)'\psi = \psi$ $(s \ge 0)$ which is (3.2).

Next we come back to the situation considered in Theorem 3.2. We know that $s(\Delta + \lambda_1 m) = 0$ and $s(\Delta + \lambda m_1) < 0$ for $\lambda \in (0, \lambda_1)$. Since the spectral function is continuous, it has a minumum on $[0, \lambda_1]$. We investigate when this minimum is strict.

THEOREM 3.10. Let $m \in L^1_{loc}(\mathbb{R}^N)$ such that $0 \neq m^+$. Assume in addition that

(a) $\lambda \mapsto s(\Delta - \lambda m^{-})$ is strictly decreasing and (b) $m^{+} \in L^{q}(\mathbb{R}^{N}) + L_{0}^{\infty}(\mathbb{R}^{N})$ where $\infty > q > \frac{N}{2}$ (if $N \ge 2$) and $q \ge 1$ if N = 1.

Then there exists a unique $\lambda_0 > 0$ such that

$$s(\Delta + \lambda_0 m) = \min_{\lambda > 0} s(\Delta + \lambda m)$$

REMARK. Condition (a) is discussed in detail in [7]. For example, it is shown that if N = 1 and $m^- \in L^{\infty}(\mathbb{R})$, then (a) holds. Condition (b) implies that $m^+ \in K_N$.

Proof. Assume that $\min_{\lambda>0} s(\Delta + \lambda m)$ is not strict. Then there exist $0 < \delta < \lambda_0$, c < 0 such that $c = s(\Delta + \lambda m)$ for $\lambda \in (\lambda_0 - \delta, \lambda_0 + \delta)$. Since $s(\Delta - \lambda m^-)$ is strictly decreasing by hypothesis, it follows that $s(\Delta - \lambda m^-) < s(\Delta + \lambda m)$ for $\lambda \in (\lambda_0 - \delta, \lambda_0 + \delta)$. Since $\sigma_{ess}(\Delta + \lambda m) = \sigma_{ess}(\Delta - \lambda m^-)$ (cf. Remark 3.4), it follows

that c is an eigenvalue of $\Delta_2 + \lambda_0 m$. Thus there exists $u \in D(\Delta_2 + \lambda_0 m)$, $||u||_2 = 1$, such that $\Delta u + \lambda_0 m u = c u$. Consequently, $-|\nabla u|^2 + \lambda_0 \int m u^2 = c$. Since $c = s(\Delta + \lambda m)$ it follows that $c + (\lambda - \lambda_0) \int m u^2 = -\int |\nabla u|^2 + \lambda \int m u^2 \leq c$ if $|\lambda - \lambda_0| < \delta$. This implies $\int m u^2 = 0$. Hence $-\int |\nabla u|^2 + \lambda \int m u^2 = c =$ $s(\Delta + \lambda m)$ if $|\lambda - \lambda_0| < \delta$. This implies that $\Delta u + \lambda m u = c u$ if $|\lambda - \lambda_0| < \delta$ (since, if B is a form positive operator, and $u \in D(B)$ such that $(Bu \mid u) = 0$, then Bu = 0). This implies that mu = 0. Hence $\Delta_2 u = c u$, which is a contradiction. \Box

Finally, we show that it can happen that the minimum of $s(\Delta + \lambda m)$ is negative but not strict.

THEOREM 3.11. There exists $m \in L^{\infty}_{loc}(\mathbb{R}^N)$ such that $m^+ \neq 0$, m^+ has compact support and

$$-1 = \min_{\lambda > 0} s(\Delta + \lambda m) = s(\Delta + \mu m) \qquad (\mu \in [1, 2]);$$

Moreover, $s(\Delta - \lambda m^{-}) = -1$ for all $\lambda \ge 1$.

