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Abstract. Let O C be open. It is shown that the Dirichlet Laplacian 
generates a (holomorphic) Co-semigroup on Co(O) if and only if Q is regular 
in the sense of Wiener. The same result remains true for elliptic operators in 
divergence form. 

0. Introduction 
Let O be an open subset of MN. By Co(O) we denote the space of all continuous 
scalar valued functions / on O which are 0 on the boundary <90 of O and 0 at 
infinity; i.e., Co(O) = {/ : O —> C continuous: lim f(x) = 0 for all z G <90 and 

lim f(x) = 0}. Then CQ(O) is a Banach space for the supremum norm 

and a Banach lattice for pointwise ordering. We consider the Laplacian Aq on 
CQ(O) with maximal distributional domain; i.e., 

It is a closed, dissipative operator. Our aim is to characterize those open sets O 
for which Ao is the generator of a Co-semigroup on Co(O). 

We say that ft is regular (in the sense of Wiener) if at each point z E <90 there 
exists a barrier (see Definition 3.1). If O is bounded then, by classical potential 
theory (see e.g. [DL], [GT]), O is regular if and only if the Dirichlet problem 

has a solution for all ip E C(dO). The purpose of this paper is to establish the 
following result: 

| as j —>-oo 

11/1100 = sup |/(x)| 
xEfl 

D{Ao) = { f e Co(fi) : A / e C0(fi)} A„/ = A / . 

AMS classification: 47D06, 35 K50 
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Theorem 0.1. Let c be open. The following assertions are equivalent: 
(i) Q is regular; 

(ii) the resolvent set of AQ is non-empty; 
(iii) Ao generates a holomorphic Co-semigroup on Co(£l). 

The proof of Theorem 0.1 is based on classical potential theory and the meth-
ods are well known. Still it seems that the result is nowhere given explicitely in the 
literature. On the other hand, it is certainly of importance. For example, treating 
the semilinear heat equation and associated dynamical systems, the realization of 
the Laplacian on the space Co(fl) is precisely what is needed, (cf. Cazanave-Haraux 
[CH], where, even though merely the case of Lipschitz boundary is treated, only 
vague references and indications for the proof are given; see [CH], Lemma 2.6.5 
and Remark 2.6, in particular). In this paper we give complete proofs and also 
describe in detail properties of the Laplacian we use. 

The paper is organized as follows. Section 1 contains prerequisites concern-
ing the heat semigroups on LP(Q). Then Theorem 0.1 is proved for bounded in 
Section 3 by establishing the equivalence of (ii) and (iii) to well-posedness of the 
Dirichlet problem. In Section 4 we prove the result for arbitrary open sets estab-
lishing equivalence to regularity in the sense that there is a barrier at each point. 
These two sections are completely elementary and self-contained. In Section 4 we 
prove the corresponding result for elliptic operators. Here we use the fundamental 
result of De Giorgi and Nash on (Holder-) continuity of weak solutions and further 
regularity results by Stampacchia. We also show several spectral and regularity re-
sults for the elliptic operators on Co(^). In particular, we prove holomorphy of the 
semigroup on Cb(fi) using that the adjoint semigroup is holomorphic on L 1 (0) (see 
[AB], [AE], [Ou2]). For previous results exploiting this duality see Amann [Am] 
and Amann and Escher [AmE]. 

1. The Dirichlet Laplacian on LP(Q) 
In this section we put together some known results on the Laplacian with Dirichlet 
boundary conditions. Let ft C WN be an open set. By V(Q) we denote the space 
of all test functions and by V{p)' the space of all distributions. The first Sobolev 
space is denoted by 

Hx(0) := {ueL2(n) :DjUeL2(n), j = 1... N} 

where D j = Moreover, we let 

=V(TL) H l i n ) . 

Recall that for real-valued u G i J 1 (0 ) one has u+ , (u — 1)+ E and 

DJU+ = l[U>Q]PJU, DJ{U - 1 ) + = l [ u > 1 ]DJU. ( 1 . 1 ) 

Moreover, u+, (u—1)+ G HQ(Q) if u E HQ(Q). Note also that the mappings u ^ u+ 

and u i (u 1)+ at continuous from i J 1 (0 ) into i f 1 (0 ) . See [GT], Chapter 7, 
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for these simple facts. By A 2 we denote the Laplacian with Dirichlet boundary 
conditions on L2(Q), also called the Dirichlet Laplacian for short; i.e. 

D(A%) = {u : Au G L2(Q)}, A%u = Au. 
This is the operator associated with the form 

a(u,v) = / VuVu 
Jet 

on i.e., for u G HQ(Q), V G L2(0) we have 

ueD(A$),A%u = v - J VuV(f = J v<p V<p eiT^fi). 

The operator A is self-adjoint and generates a positive contraction Co-semigroup 
(etA2 )t>0 on L2(Vt). Moreover, 0 G g(A^) (the resolvent set of A^) if ft is bounded. 
If O = Rn we write A2 = Af • Then (etA2)t>o is the Gaussian semigroup which 
we denote by O2] i.e., 

(G2(t)f)(x) = ( 4 ^ ) - ^ f f ( y ) e - ^ 2 ^ d y Jrn 
for all / G L2(RN). 

We denote by Q{A) the resolvent set of an operator A, and by R(X,A) = 
(A — A)_1 its resolvent (A G Q(A)). The following domination property is well 
known (cf. [Da], Theorem 2.1.6). 

For convenience of the reader we give a simple direct proof. 
Proposition 1.1. Let Oi,^ be open subsets ofRN such that fli C Then 

0 < e t A ^ f < e t A 2 2 / , 
0 < i 2 ( A , A ^ ) / < i 2 ( A , A ? a ) / 

forfeL2(tt)+, A > 0, t > 0 . 
Here we identify L2(QI) with a subspace of L2(^2) extending functions 

by 0. We let L2(0)+ = {/ G L2{Q) : f(x) > 0 a.e.},iJ1(0)+ = fl 
HH%(Sl) = Hi(tt)r\L2(tt)+, = {cp G V(Q) : cp(x) > 0 for all x G 
Q}. For W\, W2 G D(Q)' we define 

wi < '-O (wh<p) < (^2» for all cp G . 

Note that is dense in jfZ"o(f2)+. Moreover, we recall: If u G has 
compact support, then u G HQ(Q) (see [B], IX.5 p. 171). 

