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Let u be a bounded slowly oscillating mild solution of an inhomogeneous Cauchy
problem, _u(t) = Au(t) + f(t), on R or R + , where A is a closed operator such that
¼ ap (A) \ iR is countable, and the Carleman or Laplace transform of f has a
continuous extension to an open subset of the imaginary axis with countable
complement. It is shown that u is (asymptotically) almost periodic if u is totally
ergodic (or if X does not contain c0 in the case of a problem on R). Similar results
hold for second-order Cauchy problems and Volterra equations.

1. Introduction

We shall consider mild solutions of inhomogeneous Cauchy problems of the form

_u(t) = Au(t) + f (t); t 2 J;

u(0) = x;

)

(1.1)

where A is a closed linear operator on a complex Banach space X , and J is either
the line R or the half-line R + := [0; 1). We seek conditions on A and f which
ensure that a mild solution u is (asymptotically) almost periodic. Letting f̂ denote
the Carleman or Laplace transform of f and R( ¶ ; A) := ( ¶ I A) 1 be the resolvent
of A, the problem (1.1) may be rewritten as

û( ¶ ) = R( ¶ ; A)(x + f̂ ( ¶ )): (1.2)

Thus û may have singularities at points of the spectrum ¼ (A) and at singulari-
ties of f̂ , but not elsewhere. When J = R, X does not contain c0, u is bounded
and uniformly continuous and the Carleman transform û has only countably many
singularities in iR, a vector-valued version of a theorem of Loomis [15], [14, p. 92]
ensures that u is almost periodic, since the Carleman and Beurling spectra coin-
cide. When J = R, there is no ambiguity about the notion of singularity, because
a continuous extension of û from C n iR to an open interval in iR is automatically
holomorphic.
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When J = R + , the Laplace transform û may have a continuous extension to an
interval without having a holomorphic extension. A Tauberian theorem somewhat
analogous to Loomis’s theorem was proved in [9], with a more direct proof in [2],
where it was assumed that û has a holomorphic extension except at countably many
points of iR. This theorem was improved in [11] by allowing continuous extensions
except at countably many points of iR. Using (1.2), this theorem can be applied to
some solutions of (1.1) when ¼ (A) \ iR is countable and f̂ has only countably many
singularities.

In this paper, we consider more carefully solutions of (1.1) when f̂ has a continu-
ous extension near all except countably many points of the imaginary axis, but f is
not necessarily almost periodic. We assume that the approximate point spectrum
¼ ap (A) of A, rather than the spectrum ¼ (A), contains only countably many points
of iR, and we show that û then has only countably many singularities. Moreover,
we assume that u is slowly oscillating at in nity, rather than uniformly continu-
ous. Under some supplementary conditions, we are then able to deduce that u is
(asymptotically) almost periodic (theorems 4.3 and 4.5). Our method also works
for second-order Cauchy problems, and for Volterra equations on R + , and we give
the details of the latter case in x 5. Section 3 contains some background mate-
rial on slowly oscillating functions, weakly almost periodic functions and countable
spectra (we are grateful to the referee for several helpful suggestions about this
section).

We mention here that other circumstances when solutions of (1.1) are almost
periodic are considered in [1, 2, 5{7, 18]. In all these papers, it is assumed that f
is (asymptotically) almost periodic, whereas we assume a spectral condition on f ,
namely that the singularities of f̂ are countable.

2. Preliminaries

We shall consider functions from R or R + := [0; 1) into a complex Banach space
X . To save repetition, we shall use the symbol J to denote R or R + when statements
are valid in both cases. We denote the left and right half-planes in C by

C := f¶ 2 C : Re ¶ < 0g and C + := f ¶ 2 C : Re ¶ > 0g:

We let L 1 (J; X) be the space of all (equivalence classes of) bounded (Bochner)
measurable functions from J to X , and we consider this as a Banach space in the
norm

kfk1 := ess sup
t 2 J

kf(t)k:

We let BUC(J; X) be the closed subspace of L 1 (J; X) consisting of all uniformly
continuous functions, and let AP(J; X) be the subspace of all almost periodic
functions. Thus AP(J; X) is the closure in BUC(J; X) of the set of all trigono-
metric polynomials. Moreover, AP(J; X) is invariant under the strongly contin-
uous group of translations, so » ¤ f 2 AP(R; X) whenever » 2 L1(R; X) and
f 2 AP(R; X) (see [12, 14] for various characterizations of almost periodic func-
tions). When X = C, we shall denote these spaces by L 1 (J), etc.
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For f 2 L 1 (R; X), we consider the Carleman transform f̂ of f , de ned by

f̂( ¶ ) =

8
>><

>>:

