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Let u be a bounded, uniformly continuous, mild solution of an inhomogeneous Cauchy problem on R
+
:

u«(t)¯Au(t)φ(t) (t& 0). Suppose that u has uniformly convergent means, σ(A)fiR is countable, and
φ is asymptotically almost periodic. Then u is asymptotically almost periodic. Related results have been
obtained by Ruess and Vu4 , and by Basit, using different methods. A direct proof is given of a Tauberian
theorem of Batty, van Neerven and Ra$ biger, and applications to Volterra equations are discussed.

1. Introduction

Several Tauberian theorems have been obtained which describe the behaviour of

a bounded function f(t) for large values of t under assumptions on the behaviour of

its Laplace transform fW(z) near the imaginary axis [17, 18, 1, 3, 9]. These theorems

have been closely related to results describing the asymptotic behaviour of C
!
-

semigroups on Banach spaces, solutions of abstract Cauchy problems and Volterra

equations, under certain spectral assumptions involving countability of the purely

imaginary part of the spectrum [1, 3, 9, 12, 21, 22]. Indeed, the proof of the Tauberian

theorem given in [9, Theorem 4.1] depended on a result for individual orbits of

bounded C
!
-semigroups obtained in [8], which itself depended on the global stability

theorem for bounded C
!
-semigroups given in [1, 21]. On the other hand, the stability

theorems of [1], [21] and [8] are all immediate consequences of this Tauberian

theorem, and it was explained in [9, Section 5] how the Tauberian theorem may be

applied to solutions of some abstract Cauchy problems on the half-line R
+
, in

particular giving new results for individual orbits of unbounded C
!
-semigroups. An

account of this theory may be found in [25, Sections 5.1, 5.3].

In [27], some important results were obtained concerning asymptotic behaviour of

solutions of inhomogeneous Cauchy problems on the line, under assumptions on the

spectrum of the operator A and the behaviour of the inhomogeneity. The authors

reintroduced the condition that a function have convergent means, uniformly over

translates, which was previously used in [19] in the context of almost periodic

functions and indefinite integrals (inhomogeneous Cauchy problems when A¯ 0),

and subsequently featured in the Tauberian theorem of [9]. The method of [27] used

some arguments which are very different from those of [9] and are apparently

confined to solutions defined on R. In [9, Section 5], some results about

inhomogeneous Cauchy problems were derived from the Tauberian theorem, but

they depended on less satisfactory assumptions about the spectrum of the solutions.
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In this paper, we first give a direct proof of the Tauberian theorem from [9], by

considering a C
!
-group on a quotient of BUC (R

+
,X ) induced by translations. This

method of proof seems to be the easiest way to obtain the stability result of [1, 21], and

it sheds new light on the role of the hypotheses of countability of the unitary spectrum

and ergodicity. In Section 3, we show how the same technique may be applied to

inhomogeneous Cauchy problems on R
+
, thus obtaining the full analogue of the

result of [27]. (Some partial results on R
+

have been given in [5].) In Section 4, we

discuss the connection between these results and those of [3] for solutions of Volterra

equations.

The Tauberian theorem is based on an assumption that the Laplace transform has

a holomorphic extension across the imaginary axis except at countably many points.

In some situations [17, 18, 3], it is known that it suffices to have a continuous

extension to the imaginary axis, except at countably many points. Although we are

unable to prove the general Tauberian theorem under assumptions which cover these

refinements, we show in Section 5 that a continuous extension implies a holomorphic

extension in the case of orbits of isometric semigroups. As isometric semigroups form

one of the main ingredients in the proof of the Tauberian theorem, this is a step

towards such an improvement of the theorem.

Closely related results concerning functions on the line, and second-order Cauchy

problems, are described in [2].

A. We are grateful to the referee for helping us to improve the

paper and for filling in gaps in our knowledge of weakly almost periodic functions.

2. The Tauberian theorem

Let X be a complex Banach space, and let BUC (R
+
,X ) be the space of all

bounded, uniformly continuous functions f :R
+
!X, with the norm

s f s¯ sup
t`R

+

s f(t)s
X
.

Let 3¯²S(t) : t& 0´ be the C
!
-semigroup of surjective contractions on BUC(R

+
,X )

given by

(S(t) f ) (s)¯ f(st).

Let B be the generator of 3. Let Y
!
¯BUC(R

+
,X )}C

!
(R

+
,X ), and let

π
!
:BUC (R

+
,X )!Y

!
be the quotient map, so

sπ
!
f s¯ inf ²s f®gs :g `C

!
(R

+
,X )´¯ lim sup

t!¢

s f(t)s.

