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Abstract. Let m € Ly (RY),0 # m4 in Kato's class. We investigate the spectral function A —
s(A + Am) where s(A + Am) denotes the upper bound of the spectrum of the Schrodinger operator
A + Am. In particular, we determine its derivative at 0. If m_ is sufficiently large, we show that
there existsaunique A1 > 0such that s(A + A\ym) = 0. Under suitable conditions on m™* it follows
that O is an eigenvalue of A + A1m with positive eigenfunction.
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I ntroduction

Let m € Li (RY) be such that m* isin Kato's class. For A > 0 we consider
the Schrodinger operator A + Am on LP(RY). By s(A + Am) = sup{u:p €
o(A + Am)} we denote the spectral bound of (A + Am) (which is independent
of p € [1,00)). Thefunction A € [0,00) — s(A + Am) is convex, we call it the
spectral function of m. The purpose of this paper is a systematic investigation of
this function.

In Section 2 we consider the case when m > 0. Fefferman and Phong [19]
and Schechter [33] have used Fourier analysis and L?-methods to obtain some
estimates for the spectral bound. We use L°°-methods (the Feynman—Kac formula
and Kashmin'skii's lemma) to obtain a different upper bound for the spectral
function. For small values of A, our estimate is quite sharp; in particular, it enables
us to characterize when the derivative

d/d>\|/\:03(A + )\er) is 0.

Criteria for s(A — Am~) < 0 (A > 0) had been given in [5], [9] and [7].
Using those and the results of Section 2, we are able to describe conditions under
which there exists a unique A; > 0 such that s(A + A\ym) = 0 (Section 3).
Thisisinteresting for the asymptotic behavior of the semigroup e!(2+*1™)  Under
suitable assumptionswe can show in addition that A1 isaprincipal eigenvalue. We
also investigate when the spectral function has a strict minimum. This is related
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to the question when s(A — Am ™) is strictly decreasing which has been treated
in[7].

The motivation of this work comes from two sources. Of course the spectral
behaviour of A + Am is an important subject in mathematical physics and there
are previousresults of B. Simon [34] and [35] on s(A + Am) for small A > 0 (see
also the survey article [36]).

The study of principal eigenvalues for elliptic operators was initiated by a
famous article by P. Hess and T. Kato [21] who considered a bounded domain
and Dirichlet boundary conditions. They were interested in a nonlinear eigenvalue
problem and used the principal eigenvalue for the linearized problem in order
to study bifurcation. More recently such problems were considered on RY by
Allegretto [2], and Brown et al., [10-13]. Their motivation comes partly from a
biological model (see, e.g. Fleming [20]). Similar questions for non-autonomous
periodic parabolic problems on RY are considered by Daners and Koch-Medina
[14, 15] and Daners[16]. Principal eigenvaluesfor second order operators are also
studied by different methods by Agmon [1], Pinchover [28, 29] and Nussbaum and
Pinchover [26].

1. Preliminaries

For our purposes, the natural classof potentialsisthecl ass K y introduced by Voigt
[40, Section 5]. It is the Banach space

Ky = {m € Ly (RY):m * (1po1En) € L°(RY)}

withnorm [l z = llm * (1p01)En) |-

Herewedenoteby B(z, R) = {y € RV :|z — y| < R} theball of center z and
radius R and by 1, the characteristic function of a set Q). By Ey we denote the
usual fundamental solution of —A = 4, i.e.

Ey(z) = —3lal,

1
Fa(w) = — - Inal,

Ex(z) = (N — 2)~12-Lr=N/2p (g) 22N (V> 3).

The kernel of the Gaussian semigroup is denoted by p;(z) = (4nt)~N/2 g~ l21*/4
and we define

t 00
Gile) = [ pao)ds = (@m) =R [ VA2 e 0/ gy
0 Wi

(t>0,zeRY).



SPECTRAL FUNCTION AND PRINCIPAL EIGENVALUES 417

PROPOSITION 1.1. For m € L. (R") the following are equivalent:

(i) m € Kn;

(ii) m isrelatively bounded with respect to A1, the Laplacianon LY(RY);
(iii) |m| * ¢y € L>°(RY) for somet > O;
(iv) |m| * ¢y € L®(RY) for all ¢ > 0.

Inthis case, ex (m) := inf ] « e = Inf | (Lo ) * o

Proof. The equivalence of (i), (ii) and (iii) follows from [40, 5.1 (a)]. Prop-
erty (iii) follows trivially from (iv). We show that (ii) implies (iv). Let ¢ > O.
Note that o, * f = [5 €21fds € D(Ag) for al f € L*(RM). Hence by
assumption |m|(y; * f) € LYRN) for al f € LYRY). It follows by duality
that o, * |m| € L®(RY).

The last identity isgivenin [40, 5.1 (c)]. O

REMARK 1.2. One has [|¢ * [m|llec = [||Im] fg €21 ds]|z 1) (oy duality). In
particular, it follows from [40, 5.1 (b)] that

m = [[[m] + ¢l

defines an equivalent norm on K y.

Kato's class in the sense of Simon [37, A2] is the closed subspace Ky = {m €
R\NZCN(m) = 0} of R\N.

By A, we denote the Laplacian on LP(:= LP(RY)) (i.e. D(A,) = {f €
LPAf € LPY, A f = Af).

Let m € L (RY) suchthat m™ € Ky, cn(m™) < 1 (see Proposition 1.1).
Then one defines a Cop-semigroup (e/(2»+™)),.5 on LP(RY) (1 < p < oo) inthe
following way: denote by s —lim thelimit in the strong operator topology in L( LP).
Let m)” = inf{k,m*},m; =inf{k,m }. Then

@rtm®) — g fim @rtm) .
k— 00
gBp=m®) = g |im elr—mi)
k— o0
Botm) — o |im gBotmTom) _ o |ijm @emmTmy),
k—o0 k—o0

By A, -+m we denote the generator of the semigroup (€/(2»+™)),. Thisnotation
is symbolic; i.e., in general one has D(A, + m) D D(Ap) N D(m) with strict
inclusion. However, if p = 1, then D(A1+m) = D(A1)ND(m) (Where D(m) =
{f € LY fm € L'}) and D(A1 +m) = D(Ay) if m~ € L>®. We refer to [40,
41] for al this.

