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Abstract. Let 2 C C be openX a Banach space ani ¢ X'. We show

that everyo (X, W)-holomorphic functionf : 2 — X is holomorphic if
andonlyifevery (X, W)-bounded setiX isbounded. Things are different

if we assumef to be locally bounded. Then we show that it suffices that

@ o f is holomorphic for allp € W, whereW is a separating subspace of

X' to deduce thaf is holomorphic. Boundary Tauberian convergence and
membership theorems are proved. Namely, if boundary values (in a weak
sense) of a sequence of holomorphic functions converge/belong to a closed
subspace on a subset of the boundary having positive Lebesgue measure,
then the same is true for the interior points@f uniformly on compact
subsets. Some extra global majorants are requested. These results depend
on a distance Jensen inequality. Several examples are provided (bounded
and compact operators; Toeplitz and Hankel operators; Fourier multipliers
and small multipliers).

Mathematics Subject Classification (19919G20

0 Introduction

Vector-valued holomorphic functions are very useful, for example, in the
theory of one-parameter semigroups or in spectral theory. But even for prov-
ing theorems about scalar-valued holomorphic functions, it is sometimes a
useful trick to consider functions with values in a Banach space (we give
two examples in Sect. 2).
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In practice, one does not verify holomorphy of a vector-valued function
by checking the property of the definition. It is much easier to prove weak
holomorphy, in most cases. Our first goal is to investigate how weak the def-
inition of holomorphy is allowed to be in order to imply strong holomorphy.

More precisely, lef? ¢ C be a non-empty open seY, a Banach space
and letl’ be a norming subspace &f. Let f : {2 — X be a function such
thaty o f is holomorphic for ally € W. If f is locally bounded, then it is
well-known thatf is holomorphic. In the first part of this paper we investigate
what happens if is hot assumed to be locally bounded. First of all we show
that f is still holomorphic on a dense open subsetb{Theorem 1.8). If
W has the property that evesy X, W)-bounded subset is norm bounded,
then f is automatically locally bounded and hence holomorphigVltloes
not have this property the main result of Sect. 1, Theorem 1.5, shows that
there always exists a non-holomorphic functjon{2 — X such thatpo f
is holomorphic for allp € W. Our argument also yields a short proof of
the following result due to Wrobel [W]: WhenevEris a Banach space and
j :+ X — Y is alinear continuous injection such thgtX) is not closed,
then there existg : {2 — X such thatj o f is holomorphic butf is not.

In a second part of the paper we give a short proof of Vitali’'s theorem,
based on the uniqueness theorem and the weak characterization of vector-
valued holomorphic functions mentioned above. Notice that the vector-
valued version of Vitali's theorem plays an important role in semigroup
theory (see e.g. [AEH, Theorem 4.2] or [O, Theorem 2.4]). In contrast to
the scalar case, it cannot be derived from Montel’'s theorem (which is not
valid in infinite dimension), and, so far, there is only a quite complicated
proof by Hille-Phillips [HP, Theorem 3.14.1]. Our argument gives a series
of (vector-valued) Vitali’'s theorems, each-one corresponding to a unique-
ness theorem for holomorphic functions. In Sect. 3 we use Vitali’'s theorem
to improve considerably the criterion mentioned above: A locally bounded
function f : 2 — X is holomorphic whenevep o f is holomorphic for
all o € W, whereW c X’ separates(. This had been formulated as an
open problem by Wrobel [Wr]. A complicated proof of this fact is given by
Grosse-Erdmann [GE].

In Sect. 4 we use the same technique which leads to Vitali's theorem
to prove a boundary Tauberian convergence theorem: A bounded sequence
of holomorphic functions on the disc converges on the disc whenever the
boundary functions converge on a subset of positive measure of the torus.

Various more general versions of this theorem are proved in Sect.5,
where we use a direct method (instead of the short quotient-method used
before). Some restriction of the growth near the boundary is needed. The
natural condition is described by the Nevanlinna norm. In the scalar case
the classical prototype of the results we obtain is the Khinchin-Ostrowski
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theorem [Pr, 11.7.1]. Omitting some technical details (for instance some
extra hypotheses (H1)(H4) in Section 5), the results can be described as
follows. Considering a subspade C X and supposing that it is closed
for the same weak topology(X, W), for which a Smirnov class function
f € N*T(D, X) has boundary limits, we prove a distance Jensen inequality

log(dist(f(z), E)) < / P,(t)log(dist(f(t), E))dm(t)
T
forz e D = {z € C: |z] < 1}. As for the classical KhinchinOstrowski
theorem, this implies convergence and membership as mentioned above: if
Smirnov type functiong,, € N (D, X) with uniformly bounded Nevan-
linna characteristics converge/belong to the space E on a sAbsetT

of positive Lebesgue measure, then they do the same in the entire unit disc
D. Examples show that, in general, nothing can be said about the boundary
values on the rest of the boundaryS.

For many applications (forexample, f&r=[>*, E =c¢; X=L(Y, Z), E =

S« (Y, 7)), the hypothesis that E is(X, W) closed is too restrictive. Re-
placing it by a kind of weak approximation property, we prove the same
convergence and membership theorem (Theorem 5.10). In particular, the
theorem holds for the aforementioned parsE. In fact, stronger theorems

of Khruschev type [Kh] theorems can be proved for vector-valued functions
in a similar way, but here we restrict ourselves to the simple analogue of the
classical Khinchin Ostrowski theorem.

1 Weakly holomorphic functions
Let X be a Banach space. A subspéfeof X’ is calledalmost norming if

G (2) = sup{lp(@)| - p e W, [lpl| <1}

defines an equivalent norm oX; the subspacél’ is callednorming if
¢y () = ||z| forall z € X.

Lemma 1.1 The following are equivalent.

(i) W is almost norming;
(i) for everyy € X' there exists a bounded net##i converging top for
o(X', X).

Proof. (i)=(ii) . Denote byB andB’ the unit balls inX andX”, respectively.
We can assume thit || = ¢,,; i.e., B = W} wherelV; = W N B’ ando
denotes the polar with respect to the duality, X'). By the bipolar theorem,

WlU(X/,X) — Wloo — B° = B
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(i) =(i). We have to show that the sBt := {z € X : ¢, (z) < 1}is
norm bounded. Lep € X’. By assumption, there exists a riet);c; in W
such that := sup ||;|| < oo ando (X', X) — lim ¢; = . Thus|p(z)| =

lim |p;(z)| < cfor all z € H. We have shown thatup |¢(z)| < oo for
% xeH

all ¢ € X’. By the uniform boundedness principle this implies th&ais
bounded. O

A subsefV of X' is calledseparatingif for all z € X \ {0} there exists
¢ € W such thatp(z) # 0. We discuss this notion in the following remark.

Remark 1.2Let W be a subspace of’.

a) W is separating if and only ifV is o (X', X)-dense inX".

b) If W is norm-dense inX’, thenW is almost norming. This follows
from Lemma 1.1.

c) If W is almost norming, thell is separating.

d) Assume thaX = Y” is a dual space and’ C Y (seen as a subspace
of X’ by evaluation). Then the following are equivalent:

(i) W is separating;

(i) W is norm-dense ify’;
(iif) W is almost norming;
(iv) W is norming.

