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ABSTRACT. We prove Gaussian estimates for the kernel of the semigroup
generated by a second order operator A in divergence form with real, not
necessarily symmetric, second order coefficients on an open subset Q of R
satisfying various boundary conditions. Moreover, we show that A + w/ has
a bounded H . -functional calculus and has bounded imaginary powers if w
is large enough.
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1. INTRODUCTION

A large literature has recently arisen on Gaussian estimates for kernels of semi-
groups generated by elliptic operators, including several books, see Davies ([16]),
Robinson ([37]) and Varopoulos-Saloff-Coste-~Coulhon ({40]). The starting point
was a paper of Aronson ([8]) for real non-symmetric elliptic operators on R? with
measurable coefficients, which used Moser’s parabolic Harnack inequality ([29}]).
New impetus to the subject came from Davies ([15]), who introduced a pertur-
bation method together with logarithmic Sobolev inequalities to deduce Gaussian
upper bounds with optimal constants for symmetric pure second order operators
with Loo-coeflicients and Dirichlet boundary conditions or, if the region has the
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extension property, with Neumann boundary condition. (See [16] for a coherent
description.)
In this paper, we consider second order elliptic operators of the form

d d d
_Au:— Z D]“l] Diu-*-zbiD{U—ZDi(Ciu)'i'COU
i=1 i=1

ij=1

with real, not necessarily symmetric coefficients a;; € Loo(§?) satisfying a uniform
ellipticity condition, and lower order coefficients b;, c; € W1*°(Q) and ¢p € Lo (§2)
real or complex. We study realizations A of A in Ly(£2) obtained by quadratic
form methods. They correspond to various boundary conditions, for example,
Dirichlet, Neumann, mixed, or Robin boundary conditions. It turns out that the
non-symmetry of the leading coeflicients interacts with the boundary conditions
and it is not possible to symmetrize the second order part. Qur main results show
that, in each of these cases, A generates a semigroup S = (e7');50 given by a
kernel (Ky)¢so which satisfies a Gaussian estimate

| Ki(z; )| < =4 2e=dla—ylP1 7 gt (z,y)-ae.

for all t > 0. We establish this by two different methods.

The first method (Section 3) works for Dirichlet boundary conditions and
once differentiable second order coefficients. The proof is very short and elemen-
tary and relies on the Beurling-Deny criterion for forms in a non-symmetric version
recently given by Ouhabaz ([31], [32]). Besides its simplicity, one advantage of the
method is that complex lower order coefficients are allowed. This approach is,
however, restricted to Dirichlet boundary conditions.

The second method (Section 4) is based on an iteration process of Fabes—
Stroock ([22]), which is also used in Robinson ([37)) for second order real symmetric
operators on Lie groups with constant coefficients. The advantage of this more
elaborate method is that we no longer need to assume the once differentiability
of the second order coefficients. Moreover, it works for all boundary conditions
considered here. On the other hand, the lower order coefficients have to be real.

Gaussian estimates have various interesting consequences. In Section 5 we
show that for each of the considered boundary conditions one obtains a holomor-
phic semigroup on all the L,-spaces with 1 € p < oo with the same sector as in
Ly(S2). Moreover, using recent results of Duong—Robinson ([20]) we show that,
for all boundary conditions considered here, the operator A + wI has a bounded
Heo (Z(v))-functional calculus on L,(Q) for each p € (I,00) and large w, where
v > 0 is such that I(v) contains the numerical range of the matrix (a;;(z)) for
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a.e. ¢ € Q. In particular, the fractional powers (A + wl)i* are bounded, which is
of interest in view of the regularity theorem of Dore—Venni ([18]) (see also [36],
[35])). In this context it is interesting to determine the range of «w for which this is
true. If wo is such that [|S,]|2—2 € e¥ol*! for all z € C with |argz| € 7/2 — v, then
one obviously requires w 2 wg. We prove that the imaginary powers are bounded

for any w > wyg.

2. PRELIMINARIES

In this section we fix some notations and give some basic results on semigroups
and Sobolev spaces as they are needed throughout this paper.

Let © C R? be an open set and let 1 € p; < pz € co. A family of operators
T € L(Ly(Q)), p1 € p € pz, is called consistent if

T@®p =TWyp

for all p,q € [p1,p2] and ¢ € Lp(Q) N L(R). Similarly we refer to a consistent
family of semigroups (.S'?’)),>o on Ly(Q), p1 € p < p2, if for every fixed t > 0 the
family St(P ) p1 € p < p2, is consistent. We shall briefly say that S is consistent on
Lp, p1 € p < p2 and drop the suffix p in 5,

Let 1 € p1 € 2 < p2 € 0o. Let § be a Co-semigroup on Ly(2). We say
that S interpolates on L,(R?), p1 < p < p3, if there exists a consistent family of
semigroups (St(p))¢>0 on Ly, p1 € p < pa, such that 5 is strongly continuous if
p € [p1,p2], p # oo, and in the case py = oo, S(®®) is weakly* continuous, and,
moreover, S; = 5}(2) for all ¢ > 0. In that case, there exist M > | and w € R such
that

155 lp—p < Met

uniformly for all p € [py,p2] and ¢t > 0. In order to show that a given semigroup §
on L, interpolates, frequently the strong continuity in the endpoints p;, p2 is not
a trivial problem. In the following lemma we give some sufficient conditions.

LEMMA 2.1. Let S be a Co-semigroup on Lo(Q) satisfying S¢(L1NL3) C Ly
for allt > 0 and

(2.1) ISeelis < Mileil

uniformly for allt € {0,1] and all ¢ € Ly N Ly. (We use (|p|lp to denote the norm
of ¢ in L,(2).) Then S interpolates on L,(R), 1 < p < 2, if one of the following
condilions is saiisfied:
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() M =1.

(11) Q has finite measure.

(iii) S¢ > 0 for allt > 0,

(iv) There exists w € R such that ||Syp|l1 € e“{|o|1 for all p € Ly O Ly and
t>0.

(v) There exist ¢ > 0, open ¥ C R* with Q C Q' and an interpolating
semigroup T on L, ('), 1 < p < 2, such that |Sip| € cTi|g| for allt € (0,1] and
@ € L1(Q) N La(£2).

Proof. It is clear that one obtains consistent semigroups (St(p))g;.o on Ly,
1 € p < 2 and it follows from the interpolation inequality ([12], p. 57) that S}
is strongly continuous for p > 1. The strong continuity of $(!) demands further
arguments and is proved in Voigt ([41]) (see also Davies, pp. 22-23 in [16)) if oue
of the first four above conditions is satisfied.

The sufficiency of condition (v) can be proved as follows: Let p € [1,2)
and ¢ € Lp() N Ly(2). We identify a function on © with the function on ¢’
by extending it by 0 on Q' \ Q. Moreover, let ¢1,¢2,... € (0,1] and suppose
that lim¢, = 0. Then limS; ¢ = ¢ in Ly(Q), so there exists a subsequence
such that kllngo St,, P = ¢ a.e. Since klileo Ti, el = |l in Lp(S'), there exist a
subsubsequence (which we can assume to be the subsequence) and a ¥ € L, (')
such that Ty, |p| < 4 a.e. for all £ € N. Then |51, ¢l < T, lp] < ctf ae. for
all £ € N. Therefore, kli’rrolQ St,, ¢ = ¢ in Lp(Q) by an application of the Lebesgue

dominated convergence theorem, and .5 is continuous on L, (). 8

Similarly, if S¢(L2 N Leo) C Lo, and

[1Stplleo < M||olloo

uniformly for all ¢ € (0,1] and ¢ € Ly N Lo, then the semigroup interpolates on
Ly, 2 < p < oo, if one of the conditions (i)-(v) of Lemma 2.1 is satisfied (with
Ly replaced by Lo). Note that, in that case, S* satisfies (2.1) and one can define
56 by 5800 = (gryx,

An operator T on L, is called positive, notation T > 0, if Tp > 0 a.e. for
all p € Lp with ¢ > 0 a.e. We call T' Lo -contractive if ||T¢||os < [}l for all
¢ € Lp N Les. Thus, if S is a Co-semigroup on Ly(Q2) and S; and S} are Le,-
contractive for all ¢ > 0, then S interpolates on L,(2), 1 € p < oco. Finally, a
semigroup S on Ly is called quasi-coniractive on Lo, if there exists an w € R such
that ||Si¢lle < €¥Y|@]|co for all ¢ € Ly N Lo, and ¢t > 0.

Next we give some results on Sobolev spaces. As before, Q denotes an open
set in R%. For p € [1,00] let W'P(Q) = {u € L,(Q) : Diu € Ly(82) for all i €
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{1,...,d}}. Here D;u = Ju/d=; is the distributional derivative in D'(2). If p = 2,
then the space H(Q2) = W2(Q) is a Hilbert space for the norm

d
lull3ay = D I1Deull + flull?.
t=1

Here and in Section 4 we consider real spaces. In Sections 3 and 5 the spaces are
complex and the notation and field will be clear from the context.
The following results follow from p. 152 in [23].

LEMMA 2.2, Letu € HY(Q). Then ut =uv0e HY(Q) and
Diut = luso) v ae.

forallie {l,...,d}. Asa consequence, u™ = (—u)t € H}(Q) and |u| = ut+u~ €
HY() and

(2.2) Dilu| = (sgnu) Diu  a.e.,
where
1 dfu(z) >0,
(sgnu)(z) = { 0 ifu(x)=0,
-1 ifu(z)<0.

Moreover, one has
(2.3) Diu =0 ae. on the set {z : u(x) =0}

forallie {l,...,d}.

We note some further consequences. Set Lo(f2)4 = {u € L(R) : u > 0 a.e.}
and H}(Q)4 = HY(Q) N La(Q) 4.

LEMMA 2.3. (i) If v € HY(Q), then the mappings u— uAv and u— u Vv,
and in particular u — u*, u — u~ and u — [u| from HY(Q) into H(Q) are
conlinuous.

(i) If u € H'(Q), then || |ulllmi(ay = [lulla (a)-

(i) If0 K w € HY(Q), then u Al € HY(Q) and the mapping u — u Al is
continuous on H'(Q)4.

(iv) If u € HY(Q), then ut,u™, |u|,|u| Al € HI(Q).

Proof. Since uVv = u+ (v —uw)* and u Av = —((~u) V (-v)), it suffices
to show that u — u*t is continuous. Let u,u;,uz,... € H'(Q) and suppose
that limu, = w in H'(Q). It suffices to show that every subsequence of (u})



92 W. ARENDT aND A.F.M. TER ELsT

has a subsubsequence which converges to ut. Therefore, we can assume that
limu, = u a.e, lim Dju,, = Dju a.e. and, moreover, |u,| € f and |D;u,} < f for
some f € Ly(2), uniformly for all n € N and 7 € {1,...,d}. Then lim Dju} =
lim Ly, 01 Divun = lusopiu = Diut ae. in virtue of (2.3). Now Statement (i)
follows from the Lebesgue dominated convergence theorem.