Now 3 induces a C
!
-semigroup ²S

!
(t) : t& 0´ on Y

!
, consisting of surjective isometries,

since

sS
!
(t)π

!
f s¯ sπ

!
S(t) f s¯ lim sup

s!¢

s (S(t) f ) (s)s¯ lim sup
s!¢

s f(s)s¯ sπ
!
f s.

Thus ²S
!
(t) : t& 0´ extends to a C

!
-group 3

!
¯²S

!
(t) : t `R´ of isometries on Y

!
.

A closed subspace & of BUC (R
+
,X ) will be said to be translation-biin�ariant

if, for each t& 0, &¯² f `BUC(R
+
,X ) :S(t) f `&´. Clearly, a closed translation-

biinvariant subspace contains all functions of compact support, and therefore
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contains C
!
(R

+
,X ). Indeed, a closed subspace & is translation-biinvariant if and only

if & contains C
!
(R

+
,X ) and &

!
B&}C

!
(R

+
,X ) is invariant under the group 3

!
. Then

3
!
induces a C

!
-group 3& on Y& BBUC(R

+
,X )}&¯Y

!
}&

!
, so S&(t)π& f¯π& S(t) f

for all f in BUC (R
+
, X ), where π& :BUC (R

+
,X )!Y& is the quotient map. Let B& be

the generator of 3&.

E. 1. The space C
!
(R,X ) is translation-biinvariant.

2. Let AP (R
+
,X ) be the closed linear span in BUC(R

+
,X ) of ²eη Cx : η `R,x `X ´,

where (eη Cx) (t)¯ eiηtx. Then AP (R
+
,X ) is the space of (Maak) almost periodic

functions from R
+
to X. Each S(t) maps AP (R

+
,X ) isometrically onto AP (R

+
,X ), but

AP (R
+
,X ) is not translation-biinvariant. If L is a closed 3-invariant subspace of

AP (R
+
,X ), then S(t) maps L onto L.

For g in C
!
(R

+
,X ) and h in AP (R

+
,X ),

sghs& lim sup
t!¢

sS(t) (gh)s¯ lim sup
t!¢

sS(t)hs¯ shs.

Thus the space

AAP (R
+
,X )BC

!
(R

+
,X )GAP (R

+
,X ),

of all asymptotically almost periodic functions from R
+

to X, is closed. It follows from

the previous paragraph that AAP (R
+
,X ) is translation-biinvariant. Moreover, if L is

any closed 3-invariant subspace of AP (R
+
,X ), then C

!
(R

+
,X )GL is closed and

translation-biinvariant.

It is known that AAP (R
+
,X ) is the space of all functions f such that ²S(t) f : t& 0´

is relatively compact (see [15, Theorem 9.3] for this and other characterisations).

3. Let W(R
+
,X ) be the space of all functions f in BUC (R

+
,X ) such that

²S(t) f : t& 0´ is relatively weakly compact in BUC (R
+
,X ). This space is an appropriate

weak analogue of the space AAP (R
+
,X ). It originates from the work of Eberlein [14],

and these functions are variously called weakly almost periodic, Eberlein almost

periodic, Eberlein weakly almost periodic, or weakly asymptotically almost periodic (in

the sense of Eberlein). Let W
!
(R

+
,X ) be the space of all functions f in W(R

+
,X ) such

that 0 is in the weak closure of ²S(t) f : t& 0´. Both W(R
+
,X ) and W

!
(R

+
,X ) are

translation-biinvariant spaces.

An application of Glicksberg–deLeeuw theory shows that

W(R
+
,X )¯W

!
(R

+
,X )GAP (R

+
,X ). (2.1)

Details of this and many other properties of W(R
+
,X ) are given in [28, 30]. (See [16,

23] for discussions of some related translation-biinvariant classes of functions.)

4. Any Λ-class in the sense of Basit [4, 5] is translation-biinvariant.

For f in BUC (R
+
,X ), let fW be the Laplace transform of f, defined on the right

half-plane:

fW(λ)¯&
¢

!

e−tλf(t) dt (Re λ" 0).

Let SpR
+

( f ) be the set of all real ξ such that iξ is a singular point of fW, that is, fW does

not have a holomorphic extension to a neighbourhood of iξ.

We shall need the following two lemmas, proofs of which are given elsewhere but

which we state here for completeness.
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L 2.1 ([9, Proposition 3.2] ; see also [25, Lemma 5.3.3]). Let f `BUC(R
+
,X )

and ξ `RcSpR
+

( f ). Then there is a neighbourhood V of iξ in C and a holomorphic

function h :V!BUC(R
+
,X ) such that h(λ)¯R(λ,B) f whene�er λ `V and Re λ" 0.