This is immediate from the Hahn-Banach theorem. In particulak i
reflexive, then the four properties: separating, being norm-dense , almost
norming and norming, are equivalent. Takirighon-reflexive andV =Y

we obtain an example of a norming subspac¥ tfvhich is not norm-dense.

e) LetX = H*°(D) whereD is the unit disc and lel” be the space of
all linear combinations of the Dirac measutgg, (n = 2,3,---). Then
W is almost norming. In factV is separating by the uniqueness theorem.
Moreover, we can identify7>° (D) with the spacel’ = {f € L*(T) :

f(n) =0forn = ~1,-2,---} = {f € L=(T) : [ f(2)g(2)dz = 0
for all ¢ € G} where( is the closed subspace &f (T) generated by
the functione,, (n = 1,2---) , en(z) = 2z~ ™. ThusF = E’ where
E = LY(T)/G via the duality(f,g + G) = [} f(2)g(z)dm(z) where
dm(z) is the normalized Lebesgue measure on the tdirulset g,,(z) =
ﬁ (n=2,3,---). Theng, + G = 4, ,, by Cauchy’s integral formula.
ThusW can be considered as a subspace of the preflwdl 7> (D) and
the claim follows from d).

f) A separating subspace is not almost norming in general. We give an
example: Letr C D be a countable subset of the unit disc whose closure
containsT, which does not carry any non trivial measure orthogonal to
complex polynomial$? and which satisfies
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inf{|oa(p)] : N # p, A, p€o} =0,

whereb,, stands for the elementary Blaschke factq(z) = (A — 2)/(1 —
5\2). (In fact, it is well-known that there exist ev@iaschke sequences,
that is X ¢, (1 — |A|) < oo, satisfying these conditions, see [N2, Chap. 7,
Sect. 3], for example). LeX = ¢!(0), X’ = (*°(c) andW = P|,. Then,
the manifoldiV is separating: if: € X and

0= (z,2") = Ireow(MA"

for all n > 0, thenz = 0. To show thaf¥" is not almost norming, observe
that| f, || x+ = sup, [f| = supy [f| = [|f[| for every polynomialf € P.
Letzy , € X, @x, = X{n} — X{u}» Wherex # pandA, o € o. Then,

G (2x0) = sup{[f(N) = F(u)| : F € P, [[fllo <1}

By the Schwarz lemma, we hayg\) — f(u)| < |ba(p)]- |1 — fF(N) f(u)],

and hencey,, (zy ) < 2[by(n)|. Thereforejnf{q,, (xr ) : A\, € o, X #

p} =0, whereag|z)y ,||x = 2 forall A # u. So, the normg - || x andg,,

are not equivalent, and’ is not almost norming.

h) On a more abstract level, Davis and Lindenstrauss [DL] proved that the
following two assertions are equivalent:

(i) X’ contains a separating subspace which is not quasi norming;
(i) dim X" /X = oc. 0

The following result is a consequence of Cauchy’s integral formula and can
be found in [K, p. 139]. It will be extended to the case wh#rds simply
separating in Sect. 3.

Theorem 1.3 Let {2 C C be open andf : 2 — X be locally bounded.
Assume that there exists a norming subspacef X’ such thatp o f is
holomorphic for allp € W. Thenf is holomorphic.

Our aim is to show that the assumption of local boundedness in Theo-
rem 1.3. cannot be omitted. For this we need the following definition.
We say, a subspaé® of X’ determines boundednessf every sequence

(1), In X such thatup |¢(z,,)| < coforall ¢ € W is bounded. In other
neN
words, W determines boundedness if and only if evefyX, W)-bounded

subset ofX is norm bounded.

Remark 1.4a) If W C X' determines boundedness, th&his norming.

b) W = X’ determines boundedness by the uniform boundedness principle.
c) f X =Y andW =Y C X', thenWW determines boundedness.

d) Let X = L(E,F) , E,F Banach spaces. Théif = FE ® F’ (the

1 We are grateful to Dirk Werner for this reference.
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algebraic tensor product) determines boundedness. Here we consider the
duality (z @ ¢/, T) = (Tz,y) (x € E,y € F', T € L(E,F)).

e) Assume tha¥ is continuously embedded into a Banach sp&dge.,

X C Zand||z||z < const-||z| x forallz € X).LetW = {¢|x : p € Z'}.
ThenV determines boundedness if and onlifs closed inZ (i.e.| |z
defines an equivalent norm dY). This is easy to see.

f) Let X = /P, 1 < p < oo, W the set of all finitely supported sequences.
ThenWV is norming but does not determine boundedness.

g) LetX = LP(2) (1 < p < o0), 2 C RY open. The spac€,(2)

of all continuous functions with compact support is norming but does not
determine boundedness.

h) LetX = C[0,1],thenW =lin {4, : t € [0,1]} C X'isalmostnorming,

but does not determine boundedness.

Let 2 ¢ Cbeopen. LelV ¢ X' andf : 2 — X such thatpo f is
holomorphic for allp € W. If W determines boundedness, then it follows
from Theorem 1.3 thaf is holomorphic. The following main result of this
section shows that for this conclusion, the hypothesis Wiadetermines
boundedness, is also nesessarylBy- {z € C : |z| < 1} we denote the
unit disc.

Theorem 1.5 Let X be a Banach space ard” a subspace o’ which
does not determine boundedness. Then there exists a furfctibh— X
which is not holomorphic such thato f is holomorphic for allp € .

Proof. Consider the segments

, 1
Ly =re™? . — <r<1
k {re o = r s }
k = 1,2--- and open neighborhood§ of L, such thatV; N V; = 0 for
i # jand such that \ (L, U (D \ V%)) is connected. By Runge’s theorem
[Ru, 13.7, p. 290] there exist polynomigfs such that

|fe(2)| >k (2 € Ly)
1

| fr(2)] < = (z €D\ Vi) .

Letby, = sup |fx(2)].
j21<1

Assume thatV does not determine boundedness. Then thereexist
X such that

sup |p(zn)| < oo forall ¢ € W
neN
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but lim Hxn” = oo. Taking a subsequence, if necessary, we can assume

thatz

Since forallp € W,

ek

< co. Definef : D — X by f(z ka

kaH Hfﬂkl!

1)

bi. —
< -sup [p(zx)| (2 € D),
2]l ken

HwkH

the functiony o f is holomorphic ori.

On the other hand, choosg € L, such thasclim 2z = 0. Then
—00

1 (ze)ll = [ fi(zk)] Zf;

=1

Thusklim | f(z)|| = co. Consequentlyf is not continuous . 0
—00

e JH

As animmediate consequence of Theorem 1.5 and Example 1.4 e) we obtain
the following

Theorem 1.6 Let X be a Banach space which is continuously embedded
into another Banach spacg. If X is not closed inZ, then there exists a
function f : D — X which not holomorphic, such thgt : D — Z is
holomorphic.

Theorem 1.6 is due to I. Globevnik [G] for the cade= (¥ , Z =
4 1 < p < q < oo and to Wrobel [Wr] for the general case, however
with a more complicated proof.

Remark 1.7In Theorem 1.6 the spac&can be replaced by a&chet space
(and this is also proved by Wrobel [Wr]). In fact, lat be continuously
injected into a Fechet space&. Assume thaiX ist not closed ir?, i.e., the
norm of X is not continuous ot¥. Let {p; : k = 1,2---} be a sequence
of continuous seminorms af defining the topology of. Then for each
n € N there existsr,, € X such that|z,| > n butpg(z,) <1, k =
1,2---n.Lety € Z'. Then there exist € N, ¢ > 0 such thatp(z)| <
¢ max pi(z). It follows thatsup\go(xn)\ < co. HenceW := {¢|x : ¢ €

Z'} ¢ X'is not determlnmg boundedness (). By Theorem 1.5, there
exists a non-holomorphic functigh: D — X suchthatyo f is holomorphic
forall p € W = Z'. Thusf is holomorphic considered as a function with
values inZ (by Jarchow [J, p. 362]). a
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If in Theorem 1.3 we omit local boundedness we have seerytlsano
longer holomorphic in general. However, the following result, which is in-
spired by Osgood’s theorem [R2, p. 130] shows hiatalways holomorphic
on a dense open set.

Theorem 1.8 Let (2 C C be open and : {2 — X be a function such that
¢ o f is holomorphic for allp € W, wherel¥ C X’ is an almost norming
subspace. Then there exists a dense open suhset (2 such thatf is
holomorphic on(2,.

Proof. We can assume that

[zl = sup{le(@)] : o € W, flof| <1} .

