Trotter's product formula for projections

Wolfgang Arendt and Michael Ulm

December 12, 1997

1 Introduction

Let A be the generator of a contractive C_0 - semigroup $(e^{tA})_{t\geq 0}$ on a Banach space E, and let $B \in \mathcal{L}(E)$ be a dissipative operator. Then A + B generates a C_0 - semigroup which is given by Trotter's formula

$$e^{t(A+B)} = \lim_{n \to \infty} \left(e^{\frac{t}{n}A} e^{\frac{t}{n}B} \right)^n \tag{1}$$

where the limit is taken in the strong operator topology (see e.g. Goldstein [G, Theorem 8.12.] or Chernoff [C] for a comprehensive treatment of product formulas).

Now let $P \in \mathcal{L}(E)$ be a contractive projection. Then we may consider P as a constant degenerate semigroup on E. It is interesting to know under which circumstances the limit in (1) exists if we replace e^{tB} by P. More precisely, we ask for conditions which imply that

$$S(t) := \lim_{n \to \infty} \left(e^{\frac{t}{n}A} P \right)^n \tag{2}$$

converges strongly for all $t \ge 0$ and that S is strongly continuous. In that case $(S(t))_{t\ge 0}$ is a degenerate semigroup; i.e.,

$$S:[0,\infty)
ightarrow\mathcal{L}\left(E
ight)$$

is strongly continuous and

$$S\left(s+t\right) = S\left(s\right)S\left(t\right)$$

for all $s, t \ge 0$. This implies that S(0) is a projection, its image $E_0 := S(0) E$ is invariant under S(t), and the restriction of S to E_0 is a C_0 - semigroup, whereas S(t) equals 0 on (I - S(0)) E. Moreover, $E_0 \subset PE$. Thus, in a certain sense, E_0 is the largest closed subspace of PE on which $(e^{tA})_{t\ge 0}$ induces a C_0 - semigroup. Of course, in the trivial case where e^{tA} and P commute, S(t) is just the restriction of e^{tA} to PE.

In the following we describe two classes of examples where the Trotter's product formula holds for projections; we give a counterexample and formulate two conjectures.

2 Positive semigroups

Let (X, Σ, μ) be a σ - finite measure space and let $(e^{tA})_{t\geq 0}$ be a positive C_0 - semigroup on $E = L^p(X)$ where $1 \leq p < \infty$. Let $\Omega \subset X$ be measurable. Then $Pf = \mathbf{1}_{\Omega}f$ defines a projection on E, where $\mathbf{1}_{\Omega}$ denotes the characteristic function of Ω . In this case, Trotter's formula is valid. In order to formulate this precisely, it is convenient to consider $L^p(\Omega)$ as a subspace of $L^p(X)$ (extending functions by 0). The following result [AB, Theorem 5.3.] holds.

Theorem 1 Let $f \in E$, $t \ge 0$. Then

$$S(t) = \lim_{n \to \infty} \left(e^{\frac{t}{n}A} \mathbf{1}_{\Omega} \right)^n f = \lim_{n \to \infty} \left(\mathbf{1}_{\Omega} e^{\frac{t}{n}A} \right)^n f$$
(3)

exists and $(S(t))_{t\geq 0}$ defines a degenerate semigroup of positive operators. The projection S(0) is of the form $S(0) f = \mathbf{1}_Y f$ where $Y \subset \Omega$ is measurable.

By [AB, Theorem 5.1.], the semigroup $(S(t))_{t\geq 0}$ in the theorem can also be described by the following maximality property: Let $T = (T(t))_{t\geq 0}$ be a positive degenerate semigroup on $L^{p}(X)$ which leaves $L^{p}(\Omega)$ invariant and which is dominated by $(e^{tA})_{t\geq 0}$; i.e.

$$T(t) f \leq e^{tA} f$$

for all $t \ge 0$ and $0 \le f \in L^p(\Omega)$. Then

$$T(t) f \leq S(t) f$$

for all $f \ge 0$ and $t \ge 0$. Of course, it can happen that $Y = \emptyset$ (see [AB, Example 5.4.]).