L 2.2 ([2, Lemma 2.2] ; see also [8, Theorem 2.2], [25, Lemma 5.1.7]). Let

A be the generator of a C
!
-group 5 of isometries on a Banach space Z. Let z `Z, ξ `R,

and suppose that there exist a neighbourhood V of iξ in C and a holomorphic function

h :V!Z such that h(λ)¯R(λ,A) z whene�er λ `V and Re λ" 0. Then iξ ` ρ(A
z
), where

A
z
is the generator of the restriction of 5 to the closed linear span of ²U(t)z : t `R´ in Z.

Let iη (η `R) be a point on the imaginary axis. A function f in BUC (R
+
,X ) is

said to be uniformly ergodic at iη if

Mη( f ) (s)B lim
α$
!

αfW
s
(αiη)

exists, uniformly for s& 0, where f
s
¯S(s) f. This is equivalent to requiring the

existence of the Abel limit

Mη( f )¯ lim
α$
!

α&
¢

!

e−αte−iηtS(t) f dt¯ lim
α$
!

αR(αiη,B) f

of t* e−iηtS(t) f in BUC (R
+
,X ). It follows immediately from Lemma 2.1 that f is

uniformly ergodic at iη, and Mη( f )¯ 0, whenever η aSpR
+

( f ).

Since our functions are uniformly bounded, f is uniformly ergodic at iη if and

only if the Cesa' ro limit

Mη( f )¯ lim
τ!¢

1

τ &
τ

!

e−iηtS(t) f dt

exists in BUC (R
+
,X ). Thus our notion of ergodicity is the same as those appearing

in [4, 5, 12, 19, 27].

A simple calculation shows that

αfW
s
(αiη)¯ e(α+iη) sαfW(αiη)®α& s

!

e(α+iη) (s−t)f(t) dt,

so whenever f is uniformly ergodic at iη, Mη( f ) is a function of the form

Mη( f )¯ eη Cx
f,η

.

We say that x
f,η

is the mean of f associated with the frequency η.

Let E be a subset of iR. We shall say that f is totally ergodic on E if f is uniformly

ergodic at each point of E. We shall say that f is totally ergodic if f is totally ergodic

on iSpR
+

( f ), or equivalently, if f is totally ergodic on iR.

Any function f in W(R
+
,X ) is totally ergodic, and the means of f determine the

almost periodic part of f (in the sense of the decomposition (2.1)) [30, p. 426], [4,

Theorem 2.4.7].

Now we can give the direct proof of (a slightly generalised version of) the

Tauberian theorem [9, Theorem 4.1].

T 2.3. Let f :R
+
!X be bounded, uniformly continuous and totally ergodic,

and suppose that SpR
+

( f ) is countable. Let & be a closed, translation-biin�ariant

subspace of BUC(R
+
,X ), and suppose that & contains Mη( f ) for each η in SpR

+

( f ).

Then f `&.
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Proof. Let B
f,&

be the generator of the restriction of 3& to the closed linear span

Z
f,&

of ²S&(t)π& f : t `R´ in Y&. Let ξ ` RcSpR
+

( f ), and let V and h be as in Lemma

2.1. Define ha :V!Y& by ha (λ)¯π&(h(λ)). Then ha (λ)¯R(λ,B&)π& f whenever

Re λ" 0. By Lemma 2.2, iξ ` ρ(B
f,&

). Thus σ(B
f,&

) is countable.

Suppose that f a&. Then Z
f,&

is a non-trivial Banach space, so σ(B
f,&

) is non-

empty. Since σ(B
f,&

) is countable and closed in iR, it has an isolated point iη. Then

iη is an eigenvalue of B
f,&

[11, Theorem 8.16], so there is a non-zero z in Z
f,&

such

that S&(t) z¯ eiηtz for all t. However,

α&
¢

!

e−(α+iη) tS(t) f dt!Mη( f )

in BUC (R
+
,X ), as α $ 0. Applying S&(s)π&,

α&
¢

!

e−(α+iη) tS&(t)S&(s)π& f dt!S&(s)π&(Mη( f ))¯ 0

for all s& 0. Taking linear combinations and limits.

z¯α&
¢

!

e−(α+iη) tS&(t) z dt! 0.

This contradiction proves the result.

The following corollary illustrates well the Tauberian character of Theorem 2.3.

C 2.4 ([9, Theorem 4.1] ; see also [25, Theorem 5.3.5]). Let f :R
+
!X

be bounded, uniformly continuous and totally ergodic, and suppose that SpR
+

( f ) is

countable. Then f is asymptotically almost periodic. If the means x
f,η

are zero for all

except finitely many η, then s f(t)®3η eiηtx
f,η

s! 0 as t!¢.