It follows from the definition that €/(2»+™) > 0 for ¢t > 0 (in the sense of
positive, i.e. positivity preserving operators).
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PROPOSITION 1.3. Let 1 < p < oo. The semigroup (€(4»+™),55 on LP(RY) is
irreducible (see [25, p. 306] for the defintion).

Proof. Since 0 < €(A»—m7) < (Ar+m) \we can assume that m* = O.
Let V = m~,Vj = inf{V,k})k € N). Then by [41, § 3] (or [30, S.16, p. 373])
e(2r=(V=4)) convergesstrongly toe'® ask — oo. Now assumethat 7 C LP(RV)
is a closed ideal invariant under €(2=Y). Since e(A~(V=Vi)) ¢ gkt g(A=V) 'jt
follows that (2~ (V-Y¥) 7 ¢ J(t > 0,k € N). Letting k& — oo, one obtains
grJ c Jt>0)andsoJ =0o0rJ = L*RY) since (62);50 isirreducible.

REMARK 1.4. The proof showsthat (€(4»+™)),.q isan irreducible, positive Co-
semigroup whenever m: RY — Rismeasurable, m* € Ky, cy(m™) < landm™
ise’®»-regular inthe sense of Voigt [41, Definition 31]; this property isindependent
of p € [1,00), ([40], [41, 4.3]). There exists aregular m_:RY — [0, c0) whichis
nowhere integrable [38].

We define A, + m as the adjoint of A1 + m. Thus A, + m generates a
weak*-continuous semigroup (€/(2=+m)), 5 on L>°(RV).

It has been shown by Hempel and Voigt [22] that the spectrum o (A, + m) is
independent of p € [1, co].

2. The Spectral Function for Positive Potentials

Let m € Ky. Thenfor 0 < A < g := ex(m™) 1 the operator A, + Am is
defined on L, (RY ) (1 < p < oo) and its spectrum is real and independent of p (see
Section 1). By

s(A) = s(Ap + ) =sup{p € o(Ap + Am)}

we denote the spectral bound of A, + Am and we call s: [0, A\g) — R the spectral
function of m. In this section weinvestigate s in aneighborhood of O; in particular
we determine the derivative of s at O if m is positive.

PROPOSITION 2.1. For 0 £ A < Ag one hasthe variational formula
s(\) = Sup{— / |Vu|? + A/muz:u € Dl} , (2.1

where D1 = {u € D(RY);||ul|z2 = 1}. In particular, s is a convex function on
[0, \o). Here D(RY ) denotes the space of all test functions.

Proof. It followsfrom [40, § 5] that for 0 < A < Ao the operator — (A + Am)
is associated with the closed lower bounded form ay (u,v) = [ VuVv — X [ muv
with domain D(ay) = HY(RY) N Q(m™), where Q(m ™) is the form domain of
m~. Since D(RY) is aform core of ay [24, VI Lemma 4.6, p. 349], (2.1) isthe
usual variational formula. |
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Assumethat m € K. Then s(0) = O and

/ 5N
5 (04) = |/\IH)1 ;

exists. In fact, formula (2.1) defines a convex function from s: [0, A\g) — R. Our
aimisto determine when s’(0+) = 0.

THEOREM 2.2. Let 0 < m € K. The followi ng assertions are equivalent.

(@ s'(0+) = O;
(b) Jim sup F(3p; +m)(z) =0,

z€RN
(© lim sup 7 [, pym(y) dy =0,

X gerN

(d) Jim sup (p; + m)(z) = O.
TERN

REMARK. In condition (b) and (d) we can replace the supremum by the essential
supremum; i.e., (b) is equivalent to tim %||z/;t * m||o = 0and (d) is equivalent
o
to lim [Ip * mlle = 0. Infact, if 0 < m € Li(RY) and ¢: RNV — [0,00) is
—00
continuous, then m * ¢: RN — [0, oc] is lower semi-continuous.

The equivalence of (a) and (b) follows from the following identity.

PROPOSITION 2.3. Let m € Ky suchthat m~ € L. Then

s'(04+) = lim 1 sup (m * 1) (). (2.2

t—o00 IERN

Proof. Observethat s(A+X(m+c)) = s(A+Am)+Acand ((m—+c)*y)(x) =
(m % 1) (z) + te. Thus, replacing m by m + ¢ if necessary, we can assume that
m > 0.

Wewill usethe Feynman—Kac formula(see[40, § 6]) whichisusually associated
to3A instead of A. Letey(z) = [g ps/2(z) ds = 24y (x). Then(2.2) isequivalent
to

_s5(3A + Am) T
lim S22 i 2 e (2:3)
One has (m ) (z) = E*[fim(B(s))ds] (z € RY), see [9, p. 462). Let
o = ||m * |0 LELE > 0,0 < X < o L. Then sup, EI[epr(')5 Am(B(s))ds] =
ai\ < 1. It follows from Khasmin'skii’s lemma[37, B.1.2, p. 461] that es*5(?) <
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|eGAHND) |1y = [el(FA= MY = sup, B [exp A fgm(B(s)) ds] <
o Thus s(A) < log 1= Taking the derivative at O with respect to A
on both sidesyields s'(04-) < 9 (t > 0). Hence s'(0+) < lim <t.
t—o00
In order to show the reverse inequality let 0 < ¢ < )3, w € R such that
s(3A + Am) < Aw for al 0 < A < e. Then by Jensen’sinequality,

t
Tim %sipEx {A/O m(B(s))ds] <
1 t
tiryo ;IogsngI {expk/o m(B(s))ds] =
— 1 H(3 Ao+ Am)
Jim ~log|le™= Uz =
-1 1 m
Jim ¥|0g||et<on<>+A Moy = s(3A + Am) < w.

Hence Tim 4[4 * ml|oo < w. Thisshowsthat Tim #{|s; * m[le < 5'(0+). O

In order to prove the other equivalences of Theorem 2.2 we need some
preparation.