Z 1

0

e ¶ sf(s) ds; ¶ 2 C + ;

Z 1

0

e¶ sf ( s) ds; ¶ 2 C :

The Carleman spectrum sp(f) is the closed set of all ² 2 R such that f̂ does not
have a holomorphic extension to a neighbourhood of the point i² in the complex
plane. A standard argument with contour integrals shows that if f̂ has a continuous
extension to such a neighbourhood, then the extension is holomorphic. Moreover,
sp(f ) coincides with the support of the distributional Fourier transform of f , and
with the Beurling spectrum of f [13, x VI.6] [14, p. 87] [16, proposition 0.5, p. 22],
and hence with the Arveson spectrum of f with respect to the group of translations
on L 1 (R; X) given by (S(t)f )(s) = f (s + t) [1, x 2]. The following properties are
then standard.

(1) For » 2 L1(R), sp( » ¤f ) ³ supp(F » )\sp(f), where F » is the Fourier transform
of » .

(2) If sp(f ) is empty, then f (t) = 0 almost everywhere.

(3) If sp(f ) is bounded, then f is smooth.

(4) If sp(f ) is  nite, then f is a trigonometric polynomial.

(5) For ½ > 0, sp(f ) ³ (2 º =½ )Z if and only if f is ½ -periodic, i.e. f(t + ½ ) = f(t)
a.e.(t).

(6) If f 2 BUC(R; X) and sp(f ) is discrete, then f is almost periodic.

Parts (5) and (6) can easily be deduced from (1) and (4) (see [16, p. 19], [4,10]).
We also recall Loomis’s theorem [15] that if f : R ! C is bounded and uniformly

continuous and sp(f ) is countable, then f is almost periodic. This theorem is also
true for functions taking values in a Banach space X which does not contain c0 [14,
theorem 4, p. 92].

A function f 2 L 1 (R; X) is said to be totally ergodic if the Cesaro limits

lim
½ ! 1

1

2 ½

Z ½

½

e i ² tf(s + t) dt

exist, uniformly for s 2 R, for every ² 2 R. This is equivalent to requiring the
existence of the Abel limits

lim
¬ ! 0

¬ f̂ s( ¬ + i ² )

uniformly in s, where fs(t) = f (s + t). The limits exist uniformly and equal 0 when
² 2 R n sp(f ). Any almost periodic function f is totally ergodic, and sp(f ) is then
the closure of the set of all ² where the Cesaro limit is non-zero.

For f 2 L 1 (R + ; X), we consider the Laplace transform f̂ of f , de ned by

f̂ ( ¶ ) =

Z 1

0

e ¶ sf(s) ds; ¶ 2 C + :
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The half-line spectrum sp + (f) is de ned to be the closed set R n U , where

U := f ² 2 R : there exists " > 0 such that f̂ has a

continuous extension to C + [ i(² "; ² + ")g:

Note that this spectrum is in general smaller than the one used in [2], where holo-
morphic extensions were required near iU . For example, if X = `2 and

f (t) = (n 1e t=n);

then f̂ has a continuous extension to C + [ iR, but there is no holomorphic extension
to a neighbourhood of 0. Actually, the results in this paper which involve the half-
line spectrum (theorems 4.5 and 5.1) remain true for the still smaller notion of
spectrum de ned to be R n V , where

V := f ² 2 R : there exists " > 0 such that sup0<¬ <"; j ² j<" kf̂ ( ¬ + i )k < 1,

and lim ¬ ! 0+ f̂( ¬ + i ) exists whenever j ² j < "g:

Let f 2 L 1 (R + ; X). It is clear that

sp + (f) ³
\

fsp(g) : g 2 L 1 (R; X); gjR+ = fg: (2.1)

In general, this inclusion is strict. Indeed, it follows from the uniqueness theorems
for Laplace transforms and holomorphic functions that, given f 2 L 1 (R + ; X) and
² 2 R, there is at most one extension g such that ² =2 sp(g). Consequently, the
right-hand side of (2.1) is non-empty unless f = 0 almost everywhere. On the
other hand, sp + (f ) is empty whenever f decays exponentially fast. Indeed, the
following proposition shows that the inclusion (2.1) is maximally strict whenever f
has exponential decay.