Proof. The first statement follows from Theorem 2.3 by taking

&¯AAP (R
+
,X ), and the second by applying Theorem 2.3 to f®3η Mη( f ) with

&¯C
!
(R

+
,X ) (see also the remarks following Corollary 2.5).

In particular, Corollary 2.4 shows that a function in W(R
+
,X ) with countable

spectrum is asymptotically almost periodic. A family of functions in W(R
+
,X ) which

are not asymptotically almost periodic is given in [28, Example 3.7], and it is easy to

check that each function in that family has R as its spectrum.

A remarkable aspect of our approach is that the following well-known stability

theorem for semigroups now becomes a direct corollary of the Tauberian theorem

(Corollary 2.4).

C 2.5 ([1, 21, 22] ; see also [25, Theorems 5.1.5, 5.7.10]). Let 4 be a

bounded C
!
-semigroup on X, with generator A. Suppose that σ(A)fiR is countable, and,

for each iη in σ(A)fiR,

Ker (A®iηI )Ran (A®iηI ) is dense in X. (2.2)

Then we ha�e the following.
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(1) For each x in X, the map t*T(t)x is asymptotically almost periodic.

(2) X¯X
!
GX

"
, where

X
!
¯²x `X :sT(t)xs! 0 as t!¢´,

X
"
¯ span ²x `X : there exists η in R such that T(t)x¯ eiηtx for all t´.

(3) If σ
p
(A*)fiR is empty, then sT(t)xs! 0 as t!¢, for each x in X.

Proof. Let x `X and f(t)¯T(t)x. Then fW(λ)¯R(λ,A)x, so SpR
+

( f )Xσ(A)fiR,

which is countable. The condition (2.2) implies that the Abel limit

yB lim
α$
!

α&
¢

!

e−(α+iη) tf(t) dt

exists (and is 0 under the assumption of (3)) [11, Theorem 5.1]. Since

α&
¢

!

e−(α+iη) t(S(t) f ) (s) dt¯T(s) 0α&
¢

!

e−(α+iη) tf (t) dt1 ,
it follows that f is totally ergodic, and Mη( f ) (s)¯T(s) y¯ eiηsy, so y `X

"
.

Now (1) and (3) follow immediately from Corollary 2.4. Since 4 acts as a

bounded group on X
"
, (2) follows from Theorem 2.3 on taking

&¯C
!
(R

+
)G ²T([) z :z `X

"
´.

R. 1. An equivalent reformulation of Theorem 2.3 is the statement that

if f is bounded, uniformly continuous and totally ergodic, and if SpR
+

( f ) is countable,

then

f `C
!
(R

+
)G span ²Mη( f ) :η `R´¯C

!
(R

+
)G span ²Mη( f ) :η `SpR

+

( f )´.

Another reformulation of the conclusion is that

lim
t!¢

inf sup
s&t

)) f(s)®3
n

j="

α
j
eiηj sx

f,ηj
))¯ 0,

where the infimum is taken over all possible choices of integers n, complex numbers

α
j
and η

j
in SpR

+

( f ).

2. It is well known (see [20, p. 24]) that if h `AP (R
+
,X ), then

h ` span ²Mη(h) :η `R´. It follows directly from this that

f `C
!
(R

+
)G span ²Mη( f ) :η `SpR

+

( f )´ whenever f `AAP (R
+
,X ). (2.3)

Thus the general case of Theorem 2.3 follows from the special case when

&¯AAP (R
+
,X ) (Corollary 2.4) and the known fact (2.3). However, the proof of

(2.3) is not trivial, while our proof of Theorem 2.3 works just as easily for general &
as for &¯AAP (R

+
,X ).

3. If ²T(t) : t& 0´ is any bounded C
!
-semigroup on X for which (1) of Corollary

2.5 holds, then (2) also holds. This follows easily from (2.3) for f(t)¯T(t)x.

4. There exist bounded C
!
-semigroups on reflexive spaces whose non-zero orbits

f
x
: t*T(t)x are not asymptotically almost periodic [1, Example 2.5(a)] (see also [25,

Example 5.1.6]). Then f
x
`W(R

+
,X ) [29, Theorem 2.1], and SpR

+

( f
x
) is uncountable

(Corollary 2.5). The example in [1] shows that, given any closed uncountable subset

E of R, one can arrange that SpR
+

( f
x
)XE.
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3. Inhomogeneous Cauchy problems

Let A be a closed operator on X, let φ `BUC(R
+
,X ), and consider the abstract

inhomogeneous Cauchy problem

f «(t)¯Af(t)φ(t) (t& 0). (3.1)

By definition, a mild solution is a continuous function f :R
+
!X such that, for each

t `R
+
, ! t

!
f(s) ds `D(A) and

f(t)¯A 0 & t

!

f(s) ds1& t

!

