
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 125, Number 3, March 1997, Pages 635–647
S 0002-9939(97)03529-6

BOUNDARY VALUES OF HOLOMORPHIC SEMIGROUPS

WOLFGANG ARENDT, OMAR EL MENNAOUI, AND MATTHIAS HIEBER

(Communicated by Palle E. T. Jorgensen)

Dedicated to Professor H. H. Schaefer on the Occasion of his 70th Birthday

Abstract. The concept of boundary values of holomorphic semigroups is used
to give a new proof of a result due to Hörmander, saying that the operator
i∆ generates a C0-semigroup on Lp(RN ) if and only if p = 2. Using a recent
result on Laplace transforms by Prüss one obtains by this theory also a new
proof of the classical characterization theorem of holomorphic semigroups.

0. Introduction

The starting point of the present paper is a classical result of Hörmander [Hö]
saying that the operator i∆ generates a C0-semigroup on Lp(RN ) if and only if
p = 2. Hörmander’s proof is based on euclidean harmonic analysis. In fact, he

shows that for each t > 0, the function ξ 7→ eit|ξ|
2

(the symbol of eit∆) is not a
multiplier for Lp(RN ) if p 6= 2.

There is a completely different way to look at his result. Indeed, observe that
the Laplacian ∆ generates a holomorphic C0-semigroup of angle π/2 on Lp(RN ),
1 ≤ p < ∞. We use the following simple result on the boundary of a holomorphic
semigroup (see Section 1 for the proof) to prove Hörmander’s result in an elementary
way.

Proposition 0.1. Let A be the generator of a holomorphic C0-semigroup T on
some Banach space E of angle π/2. Then iA generates a C0-semigroup on E if
and only if T is bounded on Ω := {z ∈ C; Re z > 0, Im z ≥ 0, |z| ≤ 1}.

In fact, the explicit representation of the semigroup (ez∆)Re z>0 as a convolu-
tion operator with the Gaussian kernel allows us to show in Section 2 that ezδ is
unbounded on Ω if p 6= 2. In view of Proposition 0.1 we obtain in this way a proof
of Hörmander’s result.

Another interesting example of a holomorphic semigroup of angle π/2 is the
Riemann-Liouville semigroup J (describing fractional integration) on Lp(0, 1), 1 ≤
p <∞. It does have a boundary value for 1 < p <∞. We show this by identifying
J(z) with B−z (Re z > 0), where −B generates the translation semigroup on
Lp(0, 1), and by applying the transference principle due to Coifman and Weiss
[C-W].

In Sections 4 and 5 we consider the inverse problem: Which semigroups are
obtained as boundary values of holomorphic semigroups? Given an operator A

Received by the editors April 27, 1995 and, in revised form, July 7, 1995.
1991 Mathematics Subject Classification. Primary 47D06, 47F05.

c©1997 American Mathematical Society

635



636 WOLFGANG ARENDT, OMAR EL MENNAOUI, AND MATTHIAS HIEBER

in E and ϕ ∈ (0, π/2), we show that the operators e±iϕA generate bounded C0-
semigroups on E if and only if A generates a bounded holomorphic semigroup
of angle ϕ. Our proof is based on a Phragmen-Lindelöf type argument and the
Hille-Yosida theorem. Using a recent result on Laplace transforms by Prüss [Pr,
Proposition 0.1], one obtains by this result also a new proof of the characterization
theorem for holomorphic semigroups.

If the angle ϕ equals π
2 , the situation is different; a spectral condition on the

generator and a growth condition on the group are needed in addition. More
precisely, if iA generates a polynomially bounded group on E and the spectrum
of A lies in a left halfplane, then A generates a holomorphic semigroup of angle
π
2 . Our proof of this result uses a new result of Phragmen-Lindelöf type allowing
the underlying function to be unbounded on a ray. A more complicated and very
different proof had been given before in [El2]. The first result in this direction is
due to Jazar [Ja1], [Ja2], who considered bounded groups and used spectral calculus
for the proof.

1. The boundary of a holomorphic semigroup

Let A be an operator in a Banach space E. For θ ∈ (0, π] let

Σθ := {z ∈ C; z 6= 0, | arg z| < θ}.

