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APPROXIMATION OF DEGENERATE SEMIGROUPS

Wolfgang Arendt

Abstract. By a continuous degenerate semigroup we mean a strongly contin-
uous mappingT : R+ ! L(X) having the semigroup property. Thus,T (0)
is a projection which may be different from the identity. Themain theorem
is a Trotter-Kato type approximation result for such degenerate semigroups.
It is used to study convergence of heat semigroups with respect to variable
domains.

0. INTRODUCTION

Given an open set- in Rn, frequently it is useful to consider the spaceL2(-)
as a subspace ofL2(Rn) extending functions by zero. Given aC0-semigroupT
onL2(-), the canonical extension ofT to L2(Rn) gives a degenerate continuous
semigroupT- onL2(Rn) such thatT-(0) is the orthogonal projection ontoL2(-).
Given a sequence-k of open sets, we now obtain a sequence of degenerate semi-
groups on a fixed Hilbert spaceL2(Rn) and we may study its convergence. For
this, we need an extension of the Trotter-Kato theorem for degenerate semigroups.
The Laplace transform of such a semigroup is a pseudoresolvent. Thus, the nat-
ural assumption is strong convergence of pseudoresolventsand the aim is to deduce
strong convergence of the degenerate semigroups. A most convenient tool is an ap-
proximation theorem due to Chernoff [7], which was rediscovered recently by Xiao
and Liang [14]. In Section 1, we give a short proof of this result, based merely
on the uniqueness theorem for Laplace transforms. Then we use this theorem to
study approximation of degenerate semigroups. Under the usual boundedness as-
sumptions one obtains always convergence on the closure of the range space of the
limit pseudoresolvent, but not on the kernel as easy examples show. Things are
different for uniformly holomorphic sequences, which we consider in Section 5. As
application, we study convergence of heat semigroups in Section 6.
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1. CONVERGENCE OFLAPLACE TRANSFORMS

Throughout this article,X denotes a Banach space andR+ = [0;1) the closed
right half-line. Letf 2 L1loc(R+;X) be such thatk

R t
0 f(s)dsk ·Me

!t (t ¸ 0),
whereM;! ¸ 0. Then the Laplace transform

f̂(¸): =

Z 1

0

e¡¸tf(t)dt

: = lim
¿!1

R ¿
0
e¡ ţf(t)dt

exists for Rȩ > ! and f̂ : f¸ : Re ¸ > !g !X is a holomorphic function. The
uniqueness theorem asserts the following: If̂f(¸) = 0 for all ¸ > ¸0 and some
¸0 ¸ !, thenf(t) = 0 a.e.

Theorem 1.1 below describes convergence of a sequence of functions in terms of
their Laplace transforms. This result was recently proved by Xiao and Liang in [14].
We are grateful to F. Neubrander, who informed us that, in fact, Theorem 1.1 is
mentioned by Chernoff [7, p. 106], whose proof of the Proposition on resolvents in
[6] carries over to the general situation considered in Theorem 1.1. The special case
of Lipschitz continuous functions had been considered by Henning and Neubrander
[9].

Here we give a short proof of Theorem 1.1 by applying the uniqueness theorem
to the Banach spacè1(X) of all bounded sequences inX with uniform norm.

Theorem 1.1. Let M; ! ¸ 0. Let fn : R+! X be continuous and satisfy

k
Z t

0

fn(s)dsk ·Me
!t (t ¸ 0)(1.1)

for all n 2N. Assume that
(a) the sequence (fn)n2N is equicontinuous at each t ¸ 0 and that

(b) limn!1 f̂n(¸) exists for all ¸ > !.

Then the sequence (fn)n2N converges uniformly on [0; ¿ ] for each ¿ > 0.

Proof. Assumption (a) says precisely thatF (t) = (fn(t))n2N defines a contin-
uous mappingF : R+ ! `1(X). Since by (1.1)

k

Z t

0
F(s)dsk ·Me!t (t > 0);

the functionF is Laplace transformable. Denote byc(X) the closed subspace
of `1(X) consisting of all convergent sequences inX and by q : `1(X) !
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`1(X)=c(X) the quotient map. Then by assumption (b),F̂(¸) = (f̂n(¸))n2N 2
c(X) for all ¸ > 0. Now the uniqueness theorem implies thatq ± F ´ 0; i.e.,
(fn(t))n2N converges for allt 2 R+. Since the sequence is equicontinuous at each
t 2 R+, simple convergence implies uniform convergence on each compact subset
K of R+.