Proposition 2.1. Let f 2 L 1 (R + ; X), f 6= 0, and suppose that there exist " > 0
and M such that

kf (t)k 6 Me "t; t > 0:

Then sp + (f) = ; and sp(g) = R for all extensions g 2 L 1 (R; X) of f .

Proof. The Laplace transform f̂ has a holomorphic extension to the region where
Re ¶ > ", and f̂ ( ¶ ) is bounded for Re ¶ > 1

2 ". It follows immediately that
sp + (f ) = ;. Moreover, if g 2 L 1 (R; X) is an extension of f with sp(g) 6= R, then
the Carleman transform ĝ( ¶ ) agrees with f̂ ( ¶ ) for Re ¶ > 0, and hence for Re ¶ > "
by analytic continuation. Since ĝ( ¶ ) is bounded for Re ¶ 6 1

2 ", it follows that ĝ
extends to a bounded entire function, so ĝ is constant. Since lim ¶ ! 1 f̂( ¶ ) = 0,
f̂ = 0. Hence f = 0 almost everywhere.

A function f 2 L 1 (R + ; X) is said to be totally ergodic if the Cesaro limits

lim
½ ! 1

1

½

Z ½

0

ei ² tf(s + t) dt

exist, uniformly for s > 0, for every ² 2 R. This is equivalent to requiring the
existence of the Abel limits

lim
¬ ! 0+

¬ f̂ s( ¬ + i² )



Slowly oscillating solutions 475

uniformly in s, where fs(t) = f(s + t). Again, the limits exist uniformly and equal
zero whenever ² 2 R n sp + (f ) (a proof of this is given in [9, proposition 3.3] with
sp + (f ) replaced by the larger notion of spectrum used in [2]; we are grateful to
Ralph Chill for informing us that this is also true for smaller notions of the half-
line spectrum).

3. Slowly oscillating functions with countable spectrum

A function u : R ! X is said to be weakly almost periodic if ¿ ¯ u 2 AP(R) for
all ¿ 2 X ¤ . Any weakly almost periodic function u : R ! X is bounded, by the
`uniform boundedness principle’. Moreover, u is weakly continuous, so its range is
weakly separable, and hence norm separable [14, p. 65]. By Pettis’s theorem, u
is strongly measurable. Thus the space WAP(R; X) of all weakly almost periodic
functions u : R ! X is a closed translation-invariant subspace of L 1 (R; X). More-
over, if » 2 L1(R) and u 2 WAP(R; X), then ¿ ¯ ( » ¤ u) = » ¤ ( ¿ ¯ u) 2 AP(R) for
all ¿ 2 X ¤ , so » ¤ u 2 WAP(R; X).

Our terminology is consistent with [14], but it is important not to confuse the
weakly almost periodic functions in this sense with the weakly almost periodic func-
tions in the sense of Eberlein considered in [2] and elsewhere. Indeed, some authors
use the terminology scalarly almost periodic for functions in the class WAP(J; X).

The following simple lemma is probably well known.

Lemma 3.1. If u 2 WAP(R; X), then

kuk1 = sup
t> ½

ku(t)k for all ½ 2 R: (3.1)

Proof. Note  rst that (3.1) holds for trigonometric polynomials and hence for
u 2 AP(R).

Now suppose that u 2 WAP(R; X), and let " > 0. Take t 2 R such that
ku(t)k > kuk1 " and ¿ 2 X ¤ such that k ¿ k = 1 and jhu(t); ¿ ij > kuk 1 ". Since
¿ ¯ u 2 AP(R), there exists s > ½ such that kuk 1 " < jhu(s); ¿ ij 6 ku(s)k.

Recall [17, de nition 9.6] that a function u : J ! X is said to be slowly oscillating
at in¯nity if

For all " > 0, there exist a 2 J and ¯ > 0 such that

ku(t) u(s)k < " whenever js tj < ¯ , s > a and t > a:

)

(3.2)

Equivalently, u is slowly oscillating at in nity if and only if u = u0 + u1, where u1

is uniformly continuous and limt! 1 u0(t) = 0 [11, lemma 1.6]. If u is bounded and
slowly oscillating at in nity, then u0 and u1 may be chosen to be bounded.