Then the function| f(-)|| : £2 — R is lower semicontinuous as supremum
of continuous functions. In particular, the sets

Ap ={z € Q:[f(2)] <n}

are closedn € N). SincelJ,, .y An = 2, it follows from Baire’s theorem
thatforevery: € 2, r > OsuchthatD(z,r) C 2there existsi(z,r) € N

such thal, , := D(z,r)N jn(w);é (). Thus, the unior2, of all such sets
U., is open and dense if?. Moreover, since fow € U, , | f(w)] <
n(z,r), the functionf is locally bounded o2, It follows from Theorem 1.3
that f is holomorphic inf2. a

2 Tauberian convergence theorems

In this section we consider sequences of holomorphic functions which con-
verge on a subset of a domaih We look for additional properties which
ensure convergence on the entire domain. Such results are of Tauberian type
(eventhough their Abelian counterpartis trivial in this case: it is the assertion
that convergence of2 implies convergence on a subset gt An important
example is Vitali's theorem, where subsets admitting a limit poinRiare
considered and local boundedness is a possible additional property. In the
scalar case, it seems that, so far, the easiest proof of Vitali's theorem is given
with help of Montel's theorem (see the proof in [R2, p. 129] and the histor-
ical remarks [R2, p. 138]). However, Montel's theorem does no longer hold
in the vector-valued case if the underlying Banach space is infinite dimen-
sional. It is surprising that Vitali’s theorem is still valid. In fact, Lindés

(quite technical) direct proof goes through and is presented in the vector-
valued case in Hille-Phillips [HP, p. 104 - 105]. Here we give an easy direct
proof based on Theorem 1.3 and the uniqueness theorem (Theorem 2.2).
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It is remarkable that this functional analytic proof uses vector-valued holo-
morphic functions even in the scalar case. The classical result is known for
sequences. For the application in Sect. 3 we formulate it more generally for
nets.

Theorem 2.1 (Vitali) Let (2 be an open, connected subsefotet(f;);cs

be a net of holomorphic functions o with values inX which is locally
bounded (i.e., for alk € (2 there exists a neighborhood on whigch);c; is

bounded).

Then the following assertions are equivalent.

(i) The net(f;(z));er converges uniformly on all compact subset$Xdb
holomorphic functiory : 2 — X;

(i) theset(2) := {z € £ : lim f;(z) existg has an accumulation point in
12,

(iii) there existszy € (2 such thatim fi(k)(zo) exists for allk € N.

For the proof we need the following uniqueness result which is an immediate
consequence of the classical theorem.

Theorem 2.2 (Uniqueness Theorem).et(? C C be a connected open set
and letf : 2 — X be holomorphic. Let” ¢ X be a closed subspace.
Assume that

(a) theset2y = {z € 2: f(z) € Y} has an accumulation point if?; or
(b) there existsg € 2 such thatf*)(z,) € Y forall k = 0,1,2....

Thenf(z) € Y forall z € (2.

Proof. If Y = {0}, this follows from the Hahn Banach theorem and the
classical uniqueness result. In the general case, apply this remark fo
whereq : X — X/Y is the quotient mapping. O

Proof of Theorem 2.1 (i-(i). Define F' : 2 — (>°(I,X) by F(z) =
(fi(2)),;- It follows from Theorem 1.3 thak’ is holomorphic. The space
¢ = {(Yi),e;, € £°(,X) : limy; existg is closed in¢>(/, X) and
F(z) € cforall z € £2. It follows from the Uniqueness Theorem 2.2 that
F(z) e cforall z € £2. Thusf(z) = lim f;(2) exists for allz € (2.

Notice that®(y) = limy; (y = (v:),., € ¢) defines a bounded operator

@ from cinto X. It follows that f = ®oF : {2 — X is holomorphic.

It follows from Cauchy’s integral formula that every locally bounded
family of holomorphic functions is equicontinuous on every compact subset
of {2 (see e.g.[Ru, 14.6, formula (3)]) so that convergence is uniform on
each compact subset &£
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(i) = (i). We defineF' as before. Then the hypothesis implies that
F®)(z) € cforall k = 0,1,.... Thus, by the uniqueness Theorem 2.2,
F(z) € cforall z € £2. The implication (i)=- (ii) is trivial. With help of
Cauchy’s integral formula one sees that (i) implies (iii). O

One immediately deduces the following restricted version of Montel’s the-
orem from Theorem 2.1.

Corollary 2.3 Let(f,), .y be alocally bounded sequence of holomorphic
functions defined on an open, connected subiset C with values inX.
Assume that

(a) there exists € {2 such that the se{fflk)(zo) : n € N} is relatively
compact inX for all k € N;

or

(b) the setfy := {z € 2 : {fn(2) : n € N} is relatively compact inX }
has an accumulation point if?.

Then there exists a subsequence which converges to a holomorphic function
uniformly on compact subsets Gf

Proof. In the casga), by a diagonalization argument, one finds a subse-
quence( fy,, )men such that li_r>n f,S'f,?(zo) exists for allk € N.

In the caséb) one takes a sequencts,), ., converging inf2, and finds (by
a diagonalization argument) a subsequence such ]ﬁl_n}at fr,, (z1) €Xists

forall k € N.

In both cases, it follows from Theorem 2.1 thd,, ), ., converges uni-
formly on compact subsets ¢f to a holomorphic function. O

In a way similar to the proof of Theorem 2.1 one obtains the following
vector-valued version of Blaschke’s convergence theorem [R2, p. 129] using
Blaschke’s identity theorem [R2, 4.3.2] or [Du, p. 18].

Theorem 2.4 Let( f,,),en be abounded sequence of holomorphic functions
defined on the unit disB with values inX. Leta; € D (j € N) such that

> (1 —laj]) = oo. Assume thatli_>m fn(a;) exists for allj € N. Then

=1 n—o0

(fn),en CONverges to a holomorphic function uniformly on each compact
subset ob. 0

From the identity theorem [R2, 4.3.4 (b), p. 88] we deduce in a similar
way the following:

Corollary 2.5 Letf2 = {z € C : Rez)0} and let(f,)nen be a bounded
sequence of holomorphic functions defined’bwith values inX. Assume
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that

Jim (k)
exists for allk € N. Then(f,),., converges to a holomorphic function,
uniformly on all compact subsets ©f

3 Locally bounded functions

In this section we prove positive counterparts to Theorem 1.5 and 1.6 for
locally bounded functions. Moreover, we consider holomorphic extensions
of functions. We first establish an improvement of Theorem 1.3. Recall that
a subsetV of X' is calledseparatingif for everyz € X\{0} there exists

¢ € W such thatp(z) # 0. In the following, 2 C C is open andX is a
Banach space.

Theorem 3.1 Let f : {2 — X be alocally bounded function such that f
is holomorphic for allp € W whereWW c X’ is separating. Therf is
holomorphic.

Proof. LetH = {p € X' : ¢ o f is holomorphi¢. ThenH is a subspace
of X’ containinglV'. It follows thatH iso (X', X) —dense. LeH; = {p €
H : |l¢|| < 1}. It follows from Vitali's theorem thatf; is o(X', X) —
closed. Now the Kreirsmulyan theorem [S, IV.6] or [P, p. 73] implies
that H is o(X’, X) — closed. ThusH = X’ and the claim follows from
Theorem 1.3. O

Remark 3.2In virtue of the maximum principle, the assumption of local
boundedness in Theorem 3.1 can be relaxed in the following wayf Let
2 — X be afunction such that o f is holomorphic for allp € W, where
W is separating. Assume that for everyc (2 there exists a compact set

K C {2 such that e[o{ (the interior of K') and f is bounded oK . Then
f is holomorphic.

In fact, keeping the notation of the proof above, by the maximum prin-
ciple, the family{p o f : ¢ € H;} is locally bounded. So we can apply
Vitali's theorem. 0

Remark 3.3 (Fechet spacesY-heorem 3.1 remains valid X is a Féchet
space. In fact, the Krei@mulyan theorem remains true in that case [S, p.
152] and a function is holomorphic if it is weakly holomorphic [J, p. 362].
See Grosse-Erdmann [GE] for further information concerning holomorphic
functions with values in a locally convex space.