We say that A generates a bounded holomorphic semigroup of angle ϕ ∈ (0, π/2],

if A generates a C0-semigroup T which has a bounded holomorphic extension T̃ to

the sector Σϕ. Denoting the extension T̃ still by T one has T (z + z′) = T (z)T (z′)
for z, z′ ∈ Σϕ and limz→0,z∈Σϕ T (z) = I strongly. Let A be the generator of a
holomorphic semigroup T of angle ϕ ∈ (0, π/2]. By this we mean that for all
θ ∈ (0, ϕ) there exists ω ≥ 0 such that A − ω generates a bounded holomorphic
semigroup Tθ of angle θ (and then T (z) = eωzTθ(z), z ∈ Σθ). Then, for θ ∈
[0, ϕ), (T (teiθ))t≥0 is a C0-semigroup and its generator is eiθA. For more details we
refer to [Da], [Go] and [Pa]. Throughout this paper we denote by σ(A) and ρ(A)
the spectrum and the resolvent set of A. Furthermore, we put Σ+

ϕ := Σϕ ∩ {z ∈
C; Im z ≥ 0}, Σ−ϕ := Σϕ∩{z ∈ C; Im z ≤ 0} and define D by D := {z ∈ Σπ/2, |z| ≤
1}. In this first section we are interested in the boundary value of a holomorphic
semigroup.

Proposition 1.1. Let A be the generator of a holomorphic C0-semigroup T of
angle ϕ ∈ (0, π/2]. Assume that

sup
z∈Σ+

ϕ∩D
‖T (z)‖ <∞.(1.1)

Then eiϕA generates a C0-semigroups T (·eiϕ) given by

T (teiϕ) = s− lim
ε→0+

T (eiϕt+ ε).(1.2)

Proposition 1.1 is an obvious modification of [H-P, Theorem 17.9.1, 17.9.2]. We
call the semigroup T (·eiϕ) the boundary value of the holomorphic semigroup T .

Extending T by formula (1.2) one obtains a strongly continuous function T : Σ+
ϕ →

L(E) such that

T (z + z′) = T (z)T (z′), z, z′ ∈ Σ+
ϕ .(1.3)
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Finally, we say that T has a boundary value provided (1.1) is satisfied. We also
remark that the above result can be easily modified to the case where eiϕA and
e−iϕA generate C0-semigroups on E. Indeed, assuming that

sup
z∈Σϕ∩D

‖T (z)‖ <∞(1.4)

it follows that e±iϕA generate C0-semigroups T (·e±iϕ) on E given by T (te±iϕ) =
s− limε→0+ T (e±iϕt+ ε). Then T : Σϕ → L(E) is strongly continuous and

T (z + z′) = T (z)T (z′) for z, z′ ∈ Σϕ.(1.5)

In particular, if (1.4) is satisfied for ϕ = π/2, then iA generates a C0-group.
The following result deals with the converse of Proposition 1.1.

Proposition 1.2. Let A be the generator of a holomorphic C0-semigroup T of
angle ϕ ∈ (0, π/2]. Assume that eiϕA generates a C0-semigroup S. Then (1.1) is
satisfied and thus S(t) = T (teiϕ) for all t ≥ 0.

Proof. Since the resolvents of A and eiϕA commute, it follows that S(s)T (t) =
T (t)S(s) for all s, t ≥ 0. Let a, b ≥ 0. Then the family (V (t))t≥0 of operators given
by V (t) := S(bt)T (at) defines a C0-semigroup on E. Denote its generator by B. If
x ∈ D(A), then ∂

∂tV (t)x = (beiϕ + a)AV (t)x. Hence ∂
∂tV (t)x|t=0 = (beiϕ + a)Ax

and therefore (beiϕ + a)A ⊂ B. Consequently, V (t) = T ((beiϕ + a)t) for all t ≥ 0.
In particular, S(b)T (a) = V (1) = T (beiϕ + a) for all a, b ≥ 0. Now let z ∈ Σ+

ϕ ∩D
and write z = seiϕ + t for suitable s, t ≥ 0. Then T (z) = T (t)S(s). Hence there
exists a constant M ≥ 0 such that

‖T (z)‖ ≤ ‖T (t)‖‖S(s)‖ ≤M for all z ∈ Σ+
ϕ ∩D.

2. Boundary values of the Gaussian semigroup

Let (Gp(z))Re z>0 be the Gaussian semigroup on Lp(RN ), 1 ≤ p <∞, i.e. Gp(z)
is given by Gp(z)f := kz ∗ f for f ∈ Lp(RN ) and Re z > 0, where

kz(x) :=
1

(4πz)N/2
exp

(
−|x|2

4z

)
(x ∈ RN ).

It is well-known that (Gp(z))Re z>0 is a holomorphic C0-semigroup of angle π/2
on Lp(RN ) whose generator is the Laplacian ∆p equipped with maximal domain.
Applying Proposition 1.2 to the Laplacian ∆p we obtain a direct proof of the
following result.