Theorem 3.2. Let u 2 L 1 (R; X), and suppose that sp(u) is countable and u is
slowly oscillating at in¯nity. Then there exists ~u 2 WAP(R; X) \ BUC(R; X) such
that u(t) = ~u(t) almost everywhere.

Proof. Choose » 1 2 C 1
c (R) so that 0 6 » 1, » 1( t) = » 1(t), supp » 1 ³ [ 1; 1], and

Z

R
» 1 = 1:
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Let » n(t) = n» 1(nt) (n > 2). Then » n ¤ u 2 BUC(R; X) and sp( » n ¤ u) ³ sp u. By
Loomis’s theorem, » n ¤ u 2 WAP(R; X). We will show that ( » n ¤ u)n2 N is a Cauchy
sequence in BUC(R; X).

Let " > 0, and choose a 2 R and ¯ > 0 as in (3.2). Then, for t > a + 1 and n,
m > 1=¯ ,

k( » n ¤ u)(t) ( » m ¤ u)(t)k =

®®®®
Z 1

1

» 1(s)

³
u

³
t

s

n

´
u

³
t

s

m

´´
ds

®®®® < ":

It follows from lemma 3.1 that k » n ¤ u » m ¤ uk1 6 " whenever m, n > 1=¯ , as
required.

Now let ~u = limn ! 1 » n ¤ u 2 WAP(R; X) \ BUC(R; X). For ã 2 C 1
c (R),

Z

R
ã ~u = lim

n ! 1

Z

R
ã ( » n ¤ u) = lim

n! 1

Z

R
( » n ¤ ã )u =

Z

R
ã u:

Hence ~u = u almost everywhere.

Corollary 3.3. Let u 2 L 1 (R; X), and suppose that u is slowly oscillating at
in¯nity, sp(u) is countable and one of the following conditions is satis¯ed:

(1) X does not contain c0;

(2) u has relatively weakly compact range;

(3) u is totally ergodic;

(4) sp u is discrete.

Then there exists ~u 2 AP(R; X) such that u(t) = ~u(t) almost everywhere.

Proof. In view of theorem 3.2, this follows from the corresponding results for
u 2 BUC(R; X), [14, theorem 4, p. 92] (for conditions (1) and (2)), [18, x 3] (for con-
dition (3)), [10] or [4] (for condition (4)) (see also [1, x 3] for conditions (1), (2)
and (3)).

While weakly almost periodic functions are not norm continuous in general (see
[14, p. 75]), the argument of theorem 3.2 provides the following result.

Proposition 3.4. Let u 2 WAP(R; X) and suppose that u is slowly oscillating at
in¯nity. Then u 2 BUC(R; X).

Proof. For » 2 L1(R), » ¤ u 2 WAP(R; X) \ BUC(R; X). By the argument of
theorem 3.2, there exists ~u 2 BUC(R; X) such that ~u(t) = u(t) almost everywhere.
Since ~u and u are weakly continuous, ~u(t) = u(t) everywhere.

It follows from corollary 3.3 (and can easily be seen directly) that a periodic
function f 2 L 1 (R; X) is slowly oscillating at in nity if and only if f is continuous.
Choosing a weakly continuous periodic function which is not norm continuous, it
follows that the assumption of slow oscillation cannot be omitted from theorem 3.2,
corollary 3.3 or proposition 3.4.

It is well known (and it follows easily from lemma 3.1) that a (weakly) almost
periodic function u : R ! X such that limt ! 1 u(t) exists is constant. On the other
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hand, any almost periodic function is totally ergodic and has a Cesaro limit as
t ! 1. A concept which is intermediate between convergence and Cesaro conver-
gence is the following notion of B-convergence which has proved to be a useful form
of mean-convergence for studying Laplace transforms and Tauberian theorems [3,6].
For u 2 L 1 (R; X) and u 2 X , we write B-limt ! 1 u(t) = u1 if, for every ¯ > 0,

lim
t! 1

1

¯

Z t + ¯

t

u(s) ds = u 1 :

Although we shall not need it here, the following form of Wiener’s Tauberian the-
orem [17, theorem 9.7] clari es this de nition.

Proposition 3.5. Let u 2 L 1 (R; X), u 1 2 X , and suppose that

lim
t ! 1

1

¯

Z t + ¯

t

u(s) ds = u1

holds for ¯ = ¯ 1 and ¯ = ¯ 2, where ¯ 1 and ¯ 2 are rationally independent. Then

lim
t ! 1

( » ¤ u)(t) =

³Z

R
»

´
u 1 (3.3)

for all » 2 L1(R). If u is slowly oscillating at in¯nity, then limt ! 1 u(t) = u 1 .

