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Given a family (etAk)t�0 (k # N) of commuting contraction semigroups, we
investigate when the infinite product >�

k=1 etAk converges and defines a C0 -semi-
group. A particular case is the heat semigroup in infinite dimension introduced by
Cannarsa and Da Prato (J. Funct. Anal. 118 (1993), 22�42). � 1998 Academic Press

1. INTRODUCTION

Recently, parabolic equations in infinite dimensions have received much
attention in literature (see, for example, Pa Prato [DP] and Da Prato�
Zabczyk [DZ]). In particular, Cannarsa and Da Prato [CD1] showed
that the Laplacian (with a certain weight) generates a semigroup on
BUC(H), the space of all bounded uniformly continuous functions on a
separable Hilbert space H, which is called the heat semigroup (see also
[CD2]). This semigroup can be expressed as an infinite product,

`
�

k=1

etAk, (1.1)

of a commuting family of contraction semigroups (etAk)t�0 , k # N.
Motivated by this example, in the present paper, we start a systematic

study of such infinite products. Already the simple example E=C, Ak=i
(k # N) shows that (1.1) does not always converge. In order to obtain
positive results, one has to allow a ``change of speed'' represented by a
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sequence *=(*k)k # N of positive numbers and replace the semigroups
(etAk) t�0 by the semigroup (et*kAk)t�0 . Our main result in Section 2 shows
that, if E is a separable Banach space, there always exists a change of speed
such that the product >�

k=1 et*k Ak converges to a semigroup. On the other
hand, if E is not separable, such a sequence * may not exist.

The heat semigroup on BUC(H) is actually of the form >�
k=1 etB2

k, where
Bk generates an isometric group (the k th shift group with change of speed
on BUC(H)). Convergence of the group product >�

k=1 etBk is immediate
in that case. So the question arises of when this implies convergence of
>�

k=1 etB2
k. We give an affirmative answer in Section 3 for a slightly

stronger notion of convergence for infinite products (namely lp-continuity).
This allows us to prove the result of Cannarsa and Da Prato by a
completely different approach. Moreover, we show that the heat semigroup
also exists on BUC(X) for more general spaces X than Hilbert spaces. The
change of speed * # l1 is known to be optimal in the Hilbert space case. We
obtain different conditions on * when X is a weighted lp-space.

In the last section we investigate a regularity property of the heat semi-
group G on BUC(X). Denoting its generator by A, we show that it does
not have the Riemann�Lebesgue property, which means that R(i*, A) does
not converge to 0 if |*| � �. In particular, this shows that G is not even-
tually norm continuous and in particular not analytic. This extends and
gives alternative easy proofs of recent results by Guiotto [G], Desch and
Rhandi [DR], and van Neerven and Zabczyk [NZ].

2. THE INFINITE PRODUCT OF SEMIGROUPS

Let E be a Banach space. By a semigroup or group we always under-
stand a C0-semigroup (C0 -group, respectively). Let B be the generator
of a semigroup T. Then we frequently use the notation T(t)=etB (t�0).
If *>0, then *B generates the semigroup T(* } )=(T(*t))t�0 . Thus *
corresponds to a change of speed, which will play an important role in the
article. In the following, for each k # N, let there be given a semigroup
Tk=(Tk(t))t�0 on E with generator Ak . We assume that Tk is contractive;
i.e., &Tk(t)&�1 (t�0), for all k # N. Moreover, we assume that the family
[Tk : k # N] commutes, which means by definition that

Tk(t) Tl (s)=T l (s) Tk(t) (2.1)

for all k, l # N, s, t�0. Then for all n # N, (>n
k=1 Tk(t))t�0 is a semigroup

and A1+ } } } +An its generator. Here A1+ } } } +An is the closure of the
operator A1+ } } } +An which is considered with domain �n

j=1 D(Aj). This
is easy to see and well known (see [N, A-1.3.8]).
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Definition 2.1. We say that the product >�
k=1 Tk exists, if for every

x # X,

\ `
�

k=1

Tk(t)+ x := lim
n � �

`
n

k=1

Tk(t) x (2.2)

converges uniformly on compact subsets of [0, �). In that case,
>�

k=1 Tk(t) # L(E) for all t�0 and (>�
k=1 Tk(t))t�0 is a contraction semi-

group on E which we denote by >�
k=1 Tk and which we call the product

semigroup of the family of semigroups [Tk : k # N].

We use the same terminology if each Tk is a C0 -group of contractions.
In that case we ask that the convergence in (2.2) be uniform on all compact
subsets of R. Then (>�

k=1 Tk(t))t # R is a C0 -group of isometries which we
call the product group of the family of C0 -groups [Tk : k # N].

