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Abstract. Let © C RY be open. It is shown that the Dirichlet Laplacian
generates a (holomorphic) Cop-semigroup on Co(£2) if and only if Q is regular
in the sense of Wiener. The same result remains true for elliptic operators in
divergence form.

0. Introduction

Let © be an open subset of RI_V . By Cyp(2) we denote the space of all continuous
scalar valued functions f on € which are 0 on the boundary 9 of £ and 0 at
infinity; i.e., Co(Q) = {f : Q@ — C continuous: lim f(z) = 0 for all z € 9Q and

|llim f(z) =0}. Then Cy(Q2) is a Banach space for the supremum norm
TEQ

[flloo = sup [f(2)],
€N

and a Banach lattice for pointwise ordering. We consider the Laplacian Ag on
Co(9) with maximal distributional domain; i.e.,

D(Ao) = {f € Co(ﬂ) : Af € Co(Q)} Aof =Af.

It is a closed, dissipative operator. Our aim is to characterize those open sets 2
for which Ay is the generator of a Cop-semigroup on Cp(€2).

We say that  is regular (in the sense of Wiener) if at each point z € 9 there
exists a barrier (see Definition 3.1). If Q is bounded then, by classical potential
theory (see e.g. [DL], [GT]), € is regular if and only if the Dirichlet problem

ueC(Q), u,, =
D((‘D){ Au=0 in | D(Q;[j

has a solution for all ¢ € C(89). The purpose of this paper is to establish the
following result:
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Theorem 0.1. Let Q C RY be open. The following assertions are equivalent:
(i) Q 1is regular;
(i) the resolvent set of Ay is non-empty;
(iil) Ag generates a holomorphic Co-semigroup on Co(Q).

The proof of Theorem 0.1 is based on classical potential theory and the meth-
ods are well known. Still it seems that the result is nowhere given explicitely in the
literature. On the other hand, it is certainly of importance. For example, treating
the semilinear heat equation and associated dynamical systems, the realization of
the Laplacian on the space Cy(€2) is precisely what is needed, (cf. Cazanave-Haraux
[CH], where, even though merely the case of Lipschitz boundary is treated, only
vague references and indications for the proof are given; see [CH], Lemma 2.6.5
and Remark 2.6, in particular). In this paper we give complete proofs and also
describe in detail properties of the Laplacian we use.

The paper is organized as follows. Section 1 contains prerequisites concern-
ing the heat semigroups on LP(f2). Then Theorem 0.1 is proved for bounded 2 in
Section 3 by establishing the equivalence of (%) and (i1i) to well-posedness of the
Dirichlet problem. In Section 4 we prove the result for arbitrary open sets estab-
lishing equivalence to regularity in the sense that there is a barrier at each point.
These two sections are completely elementary and self-contained. In Section 4 we
prove the corresponding result for elliptic operators. Here we use the fundamental
result of De Giorgi and Nash on (Hélder-) continuity of weak solutions and further
regularity results by Stampacchia. We also show several spectral and regularity re-
sults for the elliptic operators on Cp(2). In particular, we prove holomorphy of the
semigroup on Cp(2) using that the adjoint semigroup is holomorphic on L () (see
[AB], [AE], [Ou2]). For previous results exploiting this duality see Amann [Am]
and Amann and Escher [AmE].

1. The Dirichlet Laplacian on LP(2)

In this section we put together some known results on the Laplacian with Dirichlet
boundary conditions. Let Q& C RY be an open set. By D(f2) we denote the space
of all test functions and by D(Q2)’ the space of all distributions. The first Sobolev
space is denoted by

HY(Q):={uec L*): Djucl*Q), j=1...N}

where D; = 52-. Moreover, we let
2

m©@ =@ .

Recall that for real-valued u € H*(Q2) one has u*,u™, (u —1)* € H*(Q2) and
Djut = 1>qDju, Dj(u—1)* =151Dju. (1.1)

Moreover, u't, (u—1)* € H}(Q) ifu € HE (). Note also that the mappings u +— u*

and u — (u — 1)* at continuous from H'(Q) into H!(f2). See [GT], Chapter 7,
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for these simple facts. By A$ we denote the Laplacian with Dirichlet boundary
conditions on L?((2), also called the Dirichlet Laplacian for short; i.e.

D(AY) = {u e HY Q) : Au € L2(Q)}, Afu= Au.

This is the operator associated with the form
a(u,v) = / VuVu
Q
on H}(Q);ie., for u € HY(Q), wve L?(Q2) we have
u € D(AY),Afu=v & —/ww: /w Ve H Q).

The operator A§ is self-adjoint and generates a positive contraction Co-semigroup
(et25)150 on L2(£2). Moreover, 0 € o(A$) (the resolvent set of AQ) if Q is bounded.
If Q =RY we write Ay = AR, Then (e42),5 is the Gaussian semigroup which
we denote by Go; i.e.,

(G2 () f)(z) = (4nmt)~N/2 /RN Fly)e= @97/t gy

for all f € L2(RY).

We denote by g(A) the resolvent set of an operator A, and by R(\, A) =
(A — A)~! its resolvent (A € o(A)). The following domination property is well
known (cf. [Da], Theorem 2.1.6).

For convenience of the reader we give a simple direct proof.
Proposition 1.1. Let 1,8y be open subsets of RY such that Q, C Q. Then
0 < €tAglf S etA;Z2f ,
0 < R(\ASM)f < R(A,AF2)f
for f € L2(Q)4, A >0, t>0.
Here we identify L2(Q;) with a subspace of L?(s) extending functions
by 0. We let L2(Q). = {f € L*(Q) : f(z) > 0 ae}, H'(Q)y = L*(Q): N
HY (), H}(Q) = HY(Q)NL2Q)y, D)+ ={peD(Q): p(z) >0 forall z¢€
Q}. For wi,wy € D(Q)' we define
wy S ws & (wy,p) < (wa,p) foral ¢eD(Q).
Note that D(2), is dense in H}(Q),. Moreover, we recall: If u € H(Q) has

compact support, then u € H}(Q2) (see [B], IX.5 p. 171).
The proof of Proposition 1.1 is based on the following.