Let R > 0. By acube of length R we mean a set of the form = — Qr where
z€RN andQr={yeRV:0<y; <R,j=1...,N}.Letm:RY — [0,00)
be measurable. We let gr(m) = sup{ [, m(y) dy: Q isacubeof length R}, i.e,
qr(m) = HlQR 1| oo

LEMMA 2.4. Lett > 0, R > 0. Then
pe * mlloo < 2V ((4nt) ™2 + R™HN . qr(m). (2.4)

Proof. Let ¢ = qr(m). We have to show that (p; * m)(z) < 2N ((4rt)~% +
%)N. Replacing m by m(. + =) if necessary we can assume that = 0. For
n=(ny...,ny) € NY weletn? = E;V:lnjz- and Q(R,n) = {y € RY; Rn; <
lyjl < (nj +1)R (j = 1< N)}. Since Q(R, n) istheunion of 2" cubes of length
R, onehas [, m(y) dy < c2". Hence

pem)© = 3 @nnF [ ey

neNé\[ Q(Ran)

< (47Tt)_N/2 Z e—n2R2/4t/ m(y) dy
neNy Q(R.n)
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< (4ﬂ_t)7N/26_2N Z g nPR?/4t

N
neNy

0o N
_ (47rt)’N/zc .oN (Z eR2k2/4t>

k=0
00 N
< (4mt) N2 2N <l—|—/ e Rou/4 du)
0

= (4rt)~ V22N (1 + VartR~HN. O
LEMMA 25. Letm:RY — [0, 00) be measurable. The following are equivalent.

(i) For all £ > 0onehasp; x m € L*;
(i) thereexists# > 0 such that p; x m € L

(iii) Z‘i@ sup. RN [0 mym(y) dy < o0;
2lxeR

(iv) thereexists R > Osuchthat sup R~ [5, pym(y) dy < oc.
z€RN ’
Proof. (i) = (i) and (iii) = (iv) aretrivial.
(i) = (iii) : Assumethat p;, * m € L. Thenp; « m = p;_y, * (py, * m) € L™
1
and ||p; * Mmoo < ||piy * Mmoo fOr al ¢ > to. Let R > ¢3. Let t = R?. Then for
z € RN,

RN fiory my) dy < €560 [y o) @ b0/ (y) gy
< (4r)N/2 €i (p, + m) (z) < (47) /2 €d||p; * M| o (2.5)

(iv) = (i) Thisfollowsfrom (2.4). O
PROPOSITION 2.6. Let 0 < m € K. Then

@ prxm e L*®forall t > 0;

(b) sup sup R™Y [, pym(y) dy < oo
R>21gerN

(©) llpe * oo < (1+ 1) [|tha * m[|oo-

Proof. It follows from the definition that m satisfies (iv) of Lemma 2.5 (see
[40, p. 183]). Hence (a), (b) are valid. We show by induction that (c) is satisfied
fort € [n,n + 1). Thisis clear for n = 0 since ||¢; * m||~ IS increasing in ¢.
Assumethat itistruefor n. Lett € [n 4+ 1,n + 2). Since ps * p, = psr, ONE has
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pr—1 %P1 = b — hr—1. Hence, [[1hr * mloo = [|9h—1 % m + (pr—1 % 1) * m|l0 <
[pr—1 % m|oo + |11 % m|so < (£ + 1)||th1 * ™o by theinductive assumption. O

Proof of Theorem 2.2. The equivalence of (a) and (b) follows from (2.2).
(b) = (C). Firstcase: N > 2. Let ¢ = (4m)N/2 [ 472 /4 dy. Then

be(x) = (Am) N2z N / uE e du s e N2
jal2/t

1
whenever |z| < ¢2. Hencefor t > 0,z € RY,

1

t_N/z/ dy < _l—/ —y)d
B(ml/z)m(y) y < B(ml/z)m(y)@bt(x y) dy

11

écg

(m * 1py) ().
Thus (b) implies (c).

Second case: N = 1. Then yy(z) > (4m) Y2z| [/, u"¥2e "/ 4du >
(4m) "2zl et [1p 02 du = 27te V22 for 2] < #2. Hence
t72 [z my) dy < 2em2l(mx y)(z) (t> 0,z € R).

(c) = (d). By (2.4), t@o lpe * Mmoo < 2VNR™Ngr(m) for al R > 0. Thus

(c) implies (d).
(d) = (b). Lete > 0. By assumption, thereexistsT > 0 suchthat |[p; *m| o <

e for al ¢ > 7. Hence t@o %H’L/}t * Moo < t@o Slip% Jo (ps * m)(z)ds +

i 1t Tim 1 _
Am supg [ (ps xm)(z)ds < Jim 7 —7)e =e. O

COROLLARY 2.7. Thesetof all 0 < m € Ky suchthat ¢y, o, s(A+Am) =0
isa closed cone.

Proof. It follows from Theorem 2.2 that the set in question is a cone. Let
0 < m € Ky, let mp bein the set, |m — ml”f(N < e. Then %Hz/)t * Mlso <

e+ lm = mallloo + ¢l + malloo < 2101 % Im — mallloo + F4be * malloo
(by Prop. 2.6 ¢) < const||m — m1||f(N + 3l4h * m1|oo by Remark 1.2. Hence

m 1
tl_'@o 7l * mllo < const.e O

Of specid interest isthe class

Knpo:={m € Ky:m is A;—compact} (2.6)
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It has been shown by Voigt [40, 5.5] that Ko coincides with the closure of
D(RY) in Ky. Inparticular, Ky C Ky. Let LP(RY) = {m € L®(R"): ess.
- I|m|:v|—)oo |m($)| = 0}

EXAMPLE 2.8. (cf. [40,5.6]). Let & < p < 00 if N > 2,and 1 < p < oo if
N =1.ThenL? + Lg® C Kn. Infact, by Holder's inequality LP — Ky. Since
D(RV) isdensein L?, it followsthat LP c D"~

LEMMA 2.9. Letm € Ky, q € LE(RY), suchthat |¢| < |m/|. theng € Ky o.