Example 2.2. Let T=(T(t))t�0 be a semigroup with generator A. Let
*k�0 (k # N) and consider the semigroups Tk(t)=T(*k t). If ��

k=1 *k<�,
then the product P=>�

k=1 Tk exists and is given by P(t)=T(bt), where
b=��

k=1 *k . If ��
k=1 *k=�, then two cases are possible:

(a) limt � � T(t)=Q exists strongly. Then limn � � >n
k=1 Tk(t)=Q

strongly but not uniformly on compact intervals unless T(t)=I for all
t�0.

(b) If T(t) does not converge strongly as t � �, then >n
k=1 Tk(t)

does not converge strongly.

Our aim is to show that in the separable case there always exists a
``change of speed'' (*j) j # N /(0, �) such that the product

`
�

j=1

Tj (* j } )

converges. For this, we first show that the intersection of the domains of
all generators is dense in E. The proof is based on the most useful but not
very well-known abstract version of the Mittag�Leffler theorem (see Esterle
[E] for a proof and further applications; see also [Am, V.1.1, AEK]). Let
N0=N _ [0].

Theorem 2.3 (Mittag�Leffler theorem). Let (Mn , dn) be complete metric
spaces and 3n : Mn+1 � Mn continuous mappings with dense image (n # N0).
Let x0 # M0 , =>0. Then there exist yn # Mn (n # N0) such that

(a) d0(x0 , y0)<=
(b) 3n yn+1= yn .
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Calling a sequence ( yn)n # N0
with yn # Mn projective if 3n yn+1= yn , and

calling y0 the final point of such a sequence, the theorem says that the set
of all final points of projective sequences is dense in M0 .

Proposition 2.4. The space D=�k # N D(Ak) is dense in E.

Proof. Let M0=E with the given norm and, for n # N, let Mn=
�n

k=1 D(Ak) with the norm &x&n=�n
k=1 &Ak x&+&x&. Since the operators

are closed, Mn is a Banach space. Moreover, the injection 3n : Mn+1 � Mn

is continuous. Let x # Mn . Since the operators commute, one has
R(*, An+1) x # Mn+1 and lim* � � *R(*, An+1) x=x in Mn . Thus 3n has
dense image for all n # N. Here, every projective sequence is constant and
final points are the same as elements of D. Thus the Mittag�Leffler theorem
says that D is dense in E. K

Remark 2.5. In the same way one sees that the set �k # N �m # N D(Am
k )

is dense in E.

Lemma 2.6. Suppose in addition that E is separable. Then there exist
*j>0 such that the set

D1={x # D : :
�

j=1

*j &Ajx&<�=
is dense in E.

Proof. Let (xk)k # N be a dense sequence in E. By Proposition 2.4, for
k # N, n # N there exists dk, n # D such that &dk, n&xk&<1�n. Thus the
countable set D0=[dk, n : k, n # N] is dense in E. Write D0=[ ym : m # N].
By induction we find sequences (*m

j ) j # N in (0, �) such that *m+1
j �*m

j for
all m, j # N and

:
�

j=1

*m
j &Aj ym&<� for all m # N.

Let *j=* j
j ( j # N). Let m # N. Then *j�*m

j for all j�m. Thus
��

j=1 *j &A j ym&<�. This shows that D0 /D1 . Thus D1 is dense in E. K

Proposition 2.7. Let [Tk : k # N] be a commuting family of contraction
semigroups (or groups) with generators Ak (k # N). Assume that the space

D1 :={x # ,
k # N

D(Ak): :
�

k=1

&Akx&<�= (2.3)
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is dense in E. Then the semigroup (resp. group) product >�
k=1 Tk exists.

Define A on D1 by Ax=��
k=1 Ak x. Then A is closable and A� is the generator

of the product semigroup.

Proof. We consider the semigroup case only. The group case is
analogous. Let x # D1 . Let {>0. Then for t # [0, {],

"\ `
n+k

j=1

Tj ( t)+ x&\`
n

j=1

Tj (t)+ x"
�"\ `

n+k

j=n+1

Tj (t)+ x&x"
�"\ `

n+k

j=n+1

Tj (t)+ x&\ `
n+k&1

j=n+1

Tj (t)+ x"
+"\ `

n+k&1

j=n+1

Tj (t)+ x&\ `
n+k&2

j=n+1

Tj (t)+ x"+ } } } +&Tn+1(t) x&x&

� :
n+k

j=n+1

&Tj (t) x&x&= :
n+k

j=n+1
"|

t

0
Tj (s)Aj x ds"

�{ :
n+k

j=n+1

&Ajx& .