Lemma 1.2. Let @ C RN be open, A\ > 0. Let u € H}(Q), v € HY(Q) such that
v >0 and
Au—Au<Adv—Av in D).
Then u(z) < v(x) a.e.. Taking in particular v =0, we obtain for u € HL(Q)
—Au<0 =u <0. (1.2)
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Proof. By hypothesis we have
/\/(u —v)p+ / V(u—v)Vp <0 (1.3)

for all ¢ € D(Q). It follows by density that (1.3) remains true for all ¢ € HE(Q)4.
Note that (v —v)* € H}(Q). In fact, let u, € D(Q), u, — u in H*(Q). Then
(unp —v)T € HY(Q) has compact support and thus (u, — v)* € H(Q). Since
(up — )" — (u—2)t (n — o) in H(Q), the claim follows. Now (1.3) for
¢ = (u—v)Tt yields

A [(@=02+ [19a-v"7 <0,

Hence (u —v)™ = 0. (

Proof of Proposition 1.1. a) Let A > 0, f € L?>(Q)4, u = R(A,Aéh)f, v =
R(\, AS2)f. We show that 0 < u < v. In fact, u € HE(Q1), \u— Au = f in
D(Q1), v € HY(Q2), \v— Av = f in D(Qy)'. It follows from (1.2) that v(z) >0
and u(z) > 0 a.e.. Since Au — Au = \v — Av in D(y)’, it follows from Lemma 1.2
that ©u < v a.e..

b) Let 0 < f € L?(£;). Then it follows from a) that (I—tAS)~1f < (I—tAF2)~1f
for all ¢ > 0. Hence etA?lf = nler;o(I—fL-Agl)_”f < nlgr;o( —%A;b)_"f = etAng,

a

It follows from Proposition 1.1 that
0< <GS (120), (1.4)
0<R(\AD)f <R\ Ag)f (A>0) (1.5)

for all f € L2(Q);.

Since the Gaussian semigroup is a contractive Cp-semigroup on LP(RY), it
follows that there exist positive contraction Cp-semigroups (etAz? )t>0 on LP(Q)
such that

etAgf — etAgf (t Z O)
forall 1 <p, g < oo, f € LP()N LIQ). Moreover,
0 < R(\AY)f < RO\, Ap)f (1.6)

for all f € LP(Q)4, A >0, p € [1,00). Finally, defining A%, as the adjoint of AL,
we have consistency in the sense that

ROADF=RONAD) S (f € LP(Q) N L))
for A > 0, 1 < p,q < oo. Moreover, for each p € [1,00], one has AJf = Af

in D(Q2)". It has been proved by Ouhabaz [Oul] that Gaussian estimates (and in
particular (1.4)) imply that the semigroup generated by A; is holomorphic of angle
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5 (see also [AE]). Denoting by A the adjoint of A; we obtain in particular that
0(As) C (—00,0] and a bound

RO, Awo)l| < My (L)

for all A € £(0) = {re*®, r > 0, |a| < 6} whenever 6 € [0, 7). This estimate will
be used later.

Next we establish some spectral properties. Let E, F' be Banach spaces such
that F' — FE (i.e. F is continuously injected into E). Let A be an operator on E.
The part B of A in F' is defined by

DB)={zeD(A)NF:Az€F} Bz=Azx.
This notation is motivated by the following observation. Let A € o(A). Then
A€p(B) & RNAFCEF, (1.8)

and in this case, R(A, B) = R(\, A)|r. A proof of the following easy result can be
found in [ANS].

Proposition 1.3. Assume that o(A) # 0. If there exists k € N such that D(AF) C
F, then o(A) = o(B).

Now by (1.6) we have
0 < R(1L,ANF < R(1,A,)" 9)

(1
for 1 < p < oo, k € N. Since D(A§) = H*(RY) c L>*°(RY) for £ > & we
conclude that

N
D((A)") cL®(Q) for k>, 2<p<oo. (1.10)
If Q has bounded Lebesgue measure, it follows from Proposition 1.3 that o(A$) =
a(AL) for p € [2,00]. By duality and selfadjointness we conclude
Proposition 1.4. Let Q C RN be open and of finite measure. Then
U(A?) = a(Aé’) (1<p< ). (1.11)
Moreover, R(\,A) = R(A\, A)|a for all A € 0(AT)), co >p>g>1.

If Q is arbitrary, then more elaborate arguments are needed, but (1.11) still
remains true (see [Ar]). We also note that

R(1,A,)LP(RY) ¢ L*°(RY)
for p > % Hence
Q e
D(A)) C L*™(Q) (1.12)
for % < p < 0o. Finally we recall the following result by de Pagter [dP].

Proposition 1.5. Let A be the generator of a Cy-semigroup on a Banach space E.
Assume that R(\, A)* is compact for some k € N, X € o(A). Then A has compact
resolvent.
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2. Bounded domains

Let ©2 C RY be a bounded, open, nonempty set and Co(Q) = {u € C(Q) : ujpq =
0}. By Af we denote the Laplacian on Cy(f2) with maximal domain; i.e.,
DAY = {u € Co(Q) : Au € Co(Q)} Aflu = Au.

Here, for u € L, (©2) we denote by Au € D(Q)’ the distributional Laplacian of u.
Note that D(AY) ¢ C%(Q) as is well known (cf. [DL], II. § 3 Remark 5). We recall
the following easy local properties of the Laplacian (see e.g., [DL], IL. § 3 Prop. 6
p- 336).
Lemma 2.1. Let u € D(2)’.

a) If Aue LY (), p> &, then u € C(Q);

b) if Au e LY (), p> N, then u € C*(Q).
In particular,

D(AF) c Q). (2.1)
Next we show that Af is the part of AY in Co(Q).

Lemma 2.2. a) Let u € Cy(2) such that Au € LP(Q) where p > N. Then u €
H ().
b) In particular, the operator A is the part of AS in Co(Q).

Proof. Let u € Cp(Q) such that Au = f € LP(Q) where p > N. We can assume
that u is real-valued. Let € > 0. Then (u — €)* has compact support. Let w C Q
be open such that @ C € and supp(u — &)t C w. Since u € CH(Q) (by (2.1)), we
have (u — )" € H(w). By hypothesis, we have

/Vthp:/fgp for all ¢ e D(Q),

hence also for all ¢ € H}(w) by density. Taking ¢ = (u — &) we obtain

/(V(u—€)+)2 = /VUV u—5+—/f u—e)t

| fllpllullg, where = + 1.