Proof. (a) It suffices to show that there exists a non-empty open set $E, 0 \leq V \in L^{\infty}_{loc}(\mathbb{R}^N), \varepsilon > 0$ such that $s(\Delta - \lambda V) \ge -1$ $(\lambda \ge 0), s(\Delta - V + \varepsilon 1_E) \le -1, V = 0$ on E. In fact, this implies that $s(\lambda) := s(\Delta + \lambda(\frac{\varepsilon}{2}1_E - V)) \ge s(\Delta - \lambda V) \ge -1$ for all $\lambda \ge 0$ and $s(1) \le s(\Delta - V + \varepsilon 1_E) \le -1, s(2) = s(\Delta + \varepsilon 1_E - 2V) \le s(\Delta + \varepsilon 1_E - V) \le -1$, so that $s(\lambda) = -1$ for $\lambda \in [1, 2]$ by convexity. Then $m = \frac{\varepsilon}{2}1_E - V$ fulfills the requirements. (b) Let $\Omega_n = \{x \in \mathbb{R}^N : a_n < |x| < b_n\}$ where $0 < a_n < b_n < a_{n+1}, \lim_{n \to \infty} b_n = 0$

(b) Let $\Omega_n = \{x \in \mathbb{R} : a_n < |x| < b_n\}$ where $0 < a_n < b_n < a_{n+1}, \lim_{n \to \infty} b_n = \infty$, such that $s(\Delta_{\Omega_n}) < s(\Delta_{\Omega_{n+1}}), \lim_{n \to \infty} s(\Delta_{\Omega_n}) = -1$. We construct $0 \leq V_n \in L^{\infty}(\mathbb{R}^N)$ and $\varepsilon > 0$, such that

$$V_n = 0 \text{ on } \bigcup_{j=1}^n \Omega_j;$$

$$V_{n+1} = V_n \text{ for } |x| \leq b_n;$$

$$s(\Delta - V_n + \varepsilon \mathbf{1}_E) \leq -1 \quad (n \in \mathbb{N}),$$

where $E = \Omega_1$. Then, letting $V(x) = V_n(x)$ for $|x| \leq b_n$ we obtain $V \in L^{\infty}_{loc}(\mathbb{R}^N)$ which satisfies the requirements of (a). In fact, $s(\Delta - \lambda V) \geq \sup_{n \in \mathbb{N}} s(\Delta_{\Omega_n}) = -1$ since V = 0 on Ω_n for all $n \in \mathbb{N}$. Since for every compact set $K \subset \mathbb{R}^N$ there exists

since V = 0 on Ω_n for all $n \in \mathbb{N}$. Since for every compact set $K \subset \mathbb{R}^n$ there exist $n \in \mathbb{N}$ such that $V_{|K} = V_{n|K}$, it follows from the variational formula that

$$s(\Delta - V + \varepsilon \mathbf{1}_E) \leq \sup_{n \in \mathbb{N}} s(\Delta - V_n + \varepsilon \mathbf{1}_E) \leq -1.$$

We construct the potentials V_n . By [7, Proposition 4.1], $\lim_{b\to\infty} s(\Delta - b\mathbf{1}_{E^c}) = s(\Delta_E) < -1$. Let $b > 0, \varepsilon > 0$ such that $s(\Delta - b\mathbf{1}_{E^c}) + \varepsilon < -1$, and let $V_1 = b\mathbf{1}_{E^c}$. Assume that V_1, \ldots, V_n are constructed. For $K \in \mathbb{N}$ let

$$U_k(x) = \begin{cases} V_n(x) & \text{if } |x| \leq b_n, \\ k & \text{if } b_n < |x| < a_{n+1}, \\ 0 & \text{if } a_{n+1} \leq |x| \leq b_{n+1}, \\ k & \text{if } |x| > b_{n+1}. \end{cases}$$

We show that there exists $k \in \mathbb{N}$ such that $s(\Delta - U_k + \varepsilon \mathbf{1}_E) < -1$ and choose $V_{n+1} := U_k$. Assume on the contrary that $-1 \leq s_{\infty} := \inf_k s_k$ where $s_k = s(\Delta - U_k + \varepsilon \mathbf{1}_E)$. Since s_k is in the approximate point spectrum there exists $u_k \in H^1(\mathbb{R}^N)$ such that $||u_k||_{L^2} = 1$ and

$$\Delta u_k - U_k u_k + \varepsilon \mathbf{1}_E u_k - s_k u_k = v_k \to 0 \tag{3.3}$$