This shows that (>n
k=1 Tk(t) x)n # N converges uniformly on [0, {] for all

x # D1 ; and then, since D� 1=E, also for all x # E. Hence the product
>�

k=1 Tk exists in the sense of our definition. We denote by P the product
semigroup, and let Pn(t)=>n

k=1 Tj (t). Then limn � � Pn(t) y=P(t) y
uniformly on [0, {] for all {>0 and all y # E. Let x # D; then
(d�dt) Pn(t) x=Pn(t) �n

j=1 Ajx (note that Aj Tk(t) x=Tk(t) Ajx for t�0,
k, j # N). Hence Pn(t) x=x+� t

0 Pn(s) �n
j=1 Ajx ds. But Pn(t) �n

j=1 Ajx=
Pn(t)(�n

j=1 Aj x&Ax)+Pn(t) Ax converges to P(t) Ax uniformly on [0, {]
for all {>0. Thus

P(t) x=x+|
t

0
P(s) Ax ds.

This shows that the generator of P is an extension of A. Let x # D1 . Then
limn � � A jPn(t) x=limn � � Pn(t) Aj x=P(t) Ajx. Since Aj is closed, this
shows that P(t) x # D(Aj) and AjP(t) x=P(t) Ajx. It follows that
P(t) x # D1 . We have shown that D1 is invariant by the semigroup P.
Consequently D1 is a core of the generator (by [N, A-II. Corollary 1.34)]
or [Da, Theorem 1.9]. K
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Remark 2.8 (Trotter�Kato Theorem). In the situation of Proposition 2.7
one is tempted to apply the Trotter�Kato theorem. In fact, the operator A
with domain D(A)=D1 is dissipative and densely defined. Moreover, Ax=
limn � � Bn x, where Bn=(A1+ } } } +An) is the generator of Pn . However,
in order to apply the Trotter�Kato theorem, one needs to know that
(I&A) has dense range. It is remarkable that in the special case considered
here, the range condition can be omitted.

Theorem 2.9. Suppose that E is separable. Let [Tj : j # N] be a com-
muting family of contraction semigroups or groups. Then there exist *j>0
( j # N) such that the semigroup (resp. group) product

`
�

j=1

Tj (* j } )

exists.

Proof. It follows from Lemma 2.6 that there exist *j>0 such the space
D1=[x # D: ��

j=1 &Aj x&<�] is dense in E. Now the claim follows from
Proposition 2.7. K

Theorem 2.9 no longer holds if the Banach space E is not separable.
We give an example.

Example 2.10. Let I=[(:n)n # N : :n>0 for all n # N] be the set of all
positive sequences and let E=l2(I ). For j # N we define the unitary group
Tj on E by

Tj (t) x=(eit:jx:): # I

(t # R, x # E). Then clearly, Tj (t) Tk(s)=Tk(s) Tj (t) for all k, j # N, s, t # R.
Let *j>0 ( j # N), t>0. We show that there exists x # E such that the
product (>n

j=1 Tj (*j t)) x does not converge in E (and in fact not even
component wise). Let : # I be given by :j=?�*j t. Let x # E be given by

x;={0 if ;{:
1 if ;=:.

Then

\`
n

j=1

Tj (*j t) x+:
=exp \it :

n

j=1

*j:j+=eit?n=(&1)n. K
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3. THE HEAT SEMIGROUP IN INFINITE DIMENSION

The motivation of this investigation is as follows. Consider the Laplacian
2n on BUC(Rn) (with maximal distributional domain). Then 2n generates
the Gaussian semigroup (et2n))t�0 on BUC(Rn). The question arises whether
the Laplacian also generates a semigroup if we replace Rn by an infinite
dimensional space X. We will show this in the following if we take as X a
weighted l2-space.

The idea of proof is that the Laplacian is the sum of squares of the
generators of the shift groups. It is easy to show that the product of the
shift groups converges on suitable spaces. We make this more precise. If X
is a metric space we denote by BUC(X) the Banach space of all bounded
uniformly continuous scalar-valued functions on X with the supremum
norm. In our context, weighted lp-spaces will be useful examples for X. Let
(wn)n # N be a sequence in (0, �) which serves as weight. Let 0< p<�.
By lp

w we denote the space of all sequence *=(*n)n # N such that
��

n=1 wn * p
n <�. Then lp

w is a Banach space for the norm &*&l p
w
=

(��
n=1 wn* p

n )1�p if 1�p<�. If 0< p<1, then lp
w is a metric space for the

metric dp
w(*, +)=��

n=1 wn |*n&+n | p. By lp
w+ we denote the cone of all

positive sequences in lp
w . The following example will be useful.