IN

Thus {(u —¢)* : 0 < ¢ < 1} is bounded in H3(Q). Since H& () is reflexive, we
find a sequence £, | 0 (n — 00) such that (u —e, )" converges weakly in HJ (),
to v € HY(Q), say. Then (u — €,)" converges weakly to v in L2(Q2) (n — oo).
Since (u —e,)" — uT in L?(Q), it follows that u™ = v € H}(Q). In the same way
one sees that u™ € HE(Q). a

We say that the Dirichlet problem is well-posed in Q if for every ¢ € C(9Q)
there exists a solution u of (D(¢y)) (see Introduction). It is known that the solution
is unique and in C°°(2). Moreover, the Dirichlet problem is well-posed whenever
D(¢p) has a solution for all ¢ in a dense subspace of C'(92).
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Theorem 2.3. Let Q) be a bounded open set in RN such the Dirichlet problem is well-
posed. Assume that Q is reqular. Then Ag generates a holomorphic Cy-semigroup
To = (To(t)i>o0 of angle 5 on Co(Q).

Moreover, Ty(t) is compact for all t >0 and o(Af}) = o(AS).

Proof. a) We show that R(0,A$)L°(Q) C Co(2). Let f € L=(Q). Let v =
En * f € C(RY), where Ey is the Newtonian potential. Then Av = f in D(Q2)'.
Let ¢ = vjpq. By hypothesis there exists w € C(Q) such that wjpg = ¢ and
Aw =0 in D(Q)'. Thus u = w —v € Cp(N) and —Au = f in D(Q)’. It follows
from Lemma 2.2 that u € H}(Q). Thus R(0,A$)f =u € Cp(Q).

b) It follows from (1.8) that 0 € o(Af}). Moreover, o(Af) = o(A$) by Proposition
1.3. By (1.8) again, we have R(\, Af) = R(A, AL )|cy(q) for all A € o(AL). Now it
follows from (1.7) that A§ generates a bounded holomorphic Cp-semigroup. Note
that D(A®) is dense in Co(Q) since D(Q2) C D(AF).

¢) We show that A has compact resolvent. By (1.10) we have R(0, Ag)*L?(Q) C
L>() where k > &' Thus by a) R(0, A2)*+1L2(Q) C Co(R2). Note that R(0,Az) €
L(L*(R2)) is compact. Thus we can write R(0,Ag)**? = R(0, Az)**! o R(0, Az) 0
where j : Co(Q) — L?(9) is the canonial embedding. It follows that R(0, Ag)*+?
is compact. Consequently, R(0,A¢) is compact by Proposition 1.5.

d) Finally, from Proposition 1.3 one sees that o(Af) = o(Af). O

Let C®(Q) be the space of all bounded continuous scalar-valued functions on
Q) with supremum norm. Denote by A, the part of Ay in C®(Q).
Since R(0, A2)C*(Q) C C®(Q) is follows from Proposition 1.3 and 1.4 that

o(Ap) = 0(A2) = 0(Ap) (2.2)
for 1 < p < oo. Moreover, R(\, Ap) = R(X, Az)|co(q) for all A € o(As).

‘We now consider necessary conditions for well-posedness of the Dirichlet prob-
lem.

Theorem 2.4. Let Q C RY be bounded and open. The following are equivalent:

(i) the Dirichlet problem is well-posed;
(i) o(AF) #0;
(i) D(AS) C Co() for allp € (%, ool;
(iv) there exist & < p < oo, A € o(AD) and f € LP(Q) such that f(z) > 0
a.e. and R(\, A f € Co(9).

Proof. (i) = (it) follows from Theorem 2.3.

(i) = (1) Since o(A$?) has non-empty interior, it follows from the hypothesis that
U = o(AF) N o(Af}) # 0. The set U is open and relatively closed in o(Af). In
fact, let A € o(Af}) such that A = lim A, € U. Then (R(An, Af}))nen is bounded

n—oo

in £(Cy(9)), thus also (R(An, Af))nen is bounded in £(Cy(£2)). This implies that
A € o(Af). Since o(AfY) = o(AY) is connected, it follows that o(Af) C o(Af).
In particular, 0 € o(Af). It follows from (1.8) that R(0, A)Co(Q) C Co(R). Let
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& < p < co. Then R(0,A) is a bounded operator from L?(Q2) into L>®(£2) (by
(1.12)). Since R(0,A)Co(2) C Co(R2) and since Co(€) is closed in L*(R), it
follows that R(0, AZ)LP(Q) C Co(R).

(i13) = (i) We show that the Dirichlet problem has a solution for all ¢ € C(92).
At first, assume that ¢ = w)sq for some w € C?(Q2). Let v = —R(0, AY)Aw. Then
v € Co(R) and Av = Aw in D(Q)'. Thus u = w—v € C(), ujgq = p and Au =0
in D(Q)’; i.e. u is a solution of D(y). Since the set {wjaq : w € C*()} is dense in
C(09), it follows that D(y) has a (unique) solution for all ¢ € C(99).

(74) = (iv) is obvious.

(iv) = (it) We can assume that N/2 < p < oo (since L>(Q2) C LP(Q2)). Note
that by (1.12) and Lemma 2.1, R()\,Ag) is a bounded operator from L?(2) into
CP(Q). Let F ={g € LP(Q) : 3¢ >0, |g| < cf}. Then the hypothesis implies that
R(A, AF C Co(Q). Since F is dense in LP(1), it follows that R(X, AZ)LP(Q) C
Co(). In particular, R(A, A$)Co(Q2) C Co(f2). Now it follows from (1.8) that
X € o(Ap). Since Ay is the part of A, in Co(£2). O

Corollary 2.5. Let Q be a bounded, open, non-empty, connected subset of RN . Then
Q is regular if and only if the eigenfunction u; associated with the first eigenvalue
of A is in Co(Q).

