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Abstract. LetΩ ⊂ C be open,X a Banach space andW ⊂ X ′. We show
that everyσ(X,W )-holomorphic functionf : Ω → X is holomorphic if
and only if everyσ(X,W )-bounded set inX is bounded. Things are different
if we assumef to be locally bounded. Then we show that it suffices that
ϕ ◦ f is holomorphic for allϕ ∈ W , whereW is a separating subspace of
X ′ to deduce thatf is holomorphic. Boundary Tauberian convergence and
membership theorems are proved. Namely, if boundary values (in a weak
sense) of a sequence of holomorphic functions converge/belong to a closed
subspace on a subset of the boundary having positive Lebesgue measure,
then the same is true for the interior points ofΩ, uniformly on compact
subsets. Some extra global majorants are requested. These results depend
on a distance Jensen inequality. Several examples are provided (bounded
and compact operators; Toeplitz and Hankel operators; Fourier multipliers
and small multipliers).

Mathematics Subject Classification (1991):46G20

0 Introduction

Vector-valued holomorphic functions are very useful, for example, in the
theory of one-parameter semigroups or in spectral theory. But even for prov-
ing theorems about scalar-valued holomorphic functions, it is sometimes a
useful trick to consider functions with values in a Banach space (we give
two examples in Sect. 2).
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In practice, one does not verify holomorphy of a vector-valued function
by checking the property of the definition. It is much easier to prove weak
holomorphy, in most cases. Our first goal is to investigate how weak the def-
inition of holomorphy is allowed to be in order to imply strong holomorphy.

More precisely, letΩ ⊂ C be a non-empty open set,X a Banach space
and letW be a norming subspace ofX ′. Letf : Ω → X be a function such
thatϕ ◦ f is holomorphic for allϕ ∈ W . If f is locally bounded, then it is
well-known thatf is holomorphic. In the first part of this paper we investigate
what happens iff is not assumed to be locally bounded. First of all we show
thatf is still holomorphic on a dense open subset ofΩ (Theorem 1.8). If
W has the property that everyσ(X,W )-bounded subset is norm bounded,
thenf is automatically locally bounded and hence holomorphic. IfW does
not have this property the main result of Sect. 1, Theorem 1.5, shows that
there always exists a non-holomorphic functionf : Ω → X such thatϕ ◦ f
is holomorphic for allϕ ∈ W . Our argument also yields a short proof of
the following result due to Wrobel [W]: WheneverY is a Banach space and
j : X → Y is a linear continuous injection such thatj(X) is not closed,
then there existsf : Ω → X such thatj ◦ f is holomorphic butf is not.

In a second part of the paper we give a short proof of Vitali’s theorem,
based on the uniqueness theorem and the weak characterization of vector-
valued holomorphic functions mentioned above. Notice that the vector-
valued version of Vitali’s theorem plays an important role in semigroup
theory (see e.g. [AEH, Theorem 4.2] or [O, Theorem 2.4]). In contrast to
the scalar case, it cannot be derived from Montel’s theorem (which is not
valid in infinite dimension), and, so far, there is only a quite complicated
proof by Hille-Phillips [HP, Theorem 3.14.1]. Our argument gives a series
of (vector-valued) Vitali’s theorems, each-one corresponding to a unique-
ness theorem for holomorphic functions. In Sect. 3 we use Vitali’s theorem
to improve considerably the criterion mentioned above: A locally bounded
functionf : Ω → X is holomorphic wheneverϕ ◦ f is holomorphic for
all ϕ ∈ W , whereW ⊂ X ′ separatesX. This had been formulated as an
open problem by Wrobel [Wr]. A complicated proof of this fact is given by
Grosse-Erdmann [GE].

In Sect. 4 we use the same technique which leads to Vitali’s theorem
to prove a boundary Tauberian convergence theorem: A bounded sequence
of holomorphic functions on the disc converges on the disc whenever the
boundary functions converge on a subset of positive measure of the torus.

Various more general versions of this theorem are proved in Sect. 5,
where we use a direct method (instead of the short quotient-method used
before). Some restriction of the growth near the boundary is needed. The
natural condition is described by the Nevanlinna norm. In the scalar case
the classical prototype of the results we obtain is the Khinchin-Ostrowski
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theorem [Pr, II.7.1]. Omitting some technical details (for instance some
extra hypotheses (H1)- (H4) in Section 5), the results can be described as
follows. Considering a subspaceE ⊂ X and supposing that it is closed
for the same weak topologyσ(X,W ), for which a Smirnov class function
f ∈ N+(D, X) has boundary limits, we prove a distance Jensen inequality

log(dist(f(z), E)) ≤
∫

T

Pz(t) log(dist(f(t), E))dm(t)

for z ∈ D = {z ∈ C : |z| < 1}. As for the classical Khinchin- Ostrowski
theorem, this implies convergence and membership as mentioned above: if
Smirnov type functionsfn ∈ N+(D, X) with uniformly bounded Nevan-
linna characteristics converge/belong to the space E on a subsetS ⊂ T

of positive Lebesgue measure, then they do the same in the entire unit disc
D. Examples show that, in general, nothing can be said about the boundary
values on the rest of the boundaryT\S.
For many applications (for example, forX= l∞, E = c;X=L(Y,Z), E =
S∞(Y,Z)), the hypothesis that E isσ(X,W ) closed is too restrictive. Re-
placing it by a kind of weak approximation property, we prove the same
convergence and membership theorem (Theorem 5.10). In particular, the
theorem holds for the aforementioned pairsX, E. In fact, stronger theorems
of Khruschev type [Kh] theorems can be proved for vector-valued functions
in a similar way, but here we restrict ourselves to the simple analogue of the
classical Khinchin- Ostrowski theorem.

1 Weakly holomorphic functions

LetX be a Banach space. A subspaceW ofX ′ is calledalmost norming if

qW (x) = sup{|ϕ(x)| : ϕ ∈W , ‖ϕ‖ ≤ 1}
defines an equivalent norm onX; the subspaceW is callednorming if
qW (x) = ‖x‖ for all x ∈ X.

Lemma 1.1 The following are equivalent.

(i) W is almost norming;
(ii) for everyϕ ∈ X ′ there exists a bounded net inW converging toϕ for
σ(X ′, X).

Proof. (i)⇒(ii) . Denote byB andB′ the unit balls inX andX ′, respectively.
We can assume that‖ ‖ = qW ; i.e.,B =W ◦

1 whereW1 =W ∩B′ and◦
denotes the polar with respect to the duality〈X,X ′〉. By the bipolar theorem,

W1
σ(X′,X) =W ◦◦

1 = B◦ = B′.
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(ii) ⇒(i). We have to show that the setH := {x ∈ X : qW (x) ≤ 1} is
norm bounded. Letϕ ∈ X ′. By assumption, there exists a net(ϕi)i∈I inW
such thatc := sup ‖ϕi‖ <∞ andσ(X ′, X)− lim

i
ϕi = ϕ. Thus|ϕ(x)| =

lim
i
|ϕi(x)| ≤ c for all x ∈ H. We have shown thatsup

x∈H
|ϕ(x)| < ∞ for

all ϕ ∈ X ′. By the uniform boundedness principle this implies thatH is
bounded. ��

A subsetW ofX ′ is calledseparatingif for all x ∈ X \{0} there exists
ϕ ∈W such thatϕ(x) �= 0. We discuss this notion in the following remark.

Remark 1.2LetW be a subspace ofX ′.
a)W is separating if and only ifW is σ(X ′, X)-dense inX ′.
b) If W is norm-dense inX ′, thenW is almost norming. This follows

from Lemma 1.1.
c) If W is almost norming, thenW is separating.
d) Assume thatX = Y ′ is a dual space andW ⊂ Y (seen as a subspace

of X ′ by evaluation). Then the following are equivalent:

(i) W is separating;
(ii) W is norm-dense inY ;
(iii) W is almost norming;
(iv) W is norming.

This is immediate from the Hahn-Banach theorem. In particular, ifX is
reflexive, then the four properties: separating, being norm-dense , almost
norming and norming, are equivalent. TakingY non-reflexive andW = Y
we obtain an example of a norming subspace ofX ′ which is not norm-dense.

e) LetX = H∞(D) whereD is the unit disc and letW be the space of
all linear combinations of the Dirac measuresδ1/n (n = 2, 3, · · ·). Then
W is almost norming. In fact,W is separating by the uniqueness theorem.
Moreover, we can identifyH∞(D) with the spaceF = {f ∈ L∞(T) :
f̂(n) = 0 for n = −1,−2, · · ·} = {f ∈ L∞(T) :

∫
T f(z)g(z)dz = 0

for all g ∈ G} whereG is the closed subspace ofL1(T) generated by
the functionen (n = 1, 2 · · ·) , en(z) = z−n. ThusF = E′ where
E = L1(T)/G via the duality〈f, g + G〉 =

∫
T f(z)g(z)dm(z) where

dm(z) is the normalized Lebesgue measure on the torusT. Let gn(z) =
1

z−1/n (n = 2, 3, · · ·). Thengn+G = δ1/n by Cauchy’s integral formula.
ThusW can be considered as a subspace of the predualE of H∞(D) and
the claim follows from d).