Theorem 2.1 (Hörmander [Hö, p. 109]). Let 1 ≤ p ≤ ∞. Then the operator i∆p

generates a C0-semigroup on Lp(RN ) only if p = 2.

Proof. Since ∆∗p = ∆q for 1
p+ 1

q = 1, we may restrict ourselves to the case 1 ≤ p ≤ 2.

Observe first that

‖G1(z)‖L(L1) = ‖kz‖L1 =

(
|z|

Re z

)N/2
(Re z > 0).(2.1)

Since ∆2 is self-adjoint and form negative we have ‖G2(z)‖L(L2) = 1 for all z ∈
{λ ∈ C; Re λ > 0}. Hence, by the Riesz-Thorin interpolation theorem

‖Gp(z)‖L(Lp) ≤
(
|z|

Re z

)N|1/p−1/2|

(Re z > 0).(2.2)
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By Proposition 1.2, the assertion will be proved provided we can show that a
multiple of the above upper bound also serves a slower bound for ‖Gp(z)‖L(Lp).
This will be carried out in the following lemma.

Lemma 2.2. Let 1 ≤ p ≤ ∞. Then

‖Gp(z)‖L(Lp) ≥ 2
−N
2p

(
|z|

Re z

)N|1/p−1/2|

(Re z > 0).(2.3)

Proof. As we said before and by taking into account (2.1), it suffices to consider
the case where 1 < p ≤ 2. Fix z ∈ Σπ/2 and consider the function f : RN → C
defined by

f(x) := exp

(
−|x|2
z

)
.

Choosing q such that 1
p + 1

q = 1 we verify that

‖f‖Lq =

(
π

q

) N
2q
(
|z|2
Re z

) N
2q

.(2.4)

Let x, y ∈ RN and recall that z ∈ Σπ/2. Then

−|x− y|
2

z
− |x|

2

z
= −2 Re

(
1

z

) ∣∣∣x− y

2

∣∣∣2 + 2ixy Im

(
1

z

)
− |y|2

(
1

z
− 1

2
Re

(
1

z

))
.

Moreover,

Gq
(z

4

)
f(y) =

(
1

πz

)N/2 ∫
Rn

exp

(
−|x− y|

2

z
− |x|

2

z

)
dx

=

(
1

πz

)N/2 ∫
Rn

exp

[
−2|x|2 Re

(
1

z

)
+ 2ixy Im

(
1

z

)]
dx

× exp

[
−|y|

2

2
Re

(
1

z

)]

=

(
1

πz

)N/2(
1

4 Re
(

1
z

))N/2
×
∫
Rn

exp

[
−|x|2

2

]
exp

[
ixy

Im(z−1)

(Re(z−1))1/2

]
dx exp

[
−|y|

2

2
Re

(
1

z

)]

=

(
1

πz

)N/2(
1

4 Re
(

1
z

))N/2 (2π)N/2

× exp

[
−|y|2

2

(Im(z−1))2

Re(z−1)

]
exp

[
−|y|

2

2
Re

(
1

z

)]
,

(2.5)

where in the last step we used the fact that the function x 7→ exp(−|x|
2

2 ) is a fixed
point of the Fourier transform. Furthermore,∣∣∣Gq (z

4

)
f(y)

∣∣∣ =

(
|z|

2 Re z

)N/2
exp

[
− |y|

2

2 Re z

]
(y ∈ RN)
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and since
∫
RN exp(−|x|

2

2 )dx = (2π)N/2, we obtain∥∥∥Gq (z
4

)
f
∥∥∥
Lq

=

(
|z|

2 Re z

)N/2(
2π

q

) N
2q

(Re z)
N
2q .

Combining this equality with (2.4) we see that∥∥∥Gq (z
4

)∥∥∥
L(Lq)

≥
‖Gq( z4 )f‖Lq
‖f‖Lq

= 2
−N
2p

(
|z|

Re z

)N(1/p−1/2)

.

Finally, since ‖Gq(z)‖L(Lq) = ‖Gp(z)‖L(Lp) for 1
p + 1

q = 1, it follows that

‖Gp(z)‖L(Lp) ≥ 2
−N
2p

(
|z|

Re z

)N|1/p−1/2|

(Re z > 0).

Remark 2.3 (Integrated semigroups). Boyadzhiev and de Laubenfels [B-deL] were
the first to show that norm-estimates of holomorphic semigroups with generator
A on the right halfplane are equivalent to the fact that iA generates a k-times
integrated semigroup for suitable k ∈ N (or, what is the same, a (w − A)−k-
regularized semigroup; see [deL], [Ar] and [Hi1] for the definition and properties
of these objects). This technique has been considerably refined in [El1]. Thus the
estimate (2.2) tells us that i∆ generates an α-times integrated semigroup provided
α > N |12 −

1
p |. See [B-deL] and [deL, Theorem 10.1] for entire α and [El1, Chapter

VI.A] for non-entire α. Observe that (2.3) also gives lower bounds: in fact, if
α < N |12 −

1
p |, then i∆ does not generate an α-times integrated semigroup on

Lp(RN ). For α ∈ N this follows from [B-deL], [deL, Theorem 10.3] and for non-
integer α from [El1, Chapter VI.A].