We conclude this section by a remark concerning the realization of Dirichlet
boundary conditions in L?(§2). There is another choice, namely to replace H}(£2)
by

il 2 ~ 1N ~ u(z) =€

Hy(Q):={ueL*(Q), uec H(R")} where u(z)=
0 z ¢ Q.
The operator associated with the form

a(u,v):/Vqu
Q

on H} (€) is called the pseudo-Dirichlet Laplacian in [AB] and is denoted by Aq.
Thus D(Aq) = {u € H}(R) : v € L*(Q) such that [VuVe = [vp Ve €
Q

HL(Q)} and Aqu = v. Equivalently, D(Ag) = {u € HA(Q) : Au € L?(Q)},
Aqu = Au. For example, if N = 1, Q = (0,1) U (1,2), then Ag # AL, but if
has Lipschitz boundary then Aq = AS.

Now assume that the semigroup (etAﬂ)tZO generated by Ag on L?(Q) leaves
invariant Co(Q). Hence R(1, Aq)Co(Q) C Co(R). But then Lemma 2.2 implies that
R(1,Aq)Co(Q) € HE(Q). Thus R(1,Aq)f = R(1,AR)f for f € Co(R). It follows
that Ag = Af; ie. HY(Q) = H (). Concluding we have the following result.

Proposition 2.6. Let Q c RN be a bounded open set. Assume that
e22Ch(Q) C Co(Q) (£ >0).
Then Q is regular and Aq = AS.
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3. Unbounded open sets

Whereas in the preceding paragraph, for bounded open sets, we established an
equivalence with well-posedness of the Dirichlet problem, in this section it will be
more convenient to consider barriers. Let @ C RY be open.

Definition 3.1. a) Let z € 9. A barrier is a function w € C(2N B) such that
Aw<0 in DQNB) and w(z)=0, w(x)>0 for ze(QNB)\{z}

where B = B(z,r) is a ball centered at z. We call w an H'—barrier if in addition
w € HY(QN B).
b) We say that Q) is regular, if at each boundary point z € OX2 there exists a barrier.

It is well known that a bounded open set Q is regular if and only if the
Dirichlet problem is well-posed (see [GT], § 2.8 or [DL], II). For unbounded 2 the
situation is more complicated since the behaviour at infinity has to be taken into
account (see [DL], II § 4). Still, the existence of a barrier at each boundary point is
the right regularity property in order that Ag be a generator. This is the assertion
of Theorem 0.1 which will be proved below. We first show that A§ is dispersive.
This is not new (cf. [LP1], [LP2]). In the bounded case, it follows immediately
from our arguments since A{ is the part of AL in Co(R2). We include a proof
in the unbounded case for convenience of the reader. Recall that an operator A
defined on the real space Cy(f2) is called dispersive if for every u € D(A) such
that u™ # 0 there exists zo € Q such that

uT(z0) = [u|lo and (Au)(zo) <O0. (3.1)

Dispersiveness on Cp(f2) implies dissipativity (as is easy to see). In particular,
(A — A) is injective for A > 0 whenever A is dispersive. This will be used in Theo-
rem 3.7 below. More generally, a densely defined operator A generates a positive
contractive Cp-semigroup if and only if A is dispersive and I — A is surjective (see
[N], C-IL.Theorem 1.2).

Proposition 3.2. The operator Aq is closed and dispersive.

Proof. Tt is obvious that Ag is closed. Let u € D(Ag), such that ut # 0.
Let (0n)nen C C°(RY) be an approximate unit; i.e. o, > 0, [on(z)dz =
1, supp on C B(0,1). Let up = gp *u. Then u, € Co(RY) and lim u, = u in
n—0o0
Co(Q). Let ng € N such that for all n > g, [|un —ulleo < 2, 6§ = ||u™||co. The set
K ={z €Q:u(z) > £} is compact. Let z, € Q such that u,(z,) = max Un (Y)-
IS
Then up(z,) > %6 and so u(z,) > % for n > ng. Hence z,, € K (n > ng). Since
'K is compact, we can assume that zo = lim z, exists. Then u(zo) = [|uT||co-

n—0o0
Since u, € C*(Q) we have (o, * Au)(z,) = Auy(z,) < 0. Since gy, * Au converges
to u uniformly, it follows that (Aw)(zo) < 0. O
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Remark 3.3. More generally the following maximum principle holds, which clearly
implies dispersweness: If u € C(2) has a local mazimum at x € Q and Au € C(R),
then (Au)(z) < 0.

We deduce from Proposition 3.2 that the operator A} is the only possible
realization of the Laplacian in Cy(Q2) which might generate a semigroup.

Corollary 3.4. Let A C AY} be the generator of a Cy-semigroup on Co(S2). Then
A=Af.

Proof. There exists A > 0 such that (A — A) is surjective. Let u € D(A§}). There
exists v € D(A) such that (A — A)v = (A — Af)u. Since Av = A§v it follows that
u=v € D(A). O

For the proof of Theorem 0.1 in the unbounded case we need some further
preparation.

Lemma 3.5. Let Qy,Qy be regular, open subsets of RY. Then 1 N Qy is regular.

Proof. Let Q = Q1 N Q. Then 8Q C 901 U 0Ns. Let z € 9Q. Suppose that
z € 0. Then there exists a barrier w € C(§1 N B) where B = B(z,r). Then
wigAp is clearly a barrier on 2N B at z. g

We deduce from Lemma 3.5 the following

Lemma 3.6. Let Q be a regular open subset of RY. Then for each z € 0 there
exists an H'-barrier at z.

Proof. Tt follows from Lemma 3.5 that Q N B is regular, where B = B(z,7), z €
99, r > 0. Thus the Dirichlet problem is well-posed on QN B. Let p(z) = |z — z|%.
Then there exists v € C(Q2N B) such that v(z) = ¢(z) for all z € (2N B) and
Av = 0in D(2 N B)'. Tt follows from the maximum principle that v(z) > 0 for
all z € BN Q. We show that v € H*(Q2 N B). Note that ¢ € C?(QN B) and
Ag = const. Let u = v — ¢. Then u € Co(2 N B) and Au = —Agp in D(QN B)".
It follows from Lemma 2.2 that u € H3 (2N B). Thusv =u+ ¢ € H*(QN B). O

We recall the following simple fact which is easy to proof (cf. [B], IX).
Lemma 3.7. Let u € HF(Q) N L>®(2). Then there exist u, € D(Q) such that
lunlloo < |Julloe  (n € N) and Jim up = in HY(Q).