We remark that conditions (a) and (b) are necessary.
If we are merely interested in convergence of(fn(t))n2N for almost all t > 0

then the proof of Theorem 1.1 shows that the measurability ofF suffices. This is
weaker than condition (a), which says precisely thatF is continuous. To illuminate
this point further, we use the following criterion for measurability, which seems to
be new. It is a consequence of Pettis’s theorem and the Krein-Smulyan theorem,
analogous to Theorem 1.5 below for holomorphic functions.

We use the following terminology. A subsetW of the dual spaceX¤ of X is
calledseparating if for eachx 2 Xnf0g there existsx¤ 2W such thathx¤; xi 6= 0.

Theorem 1.2. Let X be a separable Banach space and f : (0;1) ! X a
function. Assume that there exists a separating subset W of X¤ such that x¤ ± f is
measurable for all x¤ 2W. Then f is measurable.

Proof. LetY = fx¤ 2 X¤ : x¤±f is measurableg. ThenY is a subspace ofX¤

which containsW . ThusY is ¾(X¤;X)-dense inX¤. LetY1 = Y \B¤, whereB¤

denotes the closed unit ball ofX¤. SinceX is separable, the¾(X¤; X)-topology
is metrizable onB¤. We show thatY1 is ¾(X¤;X)-closed. In fact, letx¤ be an
element in the¾(X¤; X)-closure ofY1. Then there exists a sequence(x¤n)n2N in Y1
converging tox¤. Hencelimn!1hx¤n; f(t)i = hx

¤; f(t)i for all t > 0. It follows
that x¤ ± f is measurable; i.e.,x¤ 2 Y1. Now it follows from the Krein-Smulyan
theorem thatY is ¾(X¤; X)-closed inX¤. SinceY is dense, we have proved that
Y = X¤; i.e., f is weakly measurable. Now Pettis’s theorem implies thatf is
measurable.

With the help of Theorem 1.2 we can easily prove the following:

Corollary 1.3. Let fn : (0;1)!X be measurable (n 2 N) such that

sup
n2N

t>0

kfn(t)k <1:

Assume that there exists a separable subspace Y of `1(X) such that (fn(t))n2N 2
Y for almost all t > 0. If (f̂n(¸))n2N converges for all ¸ > ! and some ! ¸ 0
then (fn(t))n2N converges for almost all t > 0.
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Proof. We keep the notations in the proofs of Theorems 1.1 and 1.2. For
x¤ 2 X¤ andn 2N, let en-x¤ 2 Y ¤ be defined byhen-x¤; xi = hx¤; xni, where
x = (xn)n2N 2 Y . ThenW = fen -x¤ : n 2 N, x¤ 2 X¤g ½ Y ¤ is separating
and(en-x¤)±F = x¤ ± fn is measurable for alln 2 N, x¤ 2 X¤. It follows from
Theorem 1.2 thatF is measurable. Now the proof is completed as for Theorem 1.1.

The following example shows that the separability condition cannot be omitted,
even in the scalar case.

Example 1.4. Let X = C, fn(t) = eint. Then f̂n(¸) = 1=(¸ ¡ in) ! 0
(n!1) for all ¸ > 0; however(fn(t))n2N does not converge fort 2 R+ n 2¼Z.

Note thatk(fn(s))¡ (fn(t))k`1 = 2 wheneverjs¡ tj 2 R+ n 2¼Z so that the
separability condition in Corollary 1.3 is not satisfied.

The separability condition in Corollary 1.3 seems difficult to apply in examples.
However, a stronger condition, namely holomorphy, is easy to handle. One may use
the following criterion [4].

Theorem 1.5. Let - ½ C be open and f : - ! X a locally bounded
function. Assume that there exists a separating subspace Y of X¤ such that y¤ ± f
is holomorphic for all y¤ 2 Y . Then f is holomorphic.

Now we can prove the following result.

Theorem 1.6. Let M;! ¸ 0 and let fn : (0;1)!X be continuous such that
kfn(t)k ·Me!t (t > 0) for all n 2 N. Assume that for each t > 0 there exists an
open disc B(t; ±t) = fz 2 C : jt¡ zj < ±tg; where ±t > 0; such that each fn has
a holomorphic extension to B(t; ±t); still denoted by fn; such that

sup
n2N

sup
z2B(t;±t)

kfn(z)k <1:

If f̂n(¸) converges as n!1 for ¸ > !; then fn(t) converges as n!1 uniformly
on compact intervals of (0;1).