Former results of this kind were proved by Fourier multiplier theory (see [Hi1] and
[Hi2] also for more general types of operators). By that method it is also possible
to get precise information about the critical value α0 = N |12 −

1
p | : if 1 < p < ∞,

then i∆ generates an α0-times integrated semigroup on Lp(RN ); however, if p = 1,
then i∆ does not generate an α0-times integrated semigroup on L1(RN ) (see [Hi1]).
So far it seems not possible to prove these statements by the holomorphy method.

3. Bounded imaginary powers and the Riemann-Liouville semigroup

Interesting examples of boundary values of holomorphic semigroups occur in
connection with fractional powers of operators. In fact, initiated by the regularity
results due to Dore and Venni, much attention was recently given to operators
having bounded imaginary powers. For detailed information on this subject we
refer to [Am], [D-V], [Pr], [P-S] and the references given there. If A is sectorial
and invertible, this actually means by definition that the holomorphic semigroup
(A−z)Re z>0 has a boundary value. We want to make this more precise.

Let A be a densely defined operator in a Banach space E such that there exist
constants M > 0, ϕ ∈ (0, π) such that

σ(A) ⊂ Σϕ and ‖R(λ,A)‖ ≤ M

1 + |λ| for all λ ∈ C\Σϕ.

Then one defines the fractional powers A−z of A by

A−z :=
1

2πi

∫
C

λ−z(A− λ)−1dλ, Re z > 0,(3.1)
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where the path C runs in ρ(A) from ∞e−iϕ to ∞eiϕ, w < ϕ < π, avoiding R− and
the origin (cf. [Kom]). It is well-known that the family (A−z)Re z>0 is a holomorphic
C0-semigroup on E of angle π/2 (cf. [Am, Theorem 4.6.2]). In the case where −A
generates an exponentially stable C0-semigroup T , the operator A−z is also given
by the formula

A−zx =
1

Γ(z)

∫ ∞
0

tz−1T (t)xdt, Re z > 0,(3.2)

for all x ∈ E (cf. [Pa, p. 70]). We say that A admits bounded imaginary powers if

sup
z∈D
‖A−z‖ <∞.(3.3)

By Proposition 1.1 and the subsequent remarks, condition (3.3) implies that
(A−z)Re z>0 has a boundary group which is denoted by (A−is)s∈R.

As an example we consider the operator A in Lp(0, 1) given by

D(A) = {f ∈W 1,p(0, 1); f(0) = 0} and Af = f ′.(3.4)

Note that the operator −A generates the semigroup T on Lp(0, 1), 1 ≤ p < ∞,
given by

(T (t)f)(x) =

{
f(x− t) if t ≤ x,
0 if t > x.

Furthermore, the semigroup T is positive and contractive for all p ∈ [1,∞). Thus,
in order to prove the boundedness of the imaginary powers of A, we may use the
transference principle due to Coifman and Weiss [C-W]. By this we mean the
following result (cf. [Am, Example 4.7.3c]):

Let 1 < p < ∞, (Ω, µ) be a σ-finite measure space and −A be the generator
of a positive contraction semigroup on Lp(Ω, µ). Then there exists a constant Cp
(depending only on p) such that

‖Ais‖L(Lp(Ω)) ≤ Cp(1 + s2)e|s|
π
2 (s ∈ R).

Applying this result to the operator A defined in (3.4), we see that A has bounded
imaginary powers whenever 1 < p < ∞ and that A−is satisfies an estimate of the
form

‖A−is‖L(Lp(0,1)) ≤ Cp(1 + s2)e
π
2 |s| (s ∈ R),(3.5)

where the constant Cp depends only on p ∈ (1,∞). Since T (t) = 0 for t ≥ 1,
formula (3.2) is valid and we obtain

(A−zf)(x) =
1

Γ(z)

∫ x

0

(x− y)z−1f(y) dy, x ∈ (0, 1),

i.e. (A−z)Re z>0 is the Riemann-Liouville semigroup (see [H-P, Section 23.16]).
Thus we proved that the Riemann-Liouville semigroup has a boundary group if
1 < p < ∞. This extends [H-P, p. 665] where the corresponding result is proved
for p = 2.
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The situation is different for p = 1. Since A−z is an integral operator, the norm
of A−z is given by

‖A−z‖L(L1(0,1)) = sup
y∈[0,1]

1

|Γ(z)|

∫ 1

y

|(x− y)z−1| dx

=
1

|Γ(z)| sup
y∈[0,1]

∫ 1

y

(x− y)Re z−1dx =
1

|Γ(z)|
1

Re z
.