The proof of Proposition 1.1 is based on the following. 
Lemma 1.2. Let Q c RN be open, A > 0. Let u G i?Q (fi), G H1^) such that 
v > 0 and 

Xu-Au<Xv- Av in V{Q)'. 
Then u{x) < v(x) a.e.. Taking in particular v = 0; we obtain for u G Hq(Q) 

Xu-Au<0 =>u < 0 . (1.2) 
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Proof. By hypothesis we have 

A J ( u - v ) ( p + J V(u - v)V(f < 0 (1.3) 

for all (p G It follows by density that (1.3) remains true for all (p G HQ 
Note that (u - v)+ G In fact, let un G £>(0), un u in H1^). Then 
(un — G H1^) has compact support and thus (un — v)+ G HQ(CI). Since 
(un — v)+ (u — (n —> oo) in i f 1 (0 ) , the claim follows. Now (1.3) for 
(p — (u — v)+ yields 

A J((u-v)+f + J\V(u-v)+\2 <0. 

Hence (u — = 0. • 

Proof of Proposition 1.1. a) Let A > 0, / G L2(Oi)+, u = i?(A, A^ 1 ) / , v = 
R(X, A2 2 ) / . We show that 0 < u < v. In fact, u G i f ^ i ) , Aw - Aw == / in 
-D(Oi)', v G #0(^2), Xv-Av = f m V(n2)'. It follows from (1.2) that v(x) > 0 
and u{x) > 0 a.e.. Since Au — Au = Xv — Av in V(Cl2Y, it follows from Lemma 1.2 
that u < v a.e.. 
b) Let 0 < / G L2{VL 1). Then it follows from a) that ( J - t A ^ 1 ) " 1 / < ( I - t A ^ 2 ) " 1 / 
for all £ > 0. Hence e t A"1 / = lim ( I - ^ A ^ 1 ) " 7 1 / < lim ( / - £ A%2)~nf = etA*2 f . n—* 00 n n—• 00 • 

It follows from Proposition 1.1 that 

0 < etA% f < G(t)f (t> 0), (1.4) 

0 < R(A, A^2)/ < E(A, A 2 ) / (A > 0) (1.5) 

for all / G L2(0)+. 
Since the Gaussian semigroup is a contractive Co-semigroup on LP(MN), it 

follows that there exist positive contraction Co-semigroups (etAp)t>0 on Lp(fl) 
such that 

etAvf = etAvf (t> 0) 
for all 1 < p, g < 00, f G 17(0) ft Lg(0). Moreover, 

0 < -R(A, A p ) / < R(X, Ap)f (1.6) 

for all / G (0)+, A > 0, p G [1,00). Finally, defining A ^ as the adjoint of A f , 
we have consistency in the sense that 

R(A, A ? ) / = i?(A, A") / ( / e n 

for A > 0, 1 < p, q < 00. Moreover, for each p G [l,oo], one has A^f = Af 
in U(£iy. It has been proved by Ouhabaz [Oul] that Gaussian estimates (and in 
particular (1.4)) imply that the semigroup generated by Ai is holomorphic of angle 
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^ (see also [AE]). Denoting by Aoo the adjoint of Ai we obtain in particular that 
cr(Aoo) c (—oo,0] and a bound 

||Ai2(A, Aqo)|| < Me (1.7) 

for all A E E(0) = {re i a , r > 0, \a\ < 0} whenever 0 E [0,tt). This estimate will 
be used later. 

Next we establish some spectral properties. Let E,F be Banach spaces such 
that F ^ E (i.e. F is continuously injected into E). Let A be an operator on E. 
The part B of A in F is defined by 

D(B) = {x E D(A) fl F : Ax E F} Bx = Ax. 

This notation is motivated by the following observation. Let A E g(A). Then 

A ee(B) R(A,A)F C F, (1.8) 

and in this case, R(A, B) — R(A, A)\p, A proof of the following easy result can be 
found in [ANS]. 

Proposition 1.3. Assume that g(A) ^ 0. If there exists k E N such that D(Ak) c 
F, then a (A) = a(B). 

Now by (1.6) we have 

0<R(l,A$)k <R(l,Ap)k (1.9) 

for 1 < p < oo, k E N. Since D(A%) = H2k(RN) c L°°(RN) for k > f we 
conclude that 

D((Ap)k) C L°°(Q) for k > j , 2 < p < oo . (1.10) 

If Q has bounded Lebesgue measure, it follows from Proposition 1.3 that a(A^) = 
cr(A^) for p E [2, oo]. By duality and selfadjointness we conclude 

Proposition 1.4. Let O C RN be open and of finite measure. Then 

a{A^) = a{A%) (1 < p < oo) . (1.11) 

Moreover, R{A, A^) = R(A, A^) (Lq for all A E cr(A^), oo > p > q > 1. 

If O is arbitrary, then more elaborate arguments are needed, but (1.11) still 
remains true (see [Ar]). We also note that 

R(1,AP)LP(RN) cL°°(Rn) 

for p > Y . Hence 

D ( A p ) c L ° ° ( 0 ) (1.12) 

for Y < p < oo. Finally we recall the following result by de Pagter [dP]. 

Proposition 1.5. Let A be the generator of a Co-semigroup on a Banach space E. 
Assume that R(\,A)k is compact for some k E N, A E g(A). Then A has compact 
resolvent. 
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2. Bounded domains 
Let ft C M.N be a bounded, open, nonempty set and Co (ft) = {w E C(Q) : u\qq = 
0}. By Aq we denote the Laplacian on Co(fi) with maximal domain; i.e., 

D(A%) = {ue C0(n) : A u E C 0 ( O ) } A = A u . 

Here, for u E L1
1

oc(0) we denote by Au E V(ft)' the distributional Laplacian of u. 
Note that D(A%) <£ C2(ft) as is well known (cf. [DL], II. § 3 Remark 5). We recall 
the following easy local properties of the Laplacian (see e.g., [DL], II. § 3 Prop. 6 
p. 336). 

Lemma 2.1. Let u E V(ft)'. 
a) If Au E Lfoc(«), p > f , then u E C(ft); 
b) ifAu E Lfoc(fi), p> N, then u E C 1 ^ ) -

In particular, 

D(Aq) c C 1 ^ . (2.1) 

Next we show that AQ is the part of A2 in Co(O). 

Lemma 2.2. a) Let u E C0(O) swc/i that Au E L p (0) w/iere p > N. Then u E 
ffo1^)-
b) In particular, the operator Aq ^ part of A2 in Co(ft). 