Statement (ii) follows from (2.2) and (2.3).

It follows from p. 152 in [23]} that u AL = u+ (1 — u)t € H]L () and

Di(u A1) = Di(u+ (1 — u)t) = ljue)Diu € Ly().

Therefore, u A1 € H'(Q) whenever 0 € u € H(£). It follows from (2.2) that
Dyu =0 a.e. on [u= 1]. So the proof of continuity is as in Staternent (i).

Next we prove Statement (iv). Let u € H{(2) and uj, uz,... € CP(£2) be
such that limu, = uwin H1(). Let e, ez,... € C(R?) be a regularizing sequence.
Fix n € N. Then e,, * uf € C°(Q2) for m sufficiently large and lim e ul =u}
in H1(2). Hence u} € H}(Q) and ut = li}lnu;t € HL(S). The proof for |u| A lis

similar. ¥

REMARK 2.4. (i) The assertions of Lemma 2.3 remain valid if H(Q} is
replaced by WP (Q) with p € {1, c0).

(i1) It should be noted that H'() is not a Banach lattice. In fact, the
intervals [0, u] = {v € H'(2) : 0 € v € u} are not norm bounded, in general.

(iii) If H1(Q) is the complex space, then one has
Di|u] = Re(sgnw Diu)

for all u € H'(Q) (cf. B-II, Lemma 2.4 and C-11.2, p. 251 in [30]). In particular,

one has

(2.4) el zr ey < llull gy

In general, however, the inequality in (2.4) is strict. An example is Q@ = {0, 1) and
u(z) = 7. Then || |ul[|g1(a) = | but (|ul|zq) = V2.

Let V be a closed subspace of H1(Q2). We say that V has the L;-H!-eztension
property if there exists a continuous linear operator ¢ : V — H'(R9), called
extension operalor, with the following two properties:

(1) (Ep)la=p forallp e V,
(i) there exists a constant ¢ > 0 such that ||€p||.,e) < cilellz, @y for all
p e vn Ll(Q)
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EXAMPLE 2.5. Let Q C R? be open and set V = H{{fQ). Then the extension
operator which extends functions on € by 0 on R%\ 2 obviously satisfies properties

(i) and (ii).
ExAMPLE 2.6. Let Q& C R? be open and suppose the boundary 8§ of Q is

minimally smooth in the sense of Stein ([38]), L.e., there exist an € > 0, an integer
N, an M > 0 and a possibly infinite sequence of open sets U, such that:

(i) For all z € 3Q there exists an n € N such that {y € R*: Jy — 2| < €} C
Uy.

(ii) No point of R? is contained in more than N of the Uy’s.

(iii) For all n € N there exists an isometry 7 : R? — R* and a function
¢ : R%"1 — R such that |p(z) — ¢(y)| € M|z — y| for all z,y € R*! and
U NQ =U, N(TZ), where Z = {(z,1) R x R : p(z) < 1}

Then it follows from Theorem VL5 in [38] that H'(Q) has the Li-H!-
extension property.

Note that €2 need not be bounded.

The reason why we consider spaces with the Li-H'-extension property is
that certain properties of H!(R9) are inherited by V. We will use the following
inequality of Nash.

LEMMA 2.7. Let V be a subspace of H'(Q) which has the Li-H'-extension
properiy. Then there erists a ¢y > 0 such that

2 d
(2.5) lell3* % < enllel el
forall p e VN L ().

Proof. There exists a constant ¢y > ( such that

244/d d
IlelL:(éd) < CN||<P||?fx(nd)”‘f"“1/1(nd)

for all ¢ € HY(R?). (See p. 169 in [37] for a short proof.) Let € be the extension
operator and ¢ € V 11 L1(2). Then
244/d 2+4/4d : d 4/d
lollztend < epl2tind, < enll€ollZn o l1€oly faey < cnllelid el
4/d
where ¢y = enl|El1%_ g 16117 Gy 1 cray: B

REMARK 2.8. Note that the Nash inequality does not hold in H(£2) for
general €.

We frequently use the following proposition on semigroups associated with
continuous coercive forms.
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ProprosiTiON 2.9. Let V,'H be Hilbert spaces, V dense and continuously
embedded in H and a : V x V — C a continuous sesquilinear form. Suppose the

form a s coercive, i.e., there exist w € R and p > 0 such that
Rea(u, u)+wllullf 2 ullull?
forallu € V. Define the operator A associated with the form a by

D(A)Y = {u €V : JyenVpeva(u, 9} = (v,0)n]}

and Au = v for allu € D(A) if a(u, ) = (v, p)n for all o € V. Then A generales

a holomorphic semigroup S = (e7**);5q on H.
Proof. See Chapter XVII, p. 450 in [14], or Theorem 3.6.1 in [39]. 1

In the last part of this preliminary section we put together some basic prop-
erties of traces. For that we assume that € is a bounded apen subset of R% with
Lipschitz boundary I' = 692,

There exists a unique linear bounded operator B : H}(Q) — Ly(T') such that
Bu = ulr for all u € HY{(Q2)NC(Q). Here T is considered as a measure space with
the surface measure. The operator B is called the irace operator and Bu the trace
of u. (See Adams ([1]) or Alt ([2], p. 168) for trace properties.) The operator B

is a lattice homomorphism, i.e.,

(2.6) B(uVwv) = (Bu)V(Bv), B{uAv)=(Bu)A(Bv)

and in particular

(2.7) B(ut) = (Bu)*, B(uAl)=(Bu)Al

for all u,v € H' (). In fact (2.6) and (2.7) are trivially valid for u|q with u €

C2(R?). Since the lattice operations are continuous in H'(£2) and Ly(T), the
claim follows by taking limits. Note that H3(Q) = {u € H() : Bu = 0}.
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3. DIRICHLET BOUNDARY CONDITIONS

(iiven an elliptic operator arising from a form with Dirichlet boundary conditions,
we show in this section that the corresponding semigroup has a kernel which satis-
fies Gaussian bounds, provided the second order coefficients are once differentiable.
Since we do not assume that the lower order coefficients are real, all spaces are
complex in this section. The method we use here consists in proving uniform Leo-
estimates for the semigroup perturbed by the Davies’ method. This is done via
a criterion of quasi L..-contractivity for non-symmetric forms due to Ouhabaz.
Then the Gaussian estimates follow easily from the Nash inequality. The main
theorem of this section is the following.

THEOREM 3.1. Let @ C R? open, let a;; € WH(8) be real functions for
alli,j € {1,...,d} and let b;,c; € WH°(Q) (complez) for alli € {1,...,d}. Let
o € Loo (). Consider the form a: HY() x H{(2) — C defined by

d d d
a(u,v) = Z /a,-j Dium+ Z/biDqu+ Z/c;uD_,-v-{--/couE.
i=13 i=1g

i,j:ln Q

Suppose there exists a p > 0 such that
d
> ai(z) &6 > plef
ii=1

for all§ € RE, fora.e. z € Q. Let A be the operator associated with the continuous
coercive form a and S = (e”')45o the semigroup generated by A (see Proposi-
tion 2.9). Then S interpolates on Ly, 1 < p € oo, and there exists b,c > 0, w €R
and K; € Lo (€2 x Q) such that

[Ky(z;p)| € ct=H2e~ M= et (g y)ae

and

(S1p)(z} = f Ki(z;y) ply)dy  z-ae.
2
for allt > 0 and ¢ € L2(2).

The proof relies on the Davies perturbation method to obtain Gaussian upper
bounds. In order to be complete we describe briefly this method. For K € Lo (2 x
Q) define the integral operator Ty € L£{L1(£2), Loo(€2)) by

(3.1) (Trep)(z) = / K () o) dv.

o
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Then it is well known that K — Ty is an isometric isomorphism from Loo{Q x
Q) onto L{L1(), Leo(2)). (See, e.g., [7], Theorem 1.3 for a short proof.) In
particular, if T € £(L2(2)) is such that

ITlli—ao = sup{(IT¢lleo : ¢ € Ly N L) < o0

then there exists a K € Lo, (€2 x Q) such that (3.1) holds z-a.e. for all ¢ € LN L.
Next, let

W ={4 € C;*(R%) : ¢ is real and || Dshl|oc < 1, [|DiDsthlloo < 1
foralli,j € {1,...d}}.

Then clearly d(z;y) = sup{¢(z) — ¢(y) : ¥ € W} defines a distance on R?. This
distance is equivalent to the Euclidean metric.

LeEMMA 3.2. There exists an o > 0 such that
(3.2) ale - y| < d(z;y) < oz -y

for all z,y € R4,
Proof. See {37], pp. 200-202. 1

Now let S be a semigroup on L»(f2), where €2 is an open subset of R?. For
p€Rand ¢ € W we define the perturbed semigroup S? on Ly by S} = U,5:U;*,
where (U,¢)(z) = e ?¥(®)p(z). Here we deliberately omit the dependence of 57
and U, on % in our notation.

Gaussian upper estimates for the kernel of S can be obtained from ultra-
contractivity of S”, uniformly in p and . The following useful device is due
to Davies ([15]) (see also [16]). We include a proof for the convenience of the
reader, since only variations of the criterion are explicitly given in the literature,
cf. Chapter III, p. 189 ff. and the proof of Proposition IV.2.2 in [37], or Section
3.2 in [16). Moreover, the technical measure theoretical problem is usually left to
the reader or circumvented by approximation of the operator by operators with
smooth coeflicients. In our situation the last method is impossible.