Proof. There exists g € L such that gm = ¢. Since by assumption, m (1 —
Ap)~1iscompact, it followsthat ¢(1 — A7) ™! = gm(1— A;)~tiscompact. O

COROLLARY 2.10. If m € Ky 0, then

is(A + Am) =0.

dx
Proof. (@ If m € LP, N < p < oo, it follows from Theorem 2.2 (applying
criterion (¢)) that %\A:OJFS(A + Am) = 0. By Corollary 2.7 the same remainstrue

if0<m e Kyp.
(b) Let m € Kn 0. SINCE 0ess(A1) = 0ess(A1 + Am ™) it follows that s(A —

— s s(A=Am ) o s(A+Am)
Am~) > 0 (A > 0). Hence by (8, 0 < I;ﬂ;—A < IA|E)14A <
IATQM = 0. We have shown that g, o, s(A + Am) = 0. The proof
isfinished by replacing m by —m. O

REMARKS 2.11. (a) If N > 3 and m € Ky, a much stronger result than
Corollary 2.10istrue: Thereactually exists A1 > Osuchthat s(A+Am) = Ofor all
A € [—A1, A1]. Infact, s(A+Am) > Oimpliesthat s(A+Am) € oess(A1+Am) =
Oess(A2 + Am) (cf. Remark 3.4). Now the claim follows from the Cwikel-Lieb—
Rosenbljum bound [31, p. 101].

(b) If N > 3, m e LN/2=¢ 0 LN/2+< for some e > 0, then Simon ([34], see also
[35, Theorem 1.2], [36, Theorem 1.4], [37, Theorem B.5.2]) showed that for some
A1 > 0onehass(A + Am) = Oforal A € [0, 1] and he showed in addition that
SUP o [l AP A £ 10y < 00 (1< p < o0) forall A € [0, Ay).

The situation is much different for v = 1, 2;

() Let N =1,m € LY(R) suchthat [ m > 0. Thens(A + Am) > Oforal A > 0.
Infact, let uw € D(R) suchthat 0 < u(z) < 1(z € R) andu(z) = 1(|z| < 1). Let
un(z) = u(£). Then 0 < uy, < Lup(z) = 1, [|Vuyl? = 0 (n — oo). Hence
Nim (= [[Vun|?> + A fuim) = X [m > 0and s0 s(A + Am) > 0 whenever
A>0.
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(d)Let N = 2and 0 < m € Ky, m continuous, m # 0. Then s(A + Am) > 0
for al A > 0. In fact, there exists 0 < ¢ < m, 0 # ¢ € D(RY). By [31,
Theorem XI11.11, p. 100], s(A + Ag) > 0 (A > 0).

(e) Other related resultsfor N = 1, 2 are[31, Theorem X.I11.110, p. 338 and Notes
p. 363] and [10, Theorem 3.2].

EXAMPLES 2.12. (a) If m € LY(R"), then m satisfies condition (c) and (d) of
Theorem 2.2. However L(RV) is not contained in Ky. Eg. let 2 < a < N,
m(z) = |z|"*1pg)(x). Thenm € LX RV )\ Ky.

(b) Let 0 < m € L* such that there exist jo € {1,...,N},—00 < a < b < 0
such that suppm C Q = {z : a < 0 < b}. Then s’(0+) = 0. This can be seen
by applying criterion (c) of Theorem 2.2. On the other hand, it is easy to see that
1o gKN,O if N > 2.

(c) On has L¥/2 ¢ Ky for N = 4. In fact, it is easy to see that m(z) =
—|:17|_2(|Og|33|) 13(0 1/2) isin Lz( ) but m ¢ K4 (cf. [37, Ad)).

The main point in this section is to characterize when s'(0;.) = 0 (Theorem 2.2),
and that is what is needed in Section 3. However, our arguments allow us also to
estimate s(A 4+ Am) for fixed A by averagesof m over balls. Thisis of independent
interest and we want to give more details.

In the remainder of this section we assumethat 0 < m € fN and let \g =
cn(m) L. For convenience, we denote by

am(R) —supR / p (0< R < o)

zcRN

the upper bound of the averages of m over balls of radius R. It isnot difficult to see
that there exists a constant \ > 0 (depending only on the dimension N) such that

am(Rl) > kam(Rz) if 0< Ri< Ry (2.7)
THEOREM 2.13. One has

@ < cam(R) (2.8)

provided 0 < \, R satisfies one of the following conditions:

Aoz oo < § it (2.99)

NI

R
)\c'l/ ram(r)dr < (2.9b)
0

Here c1, ¢, > 0 are constants which depend only on the dimension V.
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Proof. By the proof of Proposition 2.3 we have s(A) < 1log{(1 — Al *
mloo) "} if Athy * mlle < 1. Lemma 2.4 implies that ||ps * m|l < const
am(sY/2). Hence (in view of (2.7)) s(\) < 1log[{1 — A(|[4r * m||so+ const
(t — 7)am(7?))} 1] provided that 0 < 7 < t and X is sufficiently small. If
Allthr * m|loo < % we may chooset > 7 such that X const (£ — 7)a, (1Y/2) = 3
and deduce that there exists a constant ¢; > 0 (depending only on N) such that

s(A) € c1dam(R) (2.10)

whenever A |1 paxm|| o < 3. By Proposition1.1,given0 < A < AO = (2en(m)) 71,
we awaysfind R > Osuch that A|[¢pp2 * m|oo < 3 Lemma24showsthat

RZ

ltpme il < [ I+ miloo

< const. / q 1/2(m) dt

< const./ 7 am(r) dr. O
0

Theestimatesgiven by Theorem 2.13 arequite sharp. Thisisshown by thefollowing
(much easier) lower estimate.

PROPOSITION 2.14. For all 0 < X < A\g thereexists Ry > 0 such that

S()\).
A

coam(Ry) < (2.11)

Here co > 0 dependsonly on V.