Proof Let u E Co ( f t ) such that Aw = / E Lp(ft) where p > N. We can assume 
that w is real-valued. Let £ > 0. Then (w — e)+ has compact support. Let w C O 
be open such that cD C O and supp(w — e)+ C co. Since u E C1(ft) (by (2.1)), we 
have (u — e)+ E i7g(o;). By hypothesis, we have 

J VuV(p = J f ( p for all E £>(Q), 

hence also for all cp E iJg by density. Taking </? = (u — e)+ we obtain 

J ( V ( u - e)+)2 = J VuV(u -e)+ = J f(u - e)+ 

< \\f\\p\\U\\q> Where ~ + ~ = 

Thus {( u — <s)+ : 0 < e < 1} is bounded in Hq(Q). Since H$(ft) is reflexive, we 
find a sequence en J, 0 (n oo) such that (u — £ n ) + converges weakly in HQ (O), 
to v E HQ(CL), say. Then (u — sn)~^~ converges weakly to v in L2(ft) (n oo). 
Since (u — en)+ u+ in £ 2 (0 ) , it follows that u+ = v E Hq ( f t ) . In the same way 
one sees that u~ E HQ(Q). • 

We say that the Dirichlet problem is well-posed in ft if for every ip E C(dft) 
there exists a solution u of (D(<p)) (see Introduction). It is known that the solution 
is unique and in C°°(ft). Moreover, the Dirichlet problem is well-posed whenever 
D((p) has a solution for all (p in a dense subspace of C(dft). 
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Theorem 2.3. Let Q be a bounded open set in RN such the Dirichlet problem is well-
posed. Assume that Q is regular. Then AQ generates a holomorphic Co-semigroup 
To = (T0(t)t>0 of angle § on C0(tt). 

Moreover, T0(t) is compact for all t> 0 and a(Aq ) = cr(A2). 

Proof a) We show that R(0, A$)L°°{Q) C C 0 (O) . Let / G Let v = 
En* f G C(RN), where EN is the Newtonian potential. Then Av = f in . 
Let (p = v\qq. By hypothesis there exists w G C(Q) such that w = <f and 
Aw = 0 in V(ny. Thus u = w - v G C0(O) and - A u = / in V(Vt)'. It follows 
from Lemma 2.2 that u G Thus i2(0, A ^ ) / = u G C 0 (O) . 
b) It follows from (1.8) that 0 G g{Ap). Moreover, g(A$) = g(A^J by Proposition 
1.3. By (1.8) again, we have R(A, A?) = R(A, A ^ ) | C o ( n ) for all A G g (A^) . Now it 
follows from (1.7) that AQ generates a bounded holomorphic Co-semigroup. Note 
that D(AQ) is dense in C0(ft) since V{Q) c D ( A j ) . 
c) We show that Ao has compact resolvent. By (1.10) we have R(0, A2)kL2(Q) C 
L°°(0) where k > f . Thus by a) E(0, A2)k+1L2(Q) c C0(fi). Note that i?(0, A2) G 
C(L2(p)) is compact. Thus we can write R{0, A q ) ^ 2 = JR(0, A2) / c + 1 o R(0, A2) o j 
where j : Co(O) —> L 2 (0) is the canonial embedding. It follows that i?(0, A0)k+2 

is compact. Consequently, R(0, Ao) is compact by Proposition 1.5. 
d) Finally, from Proposition 1.3 one sees that a(AQ) = a(A^2). • 

Let Cb(Q) be the space of all bounded continuous scalar-valued functions on 
Q with supremum norm. Denote by A& the part of A2 in Cb(Q). 
Since R(0, A2)Cb(Q) c Cb(Q) is follows from Proposition 1.3 and 1.4 that 

a(Ab) = a( A2) = a(Ap) (2.2) 

for 1 < p < oo. Moreover, R(A, A*,) = J?(A, A2)|Cb(Q) for all A G £>(A2). 

We now consider necessary conditions for well-posedness of the Dirichlet prob-
lem. 

Theorem 2.4. Let Q C RN be bounded and open. The following are equivalent: 
(i) the Dirichlet problem is well-posed; 

(ii) Q( 
(hi) D(Ap) c C0(O) for allpe ( f , oo]; 
(iv) there exist % < p < oo, A G g(A^) and f G LP(Q) such that f{x) > 0 

a.e. andR(\,A$)f G C0(O). 

Proof, (i) (ii) follows from Theorem 2.3. 
(ii) (iii) Since £>(A^) has non-empty interior, it follows from the hypothesis that 
U := Q(AQ) H g(Ap) / 0. The set U is open and relatively closed in g(A^). In 
fact, let A G g(A9) such that A = lim An G U. Then (R(Xnj A9))neN is bounded 

n—> oo 
in £(Cb(fi)), thus also (i?(An, Aq ))neN is bounded in £(Co(0)). This implies that 
A G £>(AQ ). Since g(Ap) = g(A%) is connected, it follows that g(Ap) c g(Ap). 
In particular, 0 G g(A$). It follows from (1.8) that j?(0, Ap)C0(f2) C C0(fi). Let 
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f < p < oo. Then R(0, A^) is a bounded operator from i7(f t ) into L°°(ft) (by 
(1.12)). Since E(0, A^)C0(ft) c C0(ft) and since C0(ft) is closed in L°°(ft), it 
follows that i?(0, A^)LP(fi) C C0(ft). 
(m) =4> (i) We show that the Dirichlet problem has a solution for all ip E C(dft). 
At first, assume that p = w\dQ for some w E C2(ft). Let v = —R(0, A^)Aw. Then 
v E Co (ft) and Au = Ait; in P(ft)7 . Thus u = w — v E C(ft), U\QQ = p and Aw = 0 
in D(ft)'; i.e. w is a solution of D(<p). Since the set {W\QQ : w E C2(f t)} is dense in 
C(<90), it follows that has a (unique) solution for all ip E C(<9ft). 
(m) (iw) is obvious. 
(iv) =4> (zi) We can assume that N/2 < p < oo (since L°°(ft) C Lp(ft)). Note 
that by (1.12) and Lemma 2.1, R(A, A^) is a bounded operator from Lp(ft) into 
C6(ft). Let F = {g E Lp(ft) : 3 c > 0, < c/}. Then the hypothesis implies that 
R(\,Ap)F c C0(ft). Since F is dense in Z7(ft), it follows that i?(A, A^) i7(f t ) c 
Co (ft). In particular, E(A,A^)C0(ft) C C0(ft). Now it follows from (1.8) that 
A E £>(AO). Since AQ is the part of AP in Co (ft). • 

Corollary 2.5. Let ft be a bounded, open, non-empty, connected subset ofW.N. Then 
ft is regular if and only if the eigenfunction u\ associated with the first eigenvalue 
of A% is in C0(ft). 