PROPOSITION 3.3. Let S be a semigroup on Lo(Q) and c,w; € R. Then the
following are equivalent:
(i) There exists a constant wy > 0 such that

(3.3) 15711 o0 < ct™H2ewsttwas’

uniformly for allpe R, t > 0 and Yy € W.
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(1) There exists a constant b > 0 such that the operators S; have a kernel
K € Lo (Q2 % Q) which verifies
(3.4) [ Ki(z; y)| € ct= U2 blmmy P guat (z,y)-ae.
for allt > 0.
Moreover, if one of the two conditions is valid then S inlerpolates on L,(£2),
1< p < oo and there exists a constant ¢y > 0, depending only on the constanis b
and c in (3.4) such that ||St||p—p € c1e“1* uniformly for allt > 0 and p € [1, 00].
Proof. (i) = (ii). Taking p = 0 we see that S; has a kernel K; € Lo (2 x Q).
Then for each p and ¢ the operator S¥ has a kernel K/, given by
Kl (z;y) = e PUE-YUNK, (z;y) (z,y)-ae.
Then (3.3) implies that for all t > 0, p € R and ¢ € W one has
[K (25 y)] < et~/ 2eritwan’teold(=)~%()) (2 y)-ae.
Replacing p by —p one deduces that
[Kq(z; v)] < et 2gwit+wap®t o~ plp(z)— v (y)| (z,y)-a-e.
Next, Lemma 3.4 below implies that
[Ke(z; )| < ot =4 2guritwap’te=pd(ziy) (z,y)-a.e.
for each t > 0 and p € R. For fixed £ > 0 and z,y € Q the minimum over p of
the right hand side is attained in p = (2wst)~'d(z; y). Thus, applying Lemma 3.4
again we obtain
|K(z;9)| € et 2e=(oat) =) et (5 )ae,
Now (3.4) follows from Lemma 3.2 with b = (4wp)~1a?.
(i1) = (i). Let a be as in Lemma 3.2. Then

157 (11— = esssup esssup | K{ (z; y)| < esssup |Kq(z; y)|e!! W (=)-v W
z€0l yeN z,yEN

< sup Ct—d/2e--b|:z'—y|2t_l-{»c\r—llpl [z'—-y|ewli < Ct—d/2ew2p2tewlt
z,yEN

with wy = (402b)~ 1.
Finally, suppose (ii) is valid. Let T be the semigroup on Ly(R?) generated by

d
the operator — Y 8%/0x?. Then T interpolates on Ly(RY),
i=1

1< p < oo and T has the Gaussian kernel K2. Then
|K:(z;9)| € c(wb'l)d/ze“’“Kab)_,t(x;y) ae-(z,y) EQxQ

for all ¢ > 0. Therefore, |Sip| < c(mb™ )Y/ 2e* T py-1,]p) for all p € L1(Q)NL2(R)
and ¢ > 0. So by Lemma 2.1 (v) it follows that S interpolates on L,(2), 1 < p <
2. By duality, S interpolates on L,(f2), 2 < p < oo. Moreover, ||Siflp—p <
c(mb=1)4/2e“1t for all t > 0 and p € [1,00]. 1
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In the previous proposition we needed the following result on infima, which

can be stated in a more general context.

LEMMA 3.4. LetY be a o-compact topological space and let F C C(Y). Let
Jfo € C(Y) and assume that fo(z) = }22 f(z) for all . € Y. Then there ezist
fi,f2,. . € F such that fo(z) = nlg{' fa(z) forallz € Y. In particular, if (Y,Z, u)
ts @ measure space and h : Y — R is a measurable function such that h € f p-a.e.
Jorall f € F then h < fo p-a.e.

Proof. First we can assume that Y is compact. Secondly, replacing F by
F — fo we can (and do) assume that fy = 0. Let m € N. For all z € Y there
exists an fr m € F such that f; m(2) < m~! and hence f,,, < m~"! on an open

neighbourhood Uy, of z. By compactness we find Tm1y.- -, Emn, € Y such
N

that Y = |J Us,.;m. Then inff; . m(z) < m~! for all z € Y. Now the set
j=1 J

Fo = {¢m; :m €N, je{l,...,nn}} is countable and jLan f(z) = 0 for all
0
zeY. 1

In view of Proposition 3.3, we have to show (3.3) in order to prove Theo-
rem 3.1. This will be done in two steps. At first we show L,-contractivity with

help of the following criterion.

PROPOSITION 3.5. Denote by S = (e™'4);5¢ the semigroup on Ly(Q) gen-
erated by the operator A of Theorem 3.1. Assume that

d d d
(3.5) Re ( Z a;; Diu Dju+Z(b.-—c,~)D,~uE+ (Cg-‘-ZD,‘Ci) [ulz) 20 ae.
¢ 5=1 i=1 i=1

for allu € HY(Q). Then S is Lo,-contractive. In particular, S interpolates on Ly,
2<p< oo.

Proof. Using integration by parts we obtain

d d d
a(u,v) = Z /flij Dium+2/(b.’—ci)Diui+/ (60-{-20;'0;') uv
fQ i=1g a i=1

i,j=1

for all u,v € H§(S2). Moreover, (1 A |u|)sgnu € H(Q) for all u € HA(2). There-
fore, the Lo-contractivity follows from Theorem 4.2 (3) in [32]. The last statement
follows from Lemma 2.1 (i). 1
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LEMMA 3.6. Let h € W be fized and p € R. Denote by S = (7" )i>0
the semigroup on Ly(Q2) generated by the operator A of Theorem 3.1. Then the

generator AP of the perturbed semigroup S is associated with the form a® on
H}(Q) x H}() given by

af(u,v) = Z/a,] ,uD,v+Z/b"Duv+Z/c uDv+/couv,

1,j=1g

where

d
bf = b ——pZaij Vi,

i=1

d
f=ci+py ardr,

kx1

Co_co—l) Zau’l/’z'w +sz h; — chzlbz
=1
and ¥; = Dy for elli€ {1,...,d}.
Proof. Note that 4% = U,AU;!. Furthermore, one has e H}(Q2) = H}(Q)
and U,D; Ut = D; + pi. Therefore

d
aU;  w,Upw) = Y /au (D; + ppi)u(D; — pibsJv
e
+ bi (D; + pyi}uv + cu(D;i — p1j),)v+ CouT
3 [ 3] Je
= a’(u,v)

for all-u,v € H}(Q). This proves the lemma. 1§

The second statement in the following lemma shows again the well-known
fact that the form a is coercive, which we have used already. For the sequel,
however, we need a uniform coercivity estimate for the form a”.

LEMMA 3.7. Denote by S = (e7'*)i50 the semigroup on Lo() generated by
the operator A of Theorem 3.1.
(1) There ezists an w > 0 such that

. 2
157 elloo < e+ o]l
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uniformly for all pe R, Yy € W, t > 0 and ¢ € Ly N Log. The constant w depends
only on g, [|agj|lwres, [1billeo, lleillwa,e and flcofeo-
(11) There ezists an w > 0 such that

Rea®(u,u) + w(l + p°)||ull3 > 27 F‘”U”Hl(n

uniformly for allp € R, € W, t > 0 and u € H}(2). The constant w depends
only on p, {|aijllco, l|billes, llcilleo and [|eolloo-

Proof. We show that there exists an w € R such that

(ZG’J ,uDJu+Z(bp—c Diuw

i,j=1

(3.6) + (c{; + Z D.-c.‘-’) Jul® + w(1 + pz)luiz)

i=1
d
> 2'1/12 |Diu)?>  ae.

forall u € H{(2), p € R and 1 € W. Here b/, ¢/ and ¢} are as in Lemma 3.6. Let
M =1+ max{|laij|lwr.ee, 5illoo, [leillwa.ee s fleoll o }-
The first term in (3.6) can be estimated by
d d
Re Z a;j Diyu Dju > pz |Dsul2  ae.,
ij=1 i=1

for all u € HL(R). The second term can be majorated in the following manner,

ReZ(b”-—c' (Div)®

d d
35 (ai + air) e (Diw) T

d
< Z [b; — ci| | Dsul ful + ||
im1 i=1 k=1

d
<2M Y |Dsu| [ul+ 2dM|p| Y | Diu| ful
i=1 i=1

d
=2M(d+ |pl) Y | Diul |u|

i=1

d
<2M(d+ |ple Y |Diul® + (26) " dM(d + |p])
i=1

d
<27 (Dl +4dPM AT (L4 o)l ace,
i=]
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where we have chosen ¢ = (4M(d + |p|))~'u and used the inequality zy < 622 +
(46)'y?. Finally, we majorate the coefficient in the third term in the following
manner,

d

Re (cg + Z Dicf)

i=1

< M+ d&2Mp? + dM|p| + dM | p|

d

d
Z (D;cg + PZ((Diaki) Yr + ag; Di‘/’k))
k=1

i=1

-+

€ 2d°M (1 + p*) + M(d + 2d%|p|).
Here we have used the differentability of the second order coefficients. Note that
in case p = ( these terms vanish. Hence, for all p € R
d

‘ Re (cg + Z D,'cf)

i=1

<4dM(1 4+ p%) ae,

for all p € R. Therefore, (3.6) holds if w = 4d*M?u~! + 4d*M. Now Statement
(i) follows from Proposition 3.5.
Similarly one can estimate

d d d
Re ( Z aij Diu Dju + be Diut + ZCf uDiu + chlul? +w(l + p2)|u|2>

i,7=1 =] i=1
d
> 2‘1;AZ|D,-u|2 a.e.
=1
ifw=4d2MZu~! + 2d2M, and
Mo = 1 + max{||ajlle, [|billoo, [|€:l] o [leolloo }-

Integrating this inequality one obtains
d
Rea’(u,u) + w(l+ p)lull} > 27" D 1Dinll}
i=1

for all v € H}(2). Hence
Re a’(u,u) + (w + 27 p)(1+ p)lull > 27 pillull qy-

Replacing w by w + 27 !4 proves Statement (ii). #
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We now know that the perturbed semigroup is quasi-contractive on Lo, and
hence by duality one has a bound on £(L;). Next we convert the Ly-ellipticity
estimate and the £(L)-bound in a £(L,, Ly)-bound for S (cf. Step 2 of the proof
of Proposition 111.4.2 in [37] or Theorem 2.4.6 in [16]). For our purposes, it is
important to obtain independent constants.

PROPOSITION 3.8. Let a be a continuous form with domain D(a) = V,
with V a Hilbert space which is continuous embedded in Ly(X), where (X, %, m)
is a o-finite measure space. Assume there erists « constant g > 0 such that
Rea(p,p) 2 pllell} for allp € V. Let S be the semigroup on Ly generated by the
operator associaled with the form a. Suppose that S interpolates on Ly, 1 < p < 2.
Assume there exists a ¢; > 0 such that [|Si||y—1 < ¢1 for allt > 0. Further, let cn
and n > 0, and suppose that the Nash inequalily

244/n 2 4/n
llel)2 <enllellvllell;

is valid for all ¢ € L1 NV, Then there exisls a constant ¢ > 0, depending contin-
uously on p, c1, cy and n and which is otherwise independent of a, such that

1Sellimz € ct™™/*

uniformly for allt > 0.
Proof. Let ¢ € L1(2) N L2(R). Then

d 20 [1Sepll3 /"
ZlISepll3 = —2Rea(Sep, Sep) < —2ul|Sepl} < — 5 12—
de N (|Sepllt"

_ M (llSeplid)

4 4
eney™ el

<
Therefore,
_.d 2y-2/ 2 2y=-1-2/ dioc o 4p —4/n
; n_ _Z n >
57 (15eell2) ~(lIS:ll2) ahSelk - llellx

and by integration

4u -4
— Ll
ney ¢

1Sells /™ = (IISepll2) "™ > ¢

Now the theorem follows if one takes ¢ = (4g) ™™/ 4(nen)**c1. 1

We continue the proof of Theorem 3.1.
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COROLLARY 3.9. Denote by S = (e7% )5 the semigroup on Lo(Q) gener-
ated by the operator A of Theorem 3.1. Then there extst c,w > 0 such that

152 (1 oo € et~/ 2ee(1+2™)t

uniformly for allt >0, peR and Yy € W,

Proof. Since the form-adjoint of a is of the same form as the form a it follows
from Lemma 3.7 that there exist g, > 0 such that Rea?(p, p) +w(1+ p?)||ell2 >
pllollZ, and [|Sfe=~(+2"%||,_; < 1 uniformly for all p € R, ¢ € W and ¢ > 0.
Here af is as in Lemma 3.6. Moreover, by Example 2.5 and Lemma 2.7 there
exists a ¢y > 0 such that the Nash inequality

24+4/d

d
llells +/

< enllell llelly

is valid for all ¢ € L1(Q2) " H}(R). Then by Proposition 3.8 there exists a ¢ > 0

such that | S.{’e“"(l'“’g)‘"]_,g £ et~ uniformly for all p e R, ¥ € W and ¢ > 0.
So
(3.7) 152 [l1—2 < et=#el+")8,

But by duality it then follows that
(157 ll2mco < ct™ w467,
possibly by enlarging ¢ and w. Then
157 1= o0 < ||Sf/2||1_’2||54>/2||2qw < 9d/2,24—d/2u(1+p%)t

uniformly for allt >0, p€ERand ¢y € W.