Proof. Let ã ¯ = (1=¯ )1(0;¯ ), where 1(0;¯ ) is the characteristic function of (0; ¯ ).
Then

Fã ¯ (s) =

8
<

:

1 e is̄

is¯
if s 6= 0;

1 if s = 0:

Thus Fã ¯ 1 and Fã ¯ 2 do not vanish simultaneously, so the translates of ã ¯ 1 and
ã ¯ 2 form a total subset of L1(R), by Wiener’s theorem [17, theorem 9.4]. Moreover,
the set of all » 2 L1(R) satisfying (3.3) is a closed translation-invariant subspace of
L1(R), containing ã ¯ 1 and ã ¯ 2 by assumption, so it coincides with L1(R).

The  nal statement is proved in [17, theorem 9.7].

Now we show that B-convergence is incompatible with weak almost periodicity
and with countable spectrum.

Proposition 3.6. Let u 2 L 1 (R; X), and suppose that B-limt! 1 ( ¿ ¯ u)(t) exists
for all ¿ 2 X ¤ . Suppose also that one of the following two conditions holds.

(1) u 2 WAP(R; X).

(2) sp(u) is countable.

Then u is constant.

Proof. For ¯ > 0 and ¿ 2 X ¤ , let

ū ;¿ (t) =
1

¯

Z t + ¯

t

hu(s); ¿ i ds:
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Then u ¯ ;¿ 2 BUC(R), limt ! 1 u ¯ ;¿ exists and sp(u ¯ ;¿ ) ³ sp(u). In condition (1),
u ¯ ;¿ 2 AP(R) since

u ¯ ;¿ =
1

¯

Z ¯

0

S(t)( ¿ ¯ u) dt;

where fS(t) : t 2 Rg is the strongly continuous translation group on AP(R). In
condition (2), u ¯ ;¿ 2 AP(R) by Loomis’s theorem. Thus in each case, ū ;¿ is con-
stant. As ¯ & 0, ū ;¿ ! ¿ ¯ u in the weak* topology, so ¿ ¯ u is constant. By the
Hahn{Banach theorem, u is constant.

Recall [12] that the space AAP(R + ) of asymptotical ly almost periodic functions
on R + is given by

AAP(R + ) = C0(R + ) © AP(R + );

where C0(R + ) is the space of continuous functions from R + to C which vanish at
in nity.

Corollary 3.7. Let u : R + ! X be such that

¿ ¯ u 2 AAP(R + ) and B- lim
t! 1

( ¿ ¯ u)(t)

exists for all ¿ 2 X ¤ . Then limt! 1 ( ¿ ¯ u)(t) exists for all ¿ 2 X ¤ . In particular, if
u has relatively weakly compact range, then limt ! 1 u(t) exists weakly in X .

Proof. Since ¿ ¯ u 2 AAP(R + ), ¿ ¯ u = v ¿ + w ¿ for some v ¿ 2 C0(R + ) and
w ¿ 2 AP(R + ). Then w¿ has an extension in AP(R) and

B- lim
t! 1

w¿ (t) = B- lim u¿ (t):

By proposition 3.6, w ¿ is a constant ¬ ¿ , so limt ! 1 ( ¿ ¯ u)(t) = ¬ ¿ . The  nal
statement follows by observing that if x 2 X is a weak limit point of (u(n))n>1,
then ¬ ¿ = ¿ (x).

4. Individual solutions of Cauchy problems

Let A be a closed operator on X, f 2 L1
loc(J; X), and x 2 X . We consider the

( rst-order) inhomogeneous Cauchy problem (1.1). By a mild solution of (1.1), we
mean a function u 2 L1

loc(J; X) such that

Z t

0

u(s) ds 2 D(A)

for almost all t 2 J and

u(t) = x + A

Z t

0

u(s) ds +

Z t

0

f(s) ds a.e.(t): (4.1)

Lemma 4.1. Let u be a mild solution of (1.1), and suppose that fu(t) : t 2 Ig
is relatively (weakly) compact for every bounded interval I in J. Then there is a
(weakly) continuous mild solution ~u of (1.1) on J such that ~u(t) = u(t) almost
everywhere.
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Proof. There is a null subset N of J such that