We conclude this section by a remark concerning the realization of Dirichlet 
boundary conditions in L2(ft). There is another choice, namely to replace i^o(ft) 
by 

:={wEL 2 ( f t ) , u e H 1 ^ ) } where u(x) = j ^ 

The operator associated with the form 

a(u,v) = / VwVw 
J o 

on HQ (ft) is called the pseudo-Dirichlet Laplacian in [AB] and is denoted by Aq . 
Thus D(AQ) = {u e : 3v E L2(ft) such that fVuVp = fvcp Vcp e 

Q 
Ho(ft)} and AQU = v. Equivalently, D(AQ) = {u E H^(ft) : Au E £2(ft)}, 
AQU = Aw. For example, if N = 1, ft = (0,1) U (1,2), then A n ^ A??, but if ft 
has Lipschitz boundary then AQ — A2 • 

Now assume that the semigroup (e tA")t>o generated by An on L2(ft) leaves 
invariant Co (ft). Hence R( 1, An)Co (ft) C Co (ft). But then Lemma 2.2 implies that 

An)Co(ft) C i # ( f t ) . Thus R(l,An)f = R{1, A%)f for / E C0(ft). It follows 
that An = A£?; i.e. #o(f t ) = HQ(CI). Concluding we have the following result. 

Proposition 2.6. Let ft C ~RN be a bounded open set. Assume that 

e t A"C0(f t) cCo( f t ) (t > 0 ) . 
Then ft is regular and AQ = • 
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3. Unbounded open sets 
Whereas in the preceding paragraph, for bounded open sets, we established an 
equivalence with well-posedness of the Dirichlet problem, in this section it will be 
more convenient to consider barriers. Let ft C MN be open. 

Definition 3.1. a) Let z G <9ft. A barrier is a function w e C(ftnB) such that 

Aw<0 in V{Vtr\B)' and w(z) = 0, w{x) > 0 for x G (ft fl B) \ {z} 

where B = B(z, r) is a ball centered at z. We call w an H1— barrier if in addition 
we^innB). 
b) We say that ft is regular, if at each boundary point z G <9ft there exists a barrier. 

It is well known that a bounded open set ft is regular if and only if the 
Dirichlet problem is well-posed (see [GT], § 2.8 or [DL], II). For unbounded ft the 
situation is more complicated since the behaviour at infinity has to be taken into 
account (see [DL], II § 4). Still, the existence of a barrier at each boundary point is 
the right regularity property in order that Aq be a generator. This is the assertion 
of Theorem 0.1 which will be proved below. We first show that Aq is dispersive. 
This is not new (cf. [LP1], [LP2]). In the bounded case, it follows immediately 
from our arguments since Aq is the part of A ^ in Co (ft). We include a proof 
in the unbounded case for convenience of the reader. Recall that an operator A 
defined on the real space Co (ft) is called dispersive if for every u G D(A) such 
that U+ ^ 0 there exists XQ G ft such that 

u+(x0) = ||^+||oo and (Au)(x0) < 0 . (3.1) 

Dispersiveness on Co (ft) implies dissipativity (as is easy to see). In particular, 
(A — A) is injective for A > 0 whenever A is dispersive. This will be used in Theo-
rem 3.7 below. More generally, a densely defined operator A generates a positive 
contractive Co-semigroup if and only if A is dispersive and I —A is surjective (see 
[N], C-II.Theorem 1.2). 

Proposition 3.2. The operator Ao is closed and dispersive. 

Proof It is obvious that Ao is closed. Let u G D(Ao), such that ^ 0. 
Let (gn)nen C C°°(MN) be an approximate unit; i.e. gn > 0, f gn(x)dx = 
1 , supp gn C B(0, Let un = gn * u. Then un G CQ(RN) and lim un = u in n n—• oo 
Co (ft). Let no G N such that for all n > no, \\un — ti||oo < f , 8 — ||^+||oo- The set 
K = {x G ft : u(x) > f } is compact. Let xn G ft such that un(xn) = m a x u n ( y ) . 

yen 
Then un(xn) > |<5 and so u(xn) > | for n > no. Hence xn G K (n > no). Since 
K is compact, we can assume that xo = lim xn exists. Then u(xo) = ||^+||oo-n—>oo 
Since un G C°°(ft) we have (gn*Au)(xn) = A u n ( x n ) < 0. Since gn*Au converges 
to u uniformly, it follows that ( A U ) ( X Q ) < 0 . • 



38 W. Arendt and Ph. Benilan 

Remark 3.3. More generally the following maximum principle holds, which clearly 
implies dispersiveness: IfuG C(ft) has a local maximum at x E ft and Au E C(ft) ; 
then (Au)(x) < 0. 

We deduce from Proposition 3.2 that the operator Aq is the only possible 
realization of the Laplacian in Co (ft) which might generate a semigroup. 

Corollary 3.4. Let A C Aq be the generator of a Co-semigroup on Co (ft). Then 
A = A?. 

Proof There exists A > 0 such that (A — A) is surjective. Let u E D(AQ). There 
exists v E D(A) such that (A - A)v = (A — Aq )U. Since AV = Aq V it follows that 
u = VED(A). • 

For the proof of Theorem 0.1 in the unbounded case we need some further 
preparation. 

Lemma 3.5. Let fti, ft2 be regular, open subsets of WN. Then fti Pi ft2 is regular. 

Proof. Let ft = ftx n ft2. Then 9ft C <9fti U dft2 . Let 2 E 9ft. Suppose that 
2 E <9fti. Then there exists a barrier w E C(fti fi B) where B — B(z,r). Then 
w \Ww clearly a barrier on ft fl B at 2:. • 

We deduce from Lemma 3.5 the following 

Lemma 3.6. Let ft be a regular open subset of WN. Then for each z E 9ft there 
exists an H1-barrier at z. 

Proof. It follows from Lemma 3.5 that ft fl B is regular, where B = B(z,r), z E 
9ft, r > 0. Thus the Dirichlet problem is well-posed on ftnB. Let p(x) = \x — z\2. 
Then there exists v E C(ft D B) such that v(x) = ip(x) for all x E <9(ft fl B) and 
Av — 0 in D(ft fl B)'. It follows from the maximum principle that v(x) > 0 for 
all x E B n ft. We show that v E i f 1 (ft Pi B). Note that cp E C2[ft fl B) and 
A(p = const. Let u = v - (p. Then u E C0(ft fl B) and Au = - A ( p in D(ft n B)'. 
It follows from Lemma 2.2 that u E i^o (ft H B). Thus v = u + cp E fl^ft n B). • 

We recall the following simple fact which is easy to proof (cf. [B], IX). 