Example 3.1. Let X=lp
w , where 0< p<� and w=(wn)n # N # (0, �)N.

For k # N we denote by ek=(0, ..., 0, 1, ...) the k th unit vector. Let E=
BUC(X). Then

(Tk(t) f )(x)= f (x&tek)

defines an isometric group on E which we call the k th shift group. Let
*=(*j) j # N # X+ . For n # N, let Pn(t)=>n

k=1 Tk(*k t). Then (Pn(t) f )(x)=
f (x&t �n

k=1 *kek). Since limn � � �n
k=1 *kek=��

k=1 *kek exists in X,
it follows that Pn(t) f converges uniformly on [&{, {] to P(t) f for
every {>0, where (P(t) f )(x)= f (x&t ��

k=1 *k ek). Thus the product
group

P= `
�

k=1

Tk(*k } )

exists (in the sense of our terminology).

We recall a simple result of semigroup theory.
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Proposition 3.2. Let B be the generator of an isometric C0 -group
T=(T(t))t # R on E. Then B2 generates a contraction C0 -semigroup S given
by

S(t) f =
1

(4?t)1�2 |
R

e&s2�4tT(s) f ds ( f # E).

Moreover, the semigroup S is holomorphic of angle ?�2.

We refer to [N, A-IIII 1.13] of [Da, Theorem 2.31] for the easy proof.
The Gaussian semigroup is the prototype of Proposition 3.2. Let E=BUC(R),
(T(t) f )(x)= f (x&t). Then (S(t) f )(x)=(1�(4?t)1�2) �R e&s2�4tf (x&s) ds. In
the context of Example 3.1 we may consider the group Tk with generator
Bk . Then Ak=B2

k generates the semigroup Sk on BUC(X) given by
Sk(t) f (x)=(1�(4?t)1�2) �R e&s2�4tf (x&sek) ds. Our aim is to find sequences
(*k)k # N /RN

+ such that the product

`
�

k=1

Sk(*k } )

exists. We do not know whether in general, the semigroup product
>�

k=1 etB2k exists if the group product >�
k=1 etBk exists (where we suppose

that the operators Bk generate commuting isometric groups). For this
reason, we introduce a slightly stronger notion of convergence of the
infinite semigroup product which enjoys the desired permanence property.
It can be expressed as a joint strong continuity of the finite products at the
origin. This can be done for any norm on the finite sequences. We restrict
ourselves to weighted p-norms (0< p<�). In view of the main example,
the heat semigroup, it is useful to include also the case 0< p<1.

Definition 3.3. Let wn>0 (n # N) and let 0< p<�. A commuting
family of contraction semigroups (resp., groups) on E is called lp

w-con-
tinuous, if for every x # E and every =>0 there exists $>0 such that

:
n

k=1

|*k | p wk�$ implies "\ `
n

k=1

Tk(*k)+ x&x"�= (3.1)

for all finite sequences (*1 , ..., *n) in R+ (in R, respectively, in the group
case). In the case where wn=1 for all n # N we simply speak of lp-con-
tinuity.

It is obvious that the family of the shift groups considered in Example
3.1 is lp

w -continuous.
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If a=(:k)k # N and b=(;k)k # N are two real sequences such that :k�;k

for all k # N, we denote by [a, b] the set of all sequences *=(*k)k # N such
that :k�*k�;k for all k # N.

Proposition 3.4. Let 0< p<�, w=(wn)n # N # (0, �)N. Let [Tk : k # N]
be a lp

w-continuous, commuting family of contraction semigroups or groups.
Let +=(+k)k # N # lp

w+ . Let x # X. Then

lim
n � �

`
n

k=1

Tk(*k) x

converges uniformly for * # [0, +] (and for * # [&+, +], in the group case).
In particular, for every * # lp

w+ (* # lp
w , respectively), the semigroup product

(resp. group product) >�
k=1 Tk(*k } ) exists.

Proof. Let x # E, =>0. Choose $>0 according to Definition 3.2. There
exists no # N such that ��

k=no
+ p

k �$. Let n�no , k # N. Then for * # [0, +]
(resp. * # [&+, +]),

"\ `
n+k

j=1

T j (*j)+ x&\`
n

j=1

Tj (*j)+ x"=" `
n

j=1

Tj (*j) _\ `
n+k

j=n+1

T j (*j)+ x&x&"
�"\ `

n+k

j=n+1

Tj (*j)+ x&x"�=.

This implies the desired assertion. K

Now we establish the desired permanence property.