f) A separating subspace is not almost norming in general. We give an
example: Letσ ⊂ D be a countable subset of the unit disc whose closure
containsT, which does not carry any non trivial measure orthogonal to
complex polynomialsP and which satisfies
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inf{|bλ(µ)| : λ �= µ, λ, µ ∈ σ} = 0 ,

wherebλ stands for the elementary Blaschke factor,bλ(z) = (λ− z)/(1−
λ̄z). (In fact, it is well-known that there exist evenBlaschke sequencesσ,
that isΣλ∈σ(1 − |λ|) < ∞, satisfying these conditions, see [N2, Chap. 7,
Sect. 3], for example). LetX = %1(σ),X ′ = %∞(σ) andW = P|σ. Then,
the manifoldW is separating: ifx ∈ X and

0 = 〈x, zn〉 = Σλ∈σx(λ)λn

for all n ≥ 0, thenx = 0. To show thatW is not almost norming, observe
that‖f|σ‖X′ = supσ |f | = supT |f | = ‖f‖∞ for every polynomialf ∈ P.
Let xλ,µ ∈ X , xλ,µ = χ{λ} − χ{µ}, whereλ �= µ andλ, µ ∈ σ. Then,

qW (xλ,µ) = sup{|f(λ)− f(µ)| : f ∈ P , ‖f‖∞ ≤ 1} .
By the Schwarz lemma, we have|f(λ)− f(µ)| ≤ |bλ(µ)| · |1− f(λ)f(µ)|,
and henceqW (xλ,µ) ≤ 2|bλ(µ)|. Therefore,inf{qW (xλ,µ) : λ, µ ∈ σ, λ �=
µ} = 0, whereas‖xλ,µ‖X = 2 for all λ �= µ. So, the norms‖ · ‖X andqW
are not equivalent, andW is not almost norming.
h) On a more abstract level, Davis and Lindenstrauss [DL] proved that the
following two assertions are equivalent:1

(i) X ′ contains a separating subspace which is not quasi norming;
(ii) dim X ′′/X = ∞. ��
The following result is a consequence of Cauchy’s integral formula and can
be found in [K, p. 139]. It will be extended to the case whereW is simply
separating in Sect. 3.

Theorem 1.3 LetΩ ⊂ C be open andf : Ω → X be locally bounded.
Assume that there exists a norming subspaceW of X ′ such thatϕ ◦ f is
holomorphic for allϕ ∈W . Thenf is holomorphic.

Our aim is to show that the assumption of local boundedness in Theo-
rem 1.3. cannot be omitted. For this we need the following definition.

We say, a subspaceW ofX ′ determinesboundedness, if every sequence
(xn)n∈N

inX such thatsup
n∈N

|ϕ(xn)|<∞ for allϕ ∈W is bounded. In other

words,W determines boundedness if and only if everyσ(X,W )-bounded
subset ofX is norm bounded.

Remark 1.4a) If W ⊂ X ′ determines boundedness, thenW is norming.
b)W = X ′ determines boundedness by the uniform boundedness principle.
c) If X = Y ′ andW = Y ⊂ X ′, thenW determines boundedness.
d) LetX = L(E,F ) , E, F Banach spaces. ThenW = E ⊗ F ′ (the

1 We are grateful to Dirk Werner for this reference.
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algebraic tensor product) determines boundedness. Here we consider the
duality 〈x⊗ y′, T 〉 = 〈Tx, y′〉 (x ∈ E, y′ ∈ F ′ , T ∈ L(E,F )).
e) Assume thatX is continuously embedded into a Banach spaceZ (i.e.,
X ⊂ Z and‖x‖Z ≤ const·‖x‖X for allx ∈ X). LetW = {ϕ|X : ϕ ∈ Z ′}.
ThenW determines boundedness if and only ifX is closed inZ (i.e.‖ ‖Z
defines an equivalent norm onX). This is easy to see.
f) LetX = %p , 1 ≤ p ≤ ∞,W the set of all finitely supported sequences.
ThenW is norming but does not determine boundedness.
g) LetX = Lp(Ω) (1 ≤ p ≤ ∞) , Ω ⊂ R

N open. The spaceCc(Ω)
of all continuous functions with compact support is norming but does not
determine boundedness.
h) LetX = C[0, 1], thenW = lin {δt : t ∈ [0, 1]} ⊂ X ′ is almost norming,
but does not determine boundedness.

Let Ω ⊂ C be open. LetW ⊂ X ′ andf : Ω → X such thatϕ ◦ f is
holomorphic for allϕ ∈ W . If W determines boundedness, then it follows
from Theorem 1.3 thatf is holomorphic. The following main result of this
section shows that for this conclusion, the hypothesis thatW determines
boundedness, is also nesessary. ByD = {z ∈ C : |z| < 1} we denote the
unit disc.

Theorem 1.5 LetX be a Banach space andW a subspace ofX ′ which
does not determine boundedness. Then there exists a functionf : D → X
which is not holomorphic such thatϕ ◦ f is holomorphic for allϕ ∈W .

Proof. Consider the segments

Lk =
{
reiπ/2k :

1
2k

≤ r ≤ 1
}

k = 1, 2 · · · and open neighborhoodsVk of Lk such thatVi ∩ Vj = ∅ for
i �= j and such thatC \ (Lk ∪ (D \ Vk)) is connected. By Runge’s theorem
[Ru, 13.7, p. 290] there exist polynomialsfk such that

|fk(z)| ≥ k (z ∈ Lk)
|fk(z)| ≤ 1

k2 (z ∈ D̄ \ Vk) .

Let bk = sup
|z|≤1

|fk(z)|.

Assume thatW does not determine boundedness. Then there existxn ∈
X such that

sup
n∈N

|ϕ(xn)| <∞ for all ϕ ∈W
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but lim
n→∞ ‖xn‖ = ∞. Taking a subsequence, if necessary, we can assume

that
∞∑
k=1

bk
‖xk‖ <∞. Definef : D → X by f(z) =

∞∑
k=1

fk(z) · xk‖xk‖ .

Since for allϕ ∈W ,∣∣∣∣fk(z)ϕ(xk)‖xk‖
∣∣∣∣ ≤ bk

‖xk‖ · supk∈N

|ϕ(xk)| (z ∈ D̄) ,

the functionϕ ◦ f is holomorphic onD.

On the other hand, choosezk ∈ Lk, such thatlim
k→∞

zk = 0. Then

‖f(zk)‖ ≥ |fk(zk)| −
∥∥∥∥∥∥
∑
j �=k
fj(zk)

xj
‖xj‖

∥∥∥∥∥∥
≥ k −

∞∑
j=1

1
j2
.

Thus lim
k→∞

‖f(zk)‖ = ∞. Consequently,f is not continuous in0. ��
As an immediate consequence of Theorem 1.5 and Example 1.4 e) we obtain
the following

Theorem 1.6 LetX be a Banach space which is continuously embedded
into another Banach spaceZ. If X is not closed inZ, then there exists a
functionf : D → X which not holomorphic, such thatf : D → Z is
holomorphic.

Theorem 1.6 is due to I. Globevnik [G] for the caseX = %p , Z =
%q 1 ≤ p < q ≤ ∞ and to Wrobel [Wr] for the general case, however
with a more complicated proof.

Remark 1.7In Theorem 1.6 the spaceZ can be replaced by a Fréchet space
(and this is also proved by Wrobel [Wr]). In fact, letX be continuously
injected into a Fŕechet spaceZ. Assume thatX ist not closed inZ, i.e., the
norm ofX is not continuous onZ. Let {pk : k = 1, 2 · · ·} be a sequence
of continuous seminorms onZ defining the topology ofZ. Then for each
n ∈ N there existsxn ∈ X such that‖xn‖ ≥ n but pk(xn) ≤ 1 , k =
1, 2 · · ·n. Letϕ ∈ Z ′. Then there existm ∈ N , c ≥ 0 such that|ϕ(x)| ≤
c max
i=1···m

pi(x). It follows thatsup
n∈N

|ϕ(xn)| < ∞. HenceW := {ϕ|X : ϕ ∈
Z ′} ⊂ X ′ is not determining boundedness (inX). By Theorem 1.5, there
exists a non-holomorphic functionf : D → X such thatϕ◦f is holomorphic
for all ϕ ∈ W = Z ′. Thusf is holomorphic considered as a function with
values inZ (by Jarchow [J, p. 362]). ��
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If in Theorem 1.3 we omit local boundedness we have seen thatf is no
longer holomorphic in general. However, the following result, which is in-
spired by Osgood’s theorem [R2, p. 130] shows thatf is always holomorphic
on a dense open set.

Theorem 1.8 LetΩ ⊂ C be open andf : Ω → X be a function such that
ϕ ◦ f is holomorphic for allϕ ∈W , whereW ⊂ X ′ is an almost norming
subspace. Then there exists a dense open subsetΩ◦ of Ω such thatf is
holomorphic onΩ◦.