Now Theorem 3.1 has been proved completely by an application of Proposi-
tion 3.3. 1

REMARK 3.10. (i) A version of Theorem 3.1 with somewhat complementary
assumptions has been obtained by [21] for Q = R%: if a;; € W**°(R?) are complex

coefficients and satisfy
d

Re Z ai;(2) & &5 > plé)?
i7=1
]
for all ¢ € R4, for a.e. z € R, with g > 0, and b;, ¢;, co € Loo then the assertions
in Theorem 3.1 are valid. Moreover, extensions for higher order operators have
been presented. In [9], Gaussian bounds have been proved for second order elliptic
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operators in divergence form with uniformly continuous second order coefficients
in case Q = R4,

(i1) If the coefficients a;; in Theorem 3.1 are real and symmetric and & =
¢; = 0, then one can deduce Theorem 3.1 for Q from the corresponding theorem
for R? since the semigroup on L, (§2) is dominated by the corresponding semigroup
on L,(R?) (see Examples 4.9 and 5.6 and Theorem 6.2 in [6]).

4. GENERAL BOUNDARY CONDITIONS

In this section we consider second order operators in divergence form with real,
Lo, non-symmetric second order coefficients. Moreover, we drop the assumption
that the operator satisfies Dirichlet boundary conditions. Since here all coefficients
are supposed to be real we will only work over the real field in this section. So
all spaces are real spaces. In general there are no Gaussian bounds for an elliptic
operator defined on an open subset € C R? with Neumann boundary conditions,
even if the operator has constant coefficients. An example is the Laplacian A

o0
on @ = |J (27+1,27") C [0,1] C R. Then 1(3n+1 2-n) is an eigenvector of A

with eiggn_vlalue 0 for all n € N. Therefore, S; has an eigenvalue with infinite
multiplicity and S is not compact for any ¢ > 0. But the existence of a kernel
for S; with Gaussian bounds on the pre-compact set Q x Q C [0, 1] x [0, 1] implies
that S; is a Hilbert-Schmidt operator and therefore compact. There are also
examples of bounded connected domains Q where S; is not compact on La(f2), see
Hempel-Seco-Simon ([25]) for a systematic study of spectral properties of these
kind of operators. Thus, in order to establish (Gaussian estimates for the kernel,
one needs some kind of regularity of € or of the domain on which the sectorial form
is defined. We will assume throughout that V has the L;-H'-extension property
(see Section 2). This is true for all open sets @ C R? if V = H}($2) but one
demands some regularity of the boundary of Q if V # H}(Q).
Now let A be the (formal) elliptic operator

d d d
(4.1) Au=— Z Dj ai; D,‘U—{-—Zb,’ Diu—ZDg(c;u)-{-cou
i=1 i=1

£,7=1
with real coefficients. For the coefficients we suppose that a;; € Loo(2) (4,5 €
{1,...,d}), bi,e; € WH(Q) (i € {1,...,d}) and ¢y € Loo(2) are real valued
functions such that

d

(4.2) > ai(2) &€& > ple)’

t,j=1
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for all € € RS, for a.e. ¢ € Q, where g > 0 is a fixed constant. We emphasize
that the coefficients a;; need not be symmetric. We consider realizations of A in
Lo($) with various boundary conditions. They will be defined by a form domain
V satisfying the following hypotheses:

(4.3) V is a closed subspace of H'(),
449 HOCY
(4.5) V has the Li- H'-extension property,
( 6) v € V implies [v], || A1 €V,
4.7) veV, ue H(Q), |u| € v implies u € V.

Assumption (4.7) means that V is an ideal in H'(Q). Furthermore, we assume
that the first order coefficients satisfy

(4.8) ie{l,...,d} and v € V implies b;v, c;v € H(R).

Now we consider the forma: V x V — R given by

(4.9) a(u,v) = Z/a,JDuD,v+Z/b Duv+2]c.uD,v+/cguv

t= 1n lln

Then a is clearly continuous and coercive, i.e., there exists an w € R such that
afu, u) + wllull > 27 ufjull}

for all u € V. Let A be the operator on Ly() associated with the forma on V. It
follows from Proposition 2.9 that the complexification of the operator A associated
with the complexified form (still denoted by a) generates a holomorphic semigroup
S on Ly(). Recall that we assume throughout this section that the spaces are
real.

If V = H}() we say that A is the realization of A in Ly(S) with Dirichlet
boundary conditions. In that case (4.8) is satisfied whenever b;, ¢c; € WhH™(Q).

If V = H(Q) and 8Q is minimally smooth we say that A is the realization
of A in Ly(S) with Neumann boundary condilions. In that case (4.8) is satisfied
whenever by, ¢c; € W(Q). If Q is bounded, then b;,¢; € H(f) is a necessarily
condition for (4.8), since 1 € V.
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ExAMPLE 4.1. If a;; = 6;;, V = H'() with Q regular, then one obtains
the Neumann—Laplacian with Neumann boundary conditions (cf. Example 4.8).

EXAMPLE 4.2. In general the boundary conditions depend on the cocffi-
cients. As an example we consider a concrete non-symmetric case. Let = {rei"" :

r € [0,1), 8 € R} be the open disk in R? and let V = H'(2). Consider the pure

1 1
_1 1). Then one can

easily see by Green’s formula that Au = —Au for all u € D(A), and for u € C*(R?)
one has

second order operator with constant coefficients (ai;) = (

u € D(A) © u, = u, on Q.

Similarly, if we choose § = {0,1) x (0, 1} and the same matrix for the coefficients

then
uz = —uy, on {0, 1) x {0} U{0,1) x {1}

D(A
ueD(4) & {u,, =u, on {0} x (0,1)U{0} x (0, 1)
for all u € C?(R?).

Finally one may consider mized boundary conditions in the following way.

EXAMPLE 4.3. Suppose Q has a minimally smooth boundary, let Ty C 0§
be a closed set and

H!'(Q
V=Taln wcCo@NTI] O,

Let Ty C 692 be closed such that

wh= (0
T UT; =00 and bici € (a9 € CORINT] " .

Then (4.3)-(4.8) is salisfied.

Proof. The domain V clearly satisfies (4.3) and (4.4). It follows from Exam-
ple 2.6 that V has the L;-H!-extension property {4.5). Let u € V. Then there
exist ug, u, ... € C®(R4\ ) such that limu, = u in H}(R). Then limu} = ut
in HY(). Let ey, e,... € C(R?) be a regularizing sequence. Fix n € N. Then
for sufficiently large m one has em * uf € C®(R%\I'1) and linrﬂ‘nem *ub = ut
in H'(R?). Therefore, ut € V. It follows that [u| = u* Vu~ € V. Using the
regularizing sequence again one proves in a similar way that © A 1 € V whenever
0 € u € V. This proves the condition (4.6).

Next we prove the ideal condition (4.7). Let v € V, u € H(Q2) and suppose
that |u| € v. Let € be the extension operator with respect to H!(Q). There
exist vy, vg,... € CX(RI\ ), u1,up € -+ € CP(R?) and f € La(R) such that
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limwv,]o = vin HY(Q), limu, = Guin HY(RY), limvy o = vae., lim Dyva|g = Dsv
ae., limu, = Gu a.e., lim Diju, = D;Cu ae., and, |v,| € f ae,, |Divn| < f ae,
funla] € f ae. and |[(D;jun)|a| € f ae. on Qforalln € Nand i € {l,...,d}.
Then limu}|q = (€u)t o = vt in HY(Q) and lim(u}t Avp)|lo = ut Av =ut in
H'(Q). Tor all n € N onc has ey, * (uf Av,) € C(R?\ Ty) for large m and
linlln e * (u,'t Avp) = utr A vy, in Hl(Rd). So ut € V. Similarly u~ € V and
therefore u = ut —u~ € V. .

Finally, let b € {¢|n : ¢ € C(R4\ T'3)} W) and w € V. We show that
bu € HL(S). There exists by, by, ... € CP(R4\ I'3) and u1,us, ... € CP(RF\ Ty)
such that limby|g = b in WH®(Q) and limua|n = v in HY(Q). Then (bnua)la €
C=(Q) and lim(byu,)|q = bu in H}(Q). This shows the condition (4.8). 1

THEOREM 4.4. Let V salisfy (4.3)—(4.7). Let A be the operaior associated
with the form a given by (4.9) with domain V and real coefficients a;; € Loo(€2),
bi,ci € WH(Q) and co € Loo(Q) satisfying the ellipticity condition (4.2) and
the condition (4.8). Then A generates a positive semigroup (e”*4);50 which in-
terpolates on Ly(2), 1 < p < oo, and which is given by a kernel K for which
K: € Loo($2 x Q) for all t > 0 satisfying

0< Ke(z;y) < et~ 2etlo-vl*7 g0t (0 ) qe,

for some constants b, ¢ > 0 and w € R, uniformly for allt > 0.

In the proof of Theorem 4.4 we will again use Davies’ perturbation method
and prove ultracontractivity of $? uniformly for all real 4 € C°(R?) with ||D;9]1
£ 1. In case of Neumann boundary conditions the method of Section 3 is, however,
not applicable since (Se™“!);5¢ is not Leo-contractive for any w € R, in general,
even for the Laplacian as the following example shows.

1
EXAMPLE 4.5. Let @ = (0,1) C R, V = H'(Q) and a(u,v) = [u'v'. Let

0
p =1 and ¥ € CP(R) be such that ¥(x) = z for all z € [-1,2]. Then S* is
associated with the form

a’(u,v) = j(u' + u)(v' — v).