(3.6)

Thus (A−z)Re z>0 does not have a boundary group if p = 1.
Summing up, we obtain the following result (which is proved in [H-P, Section

23.16] for p = 2). Denote by J the Riemann-Liouville semigroup on Lp(0, 1),
1 ≤ p <∞, i.e. J is given by

J(z)f(x) :=
1

Γ(z)

∫ x

0

(x− y)z−1f(y) dy (Re z > 0).(3.7)

Denote by G the generator of J .

Theorem 3.1. For 1 < p < ∞, the operator iG generates a C0-group (eiGs)s∈R
on Lp(0, 1) which satisfies

‖eiGs‖L(Lp(j0,1)) ≤ Cp(1 + s2)e|s|
π
2 (s ∈ R),

where the constant Cp depends only on p. If p = 1, then iG does not generate a
semigroup.

We remark that σ(G) = ∅ since J is nilpotent and that G has compact resolvent
since J(t) is compact for all t > 0.

Remark 3.2 (the vector-valued case). An alternative way to prove (3.5) is to use
Fourier multiplier theory (see [D-V, Theorem 3.1]). This approach works also in the
vector-valued case. More precisely, let 1 < p <∞ and let E := Lp((0, 1), X), where
X is a Banach space satisfying the UMD-property. Then Dore and Venni [D-V,
Theorem 3.1] showed that the estimate (3.5) holds. Define J on E by (3.7). Then
J is a holomorphic semigroup on E of angle π

2 . We deduce from Proposition 1.2
that J has a boundary group.

4. Characterization of holomorphic semigroups

by their boundary values

We start this section by proving the following converse result of Proposition 1.1.

Theorem 4.1. Let A be an operator in E and let ϕ ∈ (0, π/2). Assume that e±iϕA
generate bounded C0-semigroups on E. Then A generates a bounded holomorphic
semigroup of angle ϕ.

Our proof of Theorem 4.1 is based on the Hille-Yosida theorem and the following
version of the Phragmen-Lindelöf theorem (cf. [Co, Corollary 6.4.4]).

Theorem 4.2 (Phragmen-Lindelöf). Let ϕ ∈ (0, π/2] and let h : Σϕ → E be con-
tinuous and holomorphic in Σϕ. Let α = π

2ϕ . Assume that for all ε > 0 there exists

a constant C > 0 such that

‖h(z)‖ ≤ Ceε|z|
α

(z ∈ Σϕ).

If ‖h(re±iϕ)‖ ≤M for all r > 0, then ‖h(z)‖ ≤M for all z ∈ Σϕ.
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Proof of Theorem 4.1. Denote by T+ and T− the semigroups generated by A+ :=
eiϕA and A− := e−iϕA, respectively. Let M ≥ 0 such that ‖T±(t)‖ ≤M for t ≥ 0.
Then

‖R(λ,A±)‖ =

∥∥∥∥∫ ∞
0

e−λtT±(t) dt

∥∥∥∥ ≤ M

Re λ
(Re λ > 0).

Hence if λ ∈ Σ+
ϕ , one has

‖R(λ,A)‖ = ‖R(λ, eiϕA−)‖ = ‖R(λe−iϕ, A−)‖ ≤ M

Re(λe−iϕ)
≤ M

|λ| cosϕ
.

Similarly, ‖R(λ,A)‖ ≤ M
|λ| cosϕ if λ ∈ Σ−ϕ . We have shown that

‖R(1, zA)‖ =

∥∥∥∥z−1R

(
1

z
,A

)∥∥∥∥ ≤ M

cosϕ
(z ∈ Σϕ).

Let hn(z) := (I − z
nA)−n, where z ∈ Σϕ and n ∈ N. Then ‖hn(z)‖ ≤ M for

z = re±iϕ and

‖hn(z)‖ ≤
(

M

cosϕ

)n
for z = re±iα, r ≥ 0, |α| < ϕ.

It follows from the Phragmen-Lindelöf principle that ‖hn(z)‖ ≤ M for all z ∈ Σϕ
and all n ∈ N. Now we apply the Hille-Yosida theorem to conclude that A generates
a C0-semigroup T . Since limn→∞ hn(t) = T (t) strongly (t ≥ 0), it follows from

Vitali’s theorem [H-P, Theorem 3.14.1] that T has a holomorphic extension T̃ to

Σϕ satisfying ‖T̃ (z)‖ ≤M for all z ∈ Σϕ.