Corollary 3.4 LetY be a Banach space anfl: Y — X a bounded,
injective, linear operator. Lef : {2 — Y be alocally bounded function. If
j o fis holomorphic, thery is holomorphic.
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Proof. The spacdV = j'X’ is separating. So the result follows from
Theorem 3.1. O

Corollary 3.4 is formulated as an open problem by Wrobel [Wr] in 1982.

A very complicated proof of Corollary 3.4 as well as Theorem 3.1 is pre-
sented by Grosse-Erdmann [GE]. He also gives a detailed account and many
interesting references on the history of vector-valued functions.

Frequently, it is easy to show that a given vector-valued holomorphic
function has weak holomorphic extensions. It is useful to have a criterion
which allows one to deduce strong holomorphic extensions from this. Some
very general results of this kind are proved by Gramsch [Gral], [Gra2] for
locally convex spaces. Here we give a simple result on Banach spaces
whose proof is based on the Uniqueness Theorem 2.2 again.

Theorem 3.5 Let 2 C C be open and connected. Ldt C (2 be a set
having a limit point inf2 and letf : A — X be a function such that o f
has a holomorphic extension @ for all ¢ € W, whereW is a closed
almost norming subspace &f. Thenf has a holomorphic extension from
0 into X.

We need an auxiliar result whose proof is based on the Banach Steinhaus
theorem. ByX™* we denote the algebraic dual &f.

Lemma 3.6 Let X be a Banach space, and I&t ¢ C be open and con-
nected. Let : 2 — X* beo(X*, X) holomorphic. Assume that the set
A={z€ 2:h(z) € X'} has alimit point in{2. Thenh(z) € X' for all

z € Aandh : 2 — X' is holomorphic.

Proof. Let zp € {2 such that there exist, € A, 2z, # 2z, hm ZE = 20-

Let )0 such thatD(zg,r) := {z € C: |z — 2| < 1} C !2 We show
that D(zp,7) C A. Using that(? is connected, by a standard argument this
implies thatf? = A.

Since(x, h(-)) is holomorphic on? for all z € X, there exist,, € X*
such thatz, h(z)) = > (z,a,)(z — 20)" forall z € D(zy,7), x € X.

n=0

We show by induction that,, € X’ for all m € N. Letm = 0. Since

h(z) € X' andklim (x,h(zk)) = (x,a0) forallz € X, it follows from the
—00

Banach Steinhaus theorem thgte X’. Now letm € N such that:,, € X’
foralln =0,1,...,m—1.Let(z, f(2)) = > (x,an)(z—20)" ™ (z €
D(zg,r)). Thenf : D(zp,r) — X*is a()f*,X)-holomorphic. Forz €

D(zp,r) one has(z, f(z)) = (z — z0)""™{(z, h(2)) — 7;0<$7an>(z —
zp)"} forall x € X. Thusf(z;) € X' forall k£ € N. Siﬁce<x,am> =
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kli_)n;(x, f(zx)) forallz € X, itfollows from the Banach Steinhaus theorem
thata,, € X'. O
Proof of Theorem 3.5.For 2/ € W there exists a unique holomorphic
function b, : 2 — C such thath,/(z) = (f(z),2') for z € A. Thus
hy (z)is linear inz’ € W; i.e. there existsh : 2 — W* such that
(h(z),2") = hy(z) forall z € 2, 2/ € W. Sinceh(z) € X ¢ W'
for all z € A, it follows from the lemma thak(z) € W’ for all z € (2.
Thush : 2 — W’ is holomorphic. SinceX is a closed subspace o’
(via evaluation) andi(z) € X for z € A, it follows from the uniqueness
theorem (Theorem 2.2) thatz) € X forall z € (2. 0

If the spacéV is not complete one has to impose a norm condition. The
following corollary is an extension of Theorem 3.1.

Corollary 3.7 Let(? C C be open and connected. L&tC (2 have a limit
pointin {2 and leth : A — X be a function. Assume that there exist 0
and a separating subspad® of X’ such thaty o h has a holomorphic
extensiont,, : {2 — Cfor all ¢ € W such that

3.1 [Ho(z)] <cllell  (peW, ze).

Thenh has a holomorphic extension @ with values inX.

Proof. Let F' = {¢ € X' : there exists a holomorphic extensiéh, of
poh}. ThenF is a subspace ok’ containinglV. ThusF' is (X', X)-
dense. Let; = {p € F': ||¢|| < 1}. It follows from Vitali’s theorem that
Fy is o(X', X)-closed. ThugF is closed by the Kreirsmulyan theorem.
We have proved that' = X’. Now the claim follows from Theorem 3.5

Corollary 3.8 LetY be a Banach space continuously embedded xto
Let f : 2 — X be holomorphic. Assume that for eacke (2 there exists
an open bounded set C {2 such that: € w, @ C 2, f(v) € Y forall
v € dw, and sup || f(v)||, < co. Thenf(z) € Y forall z € 2and f is

veEJw

holomorphic if it is considered as a function with valuegin

Proof. By the maximum principle we can use Corollary 3.7 with =
{V%y’:(p S )(/} cY'. O

Corollary 3.9 Let (S, X, 1) be a measure spaceé,< p,q < oo. Let f :
2 — LP := LP(S, X, 1) be holomorphic. Assume that for eack (2 there
exists an open bounded setc C suchthat: e w, @ C 2, f(v) € L?
forallv € Owandsup ||f(v)],, < oco. Thenf(z) € Liforall z € £2and

vEIw

£ is holomorphic as a mapping with valuesiA.
Proof. Apply Corollary 3.8 toX = LP + LY andY = L9. a
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4 Boundary Tauberian convergence theorems

In the theorems of Vitali type considered in Sect. 2 it was assumed that a
sequence of functions converges in a small set in the interior of the domain
in order to deduce convergence on the entire domain. Here we consider as
hypothesis convergence on a small subset of the boundary. We use the same
simple method as in Sect. 2. In Sect. 5 another approach will be presented
which leads to more general results in the sense that less control on the
growth close to the boundary is demanded.

For simplicity we restrict ourselves to the unit diBcIn the following
X denotes a Banach space. We need some preparation before formulating
the theorem. Lef € H'(D, X) ; i.e., f : D — X is holomorphic and

Oiuglf(f” | f(re?®)||dd < oo. By B we denote the Borel algebra on the

torusT = dD. There exists a vector measure 5 — X such that

(4.1) f) = [ P0dutt)  (zeD)
whereP, (t) = ——112 ___ (z = re! | t = ¢i) is thePoisson kernel

1—2r cos(f—a)+12
(see [Du, p. 2] for the scalar case and [BuD], [BI] for the vector-valued
case). We call: a vector measure representing’. One says thak has the
analytic Radon Nikodym property (ARN property, for short), if for each
f € H'(D, X) there existsp € L*(T, X) such thapu(A4) = [, ¢(t) dm(t)
for all A € B (wherey is the vector measure representﬁgla (4 1) and
dm denotes the normalized Lebesgue measur&)oin that case,

“.2) 1) = [ POe®yamv)  (zeD)
and

4.3) o(t) = };Hi f(rt) (teTae.)
as well as

(4.4) hm/Hf (rt) — (1) dm(t) = 0.

We callp theboundary function of f and setf(t) = ¢(t) (t € T).

All LP—spaceg1 < p < oo) and all reflexive Banach spaces have the
ARN property, but the spacg (of all sequences converging @ does not.
A Banach lattice has the ARN property if and only:if # X (see [BuD]).

Definition 4.1 Let f € H'(D, X) and letS C T be a Borel set of positive
measure. We say thgt has a boundary function onS if there exists a
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functiony € L(S, X) such thatlim JIf(rt) —o(@)|| dm(t) = 0. Inthat
T—r S

case we calp theboundary function of f on.S and setf(t) = ¢(t) (t €
S).