Moreover, we recall that for a bounded open set Q; C RN one has

Co(Q) N HY () € HY(Q4) (3.2)
(see [B], Remark 20, p. 172 or [Da], Theorem 1.5.7).

Theorem 3.8. Let Q@ C RN be a regular, open set. Then A generates a holo-
morphic Cy-semigroup on Co(Q). Moreover, A is the part of AL in Co(Q) and
o(A) = o(AD) for 1 < p < .



Wiener Regularity and Heat Semigroups 39

Proof. a) Let f € Co(Q) N L3(Q), u= R(1,AD)f,ie. u e HY(Q), u—Au=f
in D(Q). We show that u € Co(R2). It follows from local regularity that u is
continuous and bounded.

1. Let z € 9. We show that lim u(z) = 0. Let £ > 0. Choose w € C*(RY) such

r—z

that Aw =u — f in D(Q)" and w(z) = € (one can take w = Ey * (u — f) + const).
Let v € C(BNQ) N HYQ2 N B) be an H'-barrier where B = B(z,r) is so small
that w > 0 on B. Multiplying v with a positive constant if necessary, we can
assume that v(z) > ||ullc on BN A(Q N B). Then u —v —w € HY(Q N B) and
(u—v—w)t € H}(Q N B). To see the last point, choose u, € D(Q) such that
lunlloo < |Jullo and up, — u in H*(2) (by Lemma 3.7). Then (u, — v —w)t —
(u —v—w)T in HY(Q N B). Note that (u, — v —w)™ € C(QN B) vanishes on
A(QNB) = (8(Q2NB)NIN) U (8(2NB)NIB). Thus (u, —v—w)t € HF(QN B)
by (3.2). Thus (u — v —w)* € H}(Q2N B) and the claim is proved.

Now A(u —v —w) = —Av > 0 in D(QN B)'. Since u —v —w € H(Q),
it follows that [ V(u —v —w)Ve < 0 for all ¢ € D(Q2N B)4 and hence for all
¢ € HY(QNB),. Taking ¢ = (u—v—w)*, we deduce that [ |V(u—v—w)*|? <0.
Hence (u —v —w)™ = 0; i.e.,, u < w+ v. Thus Eu(a:) < E(v(az) +w(z)) =«
Since € > 0 is arbitrary, it follows that lim u(z) < 0. Replacing u by —u we obtain

lim u(x) = 0.

T€EdN

2. Since |u| < R(1,A2)|f] (by (1.5)) and R(1,A2)Co(RY) C Co(RY), it follows
that lim |u(z)| = 0. Thus a) is proved.

|z|—o0

b) Recall that R(1,A$) and R(1,A%) are consistent. It follows from a) and by
density that R(1,AL)Co(R2) C Co(£2). We show that 1 € o(Af) and R(1,Af) =
R(LA?O)]CO(Q)~ Let f € Co(R2). Then u = R(I,A&)f € Co() and u — Au =
f in D(Q). (In fact, for ¢ € D(Q) we have (u — Au, @) = (u, p — Ap) =
(R(1,AL)f, v —Ap) = (f, R(1,A?)(p — Ap)) = (f,¢)). Thus u € D(Ao) and
u — Aou = f. Conversely, let u € D(AY) and f = u — Au. Let v = R(1,AL)f.
Then w = u—v € D(Ag) and w— Agw = 0. Since Ay is dissipative, it follows that
w = 0. We have shown that 1 € o(Af) and R(1,Af) = R(1,AL)|c,(e)- Thus A
is a generator and A§ is the part of AL in Cp(€).

c) It is clear from analyticity of the resolvent, that the set U = {\ € o(AL) :
R\, AL)Co(Q) C Co(Q)} is open and closed in o(AL). Since o(AL) is con-
nected it follows that U = o(AL); ie. o(AL) C o(Af). We have shown that
a(A) C o(A) = o(AL). In order to show the converse denote by B the adjoint
of Al on Co(R). Let A >0, f € L*(Q) N L%(Q). Then for ¢ € D(Q),

<()07 R(A)B)f> = <R()‘7A6Z)(P7 f> = (g, R()‘)Agl)f> = (p, R(A7A¥)f> Hence
R(\,B)L}(Q) C L'(Q) and R(\, B)|11(q) = R(A, A$). As before, it follows that
o(AF) = o(B) C o(AF) = o(AF). Thus o(AF) C o(AF). O
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Of course, if 2 is regular, the semigroup (etA,‘} )é>0 generated by Al is con-
sistent with (€27 ), i.e.

e f = f (feCo(@QNIP(Q), t>0,1<p<o0). (3.3)
This follows from consistency of the resolvents.

Next we show that A§ has compact resolvent whenever (2 is regular and has
finite Lebesgue measure. This follows from the following more general result.

Proposition 3.9. Let Q be a regular open subset of R with finite Lebesgue measure.
Q
Then e*®o is a compact operator on Co(Q) for all t > 0.

Proof. Let t > 0. Then e*23 is a bounded operator from L2(Q) into L*(£2). We
have seen that e!A% Cy(£2) C Co(R). Hence by density etA% L2(Q) C Co(£2). Denote
by j : Co(Q) — L%(Q) the canonical injection. Then etA% can be written as

eFA8 6 387 051 Cy(Q) — L2(Q) — LA(Q) — Co(Q).

Since €547 is a compact operator on L2(£2), the claim follows. O
In order to prove the converse of Theorem 3.1 we establish a spectral char-

acterization of A} being a generator.

Proposition 3.10. Let Q C RY be an open set. The following are equivalent:
(1) A is a generator;

(i) o(AF) #0;
(iil) RO\, AD)(L2(Q) N Co()) € Co(Q).

Proof. (i) = (ii) This is clear.