Proof. By Theorem 1.5, the function

F(z) := (fn(z))n2N

is holomorphic on- :=
S
t>0B(t; ±t) with values in`1(X). As in the proof

of Theorem 1.1, we conclude thatlimn!1 fn(t) exists a.e. It now follows from
Vitali’s theorem (see [3, Appendix A], [10, pp. 104-105] or [4]) that (fn(z))n2N
converges uniformly on compact subsets of-.
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2. DEGENERATE SEMIGROUPS

Let X be a Banach space. Adegenerate semigroup is a strongly continuous
mappingT : (0;1)! L(X) satisfying

T (t + s) = T (t)T (s) (s; t > 0)(2.1)

and

sup
0<t·1

kT (t)k <1:(2.2)

If T(0) := limt#0 T(t) exists strongly, we say thatT is continuous. ThenT(0)
is a continuous projection ontoX1 = T(0)X. The restrictionsT (t)jX

1

define a
C0-semigroup onX1, whereasT(t)jX

0

= 0 whereX0 = (I¡ T(0))X.

Let -½ C be a subset. A functionR : -! L(X) is called apseudoresolvent
if

R(¸)¡R(¹)

¹¡¸
=R(¸)R(¹) whenever¹;¸ 2- ; ¹ 6= ¸:(2.3)

Then the kernelskerR(¸) and the imagesR(¸)X are independent of̧ 2 -. If
kerR(¸) = f0g, then there exists an operatorA onX such that(¸¡A) is invertible
andR(¸) = (¸¡A)¡1 for all ¸ 2 -. If - is open, then it follows from (2.3) that
R is a holomorphic function.

Conversely, if- is open and connected andR : -! L(X) is holomorphic and
if (2.3) is valid for all ;̧ ¹ 2 -0, ¸ 6= ¹, where-0 ½ - is a subset of- having
a limit point in -, then it follows from the uniqueness theorem for holomorphic
functions thatR is a pseudoresolvent.

Let T : (0;1) ! L(X) be a degenerate semigroup. Then, as in the case of
C0-semigroups, there existM ¸ 0, ! 2R such that

kT(t)k ·Me!t (t > 0):(2.4)

Thus, we may consider the Laplace transformT̂(¸) 2 L(X) of T defined by

T̂ (¸)x := lim
¿!1

¿Z

0

e¡¸tT(t)xdt

for all x 2 X, ¸ 2 C such thatRe ¸ > !. One sees as in [1, Proposition 2.2]
or [3, Theorem 3.1.7] that̂T is a pseudoresolvent. Conversely, ifT : (0;1) !
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L(X) is strongly continuous and satisfies (2.4), and ifT̂ : (!;1) ! L(X) is a
pseudoresolvent, thenT is a degenerate semigroup (by the references given above).
Similar to the mean ergodic theorem, one has the following decomposition result
on reflexive spaces (cf. [13, Corollary VIII.4.1] or [2]). We give a proof for
completeness.

Proposition 2.1. Let R : (!;1)!L(X) be a pseudoresolvent on a reflexive
Banach space X. Assume that

lim sup
¸!1

k¸R(¸)k <1:(2.5)

ThenX is the direct sum X = X0©X1; where X0 = kerR(¸) and X1 =R(¸)X.
Consequently; there exists an operator A on X1 such that (!;1) ½ %(A) and
R( ;̧ A) = R(¸)jX1 (¸ > !).

Proof.
(a) Let¹> !, x=R(¹)y. Then¸R(¸)R(¹)y = (¸=(¸¡¹)(R(¹)y¡R(¸)y)!

R(¹)y as¸!1. Hencelim¸!1 ¸R(¸)x= x for all x 2 X1.

(b) Let x 2 X and letz be a¾(X;X¤)-limit point of ¸R(¸)x as¸!1. Then
hR(¹)z; x¤i is a limit point of h¸R(¸)x, R(¹)¤x¤i as ¸ ! 1. Since the
last expression converges tohR(¹)x;x¤i as ¸ ! 1 by a), it follows that
hR(¹)(z¡ x); x¤i = 0 for all x¤ 2 X¤. Thusz ¡x 2 X0 and z 2 X1. We
have shown thatX ½X0 +X1.

(c) Since forx 2 X1, lim¸!1¸R(¸)x= x, it follows thatX0 \X1 = f0g.

Corollary 2.2. Each degenerate semigroup on a reflexive space X is continu-
ous.

Proof. Let T be a degenerate semigroup. ThenT satisfies (2.4) for some
M ¸ 0, ! 2 R. Then T̂ : (!;1) ! L(X) is a pseudoresolvent. HenceX =
X0©X1 according to Proposition 2.1. It follows from the uniqueness theorem that
T(t)jX0 = 0. There is an operatorA on X1 such thatR(¸)x = (¸ ¡A)¡1x for
x 2 X1, ¸ > !. ThusD(A) =R(¸)X is dense inX1. It follows from [1, Theorem
2.4] thatA satisfies the Hille-Yosida condition. HenceT(t)jX1 is aC0-semigroup.