Lemma 4.2 Let f € H'(D, X) be represented by a vector measpreia
(4.1). LetS € B have positive Lebesgue measure and assumefthas a
boundary function orb. Then

- / £(t) dm(t)
A

forall A € Bsuchthatd c S.

Proof. Recall that in the scalar case the Poisson meai#$ converge to the

functiong € L*(T) for the norm ofZ!(T) and almost everywhere as— 1.

Applying this tog = 14 we obtain ford € B, lin% Jr Pre(s)1a(t) dmi(t)
T—

= 1im fT s(8)14(t)dm(t) = 14(s) for almost alls € T. Moreover,
}fT ¢(s)1a(t)dm(t)] <1 (s € T).NowletA € B, A C S.Usingthe

domlnated convergence theorem, Fubini’s theorem and applying the above
remark top o f, we obtain forp € X',

(W(A) go_hm// rt(8)1a(t) dm(t) dp(s), @)

r—1

:ALH%/T/TPrt(S)dW(S),go)lA(t) dm(t)

= lim T(f (rt), p)1a(t) dm(t)

r—1

:/(f(t),go)lA(t) dm(t) = </f(t) dmi(t) | s@>-
T 4

Sincep € X' is arbitrary, this proves the claim. O

Now we can prove the following boundary Tauberian convergence the-
orem.

Theorem 4.3 Let (f,,)nen be a sequence of holomorphic functionsldn
with values inX. Assume that

27

(4.5) sup /sup | fn(re®)]|df < oo
0<r<ty) neN

Assumethatforalh € N | f,, hasaboundaryfunctiononaBorelset- T
of a positive measure. Then, if the sequence of boundary functions converges
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in L1(S, X), then the sequendgf,,(2)),en converges i uniformly on
compact subsets db. In particular, if ILm fn = 0in LY(S, X), then

ILm fn(z) = 0 uniformly on compact subsetsbf

Proof. Notice that by Cauchy’s integral formula, condition (4.5) implies
that the sequence is locally bounded. Wed&t( X') be the space of all
bounded sequences with valuesXhandc(X) the subspace of all con-
vergent sequences. L&Y z) = (fn(z))nen. It follows from Theorem 3.1
that F € HY(D, EOO(X)) Letu B —> (X)) be a measure represent-

ing F ; ie F(z) = [p P (z € D). For A € B we have
w(A) = (un(A))neN e €°O(X) Thenun is an X-valued measure on
B and fn = ;P dun (t) (= € D). It follows from Lemma 4.2
that ., (A fA fn(t)dm(t) wheneverA € B, A C S. The assump-

tion |mpI|es thatu(A) € c( )forall A € B W|th A C S. Now let
e (0°(X )) be afunctional vanishing oe(X). Theny o F € H*(D)
and (¢ o F)(z) = [;P.(t)d(¢ o p)(t) for z € D. Then by Lemma
4.2., for A e B A C S S o F)(t)dt = ¥(u(A)) = 0. Thus
(Yo F)(t) =0a.e.onS. It foIIows from the scalar boundary uniqueness
theorem (see [Du, p. 17] or Corollary 5.5. below) thiat F'(z) = 0 for all

z € D. Now the Hahn-Banach theorem implies ttf&t:) € ¢(X) for all

z € D. ad

Remark 4.4If in Theorem 4.3 no boundary function exists one may assume
that (1., (A))nen converges forall € B, A C S, wherep, is a measure
representing,,, and the same conclusion holds.

5 Vector-valued Khinchin-Ostrowski theorems

In this section we complete the idea to use the uniqueness phenomena to
establish “Tauberian convergence theorems” by vector-valued analogues of
the classical Khinchin Ostrowski theorem, see [Pr], Sect. 2 of Chap. 2. A
theorem of this kind is already proved in Sect. 4 above, namely Theorem 4.3.
Here we give sharper results using some versions of Jensen’s inequality for
vector-valued functions. The main difference between Theorem 4.3 and the
approach of this section is that now we will work with more general (weaker)
boundary growth conditions, as well as with a weaker type of boundary
limits. The latter is particularly important for applications to operator valued
functions, because, typically, in spectral theory, the boundary functions do
not exist for the norm convergence. On the other hand, they frequently exist
for the weak operator topology (WOT). This is why we start this section
introducing some notions concerning locally convex spaces.

Basic notation.In what follows, we consider a vector spacendowed with
a weak topology = o(X, W) generated by a s&¥ of linear forms onX,
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which separateX’. In particular,X can be a Banach space and c X’.
By aseminorm generated by X, W) we mean a function of the form

q(z) = qu(z) = sup{|(z,9)| : ¢ € w},

which is supposed to be finite for alle X, wherew C W is a subset oiV.
The strong topologyo = so(X, W), generated by (X, W), corresponds
to the family of all finite seminormsg,,.

In particular, ifXis a Banach space, afid C X' is a norming subspace,
thenso (X, W) is the usual norm topology o.

Denote byHol(D, X) = Hol,(D, X) the vector space ak- valued
functions onD which areso (X, W) locally bounded and (X, W) holo-
morphic. The above theory (Theorem 3.1) implies that every such function
fis holomorphic in the strong topology (X, W'). We endowH ol (D, X)
with the topology of uniformso (X, W) convergence on compact subsets
of the discD . We always suppose that

(H1) X is boundedly sequentialty( X, W) completei.e. if (z,,)n>1 iS
bounded inso (X, W) and the limitdim,, (z,, ) exist for allp € W, then
there exists € X such that x = (o) — limy, zp,.

For acountably generated Vih the sense that
(H2) W is separable with respect to the strong topolog§X6fso)’,

these conditions guarantee the existence almost everywhéfeobweak
o (X, W)-boundary valuegradial or angular)

£(t) = Tim f(rt)

for any so (X, W)-bounded functiory € Hol,(D, X). For instance, this

is the case for the space of bounded linear operators L(Y, Z) from a
separable Banach spa¥¢o a weakly sequentially complete Banach space
Z with separable dual spac¢€ endowed with the weak operator topology
o(X,W),whereW = {y@: y eV, ¢ € Z'}and(T,y1) = (Ty, )
forT € L(Y, Z).

In what follows, we consider vector-valued Hardy and Nevanlinna
classes iD; basic references for these are [SzNF] and [RR], and for cor-
responding scalar classes [D], [Pr] and [Z]. Namé&ly(D, X) denotes the
weak Hardy space of all functionse Hol,(D, X) such that f(-), ¢)) €
HP (D) foreveryp € W,andHP? (DD, X) stands for the (strong) Hardy space
ofall f € Hol,(ID, X') such that

sup /rq(f(rt))pdm(t) < 00

0<r<1
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for all ¢ € so(X,W). Similar notations are used for Nevanlinna classes
N,(D,X) and N(D,X), and for Smirnov classesV; (D, X) and
NT(D, X), respectively. For instance, the first one is defined as the vec-
tor space of all functiong € Hol, (D, X) satisfying

N = sup [ Tog® [(F(0) 9)ldm(t) < oc
0<r<1JT

for everyp € W, andN;H (D, X) consists of all functiong € N, (D, X)

such that

i [ log® [((r0) @) ldm() = [ log® (0. 2)ldmi)
r—1 T T

for everyp € W. See [Pr] and [Z] for properties of scalar Nevanlinna and

Smirnov classes. Note that

N((F, sup / (£, )ldm(®) = I1KFC), @l

0<r<1

and hencéi5 (D, X) c N, (D, X) for everyp > 0. By the strong Nevan-
linna classV (D, X) we mean the space of functioffse Hol,(D, X)
satisfying

N = swp [ log" o(7(rt)ldm(®) <o
0<r<1J7T
for everyq € so(X, W), andN* (D, X) = N(D, X) NN (D, X)

Clearly, the above conclusion on the existence of the boundary function
is true for functions from% (D, X') and A, (D, X) (the latter space is the
largest one).