Theorem 3.5. Let 0< p<�, w=(wn)n # N # (0, �)N. Let [Tk : k # N]
be an lp

w-continuous commuting family of isometric groups with generators Bk

(k # N). Let Sk be the semigroup generated by B2
k . Then [Sk : k # N] is an

lp�2
w -continuous commuting family of contraction semigroups. In particular,

the product

`
�

k=1

Sk(*k } )

exists for every (*k)k # N # lp�2
w+ .

Proof. Let x # E, =>0. There exists $>0 such that &>n
k=1 Tk(tk) x&x &

�=�2 whenever tk # (0, �) and �n
k=1 |tk | p wk�$. Let

Kp=
1

(4?)1�2 |
R

|r| p e&r2�4 dr.
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Then

"\`
n

j=1

S j (t j)+ x&x"
="|Rn \`

n

j=1

(4?t j)
&1�2 e&sj

2�4tjTj (sj)+ x ds1 } } } dsn&x"
="|Rn

(4?)&n�2 e&|s| 2�4 {\`
n

j=1

Tj (sj - tj)+ x&x= ds1 } } } dsn"
�|

Rn
(4?)&n�2 e&|s| 2�4 "\`

n

j=1

Tj (sj - tj)+ x&x" ds1 } } } dsn

=|
�n

j=1 wj |sj |
p tj

p�2�$
} } } +|

�n
j=1 wj |sj |

p tj
p�2>$

} } }

�
=
2

+2 &x& }
1
$

(4?)&n�2 |
Rn

:
n

j=1

wj |sj |
p t p�j

2 e&|s| 2�4 ds

�
=
2

+2 &x&
1
$

Kp } :
n

j=1

wj t p�2
j �=,

if :
n

j=1

wj t p�2
j �

=
2

$(2 &x& Kp)&1. K

Now we can define the heat semigroup in infinite dimension.

Theorem 3.6. Let 0< p<�, w=(wn)n # N # (0, �)N. Let E=BUC(lp
w).

Let *=(*j) j # N # lp�2
w . Define the n-dimensional Gaussian semigroup Gn on E

by

(Gn(t) f )(x)=(4?t)&n�2 |
Rn

e&|s| 2�4tf \x& :
n

j=1

- sjej+ ds

for f # E. Then

G(t) f = lim
n � �

Gn(t) f

converges uniformly on [0, {] in E for every {>0, f # E and defines a
semigroup G on E. We call it the heat semigroup on E (of ``speed '' *). In
particular, if p=2 and w # l1, then one may choose *j=1 for all j # N.

Proof. It is clear from the definition that the family of shift-groups
[Tk : k # N] is lp

w -continuous on E. Thus Theorem 3.7 is a consequence of
Proposition 3.4 and Theorem 3.5. K
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In the case where w # l1 and p=2 we may take *j=1 ( j # N). Then
formally, the orbit u: R+ � BUC(l2

w) given by u(t)=G(t)f is solution of the
infinite dimensional heat equation

{
�u
�t

= :
�

j=1

�2

�2x j
u

(3.2)

u(0)= f

where f # BUC(l2
w). But one should be aware that in this case we do

not diagonalize the equation with respect to an orthonormal basis.
Theorem 3.6 is due to Cannarsa and Da Prato [CD2] in the case p=2,
wn=1 (n # N). They give a completely different proof, though. Their argu-
ment is based on a non-trivial result on the differential structure of
BUC(l2) (viz., the density of the set of all Fre� chet differentiable functions
with Lipschitz continuous derivative). It is known [DP, 3.1] that in the
case p=2, wn=1 (n # N) the condition that *=(*j) j # N # l1 is optimal; this
means that, if Gn(t) converges strongly to a semigroup, then * # l1.

4. FURTHER PROPERTIES OF l p
w -CONTINUITY

In this section we investigate further the notion of l p
w-continuity. Let

[Tj : j # N] be a commuting family of contraction semigroups. By c00+ we
denote the cone of all finitely supported sequences in [0, �) (i.e., the set
of all sequences *=(*j)j # N in [0, �) such that *j=0 for almost all j # N).
Then we can define the mapping

P : c00 � L(E )

by

P(*) x= `
�

j=1

Tj (* j) x (* # c00+ , x # E ).

Let 0< p<� and let w=(wm)n # N be a sequence in (0, �). Then c00 is
dense in the space lp

w .

Proposition 4.1. The family [Tj : j # N] is lp
w-continuous if and only if

P extends to a strongly continuous mapping P� : lp
w+ � L(E). In that case one

has

P� (*+#)=P� (*) P� (#) (4.1)

for all *, # # lp
w+ .