We mention that on a Banach spaceX which is not reflexive there may exist a
degenerate semigroup which is not continuous even ifX has the Radon-Nikodym
property (see [1]).

We conclude, showing by an example, that condition (2.5) cannot be omitted in
Proposition 2.1.
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Example 2.3. There exists a bounded pseudoresolventR : [1;1) ! L(X),
whereX is a Hilbert space such thatX0 +X1 6= X, whereX0 = kerR(¸) and
X1 = R(¸)X (¸ > 1). In fact, let ~X = fx = (xn)n2N ½ C :

P1
n=1 jxnj

2=(1 +
n2)<1g. Then ~X is a Hilbert space for the scalar product

(x j y) =
1X

n=1

xn ¢ ¹yn
1 +n2

:

Let X = fx 2 ~X : (x2n + x2n+1)n2N 2 `2g, with normkxk2X = kxk
2
~X
+ k(x2n +

x2n+1)n2Nk
2
`2

. ThenX is a Hilbert space. DefineR(¸) 2L(X) by

(R(¸)x)n =

(
1
¸+nxn (n 2 2N)

0 n 62 2N:

ThenR : [1;1)! L(X) is a bounded pseudoresolvent. Consideru= (1;¡1;1;¡1,
¢ ¢ ¢ ) 2 X . It is obvious thatX0 = fx 2 X : x2n = 0 for all n 2 Ng andX1 ½
fx 2 X : x2n¡1 = 0 for all n 2 Ng. Letu= (1;¡1; 1;¡1; ¢ ¢ ¢ ) 2X . Assume that
u= u0+ u1 2 X0+X1. Thenu0 = (1;0;1; 0 ¢ ¢ ¢ ) andu1 = (0;¡1;0;¡1; ¢ ¢ ¢ ).
But u0 62 X andu1 62 X1; a contradiction.

3. APPROXIMATION OFPSEUDORESOLVENTS

We start this section by showing that each bounded operator can be embedded
into a unique pseudoresolvent. To make this precise, we use the following definition.

Definition 3.1. Let R : - ! L(X) be a pseudoresolvent, where- ½ C is
open and connected.

(a) We say thatR is maximal if for each pseudoresolventR1 : -1 !L(X) with
-1 an open connected set containing- such thatR1(¸) = R(¸) on -, one
has- = -1.

(b) LetQ 2 L(X), ¸0 2 C. We say thatQ is embedded into R at ¸0 if ¸0 2-
andR(¸0) =Q.

In the sequel, we will frequently use the following lemma.

Lemma 3.2. Let R : -! L(X) be a pseudoresolvent, where -½ C is open.

(a) Let ¸ 2 -. Then for ¹ 2- one has

R(¹) = (I ¡ (¸¡¹)R(¸))¡1R(¸)(3.1)

wheneverj¸¡ ¹j < kR(¸)k¡1.
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(b) In particular; kR(¹)k · 2M if kR(¸)k ·M and j¸¡¹j · (2M)¡1.

Proof. SinceR(¸)¡R(¹) = (¹¡ ¸)R(¸)R(¹), one hasR(¸) = (I ¡ (¸¡
¹)R(¸))R(¹), which implies (3.1). Thus

R(¹) =R(¸)
1X

n=0

(¸¡ ¹)nR(¸)n:

This implies (b).

Next we prove consistency.

Lemma 3.3. Let -1;-2 ½ C be open such that -1 \-2 is connected. Let
¸0 2-1 \-2. Assume that Rj : -j ! L(X) are pseudoresolvents (j = 1;2) such
that R1(¸0) =R2(¸0). Then

(a) R1(¸) = R2(¸) for all ¸ 2 -1 \-2 and
(b)

R(¸) :=

½
R1(¸) (¸ 2-1);
R2(¸) (¸ 2-2)

defines a pseudoresolvent on -1 [-2.