Now, we make some remarks on boundary functions in the case of a
Banach spac&. Namely, it is easy to see from Banad@teinhaus type
arguments, that fof € N (D, X), boundary limitsf (¢t) = lim,_,1 f(rt)
exist a.e. orf for the stronger topology (X, W),whereW stands for the
norm closure of¥ in X’. For instance, consideX = L(Y, Z) endowed
with the WOT topology, i.ec(X, W), whereW is the set of finite rank
operatorsA € L(Z,Y), A= Y (-, 2, )yr 2, € Z', yr, € Y acting on
L(Y, Z) by the usual trace duality,

n

(T,A) = Trace(TA) = Y (Typ,2;) -
k=1
Then, forf € N(D, X), the limits f (¢) = lim,_,; f(rt) exists (under the
above hypotheses ohandZz) not only for the WOT topology, but also for
the ultra weako (X, S1(Z,Y")) operator topology.
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In what follows, we always suppose hypothe@d$) and(H2).
We start with the following version of Jensen’s inequality.

Lemmab5.1 Letf € NS (D, X), andq € so(X,W). Then,

(5.1) log [ £(2), )| < / P.(#) log [ £(£), o dm(t)

for everyz € D andy € W, where P, stands for the Poisson kernel,
P.(t) = (1 —|z|*)/|]1 — 2t|* fort € T. Moreover,

(5.2) log(q / P, (t)log(q(f(t))dm(t) for everyz € D .
Finally, for every compact subsét C D there exists a constaxix such

that

og(q(f(2)))

5.3) iCK'M )+ fo Pa(t) log(q(f(£)))dm(t)

Cr-N(qof) + Supteslog(Q(f(t)))
for allit = € K and all measurable subsetsc T .

Proof. First observe, thaf(t), ¢t € T always means the weak boundary
value as defined above. In order to prove (5.1) take W and apply the
scalar Jensen inequality to the functior> (f(z), ), z € D.
Next we show (5.2). For any = ¢, € so(X,W)andy € w C W, we
obviously have(f(t), »)| < q(f(t)), and hence

log [(f(2), )l < /T P(t)log(q(f(t)))dm(t).

Passing to the supremum over @l w, we obtain the inequality.
Finally we prove (5.3). Let = ¢, andyp € w. From previous inequalities,
we have

oz (/). 0 < [ P08 70, plam(t)
+ [ POLogF0) plam(
< /T  PAD 08K (), dm(e)
n /S P (1) log(q(f(t))dmi(t)
< Cic [ 1o (7(0). 9)iim(t) + sup log(a( (1),

tesS
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wherez € D andCk = sup{P,(t): z € K, t € T}. Since

/ log™ (f(t), pdm(t) < sup / log™ [(f(rt), p)dm(t)
T T

0<r<1

< sup /T log™ g(f(rt))dm(t) = N(go f)

0<r<1
for everyy € w, we obtain the claimed inequality. O

Remark 5.20f course, we also have

log (f(2), p)l < Ok -N({f,9) + St)gglog (f(2), @)

foreveryz € K andyp € W.

Corollary 5.3 Let X be a Banach space and Iét ¢ X’ be norming. Let
feNS(D, X)foroc= o(X,W).Then

log [ f(2)]| < /TPz(t)logllf(t)\dm(t)

and
log | f(2)]| < Cx -N(|fO)I) + itelglogllf(t)!\

for everyz € Kand every measurable subsedf T. O

Corollary 5.4 If f € NJF(D, X) and f(t) = 0OonasetS C T of positive
Lebesgue measure, th¢gn= 0. a

Khinchin - Ostrowski type theorems.Now, we apply vector-valued Jensen
inequalities to prove "boundary Tauberian convergence theorems”. For
scalar-valued functions, they are known as theorems of Khin€bstrowski
type. The classical KhinchirOstrowski theorem says the following. Let
S C T be a closed subset of the unit cirle, m(S) > 0, and letf,, be
polynomials such thatup,, N'(f,,) < oo andlim,, f,(¢) = 0 uniformly on
S; thenlim,, f,,(z) = 0 uniformly on compact subsets of the diBc, see
[Pr], Sect. 7 of Chap. 2, for the proof.

The following vector-valued version of the Khinchi@strowski theo-
rem is almost immediate from Lemma 5.1.

Theorem 5.5 Let X andso (X, W) be as above (see Basic notation), and
S cT, m(S) > 0. Letf, € N;F (D, X) be functions such that

(i) sup, N(qo fn) < oo for everyg € so(X, W), and assume that
(if) the boundary valuesf,(t)),>1 converge everywhere on S for the strong
so (X, W) topology.
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Then, there exist§ € Hol,(D, X) such thatlim,, f,(z) = f(z) for
the so (X, W) topology uniformly on compact subsets of the disc

The same is true if we replace the strong topology by, 1) weak
topology everywhere.

Proof.If necessary, replacirfgby a smallerset’ C S, withm/(S’) > 0and
using the (scalar) Egorov theorem, we can assumé fhé&t),,>1 converges
uniformly on S.

Applying Lemma 5.1, we obtain

log(q(fn(2) = fm(2))) < Ck -N(go fn+qo fm))
+§t€1§ log(q(fn(t) — fin(1)))

for z € K, K being a compact subset Bf Hence( f,,(z))»>1 is a Cauchy
sequence for theo (X, W) topology, and so, has alimjt(z) = lim f,(z)
in X (completeness follows froifiH1) of theBasic notatiorabove). Clearly,
the limit is uniform on compact subsets, and helfice Hol,(D, X). O

Remarks 5.6Theorem 5.5 remains valid if boundedness of thgDD, X)
norm is assumed instead of boundedness of the Nevanlinna characteristics
Wi(go fn).

Moreover, convergence to the zero function holds true under the follow-
ing hypothesis which is weaker théi)

liT{n[glog(qofn)dm(t) = —00

for everyq € so(X, W).

It is also worth mentioning that, for scalar functions, there exist very
advanced generalizations of the Khinchistrowski theorem. Namely, the
growth of f,, can be controlled by a given majoranfinstead of conditioii)
of Theorem 5.5), but, in turn, the nowhere dense close8 skould satisfy
a kind of finite A- entropy hypothesis; see [Kh] for exhausting results. These
results also can be generalized to vector-valued functions.

For other comments see Remarks 5.11 and 5.13, and Examples 5.14
5.19 below.

Distance inequalities and membership in a subspacélow, we consider
some applications of Lemma 5.1Xovalued functions which approximate

a given closed subspade C X. In a sense, the point is to project the
above results to the quotient spak¢E, and conversely, to consider their
liftings from X/ E to X. The difficulty is that for many interesting examples,
asE =cC X =1®0orE = 8. C X = L(Y,Z) (see Examples
below), the subspade is noto (X, W) closed. In this general setting, we
are unable to prove a complete analogue of Lemma 5.1. However, we prove
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a (more rough) version of it, sufficient for many examples and sufficient to
derive the Khinchin-Ostrowski type convergEnce theorem, and the boundary
unigueness theorem (see 5.8, 5.9, 5.10 and 5.12 below).

We start with a simple situation, where the complete analogue of the
preceding theory exists for quotients. Namely, consider the following hy-
pothesigH3),

(H3) Eis ac(X, W) closed subspace of a Banach space X, ahd £+
is a norming forX/E.