This is easy to see (cf. Proposition 3.4).
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Remark 4.2. If we merely assume that the semigroup product >�
j=1 Tj (*j } )

exists for all * in lp
w+ , then we obtain a mapping P� : lp

w+ � L(E) satisfying
(4.1) which is merely strongly continuous on lines; i.e., t [ P� (t*)x: R+ � E
is continuous for all x # E, * # lp

w+ .

It is obvious that [Tj : j # N] is lp
w -continuous whenever the condition in

Definition 3.3 is satisfied for all x in a dense subspace of E. Using this we
obtain

Proposition 4.3. Let 1�p<�. Assume that the space

Dq :={x # ,
�

k=1

D(Ak) : (&Ak x&)k # N # l q
w=

is dense in E, where 1�p+1�q=1. Then the family [Tj : j # N] is lp
w-continuous.

Proof. Let x # Dq , * # c00+ . As in the proof of Proposition 2.7 we have

"\`
n

j=1

Tj (* j)+ x&x"� `
n

j=1

&Tj (*j) x&x&

= :
n

j=1
"|

*j

0
Tj (s) Ajx ds"

� :
n

j=1

*j &Ajx&

�&*&l p
w

} &(Ajx) j # N& l q
w
.

This implies the claim. K

From Lemma 2.6 we now deduce.

Theorem 4.4. Assume that E is separable. Then there exist *j>0 ( j # N)
such that the family [Tj (*j } ): j # N] is lp-continuous for all 1�p<�.

Proof. By Lemma 2.6 there exist *j>0 such that ��
j=1 &*jAjx&<� for

all x # E. Hence (&*j Ajx&) j # N # lq for all 1�q��. Now the claim follows
from Proposition 4.3. K

The analogous assertions of Propositions 4.1 and 4.3, Theorem 4.2 also
hold for groups.

Remark 4.5 (Equicontinuity). Let 0< p<�. Every lp-continuous
family of commuting contraction semigroups [Tj : j # N] is equicontinuous
(i.e., for all x # E, =>0 there exists $>0 such that &Tj (t) x&x&�= for all
t # [0, $], j # N). For example, the family [(eitk)t�0 : k # N] in E=C is not
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equicontinuous and thus not l p-continuous. However, it is l1
w -continuous

with wk=k (k # N).

In the preceding section we proved convergence of the product by using
information on the generators Ak (namely density of D1 in Proposition 2.7).
It would be desirable to obtain such information from l p-continuity. Here
is a result of this kind.

Proposition 4.6. Let 0< p<�. Let [Tk : k # N] be an l p-continuous
commuting family of contraction semigroups with generators Ak (k # N).
Let * # l p

+ , such that * j>0 for all j # N. Then the set D* :=
[x # �k # N D(Ak): supk # N *k &Akx&<�] is dense in X.

Proof. Let n # N. Let

M n
mx=|

(0, 1)m
T1 \*1s1

n + T2 \*2 s2

n + } } } Tm \*msm

n + x ds1 } } } dsm .

Then M n
m # L(E), &M n

m&�1. Moreover,

&M n
m+kx&M n

mx&

�|
(0, 1)k

&Tm+1(*m+1 } sm+1) } } } Tm+k(*m+k } sm+k) x&x& dsm+1 } } } dsm+k .

This shows that Mnx=limm � � M n
mx exists for all x # E. Hence Mn #

L(E), &Mn&�1. Since limn � � M n
m x=x for all m # N, it follows that

limn � � M nx=x for all x # E. Let j # N. Then for x # E, m� j, AjM n
mx=

1�*j �(0, 1)m&1 >m
i=1; t{ j Ti (* isi) ds1 } } } ds j&1 dsj+1 } } } dsm(T j (*j) x&x),

which converges as m � �. Thus Mnx # D(Aj) and *j &A jMnx&�2 &x&. K

Finally, we mention that for convergence of the infinite product, instead
of contractivity, we may merely assume that finite products are bounded.
Then the boundedness condition may be easier to satisfy if we do not
change speed of one of the semigroups, T0 , say.

Proposition 4.7. Let [Tk : k # N0] be an lp-continuous family of com-
muting C0 -semigroups such that for all {>0 there exists M�0 such that

" `
n

k=1

Tk(tk) T0(t)"�M (4.2)
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whenever tk # [0, {], n # N. Then for all x # E and * # lp
+

`
n

k=1

Tk(*k t) T0(t) x (4.3)

converges as n � � uniformly in [0, {] for all {>0.