Let w € R and suppose that ||S7e™“*|lcomoo < | for all £ > 0. Then e™“*S71 < 1
for all t > 0 in Loo(S2). Denote by A? the generator of 5. Since 1 € D(A?) it

follows that )
(I —ewtSM)1

; = 0.

(A? + w)1 = lim
t]0
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Hence by density of D{A)+ in H'(Q)+ one deduces that
a’(Lu)+w(l,u)p, 20

for all u € H'(Q)4. Next for n € N set un(z) = (L—z)". Then u, € H'(Q)4+ and

] 1
0<a?(l,un) +w(l,un)r, :/(u;—un)+w/un
0 0

w—1

:un(l)—un(0)+(w—-l)/un:—1+ _

n+1

This gives a contradiction if one chooses n sufficiently large.

This example has been considered before by Ouhabaz ([32], Remark 4.3 (b))
in a different context.

The method of proving ultracontractivity we use in this section is based
on the following proposition (cf. Chapter IV, pp. 262-264 in [37]). Again, it
is important for us to obtain constants which do not depend explicitly on the
coefficients of the operator.

PROPOSITION 4.6. Let S be a real continuous semigroup on La(X) whose
complezification ts a holomorphic semigroup, where (X, X, m) is a o-finite measure
space. Assume that S is consistent on Ly(X), 2< p<oo. Letc,p>0 and V be
a Hilbert space which is continuously embedded in Lo. Suppose that (Sip)? € V,
t— ||St(,o||§z is differentiable and

d ..
ZliSepllZs < ~all(See) I3 +ep?ll(SoP I3
forallt >0, all real p € LoN Ly and p € 2N. Let ey, n > 0 and suppose that the

Nash inequality
floll /" i

2 < enllellyllelly
is valid for all p € Ly N'V. Moreover, let M 2 1 and w 2> 0 be such that
[1Se]l2—2 < Me!
for allt > 0. Then there ezists a ca > 0, depending only on ¢y and n, such that

“St“2—~oo < CZMH—n/‘it—nMewtetcl/Z

for allt > 0.
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The proof follows from the estimates in Chapter IV, pp. 262-264 of [37]. In
order to make this paper more self-contained we include the proof in the Appendix.

Proof of Theorem 4.4. Tt follows from Lemma 3.7 (ii) and Proposition 2.9
that the complexification of the operator A associated with the complexified form
a generates a holomorphic semigroup S = (e~*4);50 on L2(2). Note that the
proof of Lemma 3.7 (ii) is valid for a;; € Loo{f?) and u € H{(Q). Recall that we
assume throughout this section that the spaces are real.

First we show that S is positive. Let ¢ € V. Since Dijp® = l[p50)Di¢p and
Dip~ = —1[,<0)Dig one has a(pt, ™) = 0. It then follows from Theorem 2.4 in
[32] (which is also valid in case of real spaces) that .5 is positive.

Secondly we show that there exists a constant w € R such that

(4.10) 15l < € lol]oo

for all ¢ € La(2) N Loo() and ¢ > 0. Since the proof is very similar to a proof
in Section 3 we discuss the critical steps. We wish to apply the proof of Lemma
3.7 (i) in case p = 0. In that case we do not need the differentiability of the
second order coefficients. Secondly, we used integration by parts in the proof of
Proposition 3.5. But by assumption (4.8) one has (¢;u) € H}(Q) for allu € V and
i€ {l,...,d}. Hence [ciuDyw = — [ Di{civ)v = — [(Dic;) uv — [ ¢; (Diu) v for
all u,v € V. Thirdly, one needs to verify that Theorem 4.2 (3) (or Theorem 2.7)
in [32] is also valid for real spaces and that (1 A |u|)sgnu € V for all w € V. But
(LA Jul)sgnu = u—(u— 1) +(—u— 1)t € V for all u € V. Therefore, the
semigroup S is quasi-contractive on Leo.

Thirdly, replacing A by A*, S by $*, a(u, v) by a*(u, ) = a(v, u) one obtains
by duality the L;-bound

(4.11) I1Seelli < e“Hlelln

for some w > 0, uniformly for all ¢ > 0 and ¢ € L; N Ly. It follows from (4.10),
(4.11) and Lemma 2.1 (i) that S interpolates on Ly(Q2), 1 < p < co.

Fourthly, let ¥ € W {see Section 3), p € R and deﬁne Upp = e "y as
hefore. We show that U, € V for all ¢ € V and p € R. Obviously e "o e HY(Q)
because ¢ € V C H'(R). Since |e~*¥¢| < ¢|p| it follows from the ideal assumption
(4.7) that U, = e #¥¢p € V. Now define the form a” : V x V — R by

d
(o) = 3 [ (Dc+ pyu(D; = i)

.,j=)n

+Z/ Dz—l—piji,)uv+2/c;u(D ~m/)z)v+/t:ouv

11n zln
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and let A? be the operator associated with the form a”. Then a?(u,v) = a({]’1

Uyv) forallu,v € V, 50 A? = U, AU 1. Hence S¥ = U, S't ~1 for all £ > 0, where
S” is the holomorphic semigroup generated by A”. It then follows as in the proof
of Lemma 3.7 (ii) that there exists an w > 0 such that a”(¢, @) +w(l+pH)lell2 = 0
for all ¢ € V. Note that the second order coefficients a;; need not be differentiable

in Lemma 3.7 (ii). Hence
12|22 < @O+

for allt > 0.

Fifthly one has (S{ )P € V whenever t > 0, ¢ € L3(2) N Lo (£2) and p € 2N.
In fact, let f = SPyp. Then f € V C H(Q) and therefore f € H'(Q) N Loo () by
the second step. By the product formula (7.18) of [23] it follows that f* € H'(Q).
But || < ||flI55 | F] = ¢|f|. Therefore, it follows again from the ideal assumption
(4.7) that f7 € V.

Sixthly, let @ € Ly N Lo and p € 2N. We show that ¢ — [|S7¢|l3} is
differentiable on (0, 0o) and that

(412) S'f‘f’”zp = _QP(AP(ph ()ozzp 1) = _2p ap((pfa (p?p—I)’

Sl

where we set p; = S7p. Note that ¢} = d, Loy = — APy, exists in Ly(Q) since 57 is
holomorphic. Moreover, ¢; € Lo M L. Let t > 0. Then

- 2 2 ¢ 2p-1
5=l )~ 20 [ @274

Uh Nkt - f”)—%/wf” lsoél

= l/hwl(‘Pwh - w)(wfi;‘ + 5935.;2% +---+ ‘PH—h‘P: 24 ‘Pzp-l)

~2 / @iP
2p—1

:‘/(h_l(w‘f'i'h—sat)—w;)(wi»{-h + 23200+ el T 0P

+/<P§((sofi}l — P+ (0 o — 0P T 4

+ (peangl? = ol A+ (7 wf”"l))]

2p--1 2p—2 2p—2 2p—1
Pirn + P Pt S RRRE RN e ”2

< Uh’l(tp,“, — 1) — ¥ “21

+

/‘P;(Q"H-h - (Pt)gt,h

< e\hHpean — 01) = @ill2 + lge nllool|@t 2l pe+n — @ell2,
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which tends to 0 if i tends to 0. Here g, 5 is an element of Ly (Q) which is
uniformly bounded for small h by the estimates (4.10). (Note that ¢, p and v are
fixed.)

Seventhly, we show that there exists a constant ¢ > 0 such that

d
SISPRlZ < —27 Y IDsedl} + o1 + )RRl

i=1

uniformly for all ¢t > 0, p eR, p € W, v € V N Loo(§2) and p € 2N. By (4.12) we

have
d

d
G 150elizh = =2p 3 (ass(Ds + pi)epr, (Ds — oy el ™")
i,j=1

-~2pz (Ds + p)pr, 077 ")

oS engr (D = p )Yy — 2 [eost?
1=1
d

= =2 ) (a:; Dipe, Djip;” ') + 73+ T3 + 74,
ij=1
where T is the sum of terms of the form pp(k; Dis, ¥ ~1), 73 is the sum of
terms of the form pp(kly, D,-tpfp'l), and 7'4 is a term of the form p((ko + khp +
k6’p2)<p¢,<pt2”_1), with ko, kf, kf, ki, ki € Loo(2) functions of which the Lo -norm
is bounded uniformly in ¥ € W, and is independent of p, p, ¢ and {. We estimate
the first term. v

d d
—2p Z (aij Dipy, Djtpf"_l) =—2p(2p— 1) Z ai; Dispy, <P12p_2Djsoz)
i,j=1 4=l

4
=-2p(2p-1) E “:J‘Pt Di(pt;‘f’?—le‘Pi)

=-2p"'(2p- 1) Z (i3 Di}, Di#})
=1
d

<=2p7"(2p— DY |1 Dit I

i=1

d
=2y _|IDit|I5-

i=1
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The second term can be estimated by

d

Z(kt Dz‘P)t)) Saf)

i=1

d
Im2| < I”pZ(kiDm,wf”‘l) = |pl

i=1

d d
< ezlol D Dilll it llz < & D113 + (46) " 3do? (1} 13
i=1 i=1

for all € > 0. The third term can be estimated by

d
o] = |,,,, S (Elpr, Dig?? ™)

i=1

d
= p(2p— 1)p > _(Kipe, 9" 2D M)'
1=1

d

< eaplpl Y 1Dsglllz 11|z

i=1

<e Z 1D:7 113 + (4€) ' c3dp?p? ||k 13-
=1

](2p— 1)p2<k o, Digh

The fourth term is trivial:

IP((ko + kop + k5 p%)ee, 07" 1) < cap(1+ pD)IIELII3.

The constants ¢y, c3 and ¢4 are independent of p, p, ¥ € W, ¢ and t. Choosing ¢
appropriate one obtains that

d
d ,
SISl < —u SO UDRIE + <51 + 27 k12

< =ull@f Il + (¢ + wp? (L + p)IKE 113
for some constant ¢’ > 0, independent of p, p, » € W, ¢ and ¢.
Recall that one has the estimate ||S?[joms < e (1+2))t for some w' > 0,

uniformly for all ¢ > 0, p € R and ) € W. Now one can apply Proposition 4.6 and
deduce that

I2—'°0 < ct—d/4ew'(1+p2)te2_1(c'+u)(1+p2)t — ct—d/4ew(1+p2)t

(4.13) lls?

for a constant ¢ > 0, independent of p, ¥ and t and w = w’' + (¢’ + p)/2. Since the
adjoint of S? is of the same form we obtain by duality

158~z < =410+

possibly by enlarging ¢ and w. Hence

152 11 eeo < 2422478260040

for allt > 0 and p € R. Now the theorem follows from Proposition 3.3. &
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REMARK 4.7. (i) One would expect to obtain the results of Theorem 4.4 also
for coefficients b;, ¢; € Loo. The main point in the above argument is to prove that
S operates consistently on L; and Le,. This could be proved if the D; are small
perturbations of A. However, this is not true in general. In fact, even the domain
of the Dirichlet Laplacian on L,(2) is not contained in Wh?(Q) for p sufficiently
large, if © is not regular, in general (see [24]). This also shows that in general
there are no Gaussian type bounds for the derivatives of the kernel if the domain
is not regular (even if the coeflicients are constant).