Lemma 3.7. Let u E î Q (ft) fl L°°(ft). Then there exist un E P(ft) such that 
INn||oo < \\u\\oo ( n ^ N) and lim un = u in 

n—+ 00 
Moreover, we recall that for a bounded open set fti C MN one has 

C o ^ O n i J ^ f t i ) C i?o(fti) (3.2) 
(see [B], Remark 20, p. 172 or [Da], Theorem 1.5.7). 
Theorem 3.8. Let ft C MN be a regular, open set. Then Aq generates a holo-
morphic Co-semigroup on C0(ft). Moreover, Aq is the part of A ^ in C0(ft) and 
<t(A$) = c r (A^) for 1 < p < 00. 
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Proof, a) Let / G C0(ft) fl L2(ft), u = i2(l, A ^ ) / , i.e. u G .£#(0), u - Au = f 
in V(Q)'. We show that u G Co (ft). It follows from local regularity that u is 
continuous and bounded. 

1. Let 2 G 5ft. We show that lim u(x) = 0. Let e > 0. Choose w G C ^ E ^ ) such x—>z 
that Aw = u — f in 22(ft)7 and w(^) = e (one can take w = En * (u — / ) + const). 
Let V G C(i? n ft) H iJx(f t n 5 ) be an ff1-barrier where B = B(z,r) is so small 
that w > 0 on Multiplying i> with a positive constant if necessary, we can 
assume that v(x) > ||u||oo on dB fl <9(ft fl B). Then u — v — w G H1 (ft fl B) and 
(u — v — w)+ G HQ(Q fl B). To see the last point, choose un G P(f t ) such that 
11un11oo < \\u\loo and un —u in i f 1 (ft) (by Lemma 3.7). Then (un — v — w)+ —> 
(u - v - w)+ in i f 1 (ft fl B). Note that (un - v - w)+ G C(ft fl B) vanishes on 
<9(ftn£) = (d(ttr)B)ndn)U(d(nnB)ndB). Thus {un-v-w)+ G f # ( f t n i 3 ) 
by (3.2). Thus (u — v — w)+ G #o( f t fl B) and the claim is proved. 

Now A{u - v - w) = -Av > 0 in £>(ft fl B)'. Since u-v-w G ff^ft), 
it follows that fV(u — v — w)V<p < 0 for all cp G V(ft D B)+ and hence for all 
cp G H$(QnB)+. Taking (p = ( u - v - w ) + , we deduce that f \V(u-v-w)+\2 < 0. 
Hence (u — v — w)+ = 0; i.e., u < w + v. Thus l imu(x) < lim(i>(:r) + w(x)) = e. x—±z ' x^-z 
Since e > 0 is arbitrary, it follows that lim u(x) < 0. Replacing u by — u we obtain 
lim u{x) — 0. xedn 

2. Since \u\ < J?(l, A 2 ) | / | (by (1.5)) and E( l , A2)C0(MiV) c C0(MiV), it follows 
that lim \u(x)\ = 0. Thus a) is proved. 

| x | —>00 

b) Recall that J?(l, A 2 ) and R( 1 , A ^ ) are consistent. It follows from a) and by 
density that i?(l, A^)C 0 ( f t ) C C0(ft). We show that 1 G g(A$) and R( 1, A§>) = 
R( 1, A ^ ) | C o ( 0 ) . Let / G Co (ft). Then u = R(l,Ag)f G C0(ft) and u - Au = 
f in V(Qy. (In fact, for cp G £>(ft) we have (u — Au, (p) = (u, (p — A(p) = 
<i2(l,Ag,)/, <p-A<p) = ( / , Aip)) = (f,tp)). Thus u G £>(A0) and 
u - A0u = / . Conversely, let u G T>(A$) and / = u - Au. Let v = R(l, A%)f. 
Then w — u — v G V{AQ) and w — AQW = 0. Since Ao is dissipative, it follows that 
w = 0. We have shown that 1 G g(A$) and R( 1, A^2) = R( 1, A ^ ) | C o ( n ) . Thus A j 
is a generator and Aq is the part of A ^ in Co (ft). 

c) It is clear from analyticity of the resolvent, that the set U = {A G g(A^J : 
R(\, A^)Co(ft) C Co (ft)} is open and closed in g(A^). Since ^(A^) is con-
nected it follows that U.= ^(A^); i.e. g(A^J C ^(Aq). We have shown that 
ct(Aq ) C cr(A^) = )• In order to show the converse denote by B the adjoint 
of Aq on C0(ft) / . Let A > 0, / G i x ( f t ) fl L2(ft). Then for (p G P(ft) , 
(ip, R(X,B)f) = (R(\, A ^ f ) = (<p, JJ(A,A?)/> = (<p, i2(A,A?)/>. Hence 
R(X,B)L1(Q) C Lx(ft) and R(X,B)\Lim = R(A, A f ) . As before, it follows that 
e(A$) = g(B) c ^(A?) = g(A%). Thus a(A?) C (r(A?). • 
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Of course, if ft is regular, the semigroup (etAo )t>o generated by Aq is con-
sistent with (etAp )t>o i.e. 

etAo f = etAp f ( / E Co (ft) H Lp(ft), t > 0, 1 < p < oo). (3.3) 

This follows from consistency of the resolvents. 

Next we show that Aq has compact resolvent whenever ft is regular and has 
finite Lebesgue measure. This follows from the following more general result. 

Proposition 3.9. Let ft be a regular open subset ofRN with finite Lebesgue measure. 
Then etA° is a compact operator on Co (ft) for all t > 0. 

Proof. Let t > 0. Then e t A? is a bounded operator from L2(ft) into L°°(ft). We 
have seen that e t A?C 0 ( f t ) C C0(ft). Hence by density etA% L2(ft) C C0(ft). Denote 
by j : Co (ft) —• L2(ft) the canonical injection. Then etA° can be written as 

Since is a compact operator on L2(ft) , the claim follows. • 

In order to prove the converse of Theorem 3.1 we establish a spectral char-
acterization of Aq being a generator. 

Proposition 3.10. Let ft C M.N be an open set. The following are equivalent: 
(i) Aq is a generator; 

(ii) g(A$) ± 0; 

(hi) R(X, A$?)(L2(ft) HCo(ft)) C Co (ft). 