φ(s) dsf(0).

P 3.1. Let φ `BUC(R
+
,X ), and let f be a bounded, uniformly

continuous, mild solution of (3.1). Then we ha�e the following.

(1) For s& 0,

fW
s
(λ)¯R(λ,A) (φW

s
(λ))R(λ,A) ( f (s))

whene�er Re λ" 0 and λ ` ρ(A).

(2) SpR
+

( f )XSpR
+

(φ)e²η `R : iη `σ(A)´.
(3) If φ is uniformly ergodic at a point iη in ρ(A)fiR, then f is uniformly ergodic

at iη and x
f,η

¯R(iη,A)xφ,η
.

Proof. (1) Let g(t)¯ ! t

!
f
s
(r) dr and ψ(t)¯ ! t

!
φ

s
(r) dr. Then

f
s
(t)¯A(g(t))ψ(t)f(s).

For Re λ" 0, the integrals !¢

!
e−λtg(t) dt and !¢

!
e−λtA(g(t)) dt are both absolutely

convergent. Since A is closed, λ−"fW
s
(λ)¯ gW (λ) `D(A) and

λ−"A( fW
s
(λ))¯A(gW (λ))¯ fW

s
(λ)®λ−"φW

s
(λ)®λ−"f(s).

Hence

(λ®A) fW
s
(λ)¯φW

s
(λ)f(s),

and (1) follows.

(2) Suppose that iη ` ρ(A) and η aSpR
+

(φ). Then φW has a holomorphic extension

g near iη, and (by (1), with s¯ 0) fW has a holomorphic extension given by

R(λ,A) g(λ)R(λ,A) f(0).

(3) By (1),

αfW
s
(αiη)¯R(αiη,A) (αφW

s
(αiη))αR(αiη,A) ( f(s))!R(iη,A)Mη(φ) (s)

as α $ 0, uniformly for s& 0.

T 3.2. Suppose that σ(A)fiR is countable, φ `BUC(R
+
,X ), and f is a

bounded, uniformly continuous, mild solution of (3.1) which is totally ergodic on

σ(A)fiR. Let & be a closed, translation-biin�ariant subspace of BUC(R
+
,X ),

satisfying the following conditions :

(1) for all iη in σ(A)fiR, & contains Mη( f ) ;

(2) for all λ in ρ(A), & contains the function R(λ,A)aφ :s*R(λ,A) (φ(s)).

Then f `&.
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Proof. By Proposition 3.1 (1),

(R(λ,B) f ) (s)¯&
¢

!

e−λtf(st) dt¯ fW
s
(λ)¯R(λ,A) (φW

s
(λ))R(λ,A) ( f(s))

whenever Re λ" 0 and λ ` ρ(A). But

R(λ,A) (φW
s
(λ))¯ 0 &

¢

!

e−λtS(t) (R(λ,A)aφ) dt1 (s).

Thus s*R(λ,A) (φW
s
(λ)) belongs to &, by (2) and the translation-invariance of &, so

R(λ,B&)π& f¯π& R(λ,B) f¯π&(R(λ,A)a f )

whenever Re λ" 0 and λ ` ρ(A). This shows that the map λ*R(λ,B&)π& f has a

holomorphic extension to a map g :ρ(A)!Y&, given by g (λ)¯π&(R(λ,A)a f ). By

Lemma 2.2,

σ(B
f,&

)Xσ(A)fiR,

where B
f,&

is the generator of the restriction of 3& to the closed linear span of

²S&(t)π& f : t `R´ in Y&. In particular, σ(B
f,&

) is countable, and & contains Mη( f )

whenever iη `σ(B
f,&

). The proof is now completed exactly as in Theorem 2.3.

C 3.3. Suppose that σ(A)fiR is countable, and φ `AAP (R
+
,X )

(respecti�ely, φ `W(R
+
,X )). Let f be a bounded, uniformly continuous, mild solution

of (3.1), which is totally ergodic on σ(A)fiR. Then f `AAP (R
+
,X ) (respecti�ely,

f `W(R
+
,X )). If the means x

f,η
(iη `σ(A)fiR) and xφ,η

(iη ` ρ(A)fiR) are all zero, then

f `C
!
(R

+
,X ) (respecti�ely, f `W

!
(R

+
,X )).

Proof. The first statement is immediate from Theorem 3.2 with

&¯AAP (R
+
,X ) or &¯W(R

+
,X ), respectively. The second statement follows

from Proposition 3.1 and the fact that the almost periodic part of a function in

W(R
+
,X ) is uniquely determined by its means.