Z t

0

u(s) ds 2 D(A)

and (4.1) holds for all t 2 J n N . Let t 2 J and (tn) be a sequence in J converging
to t. Then there exists a subsequence such that y = limk ! 1 u(tnk

) exists (weakly).
Since A is closed, it follows that

Z t

0

u(s) ds 2 D(A)

and

y = x + A

Z t

0

u(s) ds +

Z t

0

f (s) ds:

Thus the limit y is independent of the sequence (tn) and subsequence (tnk ), so
y = lims ! t u(s) (weakly) and y = u(t) if t 2 J n N . Putting

~u(t) := lim
s! t

u(s) = x + A

Z t

0

u(s) ds +

Z t

0

f (s) ds

gives the result.

In the following, we assume that f 2 L (J; X), and we let D = C + in the case
when J = R + and D = C n iR when J = R.

Let u 2 L 1 (J; X) be a mild solution of (1.1). Taking the Carleman or Laplace
transform of (4.1) shows that û( ¶ ) 2 D(A) and

û( ¶ ) =
x

¶
+

Aû( ¶ )

¶
+

f̂ ( ¶ )

¶
(4.2)

for all ¶ 2 D (see [9, proposition 5.1], [2, proposition 3.1]). Hence

û( ¶ ) = R( ¶ ; A)x + R( ¶ ; A)f̂ ( ¶ ); ¶ 2 D \ » (A): (4.3)

Proposition 4.2. Let u 2 L 1 (J; X) be a mild solution of (1.1). Let ² 2 R, and
suppose that i² =2 ¼ ap (A), and that

lim
¶ ! i ² ; ¶ 2 D

f̂ ( ¶ ) exists:

Then
lim

¶ ! i² ; ¶ 2 D
û( ¶ ) exists:

Proof. First, we show that

lim sup
¶ ! i ² ; ¶ 2 D

kû( ¶ )k < 1:

Otherwise, there is a sequence ( ¶ n) in D such that ¶ n ! i² and kû( ¶ n)k ! 1 as
n ! 1. Let

yn =
û( ¶ n)

kû( ¶ n)k :
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Then

¶ nyn Ayn =
x

kû( ¶ n)k +
f̂ ( ¶ n)

kû( ¶ n)k
! 0 as n ! 1:

This implies that i² 2 ¼ ap (A), which contradicts our assumption.
Now we will show that, for all " > 0, there exists ¯ > 0 such that kû( ¶ ) û( · )k < "

whenever ¶ , · 2 D, j ¶ i ² j < ¯ and j· i² j < ¯ . Otherwise, there exist " > 0 and
sequences ( ¶ n) and ( · n) in D such that ¶ n ! i ² and · n ! i ² as n ! 1 but
kû( ¶ n) û( · n)k > " for all n. From (4.2),

( ¶ n · n)û( ¶ n) + · n(û( ¶ n) û( · n)) A(û( ¶ n) û( · n)) = f̂( ¶ n) f̂ ( · n):

From the previous paragraph, it follows that

· n(û( ¶ n) û( · n)) A(û( ¶ n) û( · n)) ! 0

as n ! 1. This contradicts our assumption that i ² =2 ¼ ap (A). Now Cauchy’s
criterion completes the proof.

Now we have to state results separately for the cases J = R and J = R + .
First, consider the case when J = R. As observed in x 2, the continuous extension

of û to open sets in iR is automatically holomorphic. Thus proposition 4.2 shows
that

sp(u) ³ sp(f ) [ f ² 2 R : i² 2 ¼ ap (A)g: (4.4)

Theorem 4.3. Let J = R, and let u 2 L 1 (R; X) be a mild solution of (1.1) which
is slowly oscillating at in¯nity. Assume that ¼ ap (A) \ iR and sp(f ) are countable.
Then there exists ~u 2 WAP(R; X) \ BUC(R; X) such that u(t) = ~u(t) almost
everywhere. If, in addition, any of conditions (1){(3) of corollary 3.3 are satis¯ed,
or if ¼ ap (A) \ iR and sp(f ) are discrete, then ~u 2 AP(R; X).

Proof. It follows from (4.4) that sp(u) is countable. Now theorem 3.2 and corol-
lary 3.3 imply the result.