Proof, (i) (ii) This is clear. 
(ii) (Hi) If Q(A$) ^ 0, since cr(A^) c R, there exists A E g(A$) n g(A%). Let 
B be the adjoint of A§*. We show that R(X,B)L1(Q) C Lx(ft) and R(X,B)\lI = 
R(A, A^2). Let g E Lx(ft) nL 2 ( f t ) , u = R(\,B)g. Let p E £ > ( f t ) . v = R(A,A§*)<p. 
Then w E Co (ft) and Aw — Aw = cp in £>(ft)'. As in the proof of Lemma 2.2 
one sees that w E iJo(ft). Thus w = i?(A,A2)^- Consequently, (<p,R(\,B)g) = 
(R(\,AS)tp,g) = ( R ( \ A ^ g ) = (^R(X,A%)g) = (p, R(X, A?)g). We have 
shown that i?(A, = R(X,B)g for all g E Lx(ft) n £ 2(f t ) , hence for all g E 
Lx(ft). As in the proof of Theorem 3.8 we deduce that g(A^) C g{B) = g(A%) and 
R(\,B)\ = R(A, A?) for all A E g(A?). Let / E C0(ft) H L2(ft). Then for $r E 

<R(X,A$)f,g) = (f,R(\,B)g) = (f,R(X,A§)g) = (R(\,A%)f,g). 
Hence R(\,A$)f = R(X,A%)f. Thus ( m j is proved. 
f m ; f i j Let / E L2(ft) n Co (ft). Then by hypothesis w - R( A, A£?)/ E C0(ft). 
Thus w E £>(Aq ) and w — A0w = / . We have shown that A — Aq has dense image. 
Since Aq is closed and dissipative, it follows that Aq is a generator. • 

Corollary 3.11. Let fti,ft2 C RN be open. If Aq1 and Aq2 are generators, then 
^ o is a generator. 
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Proof. Let 0 < / G C0(ft) fl L2(Q), ft = fti fl ft2. Since by Proposition 1.1 
J2(A, A 2 ) / < R(X,A^)f and R(\,A$)f < R(\A%2)f and <9ft c it 
follows that R(A, A 2 ) / G C0(ft). • 

Corollary 3.12. Assume that ft C is open. If Aq is a generator, then at each 
z G 9ft t/iere exists an H1-barrier. In particular, ft is regular. 

Proof Let z G 9ft, B = B(z,r), r > 0. By Corollary 3.11, the operator A%nB is 
a generator on Co(Bnfl). By Theorem 2.4 this implies that the Dirichlet problem 
on B n ft is well-posed. Taking (p(x) = \x — z\2 on the boundary, the solution of 
the Dirichlet problem on B fl ft gives an H1-barrier. • 

Concluding, we mention that the proofs given in Section 2 and 3 are almost 
self-contained. In particular, for a bounded open set ft in M.N, we gave a complete 
proof of the equivalence of the following three assertions 

(a) the Dirichlet problem on ft is well-posed; 
(b) a t each z G 0 f t the re exists an H1-barrier; 
(c) Aq is a generator. 

For the fact that condition (b) can be replaces by the more general condition that 
ft is regular we refer to classical potential theory. Concerning holomorphy of the 
semigroup generated by Ao the following should be added: The case where ft is 
bounded and of class C°° is due to Stewart [Stu]. Lumer and Paquet [LP1] (see also 
[LP2]) proved by a beautiful dissipativity argument that the semigroup (etA°)t>o 
is holomorphic whenever Aq is a generator. The duality argument we give here 
has the advantage to give the optimal angle. It was first used by Ouhabaz [Ou2]. 

4. Elliptic Operators on C0(^) 
Whereas Section 2 and 3 were self-contained, using only elementary results of po-
tential theory, the following investigation of parabolic equations on Co (ft) depends 
on results by Stampacchia [Sta] among others who studied boundary behavior for 
solutions of elliptic equations. We consider merely bounded open sets generalizing 
the approach of Section 2. 

Let ft C be a bounded open set. We introduce elliptic operators using 
the notation of Gilbarg-Trudinger [GT], Chapter 8. Let a^- G L°°(ft) = 
1 , . . . , N) be real functions such that 

N 

i,j=l 
for all £ G RN, x-a.e., where a > 0, and let d, bj,Cj G L°°(ft) be real coefficients, 
j = 1 , . . . , N. We consider the elliptic operator L, formally given by 

N N N 

Lu — ̂  a^DjU + hu) + CiDiU + du. 
i=l j—1 i=1 
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Defining the form 
P N N 

a(u, v) = / { ^^ dijDjuDiV + ^y^^bjuDjV — CiDiUV) — duv}dx (4.1) 

for u E v E £>(ft), we can realize L as an operator. L : i J ^ f t ) —• V(Q)' 
given by 

(Lu, v) = —a(u, v) (u € HUty, v e 2>(FI)). (4.2) 

We observe furthermore that 

Lu E (iJo1 (ft))' whenever u E H1 (ft) . (4.3) 

We define the operator Ao on Co (ft) as the part of L in Co (ft); i.e. 

D(A0) = {ue Co (ft) n flic (ft) : E Co ( f t )} = Lu. 

In the following we will assume throughout that 
N 

] T Djbj +d<0 in D(f t ) ' . (4.4) 
i=i 

Then the following is the main result of this section. 

Theorem 4.1. Assuming (4-4)> the following are equivalent: 
(i) ft is regular; 

(ii) e(A<>) 0/ 
(iii) AO generates a positive, contractive CO-semigroup on Co (ft). 

By A2 we denote the realization of L in L2(ft) with Dirichlet boundary 
conditions; i.e. 

B(A2) = {ue iJ0
x(ft) : Lu E L2(tt)} A2u = Lu. 

Note that ~A2 is associated with the form a on the form domain i?o(ft); i.e., for 
u,v E L2(ft) one has 

u E D(A2), A2U = V <£> u E i^o(ft) and a(w, cp) = - J v(p for all <p E JSq (ft) • 

The form a is elliptic; i.e. for some /? > 0, u> > 0 one has 

a(w, w) + > /?|M|#i (4.5) 

for all u E i^o(ft). Thus A2 generates a holomorphic Co-semigroup T2 on L2(ft) . 
It follows from the first Beurling-Deny criterion that T2{t) > 0 (t > 0) (see 
[Oul]). In virtue of (4.4), by the second Beurling-Deny criterion one has for / E 
L2(ft) nL°°(f t) , 

| | A j R ( A , A 2 ) / | | 0 0 < H / H o o ( A > 0 ) ( 4 . 6 ) 
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or equivalently, 

| | T 2 ( t ) / | | o o < l l / l l o o ( * > 0 ) ( 4 . 7 ) 

(see [Oul]). Actually (4.6) (and (4.7)) are equivalent to (4.4) (see [ABBO]). It 
follows from (4.6) that there are operators Ap on Lp(ft), 2 < p < oo, such that 
(0, oo) C g(Ap) and R(X,AP) = R(X, A2)\LP(ny Moreover, for 2 < p < oo, by (4.7) 
the restriction of T2 to LP is a Co-semigroup Tp on LP(Q) whose generator is Ap. 