Proof. We can assume that

‖x‖ = sup{|ϕ(x)| : ϕ ∈W , ‖ϕ‖ ≤ 1} .
Then the function‖f(·)‖ : Ω → R+ is lower semicontinuous as supremum
of continuous functions. In particular, the sets

An := {z ∈ Ω : ‖f(z)‖ ≤ n}
are closed(n ∈ N). Since

⋃
n∈N
An = Ω, it follows from Baire’s theorem

that for everyz ∈ Ω , r > 0 such thatD(z, r) ⊂ Ω there existsn(z, r) ∈ N

such thatUz,r := D(z, r)∩ ◦
An(z,r) �= ∅. Thus, the unionΩ◦ of all such sets

Uz,r is open and dense inΩ. Moreover, since forw ∈ Uz,r , ‖f(w)‖ ≤
n(z, r), the functionf is locally bounded onΩ◦. It follows from Theorem 1.3
thatf is holomorphic inΩ◦. ��

2 Tauberian convergence theorems

In this section we consider sequences of holomorphic functions which con-
verge on a subset of a domainΩ. We look for additional properties which
ensure convergence on the entire domain. Such results are of Tauberian type
(even though their Abelian counterpart is trivial in this case: it is the assertion
that convergence onΩ implies convergence on a subset ofΩ). An important
example is Vitali’s theorem, where subsets admitting a limit point inΩ are
considered and local boundedness is a possible additional property. In the
scalar case, it seems that, so far, the easiest proof of Vitali’s theorem is given
with help of Montel’s theorem (see the proof in [R2, p. 129] and the histor-
ical remarks [R2, p. 138]). However, Montel’s theorem does no longer hold
in the vector-valued case if the underlying Banach space is infinite dimen-
sional. It is surprising that Vitali’s theorem is still valid. In fact, Lindelöf’s
(quite technical) direct proof goes through and is presented in the vector-
valued case in Hille-Phillips [HP, p. 104 - 105]. Here we give an easy direct
proof based on Theorem 1.3 and the uniqueness theorem (Theorem 2.2).
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It is remarkable that this functional analytic proof uses vector-valued holo-
morphic functions even in the scalar case. The classical result is known for
sequences. For the application in Sect. 3 we formulate it more generally for
nets.

Theorem 2.1 (Vitali) LetΩ be an open, connected subset ofC. Let(fi)i∈I
be a net of holomorphic functions onΩ with values inX which is locally
bounded (i.e., for allz ∈ Ω there exists a neighborhood on which(fi)i∈I is
bounded).

Then the following assertions are equivalent.

(i) The net(fi(z))i∈I converges uniformly on all compact subsets ofΩ to
holomorphic functionf : Ω → X;

(ii) the setΩ0 := {z ∈ Ω : lim
i
fi(z) exists} has an accumulation point in

Ω;
(iii) there existsz0 ∈ Ω such thatlim

i
f

(k)
i (z0) exists for allk ∈ N.

For the proof we need the following uniqueness result which is an immediate
consequence of the classical theorem.

Theorem 2.2 (Uniqueness Theorem).LetΩ ⊂ C be a connected open set
and letf : Ω → X be holomorphic. LetY ⊂ X be a closed subspace.
Assume that

(a) the setΩ0 = {z ∈ Ω : f(z) ∈ Y } has an accumulation point inΩ; or
(b) there existsz0 ∈ Ω such thatf (k)(z0) ∈ Y for all k = 0, 1, 2 . . ..

Thenf(z) ∈ Y for all z ∈ Ω.

Proof. If Y = {0}, this follows from the Hahn Banach theorem and the
classical uniqueness result. In the general case, apply this remark toq ◦ f
whereq : X → X/Y is the quotient mapping. ��
Proof of Theorem 2.1 (ii)⇒(i). DefineF : Ω → %∞(I,X) by F (z) =
(fi(z))i∈I . It follows from Theorem 1.3 thatF is holomorphic. The space
c := {(yi)i∈I ∈ %∞(I,X) : lim

i
yi exists} is closed in%∞(I,X) and

F (z) ∈ c for all z ∈ Ω0. It follows from the Uniqueness Theorem 2.2 that
F (z) ∈ c for all z ∈ Ω. Thusf(z) = lim

i
fi(z) exists for allz ∈ Ω.

Notice thatΦ(y) = lim
i
yi (y = (yi)i∈I ∈ c) defines a bounded operator

Φ from c intoX. It follows thatf = Φ◦F : Ω → X is holomorphic.
It follows from Cauchy’s integral formula that every locally bounded

family of holomorphic functions is equicontinuous on every compact subset
of Ω (see e.g.[Ru, 14.6, formula (3)]) so that convergence is uniform on
each compact subset ofΩ.



786 W. Arendt, N. Nikolski

(iii) ⇒ (i). We defineF as before. Then the hypothesis implies that
F (k)(z0) ∈ c for all k = 0, 1, . . .. Thus, by the uniqueness Theorem 2.2,
F (z) ∈ c for all z ∈ Ω. The implication (i)⇒ (ii) is trivial. With help of
Cauchy’s integral formula one sees that (i) implies (iii). ��
One immediately deduces the following restricted version of Montel’s the-
orem from Theorem 2.1.

Corollary 2.3 Let (fn)n∈N
be a locally bounded sequence of holomorphic

functions defined on an open, connected subsetΩ of C with values inX.
Assume that

(a) there existsz0 ∈ Ω such that the set{f (k)
n (z0) : n ∈ N} is relatively

compact inX for all k ∈ N;

or

(b) the setΩ0 := {z ∈ Ω : {fn(z) : n ∈ N} is relatively compact inX}
has an accumulation point inΩ.

Then there exists a subsequence which converges to a holomorphic function
uniformly on compact subsets ofΩ.

Proof. In the case(a), by a diagonalization argument, one finds a subse-
quence(fnm)m∈N such that lim

m→∞ f
(k)
nm(z0) exists for allk ∈ N.

In the case(b) one takes a sequence(zk)k∈N
converging inΩ0 and finds (by

a diagonalization argument) a subsequence such thatlim
m→∞ fnm(zk) exists

for all k ∈ N.

In both cases, it follows from Theorem 2.1 that(fnm)
m∈N

converges uni-
formly on compact subsets ofΩ to a holomorphic function. ��
In a way similar to the proof of Theorem 2.1 one obtains the following
vector-valued version of Blaschke’s convergence theorem [R2, p. 129] using
Blaschke’s identity theorem [R2, 4.3.2] or [Du, p. 18].

Theorem 2.4 Let(fn)n∈N beaboundedsequenceof holomorphic functions
defined on the unit discD with values inX. Letaj ∈ D (j ∈ N) such that
∞∑
j=1

(1 − |aj |) = ∞. Assume thatlim
n→∞ fn(aj) exists for allj ∈ N. Then

(fn)n∈N
converges to a holomorphic function uniformly on each compact

subset ofD. ��
From the identity theorem [R2, 4.3.4 (b), p. 88] we deduce in a similar

way the following:

Corollary 2.5 LetΩ = {z ∈ C : Re z〉0} and let(fn)n∈N be a bounded
sequence of holomorphic functions defined onΩ with values inX. Assume
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that
lim
n→∞ fn(k)

exists for allk ∈ N. Then(fn)n∈N
converges to a holomorphic function,

uniformly on all compact subsets ofΩ.

3 Locally bounded functions

In this section we prove positive counterparts to Theorem 1.5 and 1.6 for
locally bounded functions. Moreover, we consider holomorphic extensions
of functions. We first establish an improvement of Theorem 1.3. Recall that
a subsetW of X ′ is calledseparating if for everyx ∈ X\{0} there exists
ϕ ∈ W such thatϕ(x) �= 0. In the following,Ω ⊂ C is open andX is a
Banach space.

Theorem 3.1 Letf : Ω → X be a locally bounded function such thatϕ◦f
is holomorphic for allϕ ∈ W whereW ⊂ X ′ is separating. Thenf is
holomorphic.

Proof. LetH = {ϕ ∈ X ′ : ϕ ◦ f is holomorphic}. ThenH is a subspace
ofX ′ containingW . It follows thatH isσ(X ′, X)−dense. LetH1 = {ϕ ∈
H : ‖ϕ‖ ≤ 1}. It follows from Vitali’s theorem thatH1 is σ(X ′, X) −
closed. Now the Krein-̆Smulyan theorem [S, IV.6] or [P, p. 73] implies
thatH is σ(X ′, X) − closed. ThusH = X ′ and the claim follows from
Theorem 1.3. ��
Remark 3.2In virtue of the maximum principle, the assumption of local
boundedness in Theorem 3.1 can be relaxed in the following way: Letf :
Ω → X be a function such thatϕ ◦ f is holomorphic for allϕ ∈W , where
W is separating. Assume that for everyz ∈ Ω there exists a compact set

K ⊂ Ω such thatz ∈ ◦
K (the interior ofK) andf is bounded on∂K. Then

f is holomorphic.
In fact, keeping the notation of the proof above, by the maximum prin-

ciple, the family{ϕ ◦ f : ϕ ∈ H1} is locally bounded. So we can apply
Vitali’s theorem. ��
Remark 3.3 (Fŕechet spaces).Theorem 3.1 remains valid ifX is a Fŕechet
space. In fact, the Krein-S̆mulyan theorem remains true in that case [S, p.
152] and a function is holomorphic if it is weakly holomorphic [J, p. 362].
See Grosse-Erdmann [GE] for further information concerning holomorphic
functions with values in a locally convex space.

Corollary 3.4 Let Y be a Banach space andj : Y → X a bounded,
injective, linear operator. Letf : Ω → Y be a locally bounded function. If
j ◦ f is holomorphic, thenf is holomorphic.
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Proof. The spaceW = j′X ′ is separating. So the result follows from
Theorem 3.1. ��
Corollary 3.4 is formulated as an open problem by Wrobel [Wr] in 1982.
A very complicated proof of Corollary 3.4 as well as Theorem 3.1 is pre-
sented by Grosse-Erdmann [GE]. He also gives a detailed account and many
interesting references on the history of vector-valued functions.