The analogue of Corollary 3.3 for solutions of inhomogeneous Cauchy problems

on R was proved in [27, Theorem 4.3], under the additional assumption that A

generates a C
!
-semigroup, and in [12] for solutions of homogeneous problems

without that additional assumption. Some results in the direction of Corollary 3.3

were also given in [5, Section 3].

There are numerous examples in the literature of closed operators A where

σ(A)fiR is countable. They include all operators with compact resolvent, many

elliptic differential operators and Schro$ dinger operators (see [7, Section 6]), examples

frommathematical biology (see [24, SectionC-IV, Example 2.15], [31], [32, Proposition

6.2]), and various examples constructed to exhibit the sharpness of Corollary 2.5

and its variants (see [10, Section 3], [6, Section 4]). Moreover, [1, Example 2.5(a)]

shows that the countability assumption cannot be improved, even in the case of

homogeneous Cauchy problems. There are also various examples [28, Examples 4.1,

4.7, 4.10, 4.14] showing that the conclusions of Corollary 3.3 are sharp even when

A¯ 0.

On the other hand, in practical examples, it may not be easy to verify that a mild

solution f of (3.1) satisfies the assumptions of being bounded and uniformly
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continuous (and totally ergodic on σ(A)fiR). While our present results have

theoretical interest and may have theoretical applications, they will become more

applicable when combined with results showing that classes of solutions of

inhomogeneous Cauchy problems are automatically bounded and uniformly

continuous (and totally ergodic). Some results of this nature appear in [5, Sections 5

and 6 ], and research in this area is continuing.

There are two special cases when Theorem 3.2 and Corollary 3.3 simplify. One is

when A¯ 0. Then a mild solution of the inhomogeneous Cauchy problem is simply

the indefinite integral, and Corollary 3.3 becomes the result that if φ `AAP (R
+
,X )

(respectively, φ `W(R
+
,X )), f(t)¯ ! t

!
φ(s) ds and f is bounded and uniformly ergodic

at 0, then f `AAP (R
+
,X ) (respectively, f `W(R

+
,X )). This case is relatively elementary,

and has already been proved in [4, Theorem 3.1.1], [27, Theorem 2.1]. (The case of

almost periodic functions on R was proved in [19].)

The second case is when σ(A)fiR is empty (see [27, Corollary 4.5]). Then the

condition of total ergodicity in Corollary 3.3 becomes vacuous. Moreover, the almost

periodic part of f is determined by its means, which are given in terms of the means

of φ by Proposition 3.1 (3).

We conclude this section by recording the fact (which is part of the folklore of

the subject) that when the inhomogeneity φ and solution f are both (weakly)

asymptotically almost periodic (for example, the situation of Corollary 3.3), their

decompositions into an almost periodic part and a singular part produce solutions of

corresponding Cauchy problems.

P 3.4. Let f `W(R
+
,X ), φ `W(R

+
,X ), and suppose that f is a mild

solution of (3.1). Let f¯ f
!
f

"
and φ¯φ

!
φ

"
, where f

!
`W

!
(R

+
,X ), f

"
`AP (R

+
,X ),

φ
!
`W

!
(R

+
,X ) and φ

"
`AP (R

+
,X ). Then f

!
and f

"
are mild solutions of

f !
!
(t)¯Af

!
(t)φ

!
(t) (t& 0),

f !
"
(t)¯Af

"
(t)φ

"
(t) (t& 0),

respecti�ely.

Proof. There is a net τ
i
!¢ such that sS(τ

i
) f

"
®f

"
s! 0, S(τ

i
) f

!
! 0 weakly in

BUC (R
+
,X ), sS(τ

i
)φ

"
®φ

"
s! 0 and S(τ

i
)φ

!
! 0 weakly in BUC (R

+
,X ). For each

t& 0, f(tτ
i
)¯ (S(τ

i
) f ) (t)! f

"
(t) weakly in X,

& t

!

f(sτ
i
) ds¯& t

!

(S(τ
i
) f ) (s) ds!& t

!

f
"
(s) ds

weakly in X, and similarly for φ. Since f is a mild solution,

f(tτ
i
)¯A 0 & t

!

f(sτ
i
) ds1& t

!

φ(sτ
i
) dsf(τ

i
).

Since A is (weakly) closed, it follows on taking the limit that

f
"
(t)¯A 0 & t

!

f
"
(s) ds1& t

!

φ
"
(s) dsf

"
(0),

so f
"

is a mild solution with inhomogeneity φ
"
. By linearity, f

!
¯ f®f

"
is a mild

solution with inhomogeneity φ
!
.
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4. Volterra equations

Consider an inhomogeneous abstract linear Volterra equation:

u(t)¯ψ(t)& t

!

a(t®s)Au(s) ds (t& 0). (4.1)

Here, a `L"
loc

(R
+
), and ψ :R

+
!X is continuous. A mild solution of (4.1) is a

continuous function u :R
+
!X such that, for each t& 0,

(a n u) (t)B& t

!

a(t®s) u(s) ds `D(A),

and
u(t)¯ψ(t)A((a n u) (t)).