(ii) In general the theorem is false if all coefficients are complex. A counter-
example on a subset of R? has been presented by Maz’ya—Nazarov—Plamenevskii
([28]) and on R® by Auscher-Tchamitchian ({11]) in case d 2> 5. Semigroups
generated by complex operators on R! and R? have Gaussian kernel bounds by
Auscher—McIntosh—Tchamitchian ([10]).

Finally we consider the realization of A (see (4.1)) with Robin boundary
conditions. For this we assume that  is a bounded open set in R? with Lipschitz
boundary I' = 8 and we let 8 € Lo (T') be a positive function. We still assume
the conditions (4.3)-(4.7) on the form domain V and the condition (4.8) on the
coefficients. By a we continue to denote the form (4.9) defined on V. Let b :
V x V — R be defined by

b(u,0) = [ 5(s) (Bu)(o) (Bo)(e) do(a),
r

where B : H(Q2) — L2(T') denotes the trace operator (see Section 2). Then b is a
continuous bilinear form on V. Set

g=a+b

Then g is a continuous bilinear form on V which is coercive. Let A be the operator
associated with the form ¢g. We call A the realization of .A with Robin boundary
conditions. Note that Robin boundary conditions coincide with Dirichlet boundary
conditions if V = H(R) and with Neumann boundary conditions if V = HY(Q)
and 3 = 0.

EXAMPLE 4.8. Let a;; = 6;j, by =¢; =0, co=0and V = Hl(Q). Assume
that u € D(A) N C?(Q). Then
ou

(4.14) = —PBu on .
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Conversely, if u € C?(Q) is such that (4.14) holds then v € D(A). This fol-
lows by applying Green’s formula. We call A the Laplacian with Robin boundary
conditions.

THEOREM 4.9. Let A be the realization of A with Robin boundary conditions.
Then A generales a semigroup S = (e“A)t>o on La(Q2) which tnlerpolates on
Lo(R), 1 € p € co. The semigroup S is postitve and is given by e kernel K.
Moreover, there ezist b,c > 0 and w € R such that

0 € Ki(z;p) € et =/ 2e=lr—yI" 7 gt (z,y)-a.e.

uniformly for allt > 0.

Proof. First we show that S is positive. Let u € V. By Theorem 2.4 n
[32] we have to show that g(ut,u™) < 0. Since a{ut,u”) = 0 (see the proof of
Theorem 4.4) and But = (Bu)* and Bu~ = (Bu)~ (by (2.7)), we have

bt u) = [ B(e) (Buy* (2) (Bu) () do(a) = 0.
r

Thus ¢(ut,u™) <0.

Secondly, it follows from Proposition 2.9 that A generates a semigroup on
Lo(82).

Thirdly, we show that S interpolates on L, (), 1 € p € co. By the properties
(2.7) of the trace operator we have B((Ju|—1)*sgnu) = B(u—~1)* ~B(—u—-1)* =
(Bu — 1)* = (—(Bu) — 1)* for all w € H'(Q?). Therefore,

b(u, (Ju] = 1)* sgnu) = /ﬂ(Bu)((Bu -1} — (—(Bu) — 1)+) dy > 0.

Now one argues as in the proof of Theorem 4.4 and deduces that S generates a
quasi contraction semigroup on Lo, and by duality it interpolates.
Finally, let S = U,S:U; ! where p € R and 1 € W. Then the associated

form is given by
g (u,v) = q(U,}'lu, Upv) = a{u, v) + b(u,v)

since b(U; 'u, U,v) = b(u,v). Then the proof of Theorem 4.4 carries over to the

present case. W
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REMARK 4.10. (i) An alternative proof of Theorem 4.9 using the results of
Theorem 4.4 can be given by domination. Denote by A(®) the operator associated
by the form @ and S(® = (e‘“‘(a))wo the semigroup generated by A(*). Then
S and S(®) are positive semigroups and q(u,v) > a(u,v) for all u,v € V. So it
follows from Proposition 3.2 and Theorem 3.7 in [33] that S is dominated by $(2),
ie., |Sipl < $$p| for all p € Ly(). Then Ky < K™ and Gaussian estimates
follow.

(ii) Similarly, one could prove Theorem 4.4 first for Neumann boundary con-
ditions (i.e. V = H'(Q)) and then deduce the (Gaussian estimates for the general
V by domination. However, this requires b;, ¢; to be elements of H{(S2) which is

stronger than our assumption (4.8).

5. APPLICATIONS

In this section we give two kinds of applications of the previous results. They
concern the holomorphy of the semigroup in L, and the bounded H-functional
calculus.

If T is a holomorphic semigroup on Ly(2) which interpolates on L,(Q},
1 £ p € oo, then it follows from Stein’s interpolation theorem that T is also holo-
morphic on L,, 1 < p < oo, but it may not be holomorphic on L;. For elliptic
operators with boundary conditions, holomorphy in L; has first been proved by
Amann ([3]) for regular bounded domains and later for Dirichlet boundary condi-
tions and no regularity assumptions on the domain in [6] and [5]. More recently
Ouhabaz ([31] and [34]) used Gaussian estimates and a Phragmen—Lindelof ar-
gument (cf. Theorem 3.4.8 in [16]) to show holomorphy for symmetric operators
(see also Lemma 2 in [17]). Here we prove holomorphy on L,(2), 1 < p < oo on
a sector where [|S;|lz2—2 < e“*l by a direct short proof avoiding the Phragmen—
Lindelof theorem (see Theorem 5.3). In order to obtain a possibly larger sector,
however, we adapt the Phragmen~Lindelof argument to the non-symmetric case
(see Theorem 5.4).

Adopt the notation and assumptions of Theorems 3.1, 4.4 or 4.9. In case of
Theorems 4.4 and 4.9 we complexify the form domain V' and the form a. Set

d
T _. . y rn d
0, = 3 —1nf{9 >0: ,-;1 a;;(2)& & € 5(0) for all £ € C%, for a.e. z € Q}.

Note that 8, = 7/2 if the a;; are symmetric, Le., a;;(z) = a;i(z) for ae. 2 € 0
and all 7,5 € {1,...,d}.
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It is a standard exercise to show that the semigroup S = (e~!4)s50 generated
by the operator A associated with the form is a holomorphic semigroup on Lz, with
a holomorphy sector which contains at least £(8,). In fact one has the following.

LEMMA 5.1. Adopt the notation and assumptions of Theorems 3.1, 4.4 or
4.9, Then for all p € R the operalor A? generales a holomorphic semigroup S on
Lo(§2), holomorphic in the sector £(6,). Moreover, for all 8 € {0,60,) there ezists
an w € R, depending only on 0, u, ||aijlleo, [|billeo, Heilloe and {|coljos, such that

(152122 < ew(1+0%)12]
forallze X(8), pER and p € W.

a . —
Proof. Let 6 € (0,0,). There exists v > 0 such that Re ) e'%a;;(x) & & 2
$,j=1
v|¢|? uniformly for all « € [-6,6], £ € C? and a.e. z € Q. Then one can argue as

in the proof of Lemma 3.7 and deduce that

Ree'® (

d d d
Z ij D,-u_D‘;E-I»be Diut+ Zcfum-i- c§|u|2) + w(l + p?)|ul?

fji=1 i=1 i=1
d
22"1115_:|D,'u|2 a.e.
i=1
uniformly for all « € [-6,8], v € V, p € R and ¥ € W if one chooses w =

43 MEv~t + 2d?> My and where

Mo = 1+ max{||aij|leo, [|9:loo, [[<illoo, l|colleo }
as before. Again integrating this inequality gives
. d
Re(ea?(u, )+ w(1 + A)ulld > 27 3 1Dl
i=1
Hence S” is holomorphic on £(8) and

12 1|2sz < e (F022

uniformly for all z € £(#), pcRand p € W. 1

We next show the remarkable fact that S is even holomorphic on any L,
1 € p € oo, with a holomorphy sector which contains at least X(8,).
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REMARK 5.2. Here a holomorphic semigroup S on L, of angle § € (0, /2]
is by definition a holomorphic mapping 5 : £(8) — £(Le) such that S;4,» = 5,5,
for all z, 2’ € £() and

lim  (S:¢,%) = (¢, %)

SEL(P—¢)}
forall ¢ € Lo, ¥ € Ly and € € (0, 6).
THEOREM 5.3. Adopt the notalion and assumplions of Theorems 3.1, 4.4 or
4.9. Then the semigroup S generated by the operator A is holomorphic on any L,
1 € p € oo, with a holomorphy seclor which conlains at least £(6,). Moreover, S,

has a kernel K, € Loo(S2 x Q) for all z € L(8,), and for all 6 € (0,0,) there ezist
bye>0 and w > 0 such that

ﬂlzl—l

|K.(z;9)} < c(Re z)~%2e=t==vl eIl (x,y)-a.e.

uniformly for all z € X(6).

Proof. Let 8 € (0,8,). Choose 8; € (8,0,). There exists a § > 0 such that
6t +is € L(6,) for all t + is € £(F). By Lemma 5.1 there exists w; > 0 such that

152 (|22 < ewr(+p)lsl

uniformly for all p € R, ¥ € W and z € £(6,). By (3.7), (4.13) and duality there
exist ¢, wy > 0 such that

(1571112 < et =444, 152 |y o0 < a4/ 4ea (14208
uniformly for all p € R, v € W and t > 0. Now let z =¢ + is € £(8). Then

152 100 < 1S, -gye/all1—2llSFeaisll—~2l1Ss gy /all2—o0
< (el(1 = B)t/2) 4/ eeatt e 1=017) "1t

< clt—d/2ew'(1+p°)|z|

for some ¢/, w’ > 0, independent of z and uniformly for all p € R and ¥ € W. Now
the complex Gaussian bounds follow as in Proposition 3.3.

Moreover, by Proposition 3.3 there also exists a ¢; > 0 such that ||.Sieie|lp—p <
c1e“’t uniformly for all ¢ > 0 and a € [-8,6). The holomorphy now follows from
Kato ([27], Theorem 1X.1.23). &
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The above short proof for the complex Gaussian bounds works well for elliptic
differential operators. More generally, any holomorphic semigroup on Ly(£2) with
real time Gaussian bounds is holomorphic on L,(€}, 1 < p € co. This is proved in

the next theorem. It was known before for symmetric semigroups (see Ouhabaz,
[31] and [34]).