Frequently, it is easy to show that a given vector-valued holomorphic
function has weak holomorphic extensions. It is useful to have a criterion
which allows one to deduce strong holomorphic extensions from this. Some
very general results of this kind are proved by Gramsch [Gra1], [Gra2] for
locally convex spaces. Here we give a simple result on Banach spacesX
whose proof is based on the Uniqueness Theorem 2.2 again.

Theorem 3.5 Let Ω ⊂ C be open and connected. LetA ⊂ Ω be a set
having a limit point inΩ and letf : A→ X be a function such thatϕ ◦ f
has a holomorphic extension toΩ for all ϕ ∈ W , whereW is a closed
almost norming subspace ofX ′. Thenf has a holomorphic extension from
Ω intoX.

We need an auxiliar result whose proof is based on the Banach Steinhaus
theorem. ByX∗ we denote the algebraic dual ofX.

Lemma 3.6 LetX be a Banach space, and letΩ ⊂ C be open and con-
nected. Leth : Ω → X∗ beσ(X∗, X) holomorphic. Assume that the set
A = {z ∈ Ω : h(z) ∈ X ′} has a limit point inΩ. Thenh(z) ∈ X ′ for all
z ∈ A andh : Ω → X ′ is holomorphic.

Proof. Let z0 ∈ Ω such that there existzk ∈ A , zk �= z0 , lim
k→∞

zk = z0.

Let r〉0 such thatD(z0, r) := {z ∈ C : |z − z◦| < r} ⊂ Ω. We show
thatD(z0, r) ⊂ A. Using thatΩ is connected, by a standard argument this
implies thatΩ = A.

Since〈x, h(·)〉 is holomorphic onΩ for all x ∈ X, there existan ∈ X∗

such that〈x, h(z)〉 =
∞∑
n=0

〈x, an〉(z − z0)n for all z ∈ D(z0, r) , x ∈ X.

We show by induction thatam ∈ X ′ for all m ∈ N. Letm = 0. Since
h(zk) ∈ X ′ and lim

k→∞
〈x, h(zk)〉 = 〈x, a0〉 for all x ∈ X, it follows from the

Banach Steinhaus theorem thata0 ∈ X ′. Now letm ∈ N such thatan ∈ X ′

for all n = 0, 1, . . . ,m−1. Let〈x, f(z)〉 =
∞∑

n=m
〈x, an〉(z−z0)n−m (z ∈

D(z0, r)). Thenf : D(z0, r) → X∗ is σ(X∗, X)-holomorphic. Forz ∈
D(z0, r) one has〈x, f(z)〉 = (z − z0)−m{〈x, h(z)〉 −

m−1∑
n=0

〈x, an〉(z −
z0)n} for all x ∈ X. Thusf(zk) ∈ X ′ for all k ∈ N. Since〈x, am〉 =
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lim
k→∞

〈x, f(zk)〉 for all x ∈ X, it follows from the Banach Steinhaus theorem

thatam ∈ X ′. ��
Proof of Theorem 3.5.For x′ ∈ W there exists a unique holomorphic
function hx′ : Ω → C such thathx′(z) = 〈f(z), x′〉 for z ∈ A. Thus
hx′(z) is linear in x′ ∈ W ; i.e. there existsh : Ω → W ∗ such that
〈h(z), x′〉 = hx′(z) for all z ∈ Ω, x′ ∈ W . Sinceh(z) ∈ X ⊂ W ′
for all z ∈ A, it follows from the lemma thath(z) ∈ W ′ for all z ∈ Ω.
Thush : Ω → W ′ is holomorphic. SinceX is a closed subspace ofW ′
(via evaluation) andh(z) ∈ X for z ∈ A, it follows from the uniqueness
theorem (Theorem 2.2) thath(z) ∈ X for all z ∈ Ω. ��

If the spaceW is not complete one has to impose a norm condition. The
following corollary is an extension of Theorem 3.1.

Corollary 3.7 LetΩ ⊂ C be open and connected. LetA ⊂ Ω have a limit
point inΩ and leth : A→ X be a function. Assume that there existc ≥ 0
and a separating subspaceW of X ′ such thatϕ ◦ h has a holomorphic
extensionHϕ : Ω → C for all ϕ ∈W such that

|Hϕ(z)| ≤ c‖ϕ‖ (ϕ ∈W, z ∈ Ω) .(3.1)

Thenh has a holomorphic extension toΩ with values inX.

Proof. Let F = {ϕ ∈ X ′ : there exists a holomorphic extensionHϕ of
ϕ ◦ h}. ThenF is a subspace ofX ′ containingW . ThusF is σ(X ′, X)-
dense. LetF1 = {ϕ ∈ F : ‖ϕ‖ ≤ 1}. It follows from Vitali’s theorem that
F1 is σ(X ′, X)-closed. ThusF is closed by the Krein-̆Smulyan theorem.
We have proved thatF = X ′. Now the claim follows from Theorem 3.5.��
Corollary 3.8 Let Y be a Banach space continuously embedded intoX.
Let f : Ω → X be holomorphic. Assume that for eachz ∈ Ω there exists
an open bounded setω ⊂ Ω such thatz ∈ ω, ω̄ ⊂ Ω , f(v) ∈ Y for all
v ∈ ∂ω, and sup

v∈∂ω
‖f(v)‖Y < ∞. Thenf(z) ∈ Y for all z ∈ Ω andf is

holomorphic if it is considered as a function with values inY .

Proof. By the maximum principle we can use Corollary 3.7 withW =
{ϕ|Y : ϕ ∈ X ′} ⊂ Y ′. ��
Corollary 3.9 Let (S,Σ, µ) be a measure space,1 ≤ p, q ≤ ∞. Let f :
Ω → Lp := Lp(S,Σ, µ) be holomorphic. Assume that for eachz ∈ Ω there
exists an open bounded setω ⊂ C such thatz ∈ ω , ω̄ ⊂ Ω , f(v) ∈ Lq
for all v ∈ ∂ω and sup

v∈∂ω
‖f(v)‖

Lq <∞. Thenf(z) ∈ Lq for all z ∈ Ω and

f is holomorphic as a mapping with values inLq.

Proof. Apply Corollary 3.8 toX = Lp + Lq andY = Lq. ��
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4 Boundary Tauberian convergence theorems

In the theorems of Vitali type considered in Sect. 2 it was assumed that a
sequence of functions converges in a small set in the interior of the domain
in order to deduce convergence on the entire domain. Here we consider as
hypothesis convergence on a small subset of the boundary. We use the same
simple method as in Sect. 2. In Sect. 5 another approach will be presented
which leads to more general results in the sense that less control on the
growth close to the boundary is demanded.

For simplicity we restrict ourselves to the unit discD. In the following
X denotes a Banach space. We need some preparation before formulating
the theorem. Letf ∈ H1(D, X) ; i.e. , f : D → X is holomorphic and
sup

0≤r<1

∫ 2π
0 ‖f(reiθ)‖dθ < ∞. By B we denote the Borel algebra on the

torusT = ∂D. There exists a vector measureµ : B → X such that

f(z) =
∫
T

Pz(t)dµ(t) (z ∈ D)(4.1)

wherePz(t) = 1−r2
1−2r cos(θ−α)+r2 (z = reiθ , t = eiα) is thePoisson kernel

(see [Du, p. 2] for the scalar case and [BuD], [Bl] for the vector-valued
case). We callµ a vector measure representingf . One says thatX has the
analytic Radon Nikodým property (ARN property, for short), if for each
f ∈ H1(D, X) there existsϕ ∈ L1(T, X) such thatµ(A) =

∫
A ϕ(t) dm(t)

for all A ∈ B (whereµ is the vector measure representingf via (4.1) and
dm denotes the normalized Lebesgue measure onT). In that case,

f(z) =
∫

T
Pz(t)ϕ(t) dm(t) (z ∈ D)(4.2)

and
ϕ(t) = lim

r→1
f(rt) (t ∈ T a.e.)(4.3)

as well as

lim
r→1

∫
S

‖f(rt)− ϕ(t)‖ dm(t) = 0.(4.4)

We callϕ theboundary function of f and setf(t) = ϕ(t) (t ∈ T).
All Lp−spaces(1 ≤ p < ∞) and all reflexive Banach spaces have the

ARN property, but the spacec0 (of all sequences converging to0) does not.
A Banach lattice has the ARN property if and only ifc0 �⊂ X (see [BuD]).

Definition 4.1 Letf ∈ H1(D, X) and letS ⊂ T be a Borel set of positive
measure. We say thatf has a boundary function onS if there exists a
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functionϕ ∈ L1(S,X) such thatlim
r→1

∫
S

‖f(rt)−ϕ(t)‖ dm(t) = 0. In that

case we callϕ theboundary function of f onS and setf(t) = ϕ(t) (t ∈
S).

Lemma 4.2 Let f ∈ H1(D, X) be represented by a vector measureµ via
(4.1). LetS ∈ B have positive Lebesgue measure and assume thatf has a
boundary function onS. Then

µ(A) =
∫
A
f(t) dm(t)

for all A ∈ B such thatA ⊂ S.