 $\begin{array}{ll} (k \to \infty). \text{ In particular, } -\int |\nabla u_k|^2 - \int U_k u_k^2 + \varepsilon \int_E u_k^2 - s_k \to 0 \ (k \to \infty). \text{ Hence} \\ (u_k) \text{ is bounded in } H^1(\mathbb{R}^N) \text{ and we can assume that } u_k \to u \ (k \to \infty) \text{ weakly} \\ \text{in } H^1(\mathbb{R}^N). \text{ Since the embedding of } H^1(B(0,R)) \text{ in } L^2(B(0,R)) \text{ is compact,} \\ \text{it follows that } u_k \to u \text{ strongly in } L^2(B(0,R)) \text{ for all } R > 0. \text{ Since } U_k \equiv k \\ \text{ on } F = \{x : b_n < |x| < a_{n+1} \text{ or } |x| > b_{n+1}\}, \text{ it follows that } u = 0 \text{ in } F. \text{ In} \\ \text{ particular, } u_{|\Omega_{n+1}} \in H_0^1(\Omega_{n+1}). \text{ Moreover, } u_k \to u \text{ in } L^2(\mathbb{R}^N). \text{ Passing to the limit} \\ \text{ for } k \to \infty \text{ in (3.3) shows that } \Delta u - s_\infty u = 0 \text{ in } \mathcal{D}(\Omega_{n+1})'. \text{ Since } s(\Delta_{\Omega_{n+1}}) < -1 \\ \text{ and } s_\infty \geqslant -1, \text{ it follows that } u_{|\Omega_{n+1}} = 0 \text{ a.e. Thus } u \in H_0^1(B(0,b_n)). \text{ It follows} \\ \text{ from (3.3) that } \Delta u - V_n u + \varepsilon 1_E u - s_\infty u = 0 \text{ in } \mathcal{D}(\mathbb{R}^N)'. \text{ Since } s_\infty \geqslant -1 > \\ s(\Delta - V_n + \varepsilon 1_E) \text{ it follows that } u = 0. \text{ This is a contradiction, since } \|u_k\|_{L^2} = 1 \\ (k \in \mathbb{N}) \text{ and } u_k \to u \text{ in } L^2(\mathbb{R}^N). \end{array}$

4. More General Potentials on $L^2(\mathbb{R}^N)$

In some cases one can define the semigroup $(e^{t(\Delta_2+m)})_{t\geq 0}$ on $L^2(\mathbb{R}^N)$ by formmethods, but it no longer has extensions to all $L^p(\mathbb{R}^N)$ $(1 \leq p < \infty)$. Let $m \in L^1_{\text{loc}}(\mathbb{R}^N)$. At first we consider the positive part of m and, in contrast to the approach in Sections 1–3, we define the spectral function by the variational formula

$$s(\Delta + \lambda m^+) = \sup\left\{-\int |\nabla u|^2 + \lambda \int m^+ u^2 \colon u \in \mathcal{D}_1\right\},\tag{4.1}$$

 $(\lambda > 0)$ and let $\lambda_{\infty}(m^+) = \sup\{\lambda \ge 0: s(\Delta + \lambda m^+) < \infty\}.$

PROPOSITION 4.1. One has $\lambda_{\infty}(m^+) > 0$ if and only if $H^1(\mathbb{R}^N) \subset Q(m^+)$. In that case, for $0 \leq \lambda < \lambda_{\infty}(m^+)$, $a_{\lambda}^+(u, v) = \int \nabla u \nabla u - \lambda \int m^+ u v$, $Q(a_{\lambda}^+) = H^1(\mathbb{R}^N)$ defines a closed, symmetric, lower bounded form. Moreover, one has $\lambda_{\infty}(m^+) = \infty$ if and only if m^+ has form bound 0 with respect to $-\Delta_2$.

Proof. (a) If $\lambda > 0$ such that $c := s(\Delta + \lambda m^+) < \infty$, then

$$\lambda \int m^+ u^2 \leqslant c \|u\|_{L^2}^2 + \int |\nabla u|^2 \leqslant (c+1) \|u\|_{H^1}^2$$

 $(u \in \mathcal{D}(\mathbb{R}^N))$. Let $u \in H^1(\mathbb{R}^N)$. There exist $u_n \in \mathcal{D}(\mathbb{R}^N)$ such that $u_n \to u$ in $H^1(\mathbb{R}^N)$ and a.e. It follows from Fatou's lemma that $\lambda \int m^+ |u|^2 \leq \lim_{n \to \infty} \lambda \int m^+ u_n^2 \leq (c+1) ||u||_{H^1}^2$. Hence $H^1 \subset Q(m^+)$. Conversely, if $H^1 \subset Q(m^+)$, it follows from the closed graph theorem that there exists a constant c > 0 such that $\int m^+ u^2 \leq c ||u||_{H^1}^2 = c(\int |\nabla u|^2 + \int u^2) \ (u \in H^1)$. Hence $s(\Delta + \lambda m^+) \leq 1$ whenever $0 \leq \lambda \leq \frac{1}{c}$.