Proof. Let 0 < ¢ € D(RY) such that p(y) = 1if |y| < 1. Letz €
RV, R > 0and put u(y) = p(R™1(y — z)). Then (2.1) gives —RV~?||Vy||? +
Mo () dy < sOVRY. Choosing co = ||| + | Vgl? and R = Ry =

s(A) Y2 gives (2.11). O

REMARK. Since(2.1) definesaconvex and hence continuousfunction on (—oo, Ag)
one has lir%s(A) = Oandthus AIirg+ R, = co. Thisgivesanother proof of (a) —-
— —

(c) in Theorem 2.2.
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Estimates similar to (2.8) but with L1-averages (considered here) replaced by L,,-

averages (1 < p < oo) areobtained by Fefferman—Phong (see [19]) and Schechter
[33]. In fact, they show that

1 Yrooy
A < supd Co) su —/ rg _ = 212
S( ) R>% D xe]}B\’ (RN B(I,R) m(y) y> R2 ( )

where C'p is a constant depending on p and N, see [19, Theorem 5, p. 145], [33,
Corollary 3.3]. Schechter’s proof of (2.12) showed that

i

1 P
1< CI',A sup 2 sup (ﬁ /B(z » m(y)? dy)

1 N
res(\)"3  TER

[33, Theorem 3.2], from which it is easy to deduce that

1
., 1 , /p
s(A) < CpA sup =Y SR m(y)? dy (2.13)

rERN

provided that

, 1 1/p
C'\suprc su —/ m(y)P d <1
P TS]p{ xERE\’ (RN B(z,R) (y) y>

Theestimates (2.12) and (2.13) are sometimesinfinite—thereexist functionsin K y
which are not in Lf . for any p > 1. On the other hand, there are some functions

not in K y for which (2.12) and (2.13) are finite (see Example 4.3).

3. Potentialswith Changing Sign

Throughout this section we assume that m € L (RY) such that 0 # m* €
Ky. Then \g = ex(m™)™! = oo (Section 2). By s(\) = s(A 4+ Am) =
sup{— [ |Vu|?+ X [ mu?u € D1} (A > 0) wedenotethe spectral function. Since
m*t # 0, thereexistsu € Disuchthat [ mu? > 0. Consequently, Jim s(A) = oo.

Since s is convex, there are three different possible cases: 1.s(\) > Ofor al A > 0;
2. thereexists \p > O suchthat s(\) = 0on [0, A]; 3. thereexistsaunique A\; > 0
suchthat s(\1) = 0.

We are interested in finding conditions for the third caseto occur. Since s(A —
Am~) < s(A 4+ Am) anecessary condition isthat s(A —m™) < 0. Werecall the
results from [5], [9] and [7] characterizing this condition.
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THEOREM 3.1. 1. Letm™~ € L' + L>. Then s(A — m~) < Oif and only if there
exists R > 0 such that

inf m~ (y)dy > 0.
zeRN JB(z,R)

2.Ingeneral onehass(A —m™) < Oifandonlyif [, m™ = oo whenever @ C RV
isopen such that s(Ag) = 0. Here Aq denotesthe Dirichlet Laplacian on L?(9),
i.e. —Aq isassociated with the forma(u,v) = [ Vu Vv, Q(a) = H}(Q).

Notethat condition (b) in the following theorem has been investigated in Section 2.
THEOREM 3.2. Letm € L (RY) suchthat 0 # m™* € K. Assumethat

(@ s(A—m~) <0and
(B) &k jr—o, S(A +AmT) =0.

Then there exists a unique A1 > O suchthat s(A + A\ym) = 0.

Proof. By convexity, (a) is equivalent to %\A:oﬁ(A —Am~) < 0. It follows
from the definition that s(A + Am) < 3(s(A — 2Am™) + s(A + 2 m™)). Hence
X pco, 5(A +Am) < gy, S(A = Am7) + 5\ o s(A + Amb) < 0. Now
the claim follows by convexity sinceAIim s(A 4+ Am) = oo.

—00

From the proof it is apparent that the theorem remainstrue if we replace (a) and
(b) by the weaker condition

d

— A+ xm™T
dAp\:oJrS( +Am®)

— A — - ) A
+d>\|,\:o+8( Am~) <0 (3.1)

In (2.2) we gave an exact formula for the first term; tim %||mJr * Pt]| 0. IN [7,
o

Remark 4.7] an upper estimate for the second is given.

Theorem 3.2 implies that (e/(4»+2™)),. 4 is exponentialy stable for A < Aq,
and unbounded for A > \;. Similar results have been obtained formerly ([11,
Theorem4.2],[15, Theorem 7.7]); however, our condition (b) ismuch more general
than those given in these papers.

Next we establish existence of aprincipal eigenvalue.

THEOREM 3.3. Let m € L (RY) suchthat 0 # m™. Assumethat

@ s(A—-m7) <0
(b) m™ € L? + L& whereoo >p > Jif N >2,p> 1if N = 1.
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Thenthereexistsaunique A1 > Osuchthat s(A+X1m) = 0. Moreover, thereexists
aunique0 < u € D(A2+ Aym) suchthat ||ul|;2 = 1and (A2 + Aym)u = 0. One
hasu(z) > 0ae andu € D(A, + A\ym), (A, + Aym)u =0forall 1 < p < oo
Finally, Oisapoleof y — R(u, A, + A1m) of order onewithresidue P = u ® w.

Proof. Inview of Example2.8, it followsfrom Corollary 2. 1OthattdAIA o, s(A+

Am™T) = 0. Thus the first assertion follows from Theorem 3.2. Moreover, m™*
defines a compact mapping from D(A;) (with the graph norm) to L!. Since
D(A]_ - Alm_) = D(Al) N D(m_) — D(Al), it follows that m"'R(,u, AV
A1m~) iscompact. Hence R(u, A1+ Aym) — R(p, Ay — Aym ™) = M R(p, Ap +
Aim)m™t R(u, A —Aym ™) iscompact. It followsthat Oisapole of the resolvent of
A1+ A\ym. Since (€(21+2m), is positive and irreducible, the poleis of order 1
and the residue is a strictly positive rank 1 projection P (see[25, C-I1I. Prop. 3.5,
p. 310]).

We show that O is also a pole of order 1 in LP(1 < p < o0). Note that the
spectrum is independent of p and the resolvents are consistent (see[3]). Lete > 0

suchthat ;1 € p(A -+ Aym) whenever 0 < || < e. Then [, _ Befutuml g, — o

forn =1,2,.... Itfollowsthat [, _ HE=2etum g, — Oforn - 1,2... and all
p € [1,00]. ThusO is apole of order lin Lp Similarly one sees that the residues
P, in LP are consistent. Since A, + Am is self-adjoint it followsthat P> = v ® u
withu(z) > 0ae, ||ull;2 =1 0

REMARK 3.4. By the argument used in the proof one sees the following. Let
A, be operators on L” with p(A,) connected and independent of p € [1,c0].
Assume that the resolvents R(\, A,) are consistent for one (equivalently all) A €
p(Ap). Then oess(Ap) isindependent of p € [1, 00). Here oess(A4,) = C\pess(4,)
where pess(Ap) consists of al points A in € such that A € p(A,) or A isapole
of the resolvent with finite dimensional residue. Concerning the assumption of
consistency see[3].