The proof is a slight modification of the proof of Proposition 3.4.
We give an example where (4.3) is valid without lp-continuity being

satisfied. Consider the Laplacian on L1(R) which generates a holomorphic
C0 -semigroup (ez2)Re z>0 of angle ?�2. In particular, for all r>0,
% # |0, ?�2), one has

sup
z # 7(%, r)

&ez2&<�, (4.4)

where 7(%, r)=[\ei:: 0�\�r, |:|�%]. However, for all =>0,

sup

|z|�=
Re z>0

&ez2&=� (4.5)

(see [AEH, Sect. 2]).
Moreover, for Re z>0, z � R the semigroup (etz2)t�0 is not contractive

in L1(R) (see [O, Sect. 4, Example 2]). Now let (zk)k # N be a bounded
sequence in C with Re zk>0 for all k # N. Let Tk(t)=etzk 2 on L1(R). Let
*=(*k)k # N # l1

+ . Then for all f # L1(R), t>0,

Pn(t) f = `
n

k=1

Tk(*k t) f

converges as n � � uniformly for t # [0, {]. In fact, we can assume that
*k0

>0 for some k0 # N. Let +n=�n
k=1 *k zk . Then Pn(t) f=et+n2f.

Since Re +n�*k0
Re zk0

, there exist r>0, % # (0, ?�2) such that t+n #
7(%, r) for all t # [0, {], n # N. Now the claim follows, since (ez2)Re z>0 is
holomorphic. Because of (4.3) we can choose the zk such that the semi-
groups [Tk : k # N] are not equicontinuous and so not l p-continuous (by
Remark 4.5). This example illustrates the situation described in Remark
4.2. If we take T0(t)=et2 and choose zk such that in addition
��

k=1 |zk |<�, then also condition (4.2) is satisfied.

5. NON-CONTINUITY IN NORM OF THE HEAT SEMIGROUP

Let A be the generator of a contraction semigroup T on a Banach space
E. If T is norm continuous (i.e., T: (0, �) � L(E) is continuous with
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respect to the operator norm on L(E)), then it follows from the Riemann�
Lebesgue lemma that

lim
|'| � �

&R(w+i', A)&=0 (5.1)

for all w>0. (Observe that R(w+i', A)=��
0 e&i'se&wsT(s) ds). It follows

from the resolvent identity that (5.1) is independent of w>0. For
simplicity, we call (5.1) the Riemann�Lebesgue property in the following. If
E is a Hilbert space, then it is known, conservely, that the Riemann�
Lebesgue property implies the norm-continuity of the semigroup (see
[EE1, EE2]). So far it is not known whether this implication holds on all
Banach spaces; it is not even known whether it holds on L p-spaces. More
generally, if T: [{, �) � L(E) is continuous for the operator norm, where
{>0, then

lim
|'| � �

&R(w+i', A) T(t)&=0 (5.2)

for all t�{ (since R(w+i', A) T(t)=��
0 e&i'se&wsR(t+s) ds).

Our aim is to prove the following.

Theorem 5.1. Let 0< p<� and w=(wn)n # N # (0, �)N. Let *=
(*j) j # N # lp�2

w such that *j>0 for all j # N. Denote by G the heat semigroup
with change of speed * on BUC(lp

w) and by A its generator. Then G fails to
have the Rieman�Lebesgue property (5.1) and also the more general property
(5.2) for all t>0. In particular, G is not eventually norm-continuous.

Remark 5.2. For p=2, wn=1, it has been proved by Desch and
Rhandi [DR] that G is not norm-continuous. It seems of independent
interest that the Riemann�Lebesgue property falls; in addition, our argu-
ment is very simple.

Because of the analyticity and hence norm continuity of the Gaussian
semigroup on BUC(Rm), it is clear that (5.1) holds for the Laplacian 2m

on BUC(Rm). But we show in the following lemma that (5.1) does not hold
uniformly in m # N.

Lemma 5.3. There exist 'm # R and fm # BUC(Rm) such that

& fm&�=1, lim
m � �

'm=&�

and

&R(1+i'm , 2m) fm&�� 1
4 (m # N).
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Proof. For m�2 let % # (0, ?�2) such that cos %=(1�- m) sin %. Then
limm � � 'm=&�. Let z=(ei%�- m) and

g(x)=e&zx2�2 \x=(x1 , ..., xm), x2= :
m

j=1

x2
j + .

Then g # BUC(Rm) and &g&�=1. Since g is radial, we have

2m g(r)=g"(r)+
m&1

r
g$(r)=(z2r2&mz) e&zr2�2, r=|x| .

Thus

&(1+i'm&2m) g&�

= sup
x # Rm \1&i - m } sin %+- m ei%&

ei2%

m
x2+ e&cos % } x2�2 - m

� sup
x # Rm { |1+- m cos % |+

x2

m
e&cos % } x2�2 - m=

=2+
2

- m cos %
sup

x # Rm

cos % } x2

2- m
e&cos % } x2�2 - m

�2+
2

- m } cos %
=4 since rer�1 (r�0).