(b) Assume that $\lambda_{\infty} = \lambda_{\infty}(m^+) > 0$ and let $0 < \lambda < \lambda_{\infty}(m^+)$. Choose $\alpha > 0$ such that $\lambda(1 + \alpha) < \lambda_{\infty}$, let $s := s(\Delta + \lambda(1 + \alpha)m^+)$. Then $-\int |\nabla u|^2 + \lambda(1 + \alpha)\int m^+ u^2 \leq s \int u^2 (u \in H^1)$. Hence

$$(1+\alpha)\int |\nabla u|^2 - \lambda(1+\alpha)\int m^+ u^2 + (s+\alpha)\int u^2 \ge \alpha ||u||_{H^1}^2.$$

and $a_{\lambda}^+(u, u) + \frac{s+\alpha}{1+\alpha} \int u^2 \ge \frac{\alpha}{1+\alpha} ||u|_{H^1}^2$. This implies that a_{λ}^+ is closed and lower bounded.

(c) If $s(\lambda) := s(\Delta + \lambda m^+) < \infty$ for all $\lambda > 0$, then $-\int |\nabla u|^2 + \lambda \int m^+ u^2 \leq s(\lambda) ||u||_2^2$ and so $\int m^+ u^2 \leq \frac{1}{\lambda} \int |\nabla u|^2 + \frac{s(\lambda)}{\lambda} ||u||_{L^2}^2$ $(u \in H^1)$. Thus m^+ has form bound 0 with respect to $-\Delta_2$.

Conversely, assume that m^+ has form bound 0 with respect to $-\Delta_2$; i.e. for all $\varepsilon > 0$ there exists $\beta > 0$ such that

$$\int m^+ u^2 \leqslant \varepsilon \int |\nabla u|^2 + \beta \int u^2 \qquad (u \in H^1).$$

Then $-\int |\nabla u|^2 + \lambda \int m^+ u^2 \leq (\lambda - \frac{1}{\varepsilon}) \int m^+ u^2 + \frac{\beta}{\varepsilon} \leq \frac{\beta}{\varepsilon}$ for all $u \in \mathcal{D}_1$ whenever $\lambda \leq \frac{1}{\varepsilon}$.

Assume that $\lambda_{\infty}(m^+) > 0$. Let $0 < \lambda < \lambda_{\infty}(m^+)$. Then $a_{\lambda}(u, v) = a_{\lambda}^+(u, v) + \lambda \int m^- uv$, $Q(a_{\lambda}) = H^1(\mathbb{R}^N) \cap Q(m^-)$ defines a closed, lower bounded form. We define $-(\Delta_2 + \lambda m)$ on $L^2(\mathbb{R}^N)$ as the operator associated with the form a_{λ} . Thus $\Delta_2 + \lambda m$ is self-adjoint and generates a C_0 -semigroup $(e^{t(\Delta_2 + \lambda m)})_{t \ge 0}$ on $L^2(\mathbb{R}^N)$. It follows from [24, Lemma 4.6, p. 349] that $\mathcal{D}(\mathbb{R}^N)$ is a form core of $\Delta_2 + \lambda m$. Thus

$$s(\Delta_2 + \lambda m) = \sup\left\{-\int |\nabla u|^2 + \int \lambda m u^2 : u \in \mathcal{D}_1\right\}$$
(4.2)

is the spectral bound of $\Delta_2 + \lambda m$ if $0 \leq \lambda < \lambda_{\infty}(m^+)$.