As a consequence of Theorem 3.3 one has

e 29™) — v @ | gy < M e (t>0)

for some e > 0 (cf. [8, Theorem 1.2]). Thus e!Ar ™) f s ([ fu)u (t — 00)
in LP(RY) (1 < p < oo0). This means that the solutions of the diffusion equation
with excitation m™ and absorption m~ converge to an equilibrium. With the help
of the parameter A\; > 0 one has adjusted the excitation-absorption term m such
that it isin equilibrium with the diffusion.

REMARK 3.5. (continuity of the principal eigenvector).
If et (B0 t21m) |eaves Co(RY) invariant and is strongly continuous, then the spec-
trum in Co(RY) isthe same asin L, (cf. [23]) and one hasu € Co(RY). Thisis
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the case, e.g. if m € L>°(RY) by arecent result of Ouhabaz et al. [27].

REMARK 3.6. (uniqueness of the principal eigenvalue). In the situation of Theo-
rem 3.2, A\; isthe unique A > 0 such that the problem

w€ DAy +2Am), u>0, u#0,
P(X,p)
Apu+ Amu =0

has a solution for some p € [1, 00). We give the short argument for complete-
ness: Let A > 0 such that P()\,p) has a solution w. Then s(A, + Am) > 0. If
s = s(Ap + Am) > 0, then, since s & gess(A, + Am), there exists 0 < ¢ € L¥'
such that (A, + Am)’'p = sp. Then ¢ is strictly positive by irreducibility. Hence
0= ((Ap + Am)u, p) = s(u, ). Since (u, p) > 0, thisimpliess = 0. O

The idea of using relative compactness of perturbation in order to establish a
principal eigenvalueis standard (see, e.g.[31]). Inthiscontext, using s(A—m~) <
0, it wasfirst used by Brown et al. (see[11, Theorem 4.2], where m™ is supposed
to be of compact support). Similar results in the non-autonomous case are [15,
Theorems 7.7 and 7.8]. Principal eigenvalues are obtained by Brown and Tertikas
[13, Theorem 4.5] and Daners [16, Theorem 1.3] under more general conditions,
but they may no longer belong to L”.

Next we consider the casewhen s(A —m ™) = 0.

PROPOSITION 3.7. Letm € L, (RY) where N > 3 and assume that

(@ m™ e LN/2te 0 [N/2=< for somee > 0 and
(b) s(A—m~™) =0.

Let Ao := sup{\ > 0: s(A + Am™) = 0}. Then Ao > O and Ois not an eigenvalue
of A, + Am in LP(RY) for any X € [0, \g) and any p € [1, o0).

We use the following special case of [4, Theorem 1.3].

PROPOSITION 3.8. Let S, T be Cp-semigroupson a space LP(1 < p < oco) with
generators A and B, respectively, suchthat 0 < S(t) < T'(¢t) and s(4) = s(B) =
0. Assumethat T' is bounded and S isirreducible. If O is an eigenvalue of A, then
A =B.

Proof of Proposition 3.7. We know from Remark 2.11 (a) or (b) that \g > O.
Assume that A1 € (0, o) is an eigenvalue of A, + \ym where 1 < p < oo.

By Simon's theorem (Remark 2.11 b) one has sup [|{A» 2™ 1 < oo It
>0
follows from Proposition 3.8 that A, + A\ym™ = A, + A\ym; i.e m™ = 0. Let
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A1 < A2 < Ao. Theniit follows in asimilar way that A, + Aym = A, 4+ Aom,
hence m = 0, a contradiction. Since by [40, 6.3], e!(21tMm) 1 — 12 jt follows
that 0 is not an eigenvalue of Ay + A\1m either. O

REMARK 3.9. The situation considered in Proposition 3.7 is different for p = oo.
In fact, assumethat N > 3andm € LN/?2=¢ 0 LN/2*¢ for some e > 0 so that the
assumptions of Proposition 3.7 are satisfied. Let 0 < A < Ag. Then there exists a
strictly positive sy € L>®(RY) such that

(Ano + Am)ip = 1p. (3.2)
Moreover, ker (A + Am) = Rip.

In fact, it has been shown by Simon [34, Theorem 3.4] that there exists ¢ €
L>® # 0 such that T(t)'¢ = ¢ (t > 0) where T(t) = (21t3m) and also that
dimker (A +Am) = 1. We show that astrictly positive eigenvector exists. Define

) € LYRYN) = L¥(RY) by (f,9) := LIM (f,T(t)'|«¢|) where LIM denotes
a Banach limit on L*°(0, 00). Since |p| < T'(t)|p| one has (f,v) > (f,|o|) for
f > 0sothat s # 0. Since (f,7(s)'p) = LIM (£,7(¢+ sYlgl) = (£,0) it
followsthat T'(s)'4) = 9 (s > 0) whichis(3.2). O

Next we come back to the situation considered in Theorem 3.2. We know that
s(A+X1m) =0and s(A+ Am1) < Ofor A € (0, A\1). Sincethe spectral function
is continuous, it has aminumum on [0, A\1]. We investigate when this minimum is
strict.

THEOREM 3.10. Let m € Li (RY) suchthat 0 # m*. Assumein addition that

(@ A — s(A — Am™) isstrictly decreasing and
(b) m* € LYRN) + LEF (RN ) whereoo > ¢ > S (if N > 2) andg > 1if N = 1.

Then there exists a unique g > 0 such that

S(A 4+ Aom) = T;QS(A + Am).

REMARK. Condition (@) is discussed in detail in [7]. For example, it is shown
that if N = 1 and m~ € L°(R), then (a) holds. Condition (b) implies that
mt € Ky.