Proof. Recall that in the scalar case the Poisson meansg∗Pr converge to the
functiong ∈ L1(T) for the norm ofL1(T) and almost everywhere asr → 1.
Applying this tog = 1A we obtain forA ∈ B , lim

r→1

∫
T Prt(s)1A(t) dm(t)

= lim
r→1

∫
T Prs(t)1A(t) dm(t) = 1A(s) for almost alls ∈ T. Moreover,∣∣∫

T Prt(s)1A(t) dm(t)
∣∣ ≤ 1 (s ∈ T). Now letA ∈ B , A ⊂ S. Using the

dominated convergence theorem, Fubini’s theorem and applying the above
remark toϕ ◦ f , we obtain forϕ ∈ X ′,

〈µ(A) , ϕ〉 = lim
r→1

∫
T

∫
T
Prt(s)1A(t) dm(t) d〈µ(s), ϕ〉

= lim
r→1

∫
T

∫
T
Prt(s)d〈µ(s), ϕ〉1A(t) dm(t)

= lim
r→1

∫
T
〈f(rt), ϕ〉1A(t) dm(t)

=
∫

T
〈f(t), ϕ〉1A(t) dm(t) =

〈∫
A

f(t) dm(t) , ϕ

〉
.

Sinceϕ ∈ X ′ is arbitrary, this proves the claim. ��
Now we can prove the following boundary Tauberian convergence the-

orem.

Theorem 4.3 Let (fn)n∈N be a sequence of holomorphic functions onD

with values inX. Assume that

sup
0<r<1

2π∫
0

sup
n∈N

‖fn(reiθ)‖dθ <∞ .(4.5)

Assume that for alln ∈ N , fn hasaboundary functiononaBorel setS ⊂ T

of a positive measure. Then, if the sequence of boundary functions converges
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in L1(S,X), then the sequence(fn(z))n∈N converges inD uniformly on
compact subsets ofD. In particular, if lim

n→∞ fn = 0 in L1(S,X), then

lim
n→∞ fn(z) = 0 uniformly on compact subsets ofD.

Proof. Notice that by Cauchy’s integral formula, condition (4.5) implies
that the sequence is locally bounded. We let%∞(X) be the space of all
bounded sequences with values inX and c(X) the subspace of all con-
vergent sequences. LetF (z) = (fn(z))n∈N. It follows from Theorem 3.1
thatF ∈ H1(D, %∞(X)). Let µ : B → %∞(X) be a measure represent-
ing F ; i.e. F (z) =

∫
T Pz(t)dµ(t) (z ∈ D). For A ∈ B we have

µ(A) = (µn(A))n∈N ∈ %∞(X). Thenµn is anX-valued measure on
B and fn(z) =

∫
T Pz(t)dµn(t) (z ∈ D). It follows from Lemma 4.2

thatµn(A) =
∫
A fn(t) dm(t) wheneverA ∈ B , A ⊂ S. The assump-

tion implies thatµ(A) ∈ c(X) for all A ∈ B with A ⊂ S. Now let
ψ ∈ (%∞(X))′ be a functional vanishing onc(X). Thenψ ◦ F ∈ H1(D)
and (ψ ◦ F )(z) =

∫
T Pz(t)d(ψ ◦ µ)(t) for z ∈ D. Then by Lemma

4.2., forA ∈ B , A ⊂ S ,
∫
A(ψ ◦ F )(t) dt = ψ(µ(A)) = 0. Thus

(ψ ◦ F )(t) = 0 a.e. onS. It follows from the scalar boundary uniqueness
theorem (see [Du, p. 17] or Corollary 5.5. below) thatψ ◦ F (z) = 0 for all
z ∈ D. Now the Hahn-Banach theorem implies thatF (z) ∈ c(X) for all
z ∈ D. ��
Remark 4.4If in Theorem 4.3 no boundary function exists one may assume
that(µn(A))n∈N converges for allA ∈ B , A ⊂ S, whereµn is a measure
representingfn, and the same conclusion holds.

5 Vector-valued Khinchin-Ostrowski theorems

In this section we complete the idea to use the uniqueness phenomena to
establish “Tauberian convergence theorems” by vector-valued analogues of
the classical Khinchin- Ostrowski theorem, see [Pr], Sect. 2 of Chap. 2. A
theorem of this kind is already proved in Sect. 4 above, namely Theorem 4.3.
Here we give sharper results using some versions of Jensen’s inequality for
vector-valued functions. The main difference between Theorem 4.3 and the
approach of this section is that now we will work with more general (weaker)
boundary growth conditions, as well as with a weaker type of boundary
limits. The latter is particularly important for applications to operator valued
functions, because, typically, in spectral theory, the boundary functions do
not exist for the norm convergence. On the other hand, they frequently exist
for the weak operator topology (WOT). This is why we start this section
introducing some notions concerning locally convex spaces.

Basic notation.In what follows, we consider a vector spaceXendowed with
a weak topologyσ = σ(X,W ) generated by a setWof linear forms onX,
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which separatesX. In particular,X can be a Banach space andW ⊂ X ′.
By aseminorm generated byσ(X,W ) we mean a function of the form

q(x) = qw(x) = sup{|〈x, ϕ〉| : ϕ ∈ w},

which is supposed to be finite for allx ∈ X, wherew ⊂ W is a subset ofW.
The strong topologysσ = sσ(X,W ), generated byσ(X,W ), corresponds
to the family of all finite seminormsqw.

In particular, ifX is a Banach space, andW ⊂ X ′ is a norming subspace,
thensσ(X,W ) is the usual norm topology ofX.

Denote byHol(D, X) = Holσ(D, X) the vector space ofX- valued
functions onD which aresσ(X,W ) locally bounded andσ(X,W ) holo-
morphic. The above theory (Theorem 3.1) implies that every such function
f is holomorphic in the strong topologysσ(X,W ). We endowHolσ(D, X)
with the topology of uniformsσ(X,W ) convergence on compact subsets
of the discD . We always suppose that

(H1) X is boundedly sequentiallyσ(X,W ) complete; i.e. if (xn)n≥1 is
bounded insσ(X,W ) and the limitslimn〈xn, ϕ〉 exist for allϕ ∈W , then
there existsx ∈ X such that x = (σ)− limn xn.

For acountably generated W, in the sense that

(H2) W is separable with respect to the strong topology of(X, sσ)′,

these conditions guarantee the existence almost everywhere onT of weak
σ(X,W )-boundary values(radial or angular)

f(t) = lim
r→1
f(rt)

for any sσ(X,W )-bounded functionf ∈ Holσ(D, X). For instance, this
is the case for the space of bounded linear operatorsX = L(Y,Z) from a
separable Banach spaceY to a weakly sequentially complete Banach space
Z with separable dual spaceZ ′ endowed with the weak operator topology
σ(X,W ), whereW = {y⊗ψ : y ∈ Y, ψ ∈ Z ′} and〈T, y⊗ψ〉 = 〈Ty, ψ〉
for T ∈ L(Y,Z).

In what follows, we consider vector-valued Hardy and Nevanlinna
classes inD; basic references for these are [SzNF] and [RR], and for cor-
responding scalar classes [D], [Pr] and [Z]. Namely,Hp

σ(D, X) denotes the
weak Hardy space of all functionsf ∈ Holσ(D, X) such that〈f(·), ϕ)〉 ∈
Hp(D) for everyϕ ∈W , andHp(D, X) stands for the (strong) Hardy space
of all f ∈ Holσ(D, X) such that

sup
0≤r<1

∫
T
q(f(rt))pdm(t) <∞
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for all q ∈ sσ(X,W ). Similar notations are used for Nevanlinna classes
Nσ(D, X) and N (D, X), and for Smirnov classesN+

σ (D, X) and
N+(D, X), respectively. For instance, the first one is defined as the vec-
tor space of all functionsf ∈ Holσ(D, X) satisfying

N (〈f, ϕ〉) =: sup
0≤r<1

∫
T
log+ |〈f(rt), ϕ〉|dm(t) <∞

for everyϕ ∈ W , andN+
σ (D, X) consists of all functionsf ∈ Nσ(D, X)

such that

lim
r→1

∫
T
log+ |〈f(rt), ϕ〉|dm(t) =

∫
T
log+ |〈f(t), ϕ〉|dm(t)

for everyϕ ∈ W . See [Pr] and [Z] for properties of scalar Nevanlinna and
Smirnov classes. Note that

N (〈f, ϕ〉) ≤ sup
0≤r<1

∫
T
|〈f(rt), ϕ〉|dm(t) = ‖〈f(·), ϕ〉‖H1

and henceHp
σ(D, X) ⊂ N+

σ (D, X) for everyp > 0. By the strong Nevan-
linna classN (D, X) we mean the space of functionsf ∈ Holσ(D, X)
satisfying

N (q(f(·))) =: sup
0≤r<1

∫
T
log+ |q(f(rt))|dm(t) <∞

for everyq ∈ sσ(X,W ), andN+(D, X) = N (D, X) ∩N+
σ (D, X)

Clearly, the above conclusion on the existence of the boundary function
is true for functions fromHp

σ(D, X) andNσ(D, X) (the latter space is the
largest one).

Now, we make some remarks on boundary functions in the case of a
Banach spaceX. Namely, it is easy to see from Banach- Steinhaus type
arguments, that forf ∈ N (D, X), boundary limitsf(t) = limr→1 f(rt)
exist a.e. onT for the stronger topologyσ(X,W ),whereW stands for the
norm closure ofW in X ′. For instance, considerX = L(Y,Z) endowed
with the WOT topology, i.e.σ(X,W ), whereW is the set of finite rank
operatorsA ∈ L(Z, Y ), A =

∑n
k=1〈·, z′k〉yk, z′k ∈ Z ′, yk ∈ Y acting on

L(Y,Z) by the usual trace duality,

〈T,A〉 = Trace(TA) =
n∑

k=1

〈Tyk, z′k〉 .