Lemma 4.2. Let u G H^oc(n) fl C0(ft) such that Lu G L2(ft). Then u G iJ^(ft). 

Proof. Let v — Lu. Then 

a(w, ip) = — J v(p for all (p G D(ft) . 

Let e > 0. Then (u — G iTo(ft). Let uj be open such that lu C ft. Since 
u G H1^), (u - G we have 

a(u, {u — e ) + ) = — J v(u — e)+dx < \\v\\l2 IMIl2 • 

Since Dj[u — e)+ = l^u>£yDjU we have 

a(u, (u — e)+) = 
N 

a((u — e)+, (u — e)+) + e f YJ biDi(u — e)+dx — e f d(u — e)+dx 

>a((u-e)+, (u-e)+) ^ " (by (4.4)) 
>P\\(u-s)n2

H1-uj\\(u-e)m2. 

Thus j3\\(u — e)+\\2
H1 <a{u, (u-£)+)+uj\\u\\2

l2 < \\v\\L2\\u\\L2 +o;||w|||2. As in the 
proof of Lemma 2.2 we deduce from this that u+ G ilg (ft). Similarly, u~ G Hq (ft). 

• 

Corollary 4.3. The operator AQ is the part of A2 in Co (ft). In particular, AQ is 
closed and dissipative. 

Proof. It follows from Lemma 4.2 that Ao is the part of A2 in Co (ft). Since A2 
is closed, Ao is closed as well. In order to show dissipativity, let A > 0, u G 
D(Ao), X u — Aou = / . Since 4̂o is the part of A2 in Co (ft), it follows that u — 
R{X,A2)f. Now by (4.6), 11Â 11̂  < \\f l ^ . • 

Theorem 4.4. Assume that ft is regular, and that (4-4) satisfied. Then AQ gener-
ates a positive contractive Co-semigroup To on Co (ft). Moreover, To{t) — T2{t)^c^{n) 

(t> 0). 
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Proof. 1. We extend the coefficients to M by setting 

, x _ J 1 if i — j 
a iA x ) ~ | o if i ^ j 

for x E M.N \ ft and bi(x) = Ci(x) = = 0 for x E E ^ \ ft. Denote by L : 
H^oc(Rn) —> D(R iV) / the corresponding elliptic operator and by A2 its realization 
in L 2 (R n ) . Let A > max{0, where uo{A2) is the type of A2. We show that 
A — AQ is surjective, which proves our claim in view of Corollary 4.3. Let g E 
Co (ft), v = R(\A2)g. Then v £ H 1 ^ ) and v-Lv = g in £>(ft)'. By the famous 
result of De Giorgi and Nash [GT], Theorem 8.22, the function v is continuous on 
M.N. Let (f = v\dn. By [GT], Theorem 8.31, (in the case where ft is connected, see 
[Sta], Section 10 for the general case), there exists w E H^oc(Cl) fl C(ft) such that 
w — Lw = 0 in £>(ft)' and cu\dn = Now let u = v — w. Then u E Co (ft) fl Hloc (ft) 
and u — Lu~ g in V(Q)'. Thus u E D(Ao) and u — Aqu — g. We have shown that 
AO generates a contractive Co-semigroup. Since AO is the part of A2, it follows that 
R(A, A2)\C^{A) = R{A, AQ) (A > 0) which implies the last claim in the proposition. 

We have shown that (I — Ao) is surjective. Since Ao is dissipative, it follows 
that (0, oo) C Q(AO) ancL||Ai?(A,Ao)|| < 1 (A > 0). Moreover, A0 being the part 
of A2 in C0(ft), we have R(\,A0) = R(XyA2)| n) for A > 0. 
2. We show that D(AQ) is dense in Co (ft). For that we have to show that R( A, Ao)' E 
£(Co(ft)7) is injective. Let FI E Co(ft)7 such that R(X,AqYijl = 0. Take FIN E 
L1(ft) fl L2(ft) such that sup||/in | | < oo and lim JIN = JI for the topology 

a(Co(ft)', Co (ft)). Let vn = R(\A0)'iin. Let 1 < q < By a result of 
Stampacchia [Sta], Theoreme 4.4, R(\,Ao)f is a bounded operator from L1(ft) 
into WQ,(1(Q). By reflexivity, we can assume that (wn)neN converges weakly to v in 
Wo'g(ft) (choosing a subsequence otherwise). Since w*— lim vn — R(A, A0)V = 0, n—yoo 
we have v — 0. Since AQ) = i^(A, A2)\CO(N) one has vn = R{\,A2)'\in. 

Hence for <peV(CL), 
f cpdfjb — l im f [jLn(p = n—»oo 
lim ( ( / - A2yvn\ip)L2 = n—>oo 
lim { f vncp + a((p, wn)} = 0 . n—> oo 

It follows that fi — 0. 
3. We have shown that AQ generates a contractive Co-semigroup To on Co (ft). 
Since R(A, AQ) = R{A, A2)\C (A > 0), it follows that 

T0(t)f = lim (I --Ao)~nf = lim (J - - A 2 ) ~ n f = T2(t)f ( / E C0(ft)) . n—oo Tl n—+ oo fl 
• 

We introduce the following notation. Let S £ £(LP({2)). Then 

l|5|U(L«,Lr) = sup{| |5/ | | r : / e L ' n F , H/ll, < 1} 
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where 1 < p, q, r < oo. We recall the following result on ultracontractivity (see 
[V], Theoreme 2 or [C], Lemma 1). 

Theorem 4.5. Let T be a Co-semigroup on L 2 ( f t ) such that 

\\T(t)f Hoc < Mooll/lloo ( / e L2 n L°°, 0 < t < 1) (4.8) 

and 

\\T(t)f\\q < Mgt~a\\fh ( / e I 2 n L « , 0 < K l ) (4.9) 

where 2 < q < oo, a > 0, Mq > 0, M ^ > 0. Then there exists a constant c > 0 
such that 

wmfw^Kct-^wfh ( o < t < i ) (4.io) 

where (3 = j ^ j • 

Corollary 4.6. Assume that Vt is a bounded regular open set. Then the operators 
T0(t) (t > 0) are compact. Moreover, 

a(Ao) = a(A2)• 

Proof. Since T2 is holomorphic, one has sup \\tA2T2{t)\\C(L2) < oo. 
0< t< l 

Since jZj(ft) ^ L 2 N / N ~ 2 , it follows that 

SUP \\tT2(t)\\C(L2 T2N/N-2) < OO. 
0<t< l 

Now it follows from Theorem 4.5 that 

\\T2{t)\\c{L^L~) < ct~N'2 (0 < t < 1). (4.11) 

Since the injection HQ(£1) ^ L2(Q) is compact, it follows as in the proof of 
Proposition 3.8 that To(t) is compact (t > 0). In particular, AQ has compact 
resolvent. Now it follows from [Ar], Proposition 2.6 that a(Ao) = cr(A2). • 

Corollary 4.7. Assume that b^a e i = 1 , . . . , N. If ft is a bounded, 
regular, open set, then AQ generates a holomorphic Co-semigroup on Co (ft). 