Recall that, as usual, we identify the dual spak¢ £')’ with the annihi-
lator E+ = {¢ € X': ¢|E = 0}. Theo(X, W) closedness dE implies
that¥ N E+ is separating foX / E. Particular cases where hypothesis (H3)
is satisfiedare the following:

a) W = X', Eis an arbitrary closed subspace of a Banach spaseich
that assumption@H1) and(H2) are satisfied). Particular cases are:

b) Xisaseparable reflexive Banach sp&tis,an arbitrary closed subspace;

c) Xis a dual spaceX = (X.), W = X,, andEis ac(X, X.) closed
subspace oX; in particular,

d X = L(Y,Z), whereY, Z are two Hilbert spacedy = X, =
S1(Z,Y) the predual space of trace class operators,Eigdan ultra
weak (i.e.o (X, W)) closed subspace of

Lemmab5.7 Let E C X be a pair satisfying the hypotheses (H1JH3),
andf € NS (D, X). Then,

log(dist(f /P ) log(dist(f(t), E))dm(t)

for everyz € D, wheredist(z, E) = infyeg|z — v
Moreover, for every compact subd€tC D there exists a constadty
such that

log(dist(f(2), £)) < Cr - N([[f()])
/ P.(t) log(dist(£(1), E))dm(?)
< Cr -N(IFOID) + Suplog(dlst(f() E))

for all z € K and all measurable subsetsc T.
Proof. By hypothesigH3),
dist(x, E) = [|z|x/5 = sup{|(z, @) : v € W; ©|E =0; [l¢] < 1}.

Now, the lemma follows from Lemma 5.1 applied to the quotient space
X/FE instead ofX, and to the projection dfto X/ E instead off. 0
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As in the case of the whole spa¥ewe can derive the following corol-
laries.

Corollary 5.8 Let f € N, (D,X) and [} log(dist(f(t), E))dm(t) =
—o00. Thenf(z) € E forall z € D. 0

Theorem 5.9 Let X, E be spaces satisfying (H3) and ketC T be a
measurable set such that(S) > 0. Letf,, € N/ (D, X) such that:

(i) sup, N([[fn(-)]l) < oo, and
(i) lim, dist(f,(¢), E) = 0 almost everywhere on S.

Then, there exis},, € Hol, (D, E) such thatim,,(f,(z) — gn(z)) =0
uniformly on compact subsets of the disgin particular, lim,, f,(z) = 0if
E = {0},andasubsequence(gf,),>1 convergestoalimy € Hol(D, E)
if dimFE < oc.

Proof. By Lemma 5.7 lim,, dist(f,,(z), £) = 0 uniformly on compact
subsets of the dis® . By a Gleason theorem [GI] applied to the canonical
map~ : X — X/FE, there exist functiong,, € Hol, (D, F) such that

sup || fn(2) = gn(2)|| < Ck - sup [[fu(2)|lx/E
zeK zeK

for every compact sék’ ¢ ID. The main assertion follows.
The last property is a consequence of the Montel theorem applied to

(gn)nzl- a

Approximation property. Now, our aim is to adapt the preceding results to
obtain uniqueness and convergence theorems for some cases not fitting into
the above hypotheses, like=c C X =[*0orE =S, C X = L(Y, 2).

To this end, we need the following hypothesis:

(H4) X is a Banach space, and E its closed subspace satisfying the fol-
lowing approximation property: there exists a bounded sequéhigh, >
of linear operatorsT,, € £(X), such thatl,, X ¢ E, T)W c W and
lim,, | T,z — x| = 0 foreveryz € E.

Observe that, in particular, eveff}, of hypothesis(H4) is o(X, W)
continuous. Hypothesi@4) is verified if there exists a projection ono
which iso (X, W) continuous. For several examples and applications see
below.

Theorem 5.10 Let X and E satisfy (H4), and le&f ¢ T be measurable
such thatn(S) > 0. Let f,, € N7 (D, X) be functions satisfying

() sup, N(|[fu()]]) < o0, and
(i) fn|S is separable-valued aniim,, dist(f,(t), £) = 0 almost every-
where on S.
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Then, the conclusions of Theorem 5.9 hold true.

Proof. Using the notation ofH4), we observe that,, f, € N, (D, X)
and(T. f»)(t) = Tn(fn(t)) a.e.. Applying Lemma 5.1 t&y, f,, — fn, we
obtain

log | T (fn(2)) — fu(2)ll < /TPz(t) log | Ton fn () = fu(t)[dm(t).

The restrictiond;,|.S being separable-valued are limits of step functions,
and hence satisfy Lusin’s theorem: there exists a closed stibset.S of
positive measure such that ¢JJ|.S” are norm continuous. By a theorem of
R.Bartle and L.Graves [BG] applied to the surjective projectianX —
X/ E, there exist continuous functiops : S’ — X, and a constamt > 0
such that

ho(t) =t fu(t) —gn(t) € E
fort € S, and

lgn (@)l < A - dist(fu(t), E)
fort e S'.
Sincelim,, dist(f,(t), E) = 0, t € S"andlim,y, | T;nhn(t) — b (t)| =
0, t € S’, by Egorov’s theorem, we can choose a subset of positive measure
S” < S’ such that all these limits are uniform &tf. Hence, we obtain

(5‘4) an(t) - Tmfn(t)H < th(t) - Tmhn(t)H + ||(I_Tm)gn(t)||

forall n, m andt € S”.

Now, we takes > 0 andN such thatlist(f,(t), E) < e fort € S” and
n > N.Then, forevery, takem = m(n)suchthaf|T,,hn,(t)— hn(t)|| < €
fort € S”. DenotingB = sup,, ||T:.||, we obtain

[T fa(t) = fu)l <e+ (1+B)A-€

fort € S”. We finish the proof as in Lemma 5.1: choose a compact D
and an appropriate constafif;, and write

log [T (fa(2)) — fu(2)]
< / Po(t)1og™ [ Ton fu(t) — fult)|dmi(t)
T\S"

+ [ P08 T fult) = Fu0)dm(t)
< Cx(1+ B)N(||f()]l) + log(e+ A(1+ B)e).

SinceT,, X C E, thisimplieslog(dist(f,(z), E)) < const+ log(e+
A(1+ B)e) for z € K, n > N and for an appropriate constant. This means
thatlim,, dist(f,(z), E) = 0 uniformly on compacts.



Vector-valued holomorphic functions 801

The rest of the proof is the same as for Theorem 5.9. O

Remarks 5.11sing (5.1) in a similar way, we can obtain the following
“Jensen inequality”: giverf € N.F (D, X) with separable boundary values
f(t), t € T, and a compack” C D, there exists a consta@t(depending
onK, N(||f(-)||) andA, B of the preceding proof only) such that

log(dist(f(z), F)) < C + /Pz(t) log(dist(f(t), E))dm(t)
T
forz € K.

Moreover, using the welknown fact that forf € A+ (D, X) the func-
tionst — log™ ||f(rt)||, 0 < r < 1 form an equipotentially absolutely
continuous family (in particular, this is the casefit H'(D, X); see [Pr]
and [Z], Ch.7 for the scalar case), we can derive the same inequality but
with a constanC depending on A and B only.

Corollary 5.12 Let X, E be spaces satisfying (H4) and letc T be a
measurable set such that(S) > 0. Letf € N, (D, X) be a function,
which is separable-valued on S such tlfgt) € E for all t € S. Then,
f(z) € E foreveryz € D.

In fact, settingf,, = f for everyn, we obtain from the theorem
dist(f(z), ) = Oforall z € D. 0

Remarks 5.13Remarks similar to 5.6 are valid in the context of Theo-
rem 5.10 and Corollary 5.12 as well. Let us also mention that Theorem 5.10
and Corollary 5.12 do not imply any convergencé&tor the membership in

E, f(t) € E, on the rest of the boundatyc T\ S. Of course f(t) € E for

anyt € T for which the radial limit exists in a stronger sense, namely for
the same topology, for which is closed; see below for several examples.

Examples and counterexampl&¥e start with a few general remarks on
possible applications of the theorems above. First of all, we observe the
following: the weaker is the topology for which boundary values exist, the
more interesting could be applications of Khinchin-Ostrowski type theo-
rems, especially in their quotient form of 5.5.9 and 5.10. On the other
hand, the most important source of vector-valued holomorphic functions is
probably spectral theory, in its both settings, the general Banach algebra and
Banach space setting. In these theories, holomorphic functions are usually
operator valued, and the existence of boundary values for the norm conver-
gence ofL(X,Y) is arare exception. On the other hand, WOT artlDT
boundary values exist, for example, for any bounded, or even Nevanlinna
holomorphic function on any separable Hilbert space.