We now want to use Theorem 4.1 to give a new proof of the following classical
characterization theorem for holomorphic semigroups.

Theorem 4.3. Let A be an operator in E and let ϕ ∈ (0, π/2). Then the following
assertions are equivalent.

(i) The operator A generates a bounded C0-semigroup T which has a bounded
holomorphic extension to every sector Σα with α ∈ (0, ϕ).

(ii) The operator A is densely defined, Σϕ+π
2
⊂ ρ(A) and

sup
λ∈Σϕ+π/2−ε

‖λR(λ,A)‖ <∞ for all ε > 0.(4.1)

The key to our proof is the following lemma due to Prüss, which allows us to
deduce from the complex estimate (4.1) the Hille-Yosida condition on the positive
real line. We refer to [Pr, Proposition 0.1] for the short proof.

Lemma 4.4 (Prüss). Let h : Σπ/2 → E be holomorphic and M ≥ 0 such that

‖λh(λ)‖ ≤ M,

‖λ2h′(λ)‖ ≤ M

for all λ ∈ Σπ
2

. Then

‖rn+1h(n)(r)/n!‖ ≤ 2M (r > 0, n ∈ N).
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Proof of Theorem 4.3. (ii)⇒(i): Let M ≥ 1 such that M ≥ supλ ∈ Σπ/2‖λR(λ,A)‖
< ∞. Note that (−1)nR(λ,A)(n)/n! = R(λ,A)n+1. In particular, ‖λ2R(λ,A)′‖ ≤
M2 (Re λ > 0). It follows from Lemma 4.4 that

‖(rR(r,A))n+1‖ = ‖rn+1R(r,A)(n)/n!‖ ≤ 2M2 (r > 0).

By the Hille-Yosida theorem this implies that A generates a bounded C0-semigroup.
In this argument we can replace A by e±iαA for all α ∈ (0, ϕ). Now Theorem 4.1
implies (i).

(i)⇒(ii): This is contained in the proof of Theorem 4.1.

If T is a holomorphic semigroup of angle ϕ which admits a boundary group and
z ∈ Σϕ, then ‖T (z)‖ can be estimated by the norm of the boundary group. More
specifically, the following holds true. Denote by s(A) := sup{Re λ;λ ∈ σ(A)} the
spectral bound of A. Note that assertion (i) of the following proposition follows
from the proof of Theorem 4.1. Here we give a direct argument.

Proposition 4.5. Let A be the generator of a holomorphic semigroup T of angle
ϕ ∈ (0, π/2] satisfying (1.4). Assume that

‖T (re±iϕ)‖ ≤M (r ≥ 0).

Then the following hold.

(i) If ϕ < π/2, then ‖T (z)‖ ≤M for all z ∈ Σϕ.

(ii) If ϕ = π/2, then ‖T (z)‖ ≤Mes(A) Re z for all z ∈ Σπ/2.

Proof. (i) Assume that ϕ < π/2. Let z ∈ σϕ. Then there exist s, t ≥ 0 such that
z = teiϕ + se−iϕ. Thus by (1.5), T (z) = T (teiϕ + se−iϕ). Hence ‖T (z)‖ ≤ M2 for
all z ∈ Σϕ. It follows from Theorem 4.2 that ‖T (z)‖ ≤M for all z ∈ Σϕ.

(ii) Assume that ϕ = π/2. Replacing A by A−s(A) if necessary, we may assume
that s(A) = 0. Let ε > 0. Since s(A) = ω(A) (cf. [Na, Theorem A-III, 6.6]), there
exists C > 0 such that ‖T (t)‖ ≤ Ceεt for all t ≥ 0. Let z = t+ ir ∈ Σπ/2. Then by
(1.3)

‖T (z)‖ = ‖T (ir)T (t)‖ ≤MCeεt ≤MCeε|z|.

It follows from Theorem 4.2 that ‖T (z)‖ ≤M for all z ∈ Σϕ.

The example of the semigroup T (z) = ewz, w ≥ 0, on C shows that the estimate
in (ii) is optimal.

Corollary 4.6. Let A be the generator of a holomorphic semigroup T of angle
ϕ ∈ (0, π/2) satisfying (1.4). Assume that

‖T (re±iϕ)‖ ≤Mewr (r ≥ 0),

where M ≥ 0 and w ∈ R. Then

‖T (z)‖ ≤MeRe z w
cosϕ for all z ∈ Σϕ.