Then, forf ∈ N (D, X), the limitsf(t) = limr−→1 f(rt) exists (under the
above hypotheses onY andZ) not only for the WOT topology, but also for
the ultra- weakσ(X,S1(Z, Y )) operator topology.
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In what follows, we always suppose hypotheses(H1) and(H2).
We start with the following version of Jensen’s inequality.

Lemma 5.1 Letf ∈ N+
σ (D, X) , andq ∈ sσ(X,W ). Then,

log |〈f(z), ϕ〉| ≤
∫

T
Pz(t) log |〈f(t), ϕ〉|dm(t)(5.1)

for everyz ∈ D and ϕ ∈ W , wherePz stands for the Poisson kernel,
Pz(t) = (1− |z|2)/|1− zt|2 for t ∈ T. Moreover,

log(q(f(z))) ≤
∫

T
Pz(t) log(q(f(t))dm(t) for everyz ∈ D .(5.2)

Finally, for every compact subsetK ⊂ D there exists a constantCK such
that

log(q(f(z))) ≤ CK · N (q ◦ f) +
∫
S Pz(t) log(q(f(t)))dm(t)

≤ CK · N (q ◦ f) + supt∈S log(q(f(t)))
(5.3)

for all it z ∈ K and all measurable subsetsS ⊂ T .

Proof. First observe, thatf(t), t ∈ T always means the weak boundary
value as defined above. In order to prove (5.1) takeϕ ∈ W and apply the
scalar Jensen inequality to the functionz �→ 〈f(z), ϕ〉, z ∈ D.
Next we show (5.2). For anyq = qw ∈ sσ(X,W ) andϕ ∈ w ⊂ W , we
obviously have|〈f(t), ϕ〉| ≤ q(f(t)), and hence

log |〈f(z), ϕ〉| ≤
∫

T
Pz(t) log(q(f(t)))dm(t).

Passing to the supremum over allϕ ∈ w, we obtain the inequality.
Finally we prove (5.3). Letq = qw andϕ ∈ w. From previous inequalities,
we have

log |〈f(z), ϕ〉| ≤
∫

T\S
Pz(t) log |〈f(t), ϕ〉|dm(t)

+
∫
S
Pz(t) log |〈f(t), ϕ〉|dm(t)

≤
∫

T\S
Pz(t) log+ |〈f(t), ϕ〉|dm(t)

+
∫
S
Pz(t) log(q(f(t))dm(t)

≤ CK
∫

T
log+ |〈f(t), ϕ〉|dm(t) + sup

t∈S
log(q(f(t)),
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wherez ∈ D andCK = sup{Pz(t) : z ∈ K, t ∈ T}. Since∫
T
log+ |〈f(t), ϕ〉|dm(t) ≤ sup

0≤r<1

∫
T
log+ |〈f(rt), ϕ〉|dm(t)

≤ sup
0≤r<1

∫
T
log+ q(f(rt))dm(t) = N (q ◦ f)

for everyϕ ∈ w, we obtain the claimed inequality. ��
Remark 5.2.Of course, we also have

log |〈f(z), ϕ〉| ≤ CK · N (〈f, ϕ〉) + sup
t∈S

log |〈f(t), ϕ〉|

for everyz ∈ K andϕ ∈W.
Corollary 5.3 Let X be a Banach space and letW ⊂ X ′ be norming. Let
f ∈ N+

σ (D, X) for σ = σ(X,W ). Then

log ‖f(z)‖ ≤
∫

T
Pz(t) log ‖f(t)‖dm(t)

and
log ‖f(z)‖ ≤ CK · N (‖f(·)‖) + sup

t∈S
log ‖f(t)‖

for everyz ∈ Kand every measurable subsetS of T. ��
Corollary 5.4 If f ∈ N+

σ (D, X) andf(t) = 0 on a setS ⊂ T of positive
Lebesgue measure, thenf = 0. ��
Khinchin - Ostrowski type theorems.Now, we apply vector-valued Jensen
inequalities to prove ”boundary Tauberian convergence theorems”. For
scalar-valued functions, they are known as theorems of Khinchin- Ostrowski
type. The classical Khinchin- Ostrowski theorem says the following. Let
S ⊂ T be a closed subset of the unit circleT , m(S) > 0, and letfn be
polynomials such thatsupnN (fn) <∞ andlimn fn(t) = 0 uniformly on
S; thenlimn fn(z) = 0 uniformly on compact subsets of the discD , see
[Pr], Sect. 7 of Chap. 2, for the proof.

The following vector-valued version of the Khinchin- Ostrowski theo-
rem is almost immediate from Lemma 5.1.

Theorem 5.5 LetX andsσ(X,W ) be as above (see Basic notation), and
S ⊂ T, m(S) > 0. Letfn ∈ N+

σ (D, X) be functions such that

(i) supnN (q ◦ fn) <∞ for everyq ∈ sσ(X,W ), and assume that
(ii) theboundary values(fn(t))n≥1 convergeeverywhereonS for the strong
sσ(X,W ) topology.
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Then, there existsf ∈ Holσ(D, X) such thatlimn fn(z) = f(z) for
thesσ(X,W ) topology uniformly on compact subsets of the discD .

The same is true if we replace the strong topology by theσ(X,W ) weak
topology everywhere.

Proof.If necessary, replacingSby a smaller setS′ ⊂ S,withm(S′) > 0and
using the (scalar) Egorov theorem, we can assume that(fn(·))n≥1 converges
uniformly onS.

Applying Lemma 5.1, we obtain

log(q(fn(z)− fm(z))) ≤ CK · N (q ◦ fn + q ◦ fm))
+ sup

t∈S
log(q(fn(t)− fm(t)))

for z ∈ K, K being a compact subset ofD. Hence(fn(z))n≥1 is a Cauchy
sequence for thesσ(X,W ) topology, and so, has a limitf(z) = lim fn(z)
in X (completeness follows from(H1)of theBasic notationabove). Clearly,
the limit is uniform on compact subsets, and hencef ∈ Holσ(D, X). ��
Remarks 5.6Theorem 5.5 remains valid if boundedness of theH1(D, X)
norm is assumed instead of boundedness of the Nevanlinna characteristics
W (q ◦ fn).

Moreover, convergence to the zero function holds true under the follow-
ing hypothesis which is weaker than(ii) :

lim
n

∫
S
log(q ◦ fn)dm(t) = −∞

for everyq ∈ sσ(X,W ).
It is also worth mentioning that, for scalar functions, there exist very

advanced generalizations of the Khinchin- Ostrowski theorem. Namely, the
growth offn can be controlled by a given majorantλ (instead of condition(i)
of Theorem 5.5), but, in turn, the nowhere dense closed setSshould satisfy
a kind of finiteλ- entropy hypothesis; see [Kh] for exhausting results. These
results also can be generalized to vector-valued functions.

For other comments see Remarks 5.11 and 5.13, and Examples 5.14-
5.19 below.

Distance inequalities and membership in a subspace.Now, we consider
some applications of Lemma 5.1 toX -valued functions which approximate
a given closed subspaceE ⊂ X. In a sense, the point is to project the
above results to the quotient spaceX/E, and conversely, to consider their
liftings fromX/E toX. The difficulty is that for many interesting examples,
asE = c ⊂ X = l∞ or E = S∞ ⊂ X = L(Y,Z) (see Examples
below), the subspaceE is notσ(X,W ) closed. In this general setting, we
are unable to prove a complete analogue of Lemma 5.1. However, we prove
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a (more rough) version of it, sufficient for many examples and sufficient to
derive the Khinchin-Ostrowski type convergEnce theorem, and the boundary
uniqueness theorem (see 5.8, 5.9, 5.10 and 5.12 below).

We start with a simple situation, where the complete analogue of the
preceding theory exists for quotients. Namely, consider the following hy-
pothesis(H3),

(H3) E is aσ(X,W ) closed subspace of a Banach space X, andW ∩E⊥
is a norming forX/E.

Recall that, as usual, we identify the dual space(X/E)′ with the annihi-
latorE⊥ = {ϕ ∈ X ′ : ϕ|E = 0}. Theσ(X,W ) closedness ofE implies
thatW ∩E⊥ is separating forX/E. Particular cases where hypothesis (H3)
is satisfiedare the following:

a) W = X ′, E is an arbitrary closed subspace of a Banach spaceX (such
that assumptions(H1) and(H2) are satisfied). Particular cases are:

b) X is a separable reflexive Banach space,E is an arbitrary closed subspace;
c) X is a dual space,X = (X∗)′,W = X∗, andE is aσ(X,X∗) closed

subspace ofX; in particular,
d) X = L(Y,Z), whereY, Z are two Hilbert spaces,W = X∗ =

S1(Z, Y ) the predual space of trace class operators, andE is an ultra-
weak (i.e.σ(X,W )) closed subspace ofX.

Lemma 5.7 LetE ⊂ X be a pair satisfying the hypotheses (H1)- (H3),
andf ∈ N+

σ (D, X). Then,

log(dist(f(z), E)) ≤
∫

T
Pz(t) log(dist(f(t), E))dm(t)

for everyz ∈ D, wheredist(x,E) = infy∈E‖x− y‖.
Moreover, for every compact subsetK ⊂ D there exists a constantCK

such that

log(dist(f(z), E)) ≤ CK · N (‖f(·)‖)
+

∫
S
Pz(t) log(dist(f(t), E))dm(t)

≤ CK · N (‖f(·)‖) + sup
t∈S

log(dist(f(t), E))

for all z ∈ K and all measurable subsetsS ⊂ T.