(i) = (iii) If o(AF) # 0, since o(AF) C R, there exists A € o(Af) N o(AF). Let
B be the adjoint of Afl. We show that R(\, B)L*(Q) C L(Q) and R(A, B)jz: =
R\ A9D). Let g € L'(Q) N L2(Q), u = R(\, B)g. Let ¢ € D(Q). v = R(\, Af)e.
Then v € Co(Q) and Av — Av = ¢ in D(Q)". As in the proof of Lemma 2.2
one sees that v € HE(Q). Thus v = R(\, Af)p. Consequently, (¢, R(A\,B)g) =
(RO AT)p,9) = (RO, AD)p,9) = (9, R(\AD)g) = (p, R(N, AT)g). We have
shown that R(\, A$)g = R()\, B)g for all g € L1(Q2) N L?*(Q), hence for all g €
L*(Q). As in the proof of Theorem 3.8 we deduce that o(A$) C o(B) = o(A§) and
R()\,B);le) = R(\, AP) for all A € o(A$). Let f € Co(Q2) N L2(2). Then for g €
LY Q)NL*(Q), (R, AR, 9) = (f, R\, B)g) = (f, R\, AF)g) = (R(\, AD)f, 9)-
Hence R(\, A)f = R(\, A)f. Thus (iii) is proved.

(iii) = (i) Let f € L*(Q) N Co(Q). Then by hypothesis u = R(A, AR)f € Co(R).
Thus u € D(A§) and u — Agu = f. We have shown that A — A§} has dense image.
Since A§ is closed and dissipative, it follows that A§ is a generator. O

Corollary 3.11. Let Q;,Q5 C RY be open. If Agl and Agz are generators, then
AR e, generator.
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Proof. Let 0 < f € Co(2) N L2(Q), © = Q1 N Qq. Since by Proposition 1.1
RO\AR)f < RO\ A f and RO\ AR)f < R(A, AP?)f and 0Q C Q4 U 9Qy, it
follows that R(\, A$)f € Co(Q). O

Corollary 3.12. Assume that Q C RY is open. If A is a generator, then at each
z € ON) there exists an H'-barrier. In particular, Q is reqular.

Proof. Let z € 9Q, B = B(z,r), r > 0. By Corollary 3.11, the operator A" is
a generator on Co(BNE). By Theorem 2.4 this implies that the Dirichlet problem
on BN Q is well-posed. Taking ¢(z) = |z — z|> on the boundary, the solution of
the Dirichlet problem on B N gives an H'-barrier. O

Concluding, we mention that the proofs given in Section 2 and 3 are almost
self-contained. In particular, for a bounded open set 2 in RY, we gave a complete
proof of the equivalence of the following three assertions

(a) the Dirichlet problem on 2 is well-posed;

(b) at each z € 09 there exists an H!-barrier;

(c) A§ is a generator.
For the fact that condition (b) can be replaces by the more general condition that
Q is regular we refer to classical potential theory. Concerning holomorphy of the
semigroup generated by Ag the following should be added: The case where Q is
bounded and of class C* is due to Stewart [Stu]. Lumer and Paquet [LP1] (see also
[LP2]) proved by a beautiful dissipativity argument that the semigroup (e*2°);>g
is holomorphic whenever Ag is a generator. The duality argument we give here
has the advantage to give the optimal angle. It was first used by Ouhabaz [Ou2].

4. Elliptic Operators on Cy(2)

Whereas Section 2 and 3 were self-contained, using only elementary results of po-
tential theory, the following investigation of parabolic equations on Cp(Q2) depends
on results by Stampacchia [Sta] among others who studied boundary behavior for
solutions of elliptic equations. We consider merely bounded open sets generalizing
the approach of Section 2.

Let © ¢ RY be a bounded open set. We introduce elliptic operators using
the notation of Gilbarg-Trudinger [GT|, Chapter 8. Let a;; € L*(Q) (4,5 =
1,...,N) be real functions such that

N
Y ay(@)&; = alél
4,j=1
for all ¢ € RY, z-a.e., where a > 0, and let d,b;,c; € L°°(Q) be real coefficients,
j=1,...,N. We consider the elliptic operator L, formally given by

N N N
Lu = Z Dl(z aiiju + blu) -+ Z ciDiu -+ du .
=1 j=1 =1
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Defining the form
N N
a(u,v) = /{ Z a;jDjuD;v + Z(biuDiv —¢;Djuv) — duvldz (4.1)
o ij=1 i=1

for u € HL (Q), v € D(Q), we can realize L as an operator. L : H. (Q) — D(Q)’
given by

(Lu, v) = —a(u,v) (u€ HL(Q), veDQ)). (4.2)
We observe furthermore that
Lu € (H}(R)) whenever ue€ H'(Q). (4.3)

We define the operator Ag on Cy(Q2) as the part of L in Cp(Q2); i.e.
D(Ao) = {u S Co(Q) N Hl{)c(Q) :Lu € Co(Q)} Aou = Lu.

In the following we will assume throughout that

N
Y Djbj+d<0 in D(Q). (4.4)
j=1

Then the following is the main result of this section.

Theorem 4.1. Assuming (4.4), the following are equivalent:

(i) Q is regular;

(i) o(Ao) # 0;

(iii) Ao generates a positive, contractive Co-semigroup on Co(2).
By A, we denote the realization of L in L?(2) with Dirichlet boundary
conditions; i.e.
D(Ay) ={u € H}(Q): Lu € L*(Q)} Au= Lu.

Note that — A, is associated with the form a on the form domain Hg(2); i.e., for
u,v € L%(Q) one has

u € D(Az), Asu=v & u€ Hi(Q) and a(u,p) = —/v(p for all p € Hy ().
Q

The form a is elliptic; i.e. for some § > 0, w > 0 one has
a(u,u) +w(ulu)rz > Bllullin (4.5)

for all u € H}(Q). Thus A, generates a holomorphic Co-semigroup T5 on L?().
It follows from the first Beurling-Deny criterion that 75(¢) > 0 (¢ > 0) (see
[Oul]). In virtue of (4.4), by the second Beurling-Deny criterion one has for f €
L2(Q) N L>(Q),

AR, A2)flloo < [Iflleo (A>0) (4.6)
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or equivalently,
[T2(®) flloo < Iflleo (¢ >0) (4.7)

(see [Oul]). Actually (4.6) (and (4.7)) are equivalent to (4.4) (see [ABBO]). It
follows from (4.6) that there are operators A, on LP(2), 2 < p < oo, such that
(0,00) C 0(Ap) and R(A, Ap) = R(A, A2)|,, q,- Moreover, for 2 < p < oo, by (4.7)
the restriction of T to LP is a Co-semigroup T}, on LP(2) whose generator is A,,.