EXAMPLE 4.2. Let $N \ge 3, 0 \le m \in L^{N/2}(\mathbb{R}^N)$. Then $\lambda_{\infty}(m) = \infty$. In fact, since $H^1(\mathbb{R}^N) \subset L^{2N/(N-2)}$, it follows that $L^{N/2} \hookrightarrow \mathcal{L}(H^1(\mathbb{R}^N), H^{-1}(\mathbb{R}^N))$. Since the injection $H^1(B(0, R)) \hookrightarrow L^2(B(0, R))$ is compact for all R > 0, it follows that $m \in K(H^1(\mathbb{R}^N), H^{-1}(\mathbb{R}^N))$ (the compact operators) whenever $m \in \mathcal{D}(\mathbb{R}^N)$. The test functions being dense in $L^{N/2}$, it follows that $L^{N/2} \subset K(H^1(\mathbb{R}^N), H^{-1}(\mathbb{R}^N))$. By [31, Problem 39, p. 369] this implies that each $m \in L^{N/2}$ is relatively form compact with respect to $-\Delta_2$ and has relative form bound 0.

EXAMPLE 4.3. Let $N \ge 3$, $m(x) = |x|^{-2}$. By Hardy's inequality (see [17] or [18, XVIII (7.47), p. 754]) there exists $\lambda_0 > 0$ such that

$$\lambda_0 \int \frac{|u|^2}{|x|^2} \leqslant \int |\nabla u|^2 \qquad (u \in \mathcal{D}(\mathbb{R}^N)).$$
(4.4)

Let us assume that $\lambda_0 > 0$ is optimal (e.g. $\lambda_0 = 2.25$ if N = 5, see [30, p. 172]). It follows from the definition that $s(\lambda) \leq 0$ for $\lambda \in [0, \lambda_0)$), hence by Theorem 3.1, $s(\lambda) = 0$ for $\lambda \in [0, \lambda_0]$. We show that $s(\lambda) = \infty$ for $\lambda > \lambda_0$, i.e. $\lambda_0 = \lambda_\infty(m)$. In fact, let $\lambda > 0$ such that $s := s(\Delta + \lambda m) < \infty$. We show that $s(\Delta + \lambda m) \leq 0$. One has $-\int |\nabla u|^2 + \lambda \int \frac{u^2}{x^2} \leq s \int u^2 (u \in \mathcal{D}(\mathbb{R}^N))$. Replacing u by $u_\alpha(x) = u(\alpha x)$, this yields,

$$-\alpha^2 \int |\nabla u|^2 + \lambda \alpha^2 \int \frac{u^2}{x^2} \leqslant s \int u^2 \qquad (u \in \mathcal{D}(\mathbb{R}^N))$$

for all $\alpha > 0$. It follows that

$$-\int |\nabla u|^2 + \lambda \int \frac{u^2}{x^2} \leqslant 0 \qquad (u \in \mathcal{D}(\mathbb{R}^N)).$$

Next we prove the analogous result of Theorem 3.3 on $L^2(\mathbb{R}^N)$ if $m^+ \in L^{N/2}$. Note that by Example 2.12 (c) one has $m^+ \notin \widehat{K}_N$, in general.

THEOREM 4.4. Let $N \ge 3$, $m \in L^1_{loc}(\mathbb{R}^N)$ such that $0 \ne m^+ \in L^{N/2}$. If $s(\Delta - m^-) < 0$, then the conclusions of Theorem 3.3 hold for p = 2.

Proof. It follows from Example 4.2 that $\sigma_{ess}(\Delta + \lambda m^+) = \sigma_{ess}(\Delta)$ for $\lambda > 0$. Thus, if $s(\Delta + \lambda m^+) > 0$, then $s(\Delta + \lambda m^+)$ is an eigenvalue. It follows from the Cwickel–Lieb–Rosenbljum-bound ([31, p. 101]) that $s(\Delta + \lambda m^+) = 0$ for $\lambda \in [0, \lambda_0]$ for some $\lambda_0 > 0$. Now the proof of Theorem 3.2 and Theorem 3.3 can be used for this case.

The following example shows that if $\lambda_{\infty}(m^+) < \infty$ it may happen that $s(\Delta + \lambda m) < 0$ for all $0 < \lambda < \lambda_{\infty}(m^+)$.