Thus, we can say that consequences of the preceding theorems based
on axiom(H4), and hence on norm closed subspdeesd wealks (X, W)
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boundary values, are more rare than those based on gk8jnwhere the
subspacé& is closed for the same topology, which is used for obtaining the
boundary values. And, of course, counterexamples of the type presented in
5.14 and 5.15 below are impossible under hypoth@$®.

Below, Examples 5.145.17 are of the first kind, that is based @i4),
and Example 5.18 is of the second one.

Example 5.14 Bounded and convergent sequehetsy = [*°, £ = ¢
(or E = ¢p), andI¥ be the set of finitely supported sequencedfoe= 1!).
Verifying axiom (H4), we can take a$%;, the standard truncation operators
Thr =ywithy, = z, 1 < k< nandy, = GLIM(x) for k > n,
whereG L1 M stands for the Banach generalized limit of a sequene€™.

Applying Corollary 5.12, we obtain the following (scalar) Khinchin-
Ostrowski theoremif f = (f,).>1 IS a sequence of scalar holomorphic
functions,f,, € N (D), such that

/ log™ (sup | fu(rt)|)dm(t) < const
T n

forall 0 < r < 1, andif(f,(t))n>1 converges fot € S, whereS C Tis
measurable satisfyingu(S) > 0, then(f,,(z))n>1 converges for alk € D
(andlim, f,(z) = 0for all z € Dif lim,, f,(¢t) = 0forall ¢ € S). 0

It is worth mentioning that applying directly Theorem 5.5 we obtain the
same conclusion under the weaker hypothesis, [, log™ | fn(rt)|dm(t)
< const. Moreover, the same is true, of course, for vector-valued functions
fn € N;(D, X), see Theorem 5.5 above.

CounterexampleCorollary 5.12 (or Theorem 5.10) does not imply any par-
ticular behaviour of boundary functions on the complementary part of the
boundaryT\ S. Indeed, take outer functiornf$ with moduli

1
’fn| = XT\S + EXSa

whereS C T is a non trivial arc of T. Thenf = (f,)n>1 € H®(1™),
lim,, f,,(t) = 0 for ¢t € S, and hencéim,, f,(z) = 0 for z € D (which
is also obvious from a direct computation), Bt (¢)| = 1 for all n and
t e T\S. 0

Example 5.15Bounded and compact operators. Lét = L(Y, Z) and

E = Sx(Y, Z), the ideal of compact operators, whére Z are Banach
spaces. Assume thatsatisfies the classical countable approximation prop-
erty: there exists a sequence of finite rank operatyrs 7 — Z such
thatlim,, P,u = u forallu € Z. SettingT},(A) = P,A, A€ L(Y, Z), we
obtain propertyH4) for the WOT and U WOT topologies onX.
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Consequentlyevery N (D, £(Y, Z)) function whose WOT boundary
limits are compact on a subsstC T of positive Lebesgue measure, takes
compact values in the unit di§e . In general, this is not the case for the
rest of the boundary values ah\ S, see a counterexample below. O

Having in mind convergence and uniqueness theorems similar to 5.7
5.9and 5.10, 5.12, itis curious to recall that for the case of Hilbert spaces
Z, every functionf € H>*(L(Y, Z)) is a bordered resolvent of an operator.
By this we mean the following consequence of model theory (see [SzNF]):
there exist contractive operatads B, C' on corresponding Hilbert spaces
and a constant > 0 such that

f(2) = £(0) + X\zA(I — 2B)"'C foreveryz € D.

CounterexampleA simple construction of a counterexample mentioned
above is already contained in the previous subsection 5.14. Indeed, we can
interpret a bounded sequence as a diagonal operator on thel$psigeh

an operator is compact if and only if the sequence tends to zero. Hence,
taking f € H°°(1>°) from the previous counterexample, we get a bounded
operator-valued holomorphic function whoes WOT boundary valueS on
are compact (as well as the valuedlijy but which are unitary off'\ S . It

is curious to note, that a special paper [Y] is devoted to a quite complicated
construction of a counterexample of this kind. a

Example 5.16 Multipliers and small multiplielsnother possibly interest-
ing example represents the pair of spadés= Mult(FLP) and E =
mult(FLP), that is the spaces of all Fourier multipliers and small Fourier
multipliers onL?. Refering to [H] and [BS], recall thap € Mult(LP(R™))

if |FtoFgl, < Clgl, for g € So, i.e. for every compactly supported
smooth functiong on R”; the best possibl€ is the multiplier norm of

. By definition,p € mult(LP(R™)) if ¢ is approximable for the multi-
plier norm by functionsp,, € Sy, n > 1. Appropriate modifications of
these definitions exist for every commutative locally compact group instead
of R™. Recall that forp = 1 andp = oo one hasMult = M(R™) (all
bounded complex Borel measures®t), mult = L'(R™), and forp = 2,
Mult = L*(R™), mult = Co(R™).

As is well known, see [H] (and also [N1] for the case of the group
7), the Fegr averages of Fourier transforms (or Fourier series for the case
of a discrete group) are contractive operatorsXon= Mult(LP(R™)).
Hence, these averages converge to the fungtitiand only if p € E =
mult(LP(R™)). Here conditior(H4) is satisfied, withw (X, W) standing for
the WOT topology ofM ult(LP(R™)).

Hence, Corollary 5.12 is applicabié;f € N (D, Muit(L(R™))) and
f(t) € mult(LP(R™)) for t € S, whereS C T is a measurable subset of
positive measure, thef(z) € mult(LP(R™)) for z € D. 0
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Example 5.17 Continuity at a pointet K be a metric spacey a locally
finite Borel measure oK, andpy € supp(u). Further, letX = L*>°(K, u),
W =LY (K, u)andf € N5 (D, X), sothatf = f(z, p) is a function of two
variables o) x K. If there exists a measurable subsetC T of positive
measure such that the boundary valyés, -) are continuous at a point
for t € S, then the same continuity holds for dl(z, ), z € D.

Indeed, taking a®& C L°°(K, u) the subspace of all functions contin-
uous atpg, we only need to check hypothegis$4) (and then apply Corol-
lary 5.12). To this end we set

_ 1
(Bn)

forp € B, = {p: dist(p,po) < 1/n}, andT,, f(p) = f outside ofB,,.
Clearly, T}, € L(L>®(K,n)), |T|| = 1 andlim,, T, f = f if (and only if)
fek.

The other requests gH4) are obvious. a

Tof(p) = : fdu

Itis clear that we can also obtain continuity on akgtC K (applying
the above reasoning point by point fag € Kj). In particular, this gives
another proof for a partial case of Example 5.k6= Ko =T, u = m.

Example 5.18 Triangular, Toeplitz, Hankel, and other operatbere, we
choose as subspade C L(I?) in 5.7- 5.12 one of the following sets:

the set of all bounded operators Brhaving 1) lower (respectively, upper)
triangular matrices; 2) Toeplitz matrices; 3) Hankel matrices. We can add,
E = { A}, the commutator of a given set of operatotsc L(Y, Z). All

these subspaces are WOT closed, and hence satisfi3). A particular

case is (d). In all these cases, counterexamples similar to above 5.14 and
5.15 are impossible: if () € E on a set of positive Lebesgue measure,
thenf(t) € Eforallt € T.

Example 5.19 Radical and Volterra operato@ne further consequence of
the preceding theory is related to radicals of commutative Banach algebras.
Namely, letX be a commutative Banach algebra and assume&ikstadical.

Itis norm closed, and in the case when we can verifi4)- we can apply

5.10 and 5.12.
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