Lemma 4.2. Let u € HE _(Q) N Co(Q) such that Lu € L*(Q). Then u € H} ().

loc
Proof. Let v = Lu. Then
a(u, ) = —/U(p for all ¢ e D(Q).

Let ¢ > 0. Then (u — &)t € H}(2). Let w be open such that @ C Q. Since
u € HY(w), (u—-e)t € HL(), we have

au, (u—e)) = — / ot — &)*dz < [lo]| g llullze
Q

Since Dj(u — )" = I{yse}Dju we have
a(u, (u—e)) =
a((u—e)t, (u—e)t)+ef fj biDi(u —e)tdz — e [d(u—e)tdz
>a((u-e)f, (u-ot) T
> Bll(u— )7 —wll(w—e)*|Z. .
Thus | (u—e)* % < a(y, (u—e)*)+wllull. < |[v]lrzllullze +wlul7z- As in the

proof of Lemma 2.2 we deduce from this that u™ € H} (). Similarly, u~ € H(Q).
(]

Corollary 4.3. The operator Ao is the part of Az in Co(Q). In particular, Ag is
closed and dissipative.

Proof. It follows from Lemma 4.2 that Ag is the part of Az in Cy(Q2). Since Ao
is closed, Ag is closed as well. In order to show dissipativity, let A > 0, u €
D(Ap), Au— Apu = f. Since Ay is the part of Az in Cy(R), it follows that u =
R(X, Az)f. Now by (4.6), [[Muflec < [|flloo- o

Theorem 4.4. Assume that Q is regular, and that (4.4) is satisfied. Then Ag gener-
ates a positive contractive Co-semigroup Ty on Co(Q2). Moreover, Ty (t) =Ts(t)
(t>0).

leo (o)
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Proof. 1. We extend the coefficients to RY by setting

1 if i=3j

“if(m):{ 0 if i#j
for £ € RN\ Q and b;(z) = ¢;(z) = d(z) = 0 for z € RV \ Q. Denote by L :
HL _(RN) — D(RN)’ the corresponding elliptic operator and by Aj its realization
in L2(RN). Let A > max{0,w(A3)}, where w(Ay) is the type of A;. We show that
A — A is surjective, which proves our claim in view of Corollary 4.3. Let g €
Co(R), v=R(\, A3)g. Then v € H'(RY) and v — Lv = g in D(Q)'. By the famous
result of De Giorgi and Nash [GT], Theorem 8.22, the function v is continuous on
RY. Let ¢ = v|,,. By [GT], Theorem 8.31, (in the case where § is connected, see
[Sta], Section 10 for the general case), there exists w € HL (€2) N C(Q) such that
w—Lw = 0in D(Q)" and wjsn = ¢. Now let u = v —w. Then u € Co(Q2) N H}L ()
and v — Lu = g in D(QQ)’. Thus u € D(Ap) and u — Agu = g. We have shown that
Ay generates a contractive Cp-semigroup. Since Ay is the part of A, it follows that
R(X, A2)cy 0y = B(A,Ao) (A > 0) which implies the last claim in the proposition.
We have shown that (I — Ap) is surjective. Since Ay is dissipative, it follows
that (0,00) C p(Ap) and:||AR(X, Ap)|]| <1 (X > 0). Moreover, Ay being the part

of Az in Co(R2), we have R(A, Ag) = R(A, Az2)|, o, for A > 0.

2. We show that D(Ay) is dense in Cy(Q). For that we have to show that R(\, Ag)’ €
L(Co(R2)) is injective. Let u € Cp(Q)’ such that R(A, Ao)'pn = 0. Take p, €
LY(Q) N L3() such that sup ||us|| < oo and Jim pn, = p for the topology

neN -

o(Co(Q2), Co(R)). Let v, = R(\, Ag)'tin. Let 1 < ¢ < 5. By a result of
Stampacchia [Sta], Théoréme 4.4, R(\, Ag)’ is a bounded operator from L!(2)
into WO1 "9(Q). By reflexivity, we can assume that (v, )nen converges weakly to v in
W, 4() (choosing a subsequence otherwise). Since w*wnlig)%o vn = R(\, Ao)'p =0,
we have v = 0. Since R(A, 4g) = R(\, A2) one has v, = R(X, Az)’ -

Hence for ¢ € D(Q),

leo(o)

Jodp= lim [ pnp=
n—oo
lim (I = A)'vali)zs =
n—oo
lim { [ vn + alp,v,)} =0.
n—oo
It follows that u = 0.

3. We have shown that Ao generates a contractive Cp-semigroup Ty on Co(9).
Since R(\, Ag) = R(\, A2) (A > 0), it follows that

lco(o)

. t .\ n : t . \—n
To(t)f = lim (I~ LA0)™"f = lim (I~ L45)"f = T,(0)f (f € Co(9).
O

We introduce the following notation. Let S € L(LP(2)). Then

11l czs,zry = sup{[|Sfllr : f € LTNLP, | fllg <1}
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where 1 < p, g, 7 < oo. We recall the following result on ultracontractivity (see
[V], Théoréme 2 or [C], Lemma 1).

Theorem 4.5. Let T be a Co-semigroup on L*(Q) such that

IT®) flloo < Mool fllo (f€L*NL®, 0<t<1) (4.8)
and

IT@®) e < Mgt ™2l1fllz (F € LPNLY, 0<t<1) (4.9)

where 2 < g < 0o, o« >0, My >0, My, > 0. Then there exists a constant ¢ > 0
such that

IT@®) flloo <ct™P|Iflla (0<t<1) (4.10)

where 8 = 125
q
Corollary 4.6. Assume that Q is a bounded regular open set. Then the operators
To(t) (t>0) are compact. Moreover,
O'(Ao) = U(AQ) .