Now we turn to the case when J = R + . Then proposition 4.2 shows that

sp + (u) ³ sp + (f ) [ f ² 2 R : i ² 2 ¼ ap (A)g: (4.5)

However, in this case the continuous extension of û to open sets may not be holo-
morphic. If f̂ has a holomorphic extension to an open subset U of C + [ » (A), then û
also has a holomorphic extension to U given by (4.3) (see [2, proposition 3.1]). In the
homogeneous case, this can be strengthened by a method similar to [8, theorem 1].

Proposition 4.4. Let J = R + , let u 2 L 1 (R + ; X) be a mild solution of (1.1)
with f ² 0, and let i ² 2 iR n ¼ ap (A). Then û has a holomorphic extension to a
neighbourhood of i ² in C.

Proof. Let Y = span (fû( ¶ ) : ¶ 2 C + g [ fxg). Let AY be the part of A in Y , so
that D(AY ) = fy 2 Y \ D(A) : Ay 2 Y g. Then AY is a closed operator on Y ,
although it may not be densely de ned. By proposition 4.2,

y := lim
¶ ! i² ; ¶ 2 C+

û( ¶ ) exists:
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Since ¶ û( ¶ ) Aû( ¶ ) = x for ¶ 2 C + , we have y 2 D(A) and i² y Ay = x. Hence,
y 2 D(AY ) and x 2 Ran(i ² I AY ). For ¶ 2 C + , we have û( ¶ ) 2 D(AY ) and

( ¶ i² )û( ¶ ) = x (i² û( ¶ ) Aû( ¶ )) 2 Ran(i ² I AY ):

Thus û( ¶ ) 2 Ran(i² I AY ), so i ² I AY has dense range. Since i² =2 ¼ ap (AY ), it
follows that i ² 2 » (AY ). For ¶ 2 C + \ » (AY ), we have û( ¶ ) = R( ¶ ; AY )x. Thus
R( ¶ ; AY )x de nes a holomorphic extension of û to a neighbourhood of i² .

A Tauberian theorem due to Chill [11, theorem 1.5], together with (4.5), yield
the following result, even when holomorphic extensions may be absent.

Theorem 4.5. Let J = R + , and let u 2 L 1 (R + ; X) be a solution of (1.1) which is
slowly oscillating at in¯nity. Suppose that ¼ ap (A)\iR and sp + (f ) are countable, and
u is totally ergodic. Then u = u0+u1, where u1 2 AP(R + ; X) and limt ! 1 u0(t) = 0.

We remark here that in theorem 4.5 (and also theorem 4.3), in order to verify
that u is totally ergodic, it su¯ ces to establish that the Cesaro means of u exist
uniformly when i² 2 ¼ ap (A) [ i sp + (f ).

Our methods are also applicable to second-order Cauchy problems,

�u(t) = Au(t) + f (t); t 2 J;

u(0) = x; _u(0) = y:

)

(4.6)

A mild solution of (4.6) is a function u 2 L1
loc(J; X) such that

Z t

0

(t s)u(s) ds 2 D(A)

for almost all t 2 J and

u(t) = x + ty + A

Z t

0

(t s)u(s) ds +

Z t

0

(t s)f (s) ds a.e.(t): (4.7)

Assume that f 2 L (J; X) and u 2 L 1 (J; X) is a mild solution of (4.6). Taking
the Carleman or Laplace transform of (4.7) gives

û( ¶ ) =
x

¶
+

y

¶ 2
+

Aû( ¶ )

¶ 2
+

f̂ ( ¶ )

¶ 2
; ¶ 2 D:

With only minor changes in the proof, proposition 4.2 remains valid with the as-
sumption that i ² 62 ¼ ap (A) replaced by ² 2 =2 ¼ ap (A). Hence theorems 4.3 and 4.5
remain valid with the assumption that ¼ ap (A) \ iR is countable replaced by the
assumption that ¼ ap (A) \ ( 1; 0] is countable.

See [1, theorem 4.5] for a related result on second-order problems.

5. Individual solutions of Volterra equations

In this section, we describe how proposition 4.2, and consequently theorem 4.5, can
be generalized to individual solutions of inhomogeneous Volterra equations on R +

(see the monograph of Pr�uss [16] for the background on Volterra equations).
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Let a 2 L1
loc(R + ) be exponentially bounded. We assume that â has a mero-

morphic extension to a map â : C + ! C [ f1g and a continuous extension
â : C + [ i(R n § 0) ! C [ f1g, where § 0 is a countable closed subset of R. Let
g 2 L (R + ; X).