Example 2 (The Dirichlet Laplacian) Let $X = \mathbb{R}^N$ and let $A = \Delta$ be the Laplacian on $L^2(\mathbb{R}^N)$ so that $(e^{t\Delta})_{t\geq 0}$ is the Gaussian semigroup. Let Ω be an open set in \mathbb{R}^N . Then $Y = \Omega$. Moreover, we can describe S precisely.

a) Assume that Ω is bounded with Lipschitz boundary. Then $S(t)|_{L^2(\Omega)} = e^{t\Delta_{\Omega}}$ where Δ_{Ω} is the Dirichlet Laplacian on $L^2(\Omega)$; i.e.

$$D(\Delta_{\Omega}) = \{ f \in H^1_0(\Omega) : \Delta f \in L^2(\Omega) \}$$

$$\Delta_{\Omega} f = \Delta f.$$

b) For general open sets, one has $S(t)|_{L^2(\Omega)} = e^{t\tilde{\Delta}_{\Omega}}$ where $\tilde{\Delta}_{\Omega}$ denotes the pseudo - Dirichlet Laplacian; i.e.

$$D\left(\tilde{\Delta}_{\Omega}\right) = \left\{ f|_{\Omega} : \Delta f \in H^{1}\left(\mathbb{R}^{N}\right), f\left(x\right) = 0 \text{ a.e. on } \mathbb{R}^{N} \setminus \Omega \right\}$$
$$\tilde{\Delta}_{\Omega}f = \Delta f.$$

We refer to [AB, Section 7] for more details.

3 A counterexample

Trotter's product formula does no longer hold for positive semigroups on L^p and rank-one projections. Here is an example.

Example 3 Let $E = L^{p}([0,1])$ and define the semigroup T(.) by

$$T(t) f(s) = \begin{cases} f(t+s) & \text{if } t+s \leq 1\\ 0 & \text{if } t+s > 1. \end{cases}$$

Define the set A by

$$A = \bigcup_{k=0}^{\infty} \left[1 - 2^{-2k}, 1 - 2^{-2k-1} \right]$$

and define the one dimensional projection P by

$$Pf = \frac{3}{2} \int_0^1 f(s) \, ds \, \mathbf{1}_A.$$

Then $(T(t))_{t\geq 0}$ is a strongly continuous contraction semigroup and P is a projection which is contractive if p = 1. However, the sequence

$$\left(\left(T\left(\frac{t}{n}\right)P\right)^nf\right)_{n\in\mathbb{N}}$$

does not converge for any t > 0 and any f satisfying $\int_0^1 f(s) \, ds \neq 0$.

Proof. We only prove the case t = 1. A similar computation can be carried out for other positive values of t.

An easy computation yields

$$\left(T\left(\frac{1}{n}\right)P\right)^{n}f\left(s\right) = \frac{3}{2}\int_{0}^{1}f\left(s\right)ds\left(\frac{3}{2}\int_{0}^{1-\frac{1}{n}}\mathbf{1}_{A}\left(s\right)ds\right)^{n-1}\mathbf{1}_{A}\left(s+\frac{1}{n}\right)ds$$

For $m \in \mathbb{N}$ and $n = 2^{2m+1}$ we have $\frac{3}{2} \int_0^{1-\frac{t}{n}} \mathbf{1}_A(s) = 1 - 2^{-2m-2}$ and therefore

$$\lim_{m \to \infty} \left(\frac{3}{2!} \int_0^{1-2^{-2m-1}} \mathbf{1}_A(s) \, ds \right)^{2^{2m+1}-1} = \lim_{m \to \infty} \left(1 - 2^{-2m-2} \right)^{2^{2m+1}-1} = e^{-\frac{1}{2}}.$$

On the other hand, for $n = 2^{2m+2}$ we have $\frac{3}{2} \int_0^{1-\frac{t}{n}} \mathbf{1}_A(s) = 1 - 2^{-2m-2}$ and therefore

$$\lim_{m \to \infty} \left(\frac{3}{2} \int_0^{1-2^{-2m-2}} \mathbf{1}_A(s) \, ds \right)^{2^{2m+2}-1} = \lim_{m \to \infty} \left(1 - 2^{-2m-2} \right)^{2^{2m+2}-1} = e^{-1}.$$

So the sequence does not converge.

4 Holomorphic contraction semigroups on Hilbert spaces

On Hilbert spaces, the Trotter's formula holds for orthogonal projections in an important special case.

Theorem 4 Let -A be the generator of a holomorphic semigroup $(e^{-zA})_{z \in \Sigma(\theta)}$ on an Hilbert space H, where $\theta \in (0, \frac{\pi}{2}]$ and $\Sigma(\theta) = \{z \in \mathbb{C} : z \neq 0, |\arg z| < \theta\}$. We assume that

$$\left\|e^{-zA}\right\| \le 1$$

for all $z \in \Sigma(\theta)$. Let P be an orthogonal projection. Then

$$S(t) x = \lim_{n \to \infty} \left(e^{-\frac{t}{n}A} P \right)^n x \tag{4}$$

exists for all $x \in H$, $t \ge 0$ and defines a degenerate semigroup $(S(t))_{t \ge 0}$.

Note that (4) remains true if we replace A by A + w for $w \in \mathbb{R}$.

Theorem 4 is a consequence of Trotter's formula for non-densly defined sesquilinear forms proved by Kato [Ka2, Theorem] for positive symmetric forms and extended by Simon to closed forms (see [Ka2, Addendum]). We explain in more detail.