THEOREM 5.4. Lel S be a holomorphic semigroup on Ly(Q), where Q is an
open subset of RY. Suppose S is holomorphic in the sector Z(bg), where 0g < 7/2
and suppose that S, (t > 0) has a kernel K, which satisfies Gaussian bounds

|Kqi(z; y)| € ct= 4 2e= byl qut (z,y)-ae.

for some b,c > 0 and w € R, uniformly for allt > 0. Then S interpolaies on
L,, 1 € p € o and S is a holomorphic semigroup on Ly, 1 € p € oo, with
holomorphy sector £(6y). Moreover, for all z € () the operalor S, has a kernel
K; € Lo (2 x Q) and for all 6 € (0,8,) there are b,c > 0 and w € R such that

(5.1) |K (2 9)] < elz| =32 ble=vlP il bl (0 4y ge.

uniformly for all z € £(6).

Proof. 1t follows from Proposition 3.3 that the Gaussian bounds imply that S
interpolates on Ly, 1 < p < co. Moreover, one has bounds ||S¢|j;_2 < ¢ t~% %ew?
and {|S|l2—co < et~ %e¥2! together with the bounds [[S,]|z—2 < Mgevel?l for
all z € £(0), if # € (0,6p). Then one deduces as in the proof of Theorem 5.3
that ||S;|lime < c3(Rez)~%2e¥3l?l for all 2 € £(§). Next, one derives from
Theorem 3.1 in [7] that there exists a measurable function X : () x 2 x Q — C
such that z — K(z, z,y) is analytic from £(6) — C for all (z,y) € @ xQ and K, is
the kernel of S, where K,(z;y) = K(z,z,y). By replacing S, by e~*+*S, we may
assume that wy, w3z < 0. Now one can argue as in Davies ([16], Theorem 3.4.8)
to deduce that K. has the complex Gaussian bounds (5.1) by an application of
the Phragmen-Lindelof theorem. Finally it can be proved as in the proof of
Theorem 5.3 that S is a holomorphic semigroup on L,, holomorphic on a sector
which contains 2(fp). i

REMARK 5.5. By a similar argument one proves that if .S is holomorphic on
Lp in a sector £(f,) then the semigroup on L, is holomorphic on a sector which
contains ¥(6,). Therefore, the maximal holomorphy sector is independent of p,
1< p< oo
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Now consider again the semigroup S generated by an elliptic operator un-
der the assumptions of Theorems 3.1, 4.4 or 4.9. We have proved that S is a
holomorphic semigroup and has complex Gaussian kernel estimates

(5.2) | (2 y)] € ofz|~ 2= ta=vl1 T eelsl (g y)ae,
uniformly on each closed sector
$(0) ={z€C:24£0, |argz| < 8}
for all @ € [0,6,). If the bounds (5.2) are valid, then
(5.3) 1Sz [l2—2 € Me“l?!

where M depends on b and ¢, but with the same w as in (5.2). For the applications
to Hs-functional calculus given below, it is important to have a good control over
w in (5.2). In general, if (5.3) is valid for some w then there are no kernel bounds
(5.2) with the same w. An example is minus the Laplace operator —A on a
bounded regular open set @ with Neumann boundary conditions and # = 0. Then
the constant function 1 is in the domain of —A and —A1 = 0. Therefore, 5;1 =1
on L2(€). Gaussian kernel bounds with w < 0, however, imply that 11_1210 S:i1 =0,
which is impossible.

We have shown in Lemma 5.1 that there are always bounds (5.3) with M = 1.
We next establish that there are complex kernel bounds with a slightly larger w
than the w in (5.3) in case M = 1.

THEOREM 5.6. Adopt the notation and assumplions of Theorems 3.1, 4.4 or
4.9. Let 8 €[0,8;) and let wg € R be such that

[1S: (|22 < e<ol*]

forallze £(0) = {z € C:z+#0, |argz| < 0}. Then for all w > wo there exist
b,c > 0 such that

K (239)] € clz|= 2ol T gl (3, y)ae.

uniformly for all z € }5(9)
Proof. We have to give a better estimate for Lemma 5.1. There exists v > 0

d . -
such that Re Y. e®a;;(z)& € > v|é]? uniformly for all « € [-6, 6], £ € C? and
i,j=1
a.e. for z € Q. It follows from the Lumer-Phillips theorem that

Ree'®a(p, ) + wo(p, @) > 0
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for all p € V. Let w > wp and 6 € {0, 1]. Note that

Ree® / B(z) (Bo)(z) BR)(®) dr(z) > 0
r

in case of Robin boundary conditions, since # > 0. Then

Ree®a’(p,0) +w(p,¢) = (1 - 5)(Reei“a(so, ) + wolp, 90)) +68Reea(p, p)
+ Ree'®b,(i, ) + (w — (1 = 8)wo)|oll3
> 6 Ree'“a(y, ¢)+Re b0, ) + (w — (1 — 6)wo)llll3,

where
d 4 d A
blpp)=—p Y ]e'“a;'j (Die)¥; B+p Y /e’“ai;‘ Yip Djp
i,7=1 i,7=1
, | .
- p? Z /emaij Yip; P
ij=1
d ‘ d '
+PZ/6'“5:’¢:‘975—/’2/3'“'3:'%"1/’;’5«
i=1 i=1
Now

d
Z/b.’ D.‘%’@’

i=1

d —
Z/C.'QDD;'SO —5/lcol lel®
i=1

d a
2 5”2 | Digll3 — 26m ) |1 Displl3 — 6(2m) ™ dMG 13 — 6 Mollells

i=1 i=1

d
> 27160 Y 1Digll - coliell

i=1

d
§Ree'a(p, ) 2 5"2 | Digl)} — 6
i=1

—é

for some ¢ > 0, independent of § and an appropriate choice of . Here My is as
in the proof of Lemma 5.1. As in the proof of Lemma 3.7 one proves that there
exists a ¢/ > 0 such that

d
lbo (2, 0)| < € > IIDispll2 + ¢/ (L + €)% + |pl)lleell2

i=1

d
<e ) IDeplly + (L +e7)p” +8+ (46) ' p)llell3

i=1
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for all € > 0. Combining these estimates one obtains

d
Ree'“a’(p, ¢) +w(p, ) 2 (27 v —e) Y |Digpll§ + (w— (1= 8)wo—cb—c'6)le||3
=1

—((L+e7) + (487 )’ el

Since gin?)w — (1 = §)wg ~ b6 — ¢'d = w —wo > 0 there exists § > 0 such that
w = (1= 8wy —cb —'§ > 0. Next take ¢ = 2716v. Then

Ree'“a’ (@, ¢) +w(p, @) 2 —w1p?]|0ll3
for some wjy > 0, uniformly for all o« € [—8, 8] and p € R. Therefore,

s < elFlgwr sl

Sz

uniformly for all z € £(#) and p € R.
By Theorem 5.3 there exist b, ¢ > 0 and wy € R such

|K, (25 y)| < cfz|~#2etlevlPlel el (2 ) ae.

uniformly for all z € £(6). Let a > 0 be as in Lemma 3.2. Then

2

1S2113—co = sup [IS2¢ll%, = sup esssup
ltell2<1 llel2€1 z€Q

[ k2@ ey
Q
= esssup / |K?(z;y)|* dy < esssup / [K . (z; y)el I E@-vN)2 ¢y
x zEN
Q

(3¢}
Q

< esssup/|Kz(x;y)ea—’lpl |x—yl|2 dy
e FA

2
2;,1—1 -1 _ .
gstll,/(clzrd/?e—blz—yl 2= el |2 ylewzl~|) dy
T€EN
]

- - 2
</<C|z,—d/ze—b|y|’|z{ tta l|l’||y|ew2|5|) dy

Rd

2
2 .
- (cllzl—d/4ew3p |z|ew2|~|)

for some ¢, wz > 0, uniformly for all z € i(()) and p € R. So

‘I-S'£|l2~w < Cllz‘—d/4ew3p’|z|ewglz|
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and by duality
1—2 < c’lzI—d/4ew3P2|Z|ew:|l|

1521

possibly by enlarging ¢’ and wy and w3z. Then for all £ > 0 one establishes

1157

h1—oo < [157;

12156 eyl oo

2
< (C/(E|Z|)~d/4eew3p2|z|eew2|z|) e(l—2£)w|zle(1-25)w,p2|z|

- (CI)2E-d/2 |z|~d/2e(w+c(2wg—2w))|z|e(25u3+() —2¢)wy)p?z)
uniformly for all p € R. Since w > wq and £ > 0 arc arbitrary, the theorem follows
by a minimalization over p and ¥» € W as in the proof of Proposition 3.3. 1

Next we show that the operator A+wI has a bounded H,-functional calculus
in L,, I < p < o0o. Frequently it is casy to establish a bounded H,-functional
calculus in Ly; for example, m-accretivity is a suflicient condition. Recently, Duong
and Robinson ([20]) proved the remarkable fact that this functional calculus can
be carried over to L,, 1 < p < oo, whenever a complex Gaussian estimate is
valid. (See also [19] for the case where the coefficients are Holder continuous.)
Their result can be applied directly to = RY, But it is valid for arbitrary open
Q C R In case Q satisfies a very mild regularity condition (namely that 98 is
a null set in R4) this can be seen by a direct sum argument which we will give
in the proof below. In the general case one can mnodify the proof given by Duong
and Robinson. We are grateful to X.-T. Duong and J. Priss for discussions on
this point. Concerning the definition and basic facts on H,-functional caleulus
we refer to [20] and the references given there.

THEOREM 5.7. Let Q@ C R? be open. Let § = (e ')yn0 be a holomorphic
semigroup on Lo(Q) with generator A. Suppose that S is holomorphic in the seclor
Z(8), where 8 € (0, 7/2). Assume thai:

(a) A is accretive in Ly((2),

(b) 5, is given by a kernel K. € Loo( x £2) salisfying

(5.4) 1K (2 9)] < clz|~ e ble=vl=: (p y)ae

uniformly for all z € T(6) and some b,c > 0.

Then S interpolates on L,(Q), | < p < co and A has a bounded Hoo(E(v))-
functional calculus for ally > w[2—8 in Lpy(Q) for all p € (1,00). Moreover, f(A)
is of weak type (1,1) for each f € Hoo(Z(v)). Here A denotes the generator of S
in Lp,(Q).

REMARK 5.8. (i) Condition (a) implies that:
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(a’) A has a bounded Ho(E(v))-functional calculus on Ly(€2) for some v >
w/2—6.

Theorem 5.7 remains valid if one replaces (a) by the more general condi-
tion (a').

(ii) A special case of Theorem 5.7 had been obtained by Hieber ([26]) who
applied it to a pure second order symmetric elliptic operator on a bounded domain
with Lipschitz boundary.