Proof. Assume that rAnirgs(A + Am) isnot strict. Thenthereexist 0 < § < Ao,
>

¢ < Osuchthat ¢ = s(A 4+ Am) for A € (Ag — 0, Ao + 0). Since s(A — Am ™) is
strictly decreasing by hypothesis, it followsthat s(A—Am ™) < s(A+Am) for A €
(Ao—0d, Ao+6). Sinceoess(A+Am) = gess(A—Am ™) (cf. Remark 3.4), it follows
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that cisaneigenvalueof A+ Agm. Thusthereexistsu € D(Az+Xom), ||ull2 = 1,
such that Au + Agmu = cu. Consequently, —|Vu|?> + Xo [ mu? = c. Since
c = s(A+ xm) it followsthat ¢ + (A — Xo) [ mu? = — [ |Vul?> + X [mu? < ¢
if |\ — Xo| < 4. Thisimplies [ mu? = 0. Hence — [ |[Vul?> + X [mu? = ¢ =
s(A + Am) if [ — Xo| < 0. Thisimpliesthat Au + Amu = cu if |[A — Xo| <
(since, if B isaform positive operator, and v € D(B) suchthat (Bu | u) = 0O, then
Bu = 0). Thisimpliesthat mu = 0. Hence Au = cu, whichisacontradiction. O

Finaly, we show that it can happen that the minimum of s(A + Am) is negative
but not strict.

THEOREM 3.11. Thereexistsm € LS (RY ) suchthat m™* # 0, m* hascompact
support and

—1:r)\n>ilc’)ls(A+)\m) = s(A+ pm) (v €11,2));
Moreover, s(A — Am~) = —1forall A > 1.

Proof. (@) It sufficesto show that there exists anon-empty open set F, Og €

> (RV),e > Osuchthat s(A—=AV) > =1 (A > 0),s(A—V+¢elp) < -1,V =0
on E. Infact, thisimpliesthat s(\) := s(A +A51 —V)) > s(A - AV) > -1
forall A > 0and s(1) < s(A -V +¢elg) < -1, 52) =s(A+elg —2V) <
s(A+elp —V) < —1,sothat s(\) = —1for A € [1, 2] by convexity. Then m =
51p — V fulfills the requirements.
(b) Let Q,, = {x € RN :qa,, < |z| < by} Where0 < a,, < b, < any1, 1im by =
0o, such that s(Ag,) < s(AQn+1),nILrgo s(Agq,) = —1. Weconstruct 0 < V,, €

L>®(RY) and £ > 0, such that
n
V,, =0 on U Qj;
j=1
Vi1 =V, for |z| < b,
s(A—=V,+elg) <-1 (n€eN),

where E = Qq. Then, letting V' (z) = V,, () for |z| < b, weobtanV € L2 (RY)
which satisfies the requirements of (a). In fact, s(A — A\V) > sups(AQ )=-1

sinceV =0on, foral n € N. Sincefor every compactsetK C ]RN there exists
n € Nsuchthat Vix = V), g, it follows from the variational formulathat

S(A=V +elg) <sups(A -V, +elp) < -1
neN
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We construct the potentials V,,. By [7, Proposition 4.1], blim S(A — blge) =
— 00

s(Ag) < —1. Let b > 0, > 0 such that s(A — blge) + e < —1, and let
V1 = blge. Assumethat V4,...,V,, are constructed. For K € N let

Va(z) if |z| < by,

k if b, <|z| < any1,
Uk(z) = :
0 if (p+1 < |35| < bnga,

We show that there exists £ € N such that s(A — Uy + ¢lg) < —1 and choose
Va1 = Ug. Assume on the contrary that —1 < so = igf s, where s, =

s(A — Uy + €lg). Since s is in the approximate point spectrum there exists
up, € HY(RY) such that ||uy |2 = 1 and

Auk — Ukuk + 81Euk — SpUE = VU — 0 (33)

(k — oo).Inparticular, — [ |Vug|?— [ Ugu2 +e [ us —sp, — 0(k — oo). Hence
(u) is bounded in H(RY') and we can assume that u;, — u (k — oo) weakly
in H1(RY). Since the embedding of H(B(0, R)) in L?(B(0, R)) is compact,
it follows that u;, — w strongly in L?(B(0, R)) for al R > 0. Since U, = k
on F = {z:b, < || < apy1 O |z| > bpy1}, it followsthat w = Oin F. In
particular, uq, ,, € Hg(Qny1). Moreover, uy, — uin L2(RY). Passing to the limit
for k — oo in(3.3) showsthat Au—sou = 0inD(Q,41)". Sinces(Aq,,,,) < -1
and so, > —1, it followsthat ujq, ., = 0ae Thusu € H(B(0,by)). It follows
from (3.3) that Au — Vyu + elpu — seou = 0in D(RY)'. Since 5o > —1 >
s(A =V, +¢elg) it followsthat v = 0. Thisis acontradiction, since ||ug||;2 = 1
(k € N) andug, — win L2(RY). O

4. More General Potentialson L?(R")

In some cases one can define the semigroup (6/(42+™),4 on L?(RY) by form-
methods, but it no longer has extensionsto all LP(RY) (1 < p < o). Let m €
Llloc(]RN ). Atfirst we consider the positive part of 1 and, in contrast to the approach
in Sections 1-3, we define the spectral function by the variational formula

s(A+Am™) = &Jp{— / |Vul? + A/m+u21u € Dl} ) (4.1)

(A > 0)andlet Ao (m ™) = sup{X > 0:s(A + Am™) < oo}.
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PROPOSITION 4.1. Onehas Ay (m*) > 0if and only if HY(RY) c Q(m™). In
that case, for 0 < A < Ao(m™), af (u,v) = [VuVu — X [mTuv, Q(af) =
H 1(IR§N ) defines a closed, symmetric, lower bounded form. Moreover, one has
Aoo(m™) = oo if and only if ™ has form bound O with respect to —A,.