Let H be a Hilbert space and let

$$a: D(a) \times D(a) \rightarrow \mathbb{C}$$

be sesquilinear where D(a), the domain of a, is a subspace of H. We assume furthermore that a is *semibounded*, i.e. that there exists $\lambda \in \mathbb{R}$ such that

$$||u||_{a}^{2} := \operatorname{Re} a(u, u) + \lambda (u \mid u)_{H} > 0$$

for all $u \in D(a)$, $u \neq 0$. Moreover, we assume that a is closed; i.e., that $(D(a), \|.\|_a)$ is complete.

Let $K = \overline{D(a)}$ be the closure of D(a) in H. Denote by A the operator on K associated with a i.e.

$$D(A) = \{ u \in D(a) : \exists v \in K \text{ such that } a(u, \varphi) = (v \mid \varphi)_H$$

for all $\varphi \in D(a) \}$
$$Au = v.$$

Then -A generates a C_0 - semigroup $(e^{-tA})_{t\geq 0}$ on K.

Now denote by P the orthogonal Projection onto K and define the operator e^{-ta} on H by

$$e^{-ta}x = \begin{cases} e^{-tA}x & \text{for } x \in K\\ 0 & \text{for } x \notin K. \end{cases}$$

Then $(e^{-ta})_{t\geq 0}$ is a degenerate semigroup on H. We call it the (degenerate) semigroup generated by a on H.

Now let b be a second semibounded, closed sesquilinear form on H. Define the sesquilinear form a + b on H by

$$D(a+b) = D(a) \cap D(b) (a+b)(u,v) = a(u,v) + b(u,v).$$

Then it is obvious that a + b is semibounded and closed again. Now the following product formula holds (see [Ka2, Theorem and Addendum]).

Theorem 5 Let $x \in H$. Then

$$e^{-t(a+b)}x = \lim_{n \to \infty} \left(e^{-\frac{t}{n}a} e^{-\frac{t}{n}b} \right)^n x \tag{5}$$

for all t > 0.

Now let $Q \in \mathcal{L}(H)$ be an orthogonal projection. Define the form b by

$$D(b) = QH$$

$$b(u, v) = 0$$

for all $u, v \in QH$. Then $e^{-tb} = Q$ for all $t \ge 0$. Thus (5) becomes

$$e^{-t(a+b)}x = \lim_{n \to \infty} \left(e^{-\frac{t}{n}a}Q \right)^n x \tag{6}$$

for all $x \in H$.

In order to establish the relation with Theorem 4, we remark the following. Let T be a holomorphic C_0 – semigroup on a Hilbert space H defined on the sector $\Sigma(\theta)$, $\theta \in (0, \frac{\pi}{2}]$, such that

 $\left\|T\left(z\right)\right\| \leq 1$

for all $z \in \Sigma(\theta)$. Let A be the generator of T. Then there exists a closed semibounded densely defined sesquilinear form a such that A is associated with a (see [Ka1, IV.2.1, Theorem 2.7.]). Now Theorem 4 follows from (6).

5 Two conjectures

The general problem is to find conditions under which the product formula for projections (2) converges strongly to a degenerate semigroup. In view of the above results we formulate two conjectures.

Conjecture 6 Let $T = (T(t))_{t \ge 0}$ be a contractive C_0 - semigroup on a Hilbert space H, and let P be an orthogonal projection. Then

$$S(t) := \lim_{n \to \infty} \left(T\left(\frac{t}{n}\right) P \right)^n$$

converges strongly for all $t \geq 0$ to a degenerate semigroup.

Conjecture 7 Let $T = (T(t))_{t\geq 0}$ be a positive contractive C_0 – semigroup on a space $L^p(\Omega), 1 , and let P be a positive contractive projection. Then the same assertion as in Conjecture 6 is true.$

References

- [AB] W. Arendt, C. J. K. Batty, Absorption semigroups and Dirichlet boundary conditions, Math. Ann. 295, No. 3 (1993), 427 – 448.
- [C] P. R. Chernoff, "Product Formulas, Nonlinear Semigroups, and Addition of Unbounded Operators," Mem. Am. Math. Soc. 140 (1974).
- [G] J. A. Goldstein, "Semigroups of Linear Operators and Applications," Oxford University Press, New York 1985.
- [Ka1] T. Kato, "Perturbation Theory for Linear Operators," Springer Verlag, Berlin, Heidelberg, 1976.
- [Ka2] T. Kato, Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups, in: Topics in functional analysis, I. Gohberg, M. Kac (eds.) Academic Press, New York (1978), 185 – 195.

Wolfgang Arendt Universität Ulm D-89069 Ulm arendt@mathematik.uni-ulm.de

Michael Ulm Universität Ulm D-89069 Ulm ulm@mathematik.uni-ulm.de