EXAMPLE 4.5. Let $N \ge 3$, $q_1(x) = |x|^{-2}$, $q_2 \in L^{\infty}(\mathbb{R}^N)$, $m = q_1 - q_2$. Denote by $\lambda_0 > 0$ the best constant in Hardy's inequality (4.4). Then the following holds:

- (a) One has $s(\Delta_2 + \lambda m) < \infty$ if and only if $\lambda \leq \lambda_0$.
- (b) If s(Δ₂ − q₂) = 0, then for all λ ∈ [0, λ₀), s(Δ₂ + λm) = 0 and 0 is not an eigenvalue of Δ₂ + λm.
- (c) Assume that $N \ge 5$. If $s(\Delta_2 q_2) < 0$, then $s(\Delta_2 + \lambda m) < 0$ for all $\lambda \in [0, \lambda_0]$.

Proof. (a) Let $\lambda > 0$ such that $s(\Delta_2 + \lambda m) < \infty$. Then $s(\Delta_2 + \lambda q_1) \leq s(\Delta_2 + \lambda m) + \lambda ||q_2||_{\infty} < \infty$. Hence $\lambda \leq \lambda_0$ (see Example 4.3). (b) is shown as Proposition 3.7.

(c) Assume that $0 < \lambda \leq \lambda_0$ such that $s(\Delta_2 + \lambda m) = 0$. Then $s(\Delta_2 + \lambda m) = 0$ $0 > s(\Delta_2 - \lambda q_2)$. Hence by [31, Example 9, p. 119], $\sigma_{ess}(\Delta_2 + \lambda m) \subset (-\infty, s(\Delta_2 - \lambda q_2)]$. Thus 0 is an eigenvalue of $\Delta_2 + \lambda m$. But $s(\Delta_2 + \lambda q_1) = 0$. It follows from Proposition 3.8 that $\Delta_2 + \lambda q_1 = \Delta_2 + \lambda m$, a contradiction. \Box

Acknowledgement

This research was carried out while the first author was visiting the University of Oxford. He would like to acknowledge a SERC-grant and express his gratitude for the warm and generous hospitality of St. John's College. Both authors would like to thank D. Daners for a stimulating discussion and J. Voigt for several comments on this paper.

References

- 1. Agmon, S.: Lectures on Exponential Decay of Solutions of Second-order Elliptic Equations. Math. Notes 29, Princeton University Press, Princeton N.J., 1992.
- 2. Allegretto, W.: Principal eigenvalues for indefinite-weight elliptic problems in \mathbb{R}^n . Proc. Amer. Math. Soc. **116** (1992), 701–706.
- Arendt, W.: Gaussian estimates and interpolation of the spectrum in L^p. Differential and Integral Equations 7 (1994), 1153–1168.
- Arendt, W. and Batty, C. J. K.: Domination and ergodicity for positive semigroups. *Proc. Amer. Math. Soc.* 114 (1992), 743–747.
- 5. Arendt, W. and Batty, C. J. K.: Exponential stability of a diffusion equation with absorption. *Differential and Integral Equations* **6** (1993), 1009–1024.
- Arendt, W. and Batty, C. J. K.: Absorption semigroups and Dirichlet boundary conditions. *Math.* Ann. 295 (1993), 427–448.
- 7. Arendt, W. and Batty, C. J. K.: The spectral bound of Schrödinger operators. *Potential Analysis* **5** (1996), 207–230.
- Arendt, W. and Batty, C. J. K.: Principal eigenvalues and perturbation. To appear in: *Analysis Symposium*. Leiden 1993. P. Huijsmans, M.A. Kaashoek, W. Luxemburg, and B. de Pagter (eds.) Birkhäuser.
- Batty, C. J. K.: Asymptotic stability of Schrödinger semigroups: path integral methods. *Math. Ann.* 292 (1992), 457–492.
- Brown, K. J., Cosner, C., and Fleckinger, J.: Principal eigenvalues for problems with indefinite weight functions on ℝ^N. Proc. Amer. Math. Soc. 109 (1990), 147–155.
- 11. Brown, K. J., Daners, D., and López-Gómez, J.: Change of stability for Schrödinger semigroups. Preprint.