Assuming that the Laplace transforms all exist, we obtain

uW (λ)¯ψW (λ)aW (λ)A(uW (λ)),

so
(I®aW (λ)A) uW (λ)¯ψW (λ). (4.2)

Thus knowledge of the singularities of ψW and aW , and the spectrum of A, can provide

enough information to ensure that SpR
+

(u) is countable, and therefore to apply

Corollary 2.4 to the solutions.

T 4.1. Let u be a bounded, uniformly continuous, mild solution of (4.1),

where !¢

!
e−ωt(ra(t)rsψ(t)s) dt!¢ for some ω" 0. Suppose that there is an open set

U in C and holomorphic functions g :U!C and h :U!X such that :

(1) iRcU is countable ;

(2) each connected component of ²λ `U :Re λ" 0´ intersects ²λ :Re λ"ω´ ;
(3) for λ in U with Re λ"ω, g(λ)¯ aW (λ) and h(λ)¯ψW (λ) ;

(4) for λ in U, g(λ)1 0 and g(λ)−" ` ρ(A) ;

(5) u is totally ergodic on iRcU.

Then u is asymptotically almost periodic. If the means x
u,η

are zero except for finitely

many η, then su(t)®3η eiηtx
u,η

s! 0 as t!¢.

Proof. From (4.2) and the assumptions (3) and (4),

uW (λ)¯ (I®g(λ)A)−" h(λ) (4.3)

whenever λ `U with Re λ"ω. The assumption (2) and analytic continuation imply

that (4.3) is valid whenever λ `U with Re λ" 0. Hence uW has a holomorphic extension

near each point of UfiR. The assumption (1) implies that SpR
+

(u) is countable, and

(5) implies that u is totally ergodic, so the result now follows from Corollary 2.4.

In [3, Theorem 5.1], the homogeneous case, ψ(t)3x, was considered. Then

ψW (λ)¯ λ−"x for Re λ" 0. It was assumed that the equation is well-posed, so that there

is a strongly continuous family ²S(t) : t& 0´ of bounded linear operators on X, such

that S(t) commutes with A and u(t,x)¯S(t)x is a mild solution of the homogeneous

equation with initial value x in X. It was further assumed that sup
t
sS(t)s!¢. This

implies that aW has a meromorphic extension to the open right half-plane, and that

aW (λ)1 0 and aW (λ)−" ` ρ(A) whenever Re λ" 0 [26, p. 43]. It was also assumed that

²S(t)´ is strongly Abel ergodic, with limit Q. It is straightforward to verify that the

other assumptions of [3] are sufficient to ensure that all solutions are bounded,
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uniformly continuous and totally ergodic, with M
!
(u)3Qx and Mη(u)¯ 0 for non-

zero η. Thus the result of [3, Theorem 5.1] that sS(t)x®Qxs! 0 as t!¢ can be

obtained from Theorem 4.1, if we assume that uW has a holomorphic extension to a

neighbourhood of each point of i(RcE ), for some closed countable set E.

In [3], it was not assumed that uW has a holomorphic extension, but only that it has

a continuous extension to C
+
ei(RcE ). To recover Theorem 5.1 of [3] in full from a

Tauberian theorem, we would therefore need to prove a version of Theorem 2.3 in

which the spectrum of f is taken to be the set of points ξ such that fW does not have

a continuous extension from the right half-plane to an open interval in iR containing

iξ. This could be achieved by establishing versions of Lemmas 2.1 and 2.2 for

continuous (as opposed to holomorphic) extensions. We do this in the next section for

the former result, but we have been unable to adjust the latter result in this way.

The most appropriate inhomogeneous equations are those when ψ¯ a nφ for

some function φ. Then

uW
s
(λ)¯ λ−"u(s)aW (λ)AuW

s
(λ)aW (λ)φW

s
(λ)A((b(λ) n u) (s))(b(λ) nφ) (s),

where u
s
¯S(s) u, φ

s
¯S(s)φ, a

t
¯S(t) a and b(λ) (t)¯ aW

t
(λ)®a(t)}λ. To proceed

with the argument of Theorem 3.2, one would like to show that there is a

holomorphic function G, defined near most points of the imaginary axis, with values

in BUC (R
+
,X ), such that

G(λ) (s)¯A(I®aW (λ)A)−" ((b(λ) n u) (s))(I®aW (λ)A)−" ((b(λ) nφ)(s))

for Re λ" 0. Except in the special cases when a(t)¯ 1 (first-order Cauchy problems,

discussed in Section 3) and when a(t)¯ t (second-order Cauchy problems, discussed

in [2]), there do not seem to be natural conditions which ensure this.