Proof. By hypothesis(H3),

dist(x,E) = ‖x‖X/E = sup{|〈x, ϕ〉| : ϕ ∈W ; ϕ|E = 0; ‖ϕ‖ ≤ 1}.
Now, the lemma follows from Lemma 5.1 applied to the quotient space

X/E instead ofX, and to the projection off toX/E instead off. ��
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As in the case of the whole spaceX, we can derive the following corol-
laries.

Corollary 5.8 Let f ∈ N+
σ (D, X) and

∫
T log(dist(f(t), E))dm(t) =

−∞. Thenf(z) ∈ E for all z ∈ D. ��
Theorem 5.9 Let X, E be spaces satisfying (H3) and letS ⊂ T be a
measurable set such thatm(S) > 0. Letfn ∈ N+

σ (D, X) such that:

(i) supnN (‖fn(·)‖) <∞, and
(ii) limn dist(fn(t), E) = 0 almost everywhere on S.

Then, there existgn ∈ Holσ(D, E) such thatlimn(fn(z)− gn(z)) = 0
uniformly on compact subsets of the discD ; in particular, limn fn(z) = 0 if
E = {0}, andasubsequenceof(fn)n≥1 converges toa limitg ∈ Hol(D, E)
if dimE <∞.

Proof. By Lemma 5.7,limn dist(fn(z), E) = 0 uniformly on compact
subsets of the discD . By a Gleason theorem [Gl] applied to the canonical
mapπ : X −→ X/E, there exist functionsgn ∈ Holσ(D, E) such that

sup
z∈K

‖fn(z)− gn(z)‖ ≤ CK · sup
z∈K

‖fn(z)‖X/E

for every compact setK ⊂ D. The main assertion follows.
The last property is a consequence of the Montel theorem applied to

(gn)n≥1. ��
Approximation property. Now, our aim is to adapt the preceding results to
obtain uniqueness and convergence theorems for some cases not fitting into
the above hypotheses, likeE = c ⊂ X = l∞ orE = S∞ ⊂ X = L(Y,Z).
To this end, we need the following hypothesis:

(H4) X is a Banach space, and E its closed subspace satisfying the fol-
lowing approximation property: there exists a bounded sequence(Tn)n≥1
of linear operators,Tn ∈ L(X), such thatTnX ⊂ E, T ′

nW ⊂ W and
limn ‖Tnx− x‖ = 0 for everyx ∈ E.

Observe that, in particular, everyTn of hypothesis(H4) is σ(X,W )
continuous. Hypothesis(H4) is verified if there exists a projection ontoE
which isσ(X,W ) continuous. For several examples and applications see
below.

Theorem 5.10 Let X and E satisfy (H4), and letS ⊂ T be measurable
such thatm(S) > 0. Letfn ∈ N+

σ (D, X) be functions satisfying

(i) supnN (‖fn(·)‖) <∞, and
(ii) fn|S is separable-valued andlimn dist(fn(t), E) = 0 almost every-

where on S.
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Then, the conclusions of Theorem 5.9 hold true.

Proof. Using the notation of(H4), we observe thatTmfn ∈ N+
σ (D, X)

and(Tmfn)(t) = Tm(fn(t)) a.e.. Applying Lemma 5.1 toTmfn− fn, we
obtain

log ‖Tm(fn(z))− fn(z)‖ ≤
∫

T
Pz(t) log ‖Tmfn(t)− fn(t)‖dm(t).

The restrictionsfn|S being separable-valued are limits of step functions,
and hence satisfy Lusin’s theorem: there exists a closed subsetS′ ⊂ S of
positive measure such that allfn|S′ are norm continuous. By a theorem of
R.Bartle and L.Graves [BG] applied to the surjective projectionπ : X −→
X/E, there exist continuous functionsgn : S′ −→ X, and a constantA > 0
such that

hn(t) =: fn(t)− gn(t) ∈ E
for t ∈ S′, and

‖gn(t)‖ ≤ A · dist(fn(t), E)
for t ∈ S′.

Sincelimn dist(fn(t), E) = 0, t ∈ S′ andlimm ‖Tmhn(t)− hn(t)‖ =
0, t ∈ S′, by Egorov’s theorem, we can choose a subset of positive measure
S′′ ⊂ S′ such that all these limits are uniform onS′′. Hence, we obtain

(5.4) ‖fn(t)− Tmfn(t)‖ ≤ ‖hn(t)− Tmhn(t)‖+ ‖(I − Tm)gn(t)‖
for all n, m andt ∈ S′′.

Now, we takeε > 0 andN such thatdist(fn(t), E) < ε for t ∈ S′′ and
n > N . Then, for everyn, takem = m(n)such that‖Tmhn(t)−hn(t)‖ < ε
for t ∈ S′′. DenotingB = supm ‖Tm‖, we obtain

‖Tmfn(t)− fn(t)‖ < ε+ (1 +B)A · ε
for t ∈ S′′. We finish the proof as in Lemma 5.1: choose a compactK ⊂ D

and an appropriate constantCK , and write

log ‖Tm(fn(z))− fn(z)‖
≤

∫
T\S′′

Pz(t) log+ ‖Tmfn(t)− fn(t)‖dm(t)

+
∫
S′′
Pz(t) log ‖Tmfn(t)− fn(t)‖dm(t)

≤ CK(1 +B)N (‖fn(·)‖) + log(ε+ A(1 +B)ε).

SinceTmX ⊂ E, this implieslog(dist(fn(z), E)) ≤ const+ log(ε+
A(1+B)ε) for z ∈ K, n > N and for an appropriate constant. This means
thatlimn dist(fn(z), E) = 0 uniformly on compacts.
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The rest of the proof is the same as for Theorem 5.9. ��
Remarks 5.11Using (5.1) in a similar way, we can obtain the following
“Jensen inequality”: givenf ∈ N+

σ (D, X) with separable boundary values
f(t), t ∈ T, and a compactK ⊂ D, there exists a constantC (depending
onK,N (‖f(·)‖) andA, B of the preceding proof only) such that

log(dist(f(z), E)) ≤ C +
∫

T
Pz(t) log(dist(f(t), E))dm(t)

for z ∈ K.
Moreover, using the well- known fact that forf ∈ N+(D, X) the func-

tions t �−→ log+ ‖f(rt)‖, 0 ≤ r < 1 form an equipotentially absolutely
continuous family (in particular, this is the case iff ∈ H1(D, X); see [Pr]
and [Z], Ch.7 for the scalar case), we can derive the same inequality but
with a constantC depending on A and B only.

Corollary 5.12 Let X, E be spaces satisfying (H4) and letS ⊂ T be a
measurable set such thatm(S) > 0. Let f ∈ N+

σ (D, X) be a function,
which is separable-valued on S such thatf(t) ∈ E for all t ∈ S. Then,
f(z) ∈ E for everyz ∈ D.

In fact, settingfn = f for every n, we obtain from the theorem
dist(f(z), E) = 0 for all z ∈ D. ��
Remarks 5.13Remarks similar to 5.6 are valid in the context of Theo-
rem 5.10 and Corollary 5.12 as well. Let us also mention that Theorem 5.10
and Corollary 5.12 do not imply any convergence toEor the membership in
E, f(t) ∈ E, on the rest of the boundaryt ∈ T\S. Of course,f(t) ∈ E for
any t ∈ T for which the radial limit exists in a stronger sense, namely for
the same topology, for whichE is closed; see below for several examples.

Examples and counterexamples.We start with a few general remarks on
possible applications of the theorems above. First of all, we observe the
following: the weaker is the topology for which boundary values exist, the
more interesting could be applications of Khinchin-Ostrowski type theo-
rems, especially in their quotient form of 5.7- 5.9 and 5.10. On the other
hand, the most important source of vector-valued holomorphic functions is
probably spectral theory, in its both settings, the general Banach algebra and
Banach space setting. In these theories, holomorphic functions are usually
operator valued, and the existence of boundary values for the norm conver-
gence ofL(X,Y ) is a rare exception. On the other hand, WOT and U- WOT
boundary values exist, for example, for any bounded, or even Nevanlinna
holomorphic function on any separable Hilbert space.

Thus, we can say that consequences of the preceding theorems based
on axiom(H4), and hence on norm closed subspacesE and weakσ(X,W )



802 W. Arendt, N. Nikolski

boundary values, are more rare than those based on axiom(H3), where the
subspaceE is closed for the same topology, which is used for obtaining the
boundary values. And, of course, counterexamples of the type presented in
5.14 and 5.15 below are impossible under hypothesis(H3).

Below, Examples 5.14- 5.17 are of the first kind, that is based on(H4),
and Example 5.18 is of the second one.

Example 5.14 Bounded and convergent sequences.LetX = l∞, E = c
(orE = c0), andW be the set of finitely supported sequences (orW = l1).
Verifying axiom(H4), we can take asTn the standard truncation operators
Tnx = y with yk = xk, 1 ≤ k ≤ n andyk = GLIM(x) for k > n,
whereGLIM stands for the Banach generalized limit of a sequencex ∈ l∞.