Proof. Apply Proposition 4.5 to A− w
cosϕ .

For later purposes we add two further corollaries of Theorem 4.1.

Corollary 4.7. Let ϕ ∈ (0, π/2) and assume that e±iϕA generate C0-semigroups
T±ϕ. Then A generates a holomorphic semigroup of angle ϕ with boundary groups
T±ϕ.
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Proof. Let ‖T±ϕ(t)‖ ≤Meωt (t ≥ 0) for suitable constantsM,ω ≥ 0. Set µ := ω
cosϕ .

Then e±iϕ(A − µ) generate bounded C0-semigroups. So by Theorem 4.1, A − µ
generates a bounded holomorphic semigroup of angle ϕ.

Corollary 4.8. Assume that A generates a C0-semigroup T and that iA generates
a C0-group U . Then T has a holomorphic extension of angle π/2 and U is the
boundary group of T .

Proof. By Corollary 4.7, the operator exp(±iπ4 )A generates a holomorphic semi-

group. Thus eiθA generates a C0-semigroup for all θ ∈ (−ϕ,ϕ). It follows from
Corollary 4.7 again that A generates a holomorphic semigroup of angle π/2. By
Proposition 1.1, U is its boundary group.

Remark 4.9. Concerning Theorem 4.1, our point was to give a proof based on the
Hille-Yosida theorem. We then deduced from Theorem 4.1 the characterization
theorem for holomorphic semigroups (Theorem 4.3) with the help of Prüss’ lemma.
One can also go the other way around: If e±iϕA generate bounded semigroups,
where ϕ ∈ (0, π/2), one sees easily that ‖λR(λ,A)‖ is bounded on each sector
Σϕ+π/2−ε, ε > 0. Thus A generates a holomorphic semigroup of angle ϕ. This is
precisely the argument given by Kato [Ka, Theorem 9.1.23].

5. Spectral characterization of boundary groups

Let A be an operator in E and assume that iA generates a C0-group U on E.
In this section we look for spectral conditions on A which imply that A generates
a holomorphic semigroup T such that U is the boundary value of T .

An obvious necessary condition for this is that the spectrum of A is located in a
left halfplane, i.e. s(A) < ∞. However, this condition is not sufficient, in general.
In fact, consider the generator B of the Riemann-Liouville semigroup on Lp(0, 1),
p ∈ (1,∞), and let A = −B. Then s(A) = −∞ and iA generates a group. But A
does not generate a semigroup. Nevertheless, the condition s(A) < ∞ is sufficient
provided U satisfies a certain growth condition.

Theorem 5.1. Let A be an operator in E such that iA generates a C0-semigroup
U on E. Assume that there exists a dense subspace F of E such that for all x ∈ F
there exist constants C ≥ 0 and k ∈ N (depending on x) such that

‖U(t)x‖ ≤ C(1 + |t|)k‖x‖ (t ∈ R).

If s(A) <∞, then A generates a holomorphic C0-semigroup on E (whose boundary
group is U).

The key to our proof is the following result of Phragmen-Lindelöf type, whose
proof is based on the idea to compensate the factor 1/ sinϕ by an appropriate
function (cf. [Kor] and [A-B]).

Proposition 5.2. Let r : Σπ/2 → E be continuous and holomorphic in Σπ/2. As-
sume that there exist constants C,M ≥ 0, R0 > 0, k ∈ N such that

‖r(λ)‖ ≤ C

| sinϕ|k (Re λ ≥ 0, Im λ 6= 0, |λ| ≥ R0, argλ = ϕ) and

‖r(is)‖ ≤ M (s ∈ R).

Then ‖r(λ)‖ ≤M for all λ ∈ C with Re λ ≥ 0.
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Proof. Choose R ≥ R0. For k ∈ N consider the holomorphic function λ 7→
(1 − λ2

R2 )kr(λ) on the domain {λ ∈ C; |λ| < R,Re λ > 0}. Let λ = Reiϕ for
ϕ ∈ (−π/2, π/2). If ϕ 6= 0, then∥∥∥∥∥

(
1− λ2

R2

)k
r(λ)

∥∥∥∥∥ = |1− ei2ϕ|k‖r(λ)‖ = 2k| sinϕ|k‖r(λ)‖ ≤ 2kC.

If ϕ = 0, then ‖(1− λ2

R2 )kr(λ)‖ = 0. For λ = is, s ∈ [−R,R], one has∥∥∥∥∥
(

1− λ2

R2

)k
r(λ)

∥∥∥∥∥ =

(
1 +

s2

R2

)k
‖r(λ)‖ < 2kM.