5. Continuous extensions of the resol�ent of isometric semigroups

In this section, we improve Lemma 2.2 (and [8, Theorem 2.2], the analogue for

semigroups of isometries) by showing that the assumption of a holomorphic

extension of R(λ,A)x, defined on C
+
B ²λ `C :Re λ" 0´, to a neighbourhood of iξ in

C can be weakened to the assumption of a continuous extension to an open subset

of iR containing iξ.

L 5.1. Let A be the generator of a C
!
-group ²U(t) : t `R´ of isometries on a

Banach space Z, let x `Z, and suppose that

lim
λ!

!
Re λ"

!

R(λ,A)xB y

exists. Then

lim
λ!

!
Re λ!

!

R(λ,A)x¯ y.

Proof. Let ε" 0. There exists δ" 0 such that sR(αiβ,A)x®ys! ε whenever

0!α! δ, rβr! δ. Now we consider R(®αiβ)x for such α and β, by applying the

resolvent identity on three sides of a triangle. Let

γ¯
1

2
3

4

β®α if β& 0,

βα if β! 0.
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By the resolvent identity,

sαR(αiγ,A)R(αiβ,A)xs¯ sR(αiγ,A)x®R(αiβ,A)xs! 2ε. (5.1)

Since sαR(®αiβ,A)s% 1, it follows that

sα#R(®αiβ,A)R(αiγ,A)R(αiβ,A)xs! 2ε.

By the resolvent identity,

sαR(®αiβ,A)R(αiβ,A)x®αR(αiγ,A)R(αiβ,A)xs

¯ sα(2α³iα)R(®αiβ,A)R(αiγ,A)R(αiβ,A)xs! 2o5ε.

By (5.1),

sαR(®αiβ,A)R(αiβ,A)xs! 2(1o5) ε.

Using the resolvent identity again,

sR(®αiβ,A)x®ys% sR(αiβ,A)x®yssR(®αiβ,A)x®R(αiβ,A)xs

! εs2αR(®αiβ,A)R(αiβ,A)xs

! (54o5) ε.

P 5.2. Let A be the generator of a C
!
-group 5 of isometries on Z, let

x `Z, and let W be an open subset of R. Suppose that there is a continuous map

g :C
+
eiW!Z such that g(λ)¯R(λ,A)x whene�er Re λ" 0. Then g has an extension

to a holomorphic map h :Cci(RcW )!Z. Hence iWX ρ(A
x
), where A

x
is the generator

of the restriction of 5 to the closed linear span of ²U(t)x : t `R´ in Z.

Proof. Define

h(λ)¯
1

2
3

4

R(λ,A)x (λ `CciR),

g(λ) (λ ` iW ).

By the assumption and by Lemma 5.1 applied with A replaced by A®iη for η in W,

h is continuous. Moreover, h is holomorphic in CciR. By a standard application of

Morera’s Theorem, it follows that h is holomorphic throughout its domain. The final

statement follows from Lemma 2.2.

C 5.3. Let A be the generator of a C
!
-semigroup 4 of isometries on Z,

let x `Z, and let W be an open subset of R. Suppose that there is a continuous map

g :C
+
eiW!Z such that g(λ)¯R(λ,A)x whene�er Re λ" 0. Then iWX ρ(A

x
), where

A
x

is the generator of the restriction of 4 to the closed linear span of ²T(t)x : t& 0´
in Z.

Proof. There is an extension of 4 to a C
!
-group 5 of isometries, with generator

B, on a Banach space Y containing Z [13]. Then g(λ)¯R(λ,A)x¯R(λ,B)x

whenever Re λ" 0. By Proposition 5.2, iWX ρ(B
x
), where B

x
is the generator of the

restriction of 5 to the closed linear span of ²U(t)x : t `R´. However, σ(A
x
)fiR

consists of approximate eigenvalues of A
x

and hence of B
x
. Hence iWX ρ(A

x
).

R. In the context of the proof of Corollary 5.3, suppose that W is

non-empty. It follows from the result of Corollary 5.3 and [25, p. 152] that

U(t)x ` span ²T(s)x :s& 0´, so A
x
¯B

x
.
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N   . After work on this paper was completed, Ralph Chill (‘Tauberian theorems
for vector-valued Fourier and Laplace transforms’, preprint) succeeded in improving the Tauberian the-
orem (Theorem 2.3) in the way discussed in the fourth paragraph of the introduction.
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