- 12. Brown, K. J., Lin, S. S., and Tertikas, A.: Existence and nonexistence of steady-state solutions for a selection-migration model in population genetics. *J. Math. Biol.* **27** (1989), 91–104.
- Brown, K. J. and Tertikas, A.: The existence of principal eigenvalues for problems with indefinite weight function on ℝ^k. Proc. Royal Soc. Edinburgh 123A (1993), 561–569.
- 14. Daners, D. and Koch Medina, P.: Superconvexity of the evolution operator and parabolic eigenvalue problems on \mathbb{R}^k . *Differential and Integral Equations*, to appear.
- 15. Daners, D. and Koch Medina, P.: Exponential stability, change of stability and eigenvalue problems for linear time periodic parabolic equations on \mathbb{R}^N . *Differential and Integral Equations*, to appear.
- 16. Daners, D.: Principal eigenvalues for some periodic-parabolic operators on \mathbb{R}^N and related topics. Preprint. University of Sydney, 1993.
- 17. Davies, E. B.: Spectral Theory and Differential Operators. Cambridge University Press, 1995.
- 18. Dautray, R. and Lions, J. L.: Analyse Mathématique et Calcul Numérique. Masson, 1987.
- 19. Fefferman, C. L.: The uncertainty principle. Bull. Amer. Math. Soc. 9 (1983), 129-206.
- Fleming, W. H.: A selection-migration model in population genetics. J. Math. Biol. 2 (1975), 219–233.
- 21. Hess, P. and Kato, T.: On some linear and nonlinear eigenvalue problems with an indefinite weight function. *Comm. Partial Diff. Equ.* **5** (1980), 999–1030.
- 22. Hempel, R. and Voigt, J.: The spectrum of a Schrödinger operator in $L_p(\mathbb{R}^N)$ is *p*-independent. *Comm. Math. Phys.* **104** (1986), 243–250.
- 23. Hempel, R. and Voigt, J.: The spectrum of Schrödinger operators in $L_p(\mathbb{R}^d)$ and in $C_0(\mathbb{R}^d)$. In *Mathematical Results in Quantum Mechanics*, M. Demuth, P. Exner, H. Neidhardt, and V. Zagrebnov, eds., Birkhäuser, Basel, 1994.
- 24. Kato, T.: Perturbation Theory. Springer, 1980.
- 25. Nagel, R. (ed.): One-Parameter Semigroups of Positive Operators. Springer LNM 1184, 1986.
- Nussbaum, R. D. and Pinchover, Y.: On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications. *Journal d'Analyse Mathématique* 59 (1992), 161–177.
- 27. Ouhabaz, E., Stollmann, P., Sturm, T., and Voigt, J.: The Feller property for absorption semigroups. Preprint.
- 28. Pinchover, Y.: Criticality and ground states for second-order elliptic equations. J. Diff. Equ. 80 (1989), 237–250.
- Pinchover, Y.: On criticality and groung states of second order elliptic equations II. J. Diff. Equ. 87 (1990), 353–364.
- 30. Reed, R. and Simon, B.: *Methods of Modern Mathematical Physics I: Functional Analysis*, revised and enlargeed., Academic Press, New York, 1980.
- 31. Reed, M. and Simon, B.: *Methods of Modern Mathematical Physics IV: Analysis of Operators*. Academic Press, New York, 1978.
- 32. Schaefer, H. H.: Banach Lattices and Positice Operators. Springer, Berlin, 1974.
- 33. Schechter, M.: The spectrum of the Schrödinger operator. *Trans. Amer. Math. Soc.* **312** (1989), 115–128.
- 34. Simon, B.: Functional Integration and Quantum Physics. Academic Press, New York, 1979.
- Simon, B.: Brownian motion, L^p-properties of Schrödinger operators and the localization of binding. J. Functional Anal. 35 (1980), 215–229.
- Simon, B.: Large time behaviour of the L^p-norm of Schrödinger semigroups. J. Functional Anal. 40 (1981), 66-83.
- 37. Simon, B.: Schrödinger semigroups. Bull. Amer. Math. Soc. 7 (1982), 447-526.
- Stollmann, P. and Voigt, J.: A regular potential which is nowhere in L₁. Lett. Math. Phys. 9 (1985), 227–230.
- 39. Voigt, J.: On the perturbation theory for strongly continuous semigroups. *Math. Ann.* **229** (1977), 163–171.
- 40. Voigt, J.: Absorption semigroups, their generators, and Schrödinger semigroups. J. Functional Anal. 67 (1986), 167–205.
- 41. Voigt, J.: Absorption semigroups. J. Operator Theory 20 (1988), 117–131.