Applying Corollary 5.12, we obtain the following (scalar) Khinchin-
Ostrowski theorem:if f = (fn)n≥1 is a sequence of scalar holomorphic
functions,fn ∈ N+(D), such that∫

T
log+(sup

n
|fn(rt)|)dm(t) ≤ const

for all 0 ≤ r < 1, and if(fn(t))n≥1 converges fort ∈ S, whereS ⊂ T is
measurable satisfyingm(S) > 0, then(fn(z))n≥1 converges for allz ∈ D

(andlimn fn(z) = 0 for all z ∈ D if limn fn(t) = 0 for all t ∈ S). ��
It is worth mentioning that applying directly Theorem 5.5 we obtain the

same conclusion under the weaker hypothesissupn
∫
T log+ |fn(rt)|dm(t)

≤ const. Moreover, the same is true, of course, for vector-valued functions
fn ∈ Nσ(D, X), see Theorem 5.5 above.

Counterexample.Corollary 5.12 (or Theorem 5.10) does not imply any par-
ticular behaviour of boundary functions on the complementary part of the
boundaryT\S. Indeed, take outer functionsfn with moduli

|fn| = χT\S +
1
n
χS ,

whereS ⊂ T is a non- trivial arc of T. Thenf = (fn)n≥1 ∈ H∞(l∞),
limn fn(t) = 0 for t ∈ S, and hencelimn fn(z) = 0 for z ∈ D (which
is also obvious from a direct computation), but|fn(t)| = 1 for all n and
t ∈ T\S. ��
Example 5.15Bounded and compact operators. LetX = L(Y,Z) and
E = S∞(Y,Z), the ideal of compact operators, whereY, Z are Banach
spaces. Assume thatZ satisfies the classical countable approximation prop-
erty: there exists a sequence of finite rank operatorsPn : Z −→ Z such
that limn Pnu = u for all u ∈ Z. SettingTn(A) = PnA,A ∈ L(Y,Z), we
obtain property(H4) for the WOT and U- WOT topologies onX.
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Consequently,everyN+
σ (D,L(Y,Z)) function whose WOT boundary

limits are compact on a subsetS ⊂ T of positive Lebesgue measure, takes
compact values in the unit discD . In general, this is not the case for the
rest of the boundary values onT\S, see a counterexample below. ��

Having in mind convergence and uniqueness theorems similar to 5.7-
5.9 and 5.10, 5.12, it is curious to recall that for the case of Hilbert spacesY,
Z, every functionf ∈ H∞(L(Y,Z)) is a bordered resolvent of an operator.
By this we mean the following consequence of model theory (see [SzNF]):
there exist contractive operatorsA, B, C on corresponding Hilbert spaces
and a constantλ > 0 such that

f(z) = f(0) + λzA(I − zB)−1C for everyz ∈ D .

Counterexample.A simple construction of a counterexample mentioned
above is already contained in the previous subsection 5.14. Indeed, we can
interpret a bounded sequence as a diagonal operator on the spacel2; such
an operator is compact if and only if the sequence tends to zero. Hence,
takingf ∈ H∞(l∞) from the previous counterexample, we get a bounded
operator-valued holomorphic function whoes WOT boundary values onS
are compact (as well as the values inD), but which are unitary onT\S . It
is curious to note, that a special paper [Y] is devoted to a quite complicated
construction of a counterexample of this kind. ��
Example 5.16 Multipliers and small multipliers.Another possibly interest-
ing example represents the pair of spacesX = Mult(FLp) andE =
mult(FLp), that is the spaces of all Fourier multipliers and small Fourier
multipliers onLp. Refering to [H] and [BS], recall thatϕ ∈Mult(Lp(Rn))
if ‖F−1ϕFg‖p ≤ C‖g‖p for g ∈ S0, i.e. for every compactly supported
smooth functiong on R

n; the best possibleC is the multiplier norm of
ϕ. By definition,ϕ ∈ mult(Lp(Rn)) if ϕ is approximable for the multi-
plier norm by functionsϕn ∈ S0, n ≥ 1. Appropriate modifications of
these definitions exist for every commutative locally compact group instead
of R

n. Recall that forp = 1 andp = ∞ one hasMult = M(Rn) (all
bounded complex Borel measures onR

n),mult = L1(Rn), and forp = 2,
Mult = L∞(Rn), mult = C0(Rn).

As is well- known, see [H] (and also [N1] for the case of the group
Z), the Fej́er averages of Fourier transforms (or Fourier series for the case
of a discrete group) are contractive operators onX = Mult(Lp(Rn)).
Hence, these averages converge to the functionϕ if and only if ϕ ∈ E =
mult(Lp(Rn)). Here condition(H4) is satisfied, withσ(X,W ) standing for
the WOT topology ofMult(Lp(Rn)).

Hence, Corollary 5.12 is applicable:if f ∈ N+
σ (D,Mult(Lp(Rn))) and

f(t) ∈ mult(Lp(Rn)) for t ∈ S, whereS ⊂ T is a measurable subset of
positive measure, thenf(z) ∈ mult(Lp(Rn)) for z ∈ D. ��
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Example 5.17 Continuity at a point.Let K be a metric space,µ a locally
finite Borel measure onK, andp0 ∈ supp(µ). Further, letX = L∞(K,µ),
W =L1(K,µ) andf ∈ N+

σ (D, X), so thatf = f(z, p) is a function of two
variables onD ×K. If there exists a measurable subsetS ⊂ T of positive
measure such that the boundary valuesf(t, ·) are continuous at a pointp0
for t ∈ S, then the same continuity holds for allf(z, ·), z ∈ D.

Indeed, taking asE ⊂ L∞(K,µ) the subspace of all functions contin-
uous atp0, we only need to check hypothesis(H4) (and then apply Corol-
lary 5.12). To this end we set

Tnf(p) =
1

µ(Bn)

∫
Bn

fdµ

for p ∈ Bn = {p : dist(p, p0) < 1/n}, andTnf(p) = f outside ofBn.
Clearly,Tn ∈ L(L∞(K,µ)), ‖Tn‖ = 1 andlimn Tnf = f if (and only if)
f ∈ E.

The other requests of(H4) are obvious. ��
It is clear that we can also obtain continuity on a setK0 ⊂ K (applying

the above reasoning point by point forp0 ∈ K0). In particular, this gives
another proof for a partial case of Example 5.16:K = K0 = T, µ = m.

Example 5.18 Triangular, Toeplitz, Hankel, and other operators.Here, we
choose as subspaceE ⊂ L(l2) in 5.7- 5.12 one of the following sets:
the set of all bounded operators onl2 having 1) lower (respectively, upper)
triangular matrices; 2) Toeplitz matrices; 3) Hankel matrices. We can add,
E = {A}′, the commutator of a given set of operatorsA ⊂ L(Y,Z). All
these subspaces are U- WOT closed, and hence satisfy(H3). A particular
case is (d). In all these cases, counterexamples similar to above 5.14 and
5.15 are impossible: iff(t) ∈ E on a set of positive Lebesgue measure,
thenf(t) ∈ E for all t ∈ T.

Example 5.19 Radical and Volterra operators.One further consequence of
the preceding theory is related to radicals of commutative Banach algebras.
Namely, letXbe a commutative Banach algebra and assume thatE its radical.
It is norm closed, and- in the case when we can verify(H4)- we can apply
5.10 and 5.12.
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[H] L. H örmander, Estimates for translation invariant operators inLp spaces, Acta

Math.104(1960), 93–140.
[HP] E. Hille, R.S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc.

Providence, R. I. 1957.
[J] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart 1981.
[K] T. Kato, Perturbation Theory, Springer, Berlin 1980.
[Kh] S.V. Khrushchev (S.V. Hruscev), The problem of simultaneous approximation and

removal of singularities of Cauchy- type integrals. Proc. Steklov Math. Inst.130
(1978), 124–195 (Russian); English transl.: Proc. Steklov Inst. Math.130(1979),
no.4, 133–203.

[N1] N.K. Nikolski, On spaces and algebras of Toeplitz matrices acting onlp, Sibirskii
Math. Zh. (Siberian Math. J.),7:1 (1966), 146–158.

[N2] N.K. Nikolski, Treatise on the Shift Operator, Springer, Berlin 1986.
[O] E. Ouhabaz, Gaussian estimates and holomorphy of semigroups, Proc. Amer.

Math. Soc.123(1995) 1465–1474.
[P] G.K. Pedersen, Analysis Now, Springer, Berlin 1989.
[Pr] I.I. Privalov, Boundary Properties of Analytic Functions, Moscow, 1950 (Russian);

German transl.: Deutscher Verlag, Berlin, 1956.
[R1] R. Remmert, Funktionentheorie 1, Springer, Berlin 1992.
[R2] R. Remmert, Funktionentheorie 2, Springer, Berlin 1992.
[RR] M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory. Oxford Univ.

Press, 1985.
[S] H.H. Schaefer, Topological Vector Spaces, Springer, Berlin 1991.
[SzNF] B. Sz̈okefalvi- Nagy, C. Foias, Harmonic Analysis of Operators on Hilbert Space.

North Holland, NY, 1970.
[Ru] W. Rudin, Real and Complex Analysis, Mc Graw Hill, New York 1987.
[Wr] V. Wrobel, Analytic functions into Banach spaces and a new characterization for

isomorphic embeddings, Proc. Amer. Math. Soc.85 (1982), 539–543.
[Y] D.R. Yafaev, A counterexample to a unicity theorem for holomorphic operator

valued functions. Zapiski (Proc.) Seminarov LOMI,113(1981), 261–263; English
transl.: J. Soviet Math., vol.22 no.6 (1983), 1872–1874.

[Z] A. Zygmund, Trigonometric Series, vol.I, Cambridge Univ. Press, 1959.