Let fm=1�4(1+i'm&2m) g. Then & fm &��1 and

&R(1+i'm&2m) fm&�= 1
4& g&�= 1

4 . K

Proof of Theorem 5.1. Let *j>0 such that (*j) j # N # l p�2
w . Let

(Gn(t) g)(x)=(4?t)&n�2 |
Rn

e&s2�4tg \x& :
n

j=1

sj - *jej+ ds

(g # BUC(lp
w), x # lp

w). Then limn � � Gn(t)=G(t) strongly. Let m # N be
fixed. Define

J : BUC(Rm) � BUC(l p
w ) by (Jf )(x)= f (- *1 x1, ..., - *mxm).
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Then J is a linear isometry and Jet2m=Gm(t) J for all n�m. In fact, for
f # BUC(Rm), x # lp

w ,

(Gn(t) Jf )(x)

=(4?t)&n�2 |
Rn

e&s2�4tf \- *i \ x1

- *1

&s1+ , ..., - *m \ xm

- *m

&sm++ ds

=(Jet2mf )(x).

Letting n � � we conclude that Jet2m=G(t) J. Taking Laplace transforms
we obtain R(1+i*m , A) J=JR(1+i*m , 2m). Let fm # BUC(Rm) such
that & fm&�=1, &R(1+i*m , 2m) fm&�1�4. Then &Jfm&=& fm&=1 and
&R(1+i*m , A) Jfm&=&JR(1+i*m , 2m)fm&=&R(1+i*m , 2m)fm&�1�4.
Hence &R(1+i*m , A)&�1�4. This shows that (5.1) fails.

In order to show that (5.2) fails as well, we modify the argument. Let
t>0 and for m # N let fm=1�4(1+i'm&2m) g where g(x)=e&zx2�2 as in
Lemma 5.2. Then & fm&�=1. We show that for all m # N,

&(1+i'm&2m)&1 et2mfm&�e&(2t2+t). (5.3)

For w # C, Re w>0 let Kz(x)=(4?z)&m�2 e&x2�4z. Then ew2mh=Kw V h
(h # BUC(Rm)) and Kw1

V Kw2
=Kw1+w2

(Re w1>0, Re w2>0). Note that
g=(2?�z)m�z K1�2z . Hence

(1+i'm&2m)&1 et2mfm

= 1
4et2mg= 1

4 (2?�z)m�2 Kt V K1�2z= 1
4 (2?�z)m�2 Kt+1�2z .

Hence

&(1+i'm&2m)&1 et2mfm&�

�
1
4

|2?�z|m�2 } } 4? \t+
1
2z+}

&m�2

=
1
4

|2tz+1| &m�2.

Using that z=(1�- m) ei% and cos %=1�- m we obtain

&(1+i'm&2m)&1 et2mf &��\1+
8t2+4t

m +
&m�4

�e&(2t2+t)

independent of m # N. Using that

R(1+i'm , A) G(t) J=JR(1+i'm , 2m) et2m

it follows as before that &R(1+i'm , A) G(t)&�e&(2t2+t) for all m # N. K
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The Gaussian semigroups Gn on E=BUC(lp
w) are all holomorphic of

angle ?�2. But for every sector 7(%)=[z # C"[0]: |arg z|�%] where 0<
%<?�2 and every r>0 one has

sup
n # N

sup

|z|�r
z # 7(%)

&Gn(z)&=�. (5.4)

Otherwise holomorphy would follow from the following result which is
a simple consequence of Vitali's theorem ([HP, Sect. 3.14]; see also [AN]
for a short proof).

Theorem 5.4. Let % # (0, ?�2] and let Tn be a holomorphic semigroup of
angle %. Assume that there exist c�0, r>0 such that

&Tn(z)&�c (z # C, |z|�r, |arg z|<r) (5.5)

for all n # N. Assume that T is a semigroup, such that

lim
n � �

Tn(t) x=T(t) x

for all t�0, x # E. Then T is holomorphic of angle %.

Proof. It follows from (5.5) that there exist w�0, M�0 such that

&e&wzTn(z)&�M

for all z # 7(%), n # N. Now it follows from Vitali's theorem that there exists
a holomorphic function S: 7(%) � L(E) such that

lim
n � �

e&wzTn(z) x=S(x) x

for all x # E, z # 7(%). Since T(t)=ewt S(t) it follows that T has a
holomorphic extension (z [ ewzS(z)) to 7(%). The semigroups property
follows from analytic continuation, strong continuity in 0 from Vitali's
theorem again; see [HP, Theorem 3.14.3]. K
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