Proof. Since T3 is holomorphic, one has sup |[tA2T%(t)]|2(z2) < co.
0<t<1

Since H3(Q) — L2N/N=2_it follows that

sup ||tT2(t)”‘C(L2’L2N/N-2) < 00.
0<t<1

Now it follows from Theorem 4.5 that
ITo(t)|| cere,poey < ct™ N2 (0<t<1). (4.11)

Since the injection Hg(Q) — L%(Q) is compact, it follows as in the proof of
Proposition 3.8 that Typ(¢) is compact (¢ > 0). In particular, Ag has compact
resolvent. Now it follows from [Ar], Proposition 2.6 that o(Ag) = o(As). O

Corollary 4.7. Assume that b;,c; € WH*(Q) i = 1,... ,N. If Q is a bounded,
regular, open set, then Ay generates a holomorphic Co-semigroup on Co(2).

Proof. It follows from [Oul] that there exists a Cp-semigroup 77 on L!(f2) such
that Tl(t)|L2(Q) = Ty(t) (¢t > 0). Denote the generator of T by A;. It follows

from [AE] that T} is holomorphic. By duality
INR(N, A S M (Re A > w)

for some w, M > 0. This implies that [|[AR(X, Ag)|| < M (Re A > w), so Ay
generates a holomorphic Cy-semigroup. O
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Remark 4.8. In Corollary 4.7 the hypothesis (4.4) is not needed a priori: it is
satisfied if we replace L by L — w for a suitable w.

Lemma 4.9. Let co > p > N. Then
D(Ap) C L*=(Q).

Moreover,
D(A%) c L=(Q)
for k> max{%, 1}.

Proof. By (4.11) we have

ITo() || ceze,pey < ™2 (0<t<1). (4.12)
By interpolation we deduce from this that
1T Olle(zr oy < et~ P (0<t<1) (4.13)

for some ¢, > 0, 2 < p < oo. Let p > N. Let M > 0, w > 0 such that
| Tp(t)ll 2y < Me®t. Then for A > w,

IR\ Ap) flloo < Jy € IT®) flloo dt+ J5° e XHDIT)T () flloo di

<ep fo NP dt | fllp + cp fy° e DTSl dt

< ol Jy NP dt+ [0 e D Met dt}| £,

< const. - ||f]lp-
Similarly, for A sufficiently large, since

R\, Ap)F = (k — 1)!/ e MLy (1) dt
0

one obtains by (4.13) that ||[R(\, A2)*||z(r2,10) < 00 if k > & O

In order to prove the remaining implication (i¢) = (i) of Theorem 4.1 we
consider the Dirichlet problem with respect to L — I. For this, fix Q a large ball
containing Q. Let h € C(8Q) be the trace of a function w € H*(Q) N C(Q); i.e.
h = w|,,. Then there exists a unique function v € H'(2) N C*(Q) such that

Lu—u=0 in D(Q) and u—w e Hj(Q) (4.14)

(see [Sta], Théoréme 10.1 and [GT], 8.22). We interprete (4.14) as a weak form of
U], = h. Then by the maximum principle (see [Sta], § 10 or [GT], 8.1),

lullLe @) < lIhllcon) - (4.15)
We set u = Bh. Since by the Stone-Weierstrafl theorem traces of functions w €

C(2) N H(Q) are dense in C(95), we find a unique linear extension
B:C(8Q) — HY(Q) N C*(Q)
such that
BR[| L) < hllcean) - (4.16)
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Recall that L : H*(Q) — D(2) is a continuous linear mapping. Let h € C(89),
then u = Bh is the solution of the Dirichlet problem

u € HY ()
Lu—u=0 in D) (4.17)
Ujpq = P

where the last identity has to be understood in the sense of the construction.

It turns out that € is regular (which means by our definition regular with
respect to the Laplacian) if and only if Q is regular with respect to L. More
precisely, the following remarkable result is due to Stampacchia [Sta], § 10 and
Littmann, Stampacchia, Weinberger [LSW].

Theorem 4.10. The following are equivalent:

(i) Q is regular;
(ii) lim (Bh)(z) = h(z) and all z€ 0N forall he C(09).
zEN
Recall that here L is a fixed elliptic operator satisfying (4.4).
On the basis of this result we now deduce the following.

Proposition 4.11. Assume (4.4). If o(Ag) # 0, then Q is regular.

Proof. 1. It follows from Lemma 4.8 and Proposition 1.3 that ¢(A43) = 0(Aw)-
Since by hypothesis o(A4g) # @ and since 0(Aw) C R, it follows that o(A4g) N
0(Ax) # 0. As in the proof of Theorem 4.4 we conclude that A € p(Ag). Let
p > N. Then by Lemma 4.8, R(X, A,)LP(2) C L*(Q). Since R(\, Ap)Co(Q) =
R(X, Ag)Co(2) C Cp(Q2), it follows by density that R(X, A,)LP(2) C Co(Q2).

2. Let Q be a ball containing Q. Note that Q is regular. Consider the elliptic
operator L : Hlloc(fl) — D(Q)’ one obtains by extending the coefficients as in the
proof of Theorem 4.4 and let A be its realization in Co(Q). Then 1 € o(4p) by
Theorem 4.4. Since Ay has dense domain in C’O(Q), and since each function in

C(69) has an extension to a function in Cy(€2), the space
F={heC(09):3 g€ Co(Q), h=(R(X A0)g) 0}

is dense in C(0Q). Let h € F, h = w,,, w = R(1,4g)g, g € Co(Q). Then
glo € LP(Q). Let v = R(X, Ap)(g),)- Then v € Co(2) by 1. Moreover, we have

v—Lv=g in D(Q) and
w—Lw=g in D).

Let u = (w—v),. Then u € H(Q)NC(Q) and u— Lu = 0 in D(Q)’ and uj,, = h.
Thus (i) of Theorem 4.9 is satisfied for all h € F' and hence for all h € C(992) by
density. O

The proof of Theorem 4.1 is complete now.
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Concluding Remark

For elliptic operators we restricted ourselves to bounded open sets. In order to
carry over the strategy used for the Laplacian in Section 3 further arguments
are needed. One can actually show that Lo is dissipative under condition (4.4).
However, one obtains barriers with respect to L merely in H_ which presents an
additional difficulty.
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