Let u 2 L 1 (R + ; X) satisfy
Z t

0

a(t s)u(s) ds 2 D(A);

u(t) = g(t) + A

Z t

0

a(t s)u(s) ds

9
>>>=

>>>;
(5.1)

for almost all t 2 R + . Taking Laplace transforms and using analytic continuation,
we  nd that û( ¶ ) 2 D(A) for each ¶ 2 C + , and

û( ¶ ) = ĝ( ¶ ) + â( ¶ )Aû( ¶ ); â( ¶ ) 6= 1;

0 = Aû( ¶ ); â( ¶ ) = 1:

)

(5.2)

The situation considered in x 4 corresponds to the case when a(t) = 1 and

g(t) = x +

Z t

0

f (s) ds:

The role played in x 4 by ¼ ap (A) \ iR will now be taken by the following closed set
§ :

§ :=

8
><

>:

§ 0 [ f² 2 R : â(i ² ) = 0 or â(i² ) 6= 0; (â(i ² )) 1 2 ¼ ap (A)g
if A is unbounded;

§ 0 [ f² 2 R : â(i² ) 6= 0; (â(i ² )) 1 2 ¼ ap (A)g if A is bounded:

Here, and subsequently, 1 1 = 0.

Theorem 5.1. Let u 2 L 1 (R + ; X) be a solution of (5.1). Assume that § and
sp + (g) are countable, and u is totally ergodic and slowly oscillating at in¯nity.
Then

u = u0 + u1;

where u1 2 AP(R; X), limt! 1 u0(t) = 0.

Proof. Let ² 2 R n § , ² =2 sp + (g).
First we show that

lim sup
¶ ! i² ; ¶ 2 C+

kû( ¶ )k < 1:

Otherwise, there is a sequence ( ¶ n) in C + such that ¶ n ! i ² and kû( ¶ n)k ! 1 as
n ! 1. Let

yn =
û( ¶ n)

kû( ¶ n)k
:

By (5.2),

lim
n! 1

kyn â( ¶ n)Aynk = lim
n ! 1

kĝ( ¶ n)k
kû( ¶ n)k

= 0: (5.3)

There are two cases.
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Case 1. â(i² ) = 0. Since ² =2 § , this occurs only when A is bounded, so

lim
n ! 1

kâ( ¶ n)Aynk = 0;

while kynk = 1 for all n. This contradicts (5.3).

Case 2. â(i² ) 6= 0. Then
®®®®

yn

â(i² )
Ayn

®®®® 6


1

â(i² )

1

â( ¶ n)

+
kyn â( ¶ n)Aynk

jâ( ¶ n)j
! 0

as n ! 1, by (5.3). Thus, (â(i² )) 1 2 ¼ ap (A), which contradicts the fact that
² =2 § .

Next we will show that

lim
¶ ! i ² ; ¶ 2 C+

û( ¶ ) =: û(i² ) exists:

Otherwise, there exist " > 0 and sequences ( ¶ n) and ( · n) in C + such that ¶ n ! i ²
and · n ! i ² as n ! 1 and kû( ¶ n) û( · n)k > " for all n. By (5.2),

û( ¶ n) û( · n) â( ¶ n)A(û( ¶ n) û( · n))

+ (â( · n) â( ¶ n))Aû( · n) = ĝ( ¶ n) ĝ( · n); (5.4)

and

Aû( · n) =
û( · n)

â( · n)

ĝ( · n)

â( · n)
: (5.5)

By the previous paragraph, (û( · n)) is bounded. If A is bounded, it is immediate
that (Aû( · n)) is bounded. If â(i² ) 6= 0, it follows from (5.5) that (Aû( · n)) is
bounded. Since ² =2 § , this establishes that (Aû( · n)) is bounded in all cases. Since

lim
n! 1

â( · n) = lim
n! 1

â( ¶ n) = â(i ² ) and lim
n! 1

ĝ( ¶ n) = lim
n ! 1

ĝ( · n) = ĝ(i² );

it follows from (5.4) that

lim
n! 1

kû( ¶ n) û( · n) â( ¶ n)A(û( ¶ n) û( · n))k = 0;

and hence that (â(i ² )) 1 2 ¼ ap (A). This contradicts the assumption that ² =2 § .
Now Chill’s Tauberian theorem [11, corollary 1.7] gives the result.
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