Proof. (a) If A > Osuchthat ¢ := s(A + Am™) < oo, then

A [ mt? < cllullze + [ 190l < (e + Dluls

(u € DRY)). Let u € HYRV). There exist u,, € D(R") such that u,, — u in
HYRY) and ae It follows from Fatou's lemma that X [m*|u? <

liminf A [ mFuf < (¢ + 1)||ull7,.. Hence H* € Q(m™). Conversely, if H' C

Q(m™), it follows from the closed graph theorem that there exists a constant
¢ > 0such that [m*u? < clull?: = ([ |Vul®> + [u?) (u € H'). Hence
s(A+ AmT) < Iwhenever 0 < A < 2.

(b) Assumethat Aoy = Ao(m™) > O0andlet 0 < A < A\o(m™). Choosea > 0
suchthat A(1+ a) < Ao, let s := s(A+ A(1+a)m™). Then — [ |Vul? + A\(1+
@) [mtu? < s [u? (u € HY). Hence

@+a) [ Va2 =22 +a) [m e+ (s +a) [0 > alullf.

and a; (u,u) + ii—gfuz >
bounded.
(© If s(\) := s(A 4+ Amt) < ocoforal A > 0, then — [ |Vul? + X [mTu? <
s(A|lullfandso [ mTu? < $ [|Vul?+ L/<\)||u||%2 (u € HY). Thusm™ hasform
bound O with respect to —A».

Conversely, assume that m " has form bound O with respect to —Ay; i.e. for all
e > Othereexists 5 > 0 such that

/m+u2 <6/|Vu|2+ﬁ/u2 (u € HY).

Then — [ |Vu?+ A [ mtu? < (A= 2) fmTu?+ £ < Eforal u € Dy whenever
A<t O

€

15 ||u|%. This implies that o} is closed and lower

Assumethat Ao (m™) > 0. Let 0 < A < Aso(m™). Then ay (u,v) = af (u,v) +
A [m~uv, Q(ay) = HY(RY)NQ(m™) definesaclosed, lower bounded form. We
define — (A, + Am) on L?(RY ) as the operator associated with the form a,. Thus
Ay -+ \m issdlf-adjoint and generatesa Co-semigroup (€/(42+Am), 5 on L2(RY).
It follows from [24, Lemma 4.6, p. 349] that D(R" ) is aform core of A, + Am.
Thus

s(Az + Am) = Sup{— / |Vu|? +/)\mu2:u € Dl} 4.2)
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isthe spectral bound of Ay + Am if 0 < A < Ao (m™).

EXAMPLE4.2.Let N > 3,0 < m € LN/?(RV). Then A\, (m) = oo. Infact, since
HYRN) c L2V/(N=2) it followsthat L/2 < £(HY(RN), H~*(R")). Sincethe
injection H1(B(0, R)) — L?(B(0, R)) is compact for al R > 0, it follows that
m € K(HYRY), H-1(R")) (the compact operators) whenever m € D(RV). The
test functionsbeing densein LV/2, it followsthat LN/2 ¢ K (HY(RN ), H-Y(RN)).
By [31, Problem 39, p. 369] this implies that each m € LV/2 is relatively form
compact with respect to — A, and has relative form bound 0.

EXAMPLE4.3.Let N > 3, m(x) = |z|~2. By Hardy’sinequality (see[17] or [18,
XVIII (7.47), p. 754]) there exists \g > 0 such that

uz
/I Iz [1vu? weDE"). (44)

Let usassumethat \p > Oisoptimal (e.g. \o = 2.25if N = 5, see[30, p. 172)). It
follows from the definition that s(A) < O for A € [0, Ag)), hence by Theorem 3.1,
s(A) = 0for A € [0, \o]. We show that s(A) = oo for A > Ag,i.e. A\g = Aso(m). IN
fact, let A > Osuchthat s ;= s(A+Am) < oo. Weshow that s(A + Am) < 0.One
has — [ [Vu2 + A [ % < s [u? (u € D(RV)). Replacing u by ua(z) = u(az),
thisyields,

2
—a2/|Vu|2+>\oz2/u—2 < s/u2 (u € D(RY))
T

for al a > 0. It follows that
2 u? N
—/|Vu|+>\/ﬁ<0 (u € D(RV)). 0

Next we prove the analogous result of Theorem 3.3 on L2(RY) if m* ¢ LN/2,
Note that by Example 2.12 (c) onehasm™ ¢ Ky, in general.

THEOREM 4.4. Let N > 3, m € L} (RY) such that 0 # mt € LN/2 If
s(A —m™) < 0, then the conclusions of Theorem 3.3 hold for p = 2.

Proof. It follows from Example 4.2 that oess(A + Am™) = oess(A) for A > 0.
Thus, if s(A + Am™) > 0, then s(A + Am™) is an eigenvalue. It follows from
the Cwickel-Lieb—Rosenbljum-bound ([31, p. 101]) that s(A + Am™) = O for
A € [0, o] for some Ao > 0. Now the proof of Theorem 3.2 and Theorem 3.3 can
be used for this case.

The following example shows that if Ao (m™) < oo it may happen that s(A +
Am) < O0foral 0 < XA < Ao(m™).
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EXAMPLE 45. Let N > 3, q1(z) = |z|72,q2 € L®(RY),m = q1 — ¢2. Denote
by Ao > 0 the best constant in Hardy’s inequality (4.4). Then the following holds:

(@ Onehass(Az + Am) < oo if and only if A < Ap.

(b) If s(A2 —¢q2) =0, thenforall X € [0, \g), s(A2+ Am) = 0and 0isnot an

eigenvalue of Ay + Am.

(c) Assume that N > 5. If s(A2 — g2) < O, then s(A2 + Am) < 0 for all

A € [0, Ag).

Proof. (@) Let A > 0 such that s(Az + Am) < oo. Then s(Az + A\q1)
s(Az 4+ Am) + A|gz2]|l00 < 0o. Hence A < Ao (see Example 4.3).
(b) is shown as Proposition 3.7.
(c) Assumethat 0 < A < Ao such that s(Az + Am) = 0. Then s(Az + Am)
0 > s(A2 — Ag2). Hence by [31, Example 9, p. 119], ces(A2 + Am)
(—o0,s(A2 — Ag2)]. ThusOis an eigenvalue of Ay + Am. But s(Az + Aq1) =

It follows from Proposition 3.8 that A, + Ag1 = Ay + Am, acontradiction.

oonl
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