It follows from the maximum principal that ‖(1 − λ2

R2 )kr(λ)‖ ≤ 2k max{C,M} for
all λ ∈ C satisfying Re λ ≥ 0, |λ| ≤ R. Letting R → ∞, one deduces that
‖r(λ)‖ ≤ 2k max{C,M} provided Re λ ≥ 0. Now the Phragmen-Lendelöf principle
implies that

‖r(λ)‖ ≤ sup
s∈R
‖r(is)‖ ≤M

for all λ ∈ C with Re λ ≥ 0.

Proof of Theorem 5.1. Replacing A by A − w if necessary, we may assume that
s(A) < 0. Since ±iA generate a group on E, we have

sup
Re λ=0,|λ|≥w

‖λR(λ,A)‖ <∞ for some w ≥ 0.

Since s(A) < 0, it follows that M := supRe λ=0 ‖λR(λ,A)‖ < ∞. Let x ∈ F . By
hypothesis, there exist constants k ∈ N, C ≥ 0 such that ‖U(t)x‖ ≤ C(1 + |t|)k
(t ∈ R). Let λ = reiϕ, where r ≥ 1 and ϕ ∈ (0, π/2]. Then

‖λR(λ,A)x‖ =

∥∥∥∥λ∫ ∞
0

eiλtU(−t) dt
∥∥∥∥ ≤ |λ|C ∫ ∞

0

e−| Im λ|t(1 + tk) dt

≤ C|λ|
(

1

| Im λ| +
k!

| Im λ|k+1

)
≤ C(1 + k!)

1

| sinϕ|k+1
.

Similarly, for λ = reiϕ, where r ≥ 1 and ϕ ∈ [−π/2, 0), we have

‖λR(λ,A)x‖ ≤ C(1 + k!)
1

| sinϕ|k+1
.

It follows from Proposition 5.2 that

‖λR(λ,A)x‖ ≤M‖x‖ (Re λ ≥ 0).

Since F is dense in E, we conclude that

‖λR(λ,A)‖ ≤M (Re λ ≥ 0).

Hence A generates a holomorphic C0-semigroup. Finally, Corollary 4.8 implies that
A generates a holomorphic semigroup C0-semigroup of angle π/2.

In the case where U is a bounded group, Theorem 5.1 is due to Jazar [Ja1],
[Ja2], who uses spectral calculus for the proof. A slightly more general version of
Theorem 5.1 is given in [El2] with a very different and more complicated proof.
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6. Miscellaneous remarks

In this final section we collect some further information on boundary values of
holomorphic semigroups.

Remark 6.1 (Cauchy-Riemann differential equations). Let A and B be generators
of C0-semigroups T and S, respectively, such that T (t)S(s) = S(s)T (t) for all
s, t ≥ 0. Then V (t + is) := T (t)S(s) defines a strongly continuous mapping V :
Σπ/2 → L(E) such that V (z + z′) = V (z)V (z′) for all z, z′ ∈ Σπ/2. In analogy to
the Cauchy-Riemann differential equations, we obtain the following result.

Proposition 6.2. The semigroup V is holomorphic in Σπ/2 if and only if B = iA.

Proof. Assume first that V is holomorphic and denote by G the generator of V .
Let z ∈ Σπ/2, y ∈ E and x = T (z)y. Then x ∈ D(G) and

Gx = lim
z→0,x∈Σπ/2

V (z)x− x
z

= lim
t→0

T (t)x− x
t

= Ax = lim
s→0

S(s)x− x
is

.

Hence x ∈ D(A)∩D(B) and Gx = Ax = −iBx. Now assume that y ∈ D(G). Then
T (z)y→ y and GT (z)y → Gy as z → 0. It follows from the closedness of A and B
that y ∈ D(A) ∩D(B) and that Gy = Ay = −iBy. We have shown that G ⊂ A
and G ⊂ −iB. Hence G = A = −iB.

Remark 6.3 (Reflection principle). Let E be the complexification of a real Banach
space ER and let A be the generator of a C0-semigroup T on E. Then the following
holds.

Proposition 6.4. Assume that T (t)ER ⊂ ER for all t ≥ 0 and let ϕ ∈ (0, π/2]. If
eiϕA generates a C0-semigroup on E, then so does e−iϕA.

Proof. By assumption and Proposition 1.2, T has a strongly continuous extension
to Σ+

ϕ which is holomorphic in the interior of σ+
ϕ . Define T on Σ−ϕ by

T (z) := T (z).

Then, by Schwarz’s reflection principle (cf. [Co, Chapter 9.1]), one obtains a holo-
morphic function T : Σϕ → L(E). Now the claim follows from Proposition 1.1.
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