Proof. It follows from (5.4) and Theorem 5.4 that S interpolates in L, (),
1 € p € oo and that § is holomorphic on the sector Z(f) on L,. Moreover, 5 1s
bounded on () in £(L,) by Proposition 3.3. If @ = R%, the assertion follows
from Theorem 3.1 in [20].

Now assume 9 is a null set. Then we can reduce the problem to the case
where the domain is R% in the following way. Let ©; = RY\ Q and let A; =

d
— Y 8?/8z? with Dirichlet boundary conditions on L3(£2;). Since 9§ is a null

i=1

set one has La(R?) = Lo(2) & Ly(4), where the decomposition is given by f =

fla+ flg,. Let A= A® A;. Then A satisfies the hypotheses of the theorem

on L(R?) and consequently, A has a bounded Ho,(E(r))-functional calculus on

L,,(Rd) for p € {1, 00) whenever v > m/2 — §. Then A has the same property.
Similarly the (1, 1)-estimate follows from Theorem 3.1 in [20]. @

In virtue of Theorem 5.4 one obtains a bounded Hq,-functional calculus for
A+ wl for some w if one has merely real time Gaussian bounds. More precisely,
assume that the hypotheses of Theorem 5.4 are satisfied. Denote the generator
of § in L,(Q2) by A. Then for all v > 7/2 — 6 there exists an w € R such
that the operator A +w/ has a bounded Hoo(Z(v))-functional calculus on L, (£2),
1 < p < oo. Of course, if A+ wol has a bounded Hq,(E(v))-functional calculus
then the same is true for A+wl for all w > wq. For the elliptic operators obtained
here, Theorem 5.6 allows us to consider the result for small w.

THEOREM 5.9. Adopt the notalion and assumptions of Theorems 3.1, 4.4 or
49. Letv>m/2—8,, v < 7/2 and wg € R be such that

(15 |fa—z2 < eol]

forallze E(n)2-v)={2€C:2#0, |argz| < 7/2 —v}. Then for allw > wp
the operator A4wl has a bounded Ho, (E(v))-functional calculus on L,(Q) for each
p € (1,00). Moreover, f(A +wI) is of weak type (1, 1) for each f € Hoo{Z(v)).

Proof. This is a direct consequence of Theorems 5.6 and 5.7. &
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COROLLARY 5.10. Adopt the notation and assumptions of Theorems 3.1, 4.4
or4.9. Letv>7/2—0,, v < 7/2 and wy € R be such that

I

forall z € f)(?r/? —v)={z€C:2#0, |argz| < 7/2 - v}. Then for allw > wp
the operator A+ wl has bounded imaginary powers and there exists a ¢ > 0 such
that

2.2 € ew"lzl

S

[1(A+ w[)i’|fp_,;, < cevl®
uniformly for all s € R and p € (1, 00).
Proof. Apply Theorem 5.9 to the holomorphic function z — 2. &

Note that the value of v in the previous theorem is less than /2. This is
important in order to apply the Dore—Venni theorem ([18]) and its extensions (see
Theorem I1.8.4, p. 218 in [35]).

EXAMPLE 5.11. Suppose the operator A is pure second order (not necessar-
ily syminetric) with Lg,-coefficients and Dirichlet boundary conditions. Moreaver,
suppose that €2 is contained in a strip

{zreR: 1<z <}

for some [ < 7 and £ € R4, £ £ 0. Then for all § € (0,8,) there exists &' > 0 such
that

d
Ree'a(p, @) 2 4’ Z | Dol
i=]

for all @ € [—6,0] and ¢ € HJ(Q)). Therefore, by the Poincaré inequality, one
deduces that

Rec“a(p, ) 2 2(r — ) u'|lll3
(see p. 920 in [13]). So

~(r=D7u'2]

forallz € 2(0) As aresult, one obtains from Theorems 5.6, 5.9 and Corollary 5.10
that for all § € {0,0,} there exist b, ¢ > 0 and a negative w < 0 such that

Sy

22K €

| K (z;y)| € c|z|”d/2e_b|”’y|?|’|_le“’l”' (z,y)-ae.

uniformly for all z € £(¢) and A has a bounded H,,(E(v))-functional calculus on
Lp(Q) for all p € (1,00) and v € {n/2 — 8,,7/2). In particular, there exists a
¢ > 0, depending on v, such that ||4*|l,—, < ce’!*! for all s €R.

The next remark clarifies the nature of the angle 8,.
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REMARK 5.12. Assume that b; = ¢; = ¢o = O for all i € {1,...,d}. Let A
be any of the operators considered in Theorems 3.1, 4.4 or 4.9. Then

[|5:]]2—2 € 1 for all z € L(8,)

by the proof of Lemma 5.1 for p = 0. If  is bounded with minimally smooth
boundary, V = H'(Q) and the coefficients a;; are constant, then £(6,) is the
largest sector on which S, is a contraction. In fact, by the Lumer—Phillips theorem
we have to show that 8, is the smallest angle in {0, 7/2) such that the numerical
range 9(A) of A is included in {z € C\ {0} : Jargz| € #/2 — 8,} U {0}. We will
show the following identity

(5.5) 0(A) =Ry 6(B) = { € C\ {0} : |arg z| € 7/2 — A } U {0},

where B = (a;;) and 6(B) is the numerical range of the matrix B. Obviously the
second equality is valid by definition of 8,, the convexity of the numerical range
of B and the fact that B is a real matrix. Let A € §(B) and 7 > 0. Let £ € C? be
such that [€] = 1 and A = (B, £). Let u € C°(R?) and o € {0, 00) be such that
u(z) = ae 6151t AréaZa for all z € Q and [|Julg|lz = L. Then ulg € H(£2) and
Diju = r&uon Q for all i € {1,...,d}. Therefore,

a(u,u) = /(BVu,Vu) = /1‘2(85,5) lu|? = Ar®

Q [ ¢]

and R, 0(B) C 0(A). Conversely, if u € H}(Q2) with [lu|l, = 1 then

a(u,u) = /(BVu,Vu) = /(Bv,v) [Vu|? € {z € C\{0} : |arg z| < =/2-8,}U{0}
Q !

since (Bu(z),v(z)) € { € C\ {0} : |argz| € 7/2—-6,} U{0} for a.e. z € {2, where

o(z) = { ey i (V@) #0,
0 if (Vu)(z) # 0.
Now (5.5) follows.

The equality (5.5) even implies that S cannot be holomorphic and quasi-
contractive on Ly on a sector strictly larger than L(f,).

We conclude by a consequence concerning the spectrum of the different re-
alizations of A in L, ().



126 W. ARENDT aND A.F.M. TER ELST

THEOREM 5.13. (p-independence of the spectruin) Adopt the notation and
assumptions of Theorems 3.1, 4.4 or 4.9, so A is the realization of the elliptic
operator A in L,(Q) with boundary conditions. Then the component poo(A) of the
resolvent sel of A which contains e left half-plane is independent of p, 1 € p < o0,
Morcover, (Al + A)™! is a kernel operator for all X € po(A).

Proof. This follows immediately from Theorem 4.2 in [4] the remark following
Corollary 4.3 in [4] and the GGaussian estimates established here. 8

APPENDIX

Proof of Proposition 4.6. Let ¢ € LaN Loy Set @y = Sep forall t > 0. If ¢, = 0
for some {5 > 0, then ¢; = 0 for all 1 > {y and by holomorphy of & it follows that
¢r =0 for all ¢ > 0 and hence @ = 0. So we may assume that @, # 0 for all ¢ > 0.
Then it follows fromn the Nash inequality that

/n
d. o w st 2|2
—lfeilop € —— 20—+ ar’lletll
z Nl
2p+4
o e

2 2p
L + ¢ 1p"|ie1lloh-
4n P

N el

Therefore,

d " 14-4p -
gelletllan < =5 —lenlloy™ " llenl;

i 27 eplleddzp
d o=t AP/ - gt —d4pfn
(5.6) E{(“Sot”'.!pe 2 '”’1) 2 2{eyn) l(||c,c>t||,,e 2 “"") ‘
Since lim p(l — (} —p~2)P7!) = I there exists a ¢ > 0 such that
p—ov
p(l—-(1=-p 2y 20

for all p > 2. Next define
fa(t) = M| pll2

and by induction for all p € {27 : » € N} define

Fap(t) = (3 N)—"/(‘%p)ei’f‘c\t/r,,n/(?r')fp(t))
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where ¢z = 20(cyn)™.

Note that f, is an increasing function. We shall prove by induction that
9=l -1_ -1
(5.7) llpelly < 4727772 f0)

forallpe {27 :r e N} and { > 0.
Clearly (5.7) is valid if p = 2. Let p € {27 : r € N} and suppose that (5.7) is
valid for all ¢ > 0. Then it follows by integration from (5.6) that

o1 —4apin
(Hlpellzpe2""er7)

t

- 1 - - ~4pfn
> ‘Zu(an)_I/(s“'z n(27 -p l)_fp(.e?)e_2 l"’””') ds
0

t
-] Q[L(an)_lfp(t)‘4f’/“/SP—QeZCxPQJ/n ds
0

-

> ooy I [ gt

{(1-p=2p
i

= 2#(61\;12)*1626”’2(] 'p_Q)t/nfp(i)_’lp/" / w2 ds
(1-p=)t
— Q“(CNH)—lezmhﬂ(l-p—Q)t/nfr(t)-—éip/n(p(p _ l})—]fp—]p(L _ (1 _ p_g),;_l)

> 2# a_(&N")-—162c1p2(l—p—2)t/n p—'z tp_lf,1(t)_4p/n
for all ¢ > 0. Therefore,

“‘Pt”2pe_2_lmpt < (Cil /.‘,)_"/(4}))(‘._2_161;)(1_,)_z)tp”/(ZP]t—2_1’1(2_1—(2p)—x)fp(t)
and
o ~nf(4p) 2" ertfp nf(2p) -2 (2 = (2p) ™)
ledllzp < (e5 1) e b ! fpl?)
_a=iura=L (o~
= e g ),
It follows from the definition of f, that

r—1

—k-2 —k=1 n=k=1,1 w
Ffarlt) = M(H(c.m)-2 ne2  Tlaty? ’”)e “llell2

k=1

oo
< C;n/‘}M ( H 22"""7;&:)‘“—n/fle'.z—lmtewtll‘p”?
k=1
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for all » € N. Hence by (5.7),

- - - —-r—1 ~1 w
(Sepllzr < caMp™m/ 4 n/427 T In e artet ||,

=n/4 T3 pa k-l
where ¢; = ¢ IT2 . Thus

k=1

I1Selleo < Yimsup [[Sepllar € caM p="/4=714e27 a1t |||
r—0oo

and Proposition 4.6 has been proved. 1
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