Proof. It follows from [Oul] that there exists a Co-semigroup T\ on L1(ft) such 
that TiCfc)^ = 1 2W > 0)- Denote the generator of Tx by A±. It follows 
from [AE] that T\ is holomorphic. By duality 

||XR(X, J4OO)|| <M (REX>U) 

for some uj,M > 0. This implies that ||Ai?(A,i40)|| < M (Re A > a;), so A0 
generates a holomorphic Co-semigroup. • 
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Remark 4.8. In Corollary 4.7 the hypothesis (4.4) is not needed a priori: it is 
satisfied if we replace L by L — uj for a suitable u. 

Lemma 4.9. Let oo > p > N. Then 

D(AP) c L°°(Cl). 
Moreover, 

D(Ak) cL°°(0) 

fork> max{y, 1}. 

Proof. By (4.11) we have 
m m i c w ) < ct-N'2 (o < t < i ) . (4.i2) 

By interpolation we deduce from this that 

\\Tpmc(LP,L~) <Cpt-N'* (0 < t < 1) (4.13) 
for some cp > 0, 2 < p < oo. Let p > N. Let M > 0, u > 0 such that 
\\Tp(t)\\c(Lp) < Meut. Then for A > u, 

P ( A , ^ ) / | | o o < /o e-^||r(t)/||oo dt + /0°° c-Mt+i) | |T(l)T(t)/| |oo dt 

< c p / 0 V ^ dt ll/llp + C p / ^ c - ^ I T O / l l p eft 
< CpifS t-N/p d t + fo°° e-W+VMer* dt}\\f\\p 

< const . '\\f\\p. 

Similarly, for A sufficiently large, since 
poo 

R(A, A2)k = (k - 1)! / e-A tt f c"1T2(t)dt 
Jo 

one ob ta ins by (4.13) t h a t \\R(X, A2)k\\c(L2,L^) < oo if k > y . • 

In order to prove the remaining implication (ii) (i) of Theorem 4.1 we 
consider the Dirichlet problem with respect to L — I. For this, fix O a large ball 
containing Cl. Let h E C(dCl) be the trace of a function w E fl C(f2); i.e. 
h = w\QCi. Then there exists a unique function u E i J 1 (0) fl Cb(Q) such that 

Lu-u = 0 in D(Sl)f and u-weH^(Q) (4.14) 

(see [Sta], Theoreme 10.1 and [GT], 8.22). We interprete (4.14) as a weak form of 
u\an. = Then by the maximum principle (see [Sta], § 10 or [GT], 8.1), 

INIIl-(O) < \\h\\C(dSi). (4.15) 
We set u = Bh. Since by the Stone-WeierstraB theorem traces of functions w E 
C(O) n Hl(£l) are dense in C(dQ)y we find a unique linear extension 

B:G(dn)-^H1(n)ncb(n) 
such that 

\\Bh\\Loom < \\h\\C(dQ) • (4-16) 
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Recall that L : —> V(Q)' is a continuous linear mapping. Let h G C(<9ft), 
then u — Bh is the solution of the Dirichlet problem 

ueH^tt) 
Lu-u = 0 in V(ny (4.17) 
u\on = h 

where the last identity has to be understood in the sense of the construction. 
It turns out that ft is regular (which means by our definition regular with 

respect to the Laplacian) if and only if ft is regular with respect to L. More 
precisely, the following remarkable result is due to Stampacchia [Sta], § 10 and 
Littmann, Stampacchia, Weinberger [LSW]. 

Theorem 4.10. The following are equivalent: 
(i) ft is regular; 

(ii) lim (Bh)(x)=h(z) and all z G <9ft for all heC{dQ). 

Recall that here L is a fixed elliptic operator satisfying (4.4). 
On the basis of this result we now deduce the following. 

Proposition 4.11. Assume (4-4)- If q(Ao) ^ 0, then ft is regular. 

Proof. 1. It follows from Lemma 4.8 and Proposition 1.3 that <7(^2) = a{A00). 
Since by hypothesis Q{AQ) ^ 0 and since cr(Aoo) C M, it follows that £>(Aq) fl 
G(AOQ) ^ 0. As in the proof of Theorem 4.4 we conclude that A G Q(AQ). Let 
p > N. Then by Lemma 4.8, R{X,Ap)Lp{p) C Z,°°(ft). Since R(\,Ap)C0(n) = 
R(X, Ao)Co( f t ) C Co (ft), it follows by density that R(X,Ap)LP(n) c C0(ft). 
2. Let ft be a ball containing ft. Note that ft is regular. Consider the elliptic 
operator L : H^oc(fl) T>{Ct)f one obtains by extending the coefficients as in the 
proof of Theorem 4.4 and let AQ be its realization in Co (ft). Then 1 G Q{AQ) by 
Theorem 4.4. Since AQ has dense domain in Co (ft), and since each function in 
C(<9ft) has an extension to a function in Co (ft), the space 

F = {h e C(<9ft) : 3 g G Co(ft) , h = (E(A, A0)g)ld J 

is dense in C(<9ft). Let h G F, h = w = R(l,Ao)g, g G Co (ft). Then 
g\n G Lp(ft) . Let v = R(X,Ap)(g^). Then v G C0(ft) by 1. Moreover, we have 

v — Lv — g in Z>(ft)' and 
w — Lw = g in ViVt)'. 

Let u = (w-v)Then u G ̂ ( 0 ) 0 ( 7 ( 0 ) and u-Lu = 0 in £>(ft)' and u\dn = h. 
Thus (ii) of Theorem 4.9 is satisfied for all h G F and hence for all h G C(<9ft) by 
density. • 

The proof of Theorem 4.1 is complete now. 
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Concluding Remark 
For elliptic operators we restricted ourselves to bounded open sets. In order to 
carry over the strategy used for the Laplacian in Section 3 further arguments 
are needed. One can actually show that is dissipative under condition (4.4). 
However, one obtains barriers with respect to L merely in H^oc which presents an 
additional difficulty. 
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