Proof. (a) Let -3 = f¸ 2 -1 \ -2 : R1(¸) = R2(¸)g. Then ¸0 2 -3
and-3 is relatively closed in-1 \-2 since pseudoresolvents are continuous. Let
¸ 2 -3. ThenR1(¸) = R2(¸). It follows from Lemma 3.2(a) thatR1(¹) = R2(¹)
if ¹ 2-1\-2 such thatj¹¡ j̧ < kR1(¸)k

¡1. We have shown that-3 is an open,
closed and non-empty subset of-1 \-2. Since-1 \-2 is connected, it follows
that-3 = -1 \-2.
(b) Let ¸ 2 -1. Set

-3 :=

½
¹ 2 -2 :

R1(¸)¡R2(¹)

¹¡¸
=R1(¸)R2(¹)

¾
:

Then-1 \ -2 ½ -3 by (a), and hence-3 6= ;. We show that-3 is open. Let
¹0 2 -3. Then by Lemma 3.2, forj¹¡ ¹0j < kR2(¹0)k¡1 we have

R1(¸)¡R2(¹)= R1(¸)¡ (I ¡ (¹0 ¡¹)R2(¹0))
¡1R2(¹0)

= [R1(¸)(I¡ (¹0 ¡¹)R2(¹0))¡R2(¹0)]

(I ¡ (¹0¡ ¹)R2(¹0))¡1

= [(¹0 ¡¸)R1(¸)R2(¹0)¡R1(¸)(¹0¡ ¹)R2(¹0)]

(I ¡ (¹0¡ ¹)R2(¹0))¡1

= (¹¡ ¸)R1(¸)R2(¹0)(I¡ (¹0 ¡¹)R2(¹0))¡1

= (¹¡ ¸)R1(¸)R2(¹):
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Hence¹ 2 -3. Thus-3 is open, closed and nonempty. It follows that-3 = -2.
ThusR satisfies the resolvent equation.

Next we embed an operator locally into a pseudoresolvent with the help of (3.1).

Lemma 3.4. Let Q 2 L(X); M = kQk; and ¸0 2 C. Define R(¹) =
(I¡ (¸0¡¹)Q)¡1Q for ¹ 2B(¸0;1=2M) := f¹ 2 C : j¸0¡¹j < 1=2Mg. Then
R is a pseudoresolvent.

Proof. Let ;̧ ¹ 2B(¸0;1=2M). Then

R(¸)¡R(¹)= (I¡ (¸0 ¡¸)Q)¡1[Q¡ (I¡ (¸0 ¡¸)Q)R(¹)]

= (I¡ (¸0 ¡¸)Q)¡1[Q(I ¡ (¸0 ¡¹)Q)¡ (I ¡ (¸0¡ ¸)Q)Q]

¢ (I ¡ (¸0 ¡¹)Q)¡1

= (I¡ (¸0 ¡¸)Q)¡1Q(¹¡¸)Q(I¡ (¸0 ¡¹)Q)¡1

= (¹¡¸)R(¸)R(¹):

Next we characterize maximality.

Proposition 3.5. A pseudoresolvent R : - ! L(X) defined on an open
connected set - ½ C is maximal if and only if

lim
k!1

kR(¸k)k =1

for each sequence (¸k)k2N in - converging to a boundary point ¸0 2 @-.

Proof. Assume that the condition is not satisfied. Then there exist ¸0 2 @-
and a sequence(¸k)k2N in - converging to̧ 0 such that

M := sup
k2N

kR(¸k)k <1:

Let k 2 N be such thatj¸0¡ ¸kj < 1=2M. Then by Lemmas 3.3 and 3.4,R has
an extension to-[B(¸k; 1=2M) which containş 0. ThusR is not maximal. The
other implication is obvious since pseudoresolvents are continuous.

Now we can prove the embedding result.

Theorem 3.6. Let Q 2L(X); and ¸0 2C. Then there exist an open, connected
set - ½ C and a unique maximal pseudoresolvent R : -! L(X) such that Q is
embedded into R at ¸0 .
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Proof. The setI := fV ½ C open : ¸0 2 V , there exists a pseudoresolvent
RV : V !L(X) such thatQ is embedded intoRv at ¸0g is nonempty by Lemma
3.4. It contains a maximal element by Zorn’s lemma. The uniqueness ofR follows
also from Lemma 3.3.

Using Theorem 3.6, we can prove the following approximationresult for pseudore-
solvents.

Theorem 3.7. Let - ½ C be open and connected and let Rn : -! L(X) be
a pseudoresolvent for each n 2N. Assume that

sup
n2N

kRn(¸)k <1

for all ¸ 2 -. Assume that (Rn(¸0))n2N converges strongly for some ¸0 2 -. Then
there exists a pseudoresolvent R : -!L(X) such that R(¸)x= limn!1Rn(¸)x
uniformly on compact subsets of - for all x 2 X.

Proof. Let Q be the strong limit of(R(¸0))n2N. Denote byR : ~- ! L(X)
the maximal pseudoresolvent such thatQ is embedded intoR at ¸0 (see Theorem
3.6).

(a) Let ¹ 2 ~- \-. We show thatR(¹) = limn!1Rn(¹) strongly. In fact, let
x 2 X. Let z = x+ (¸0¡ ¹)R(¹)x andzn = z+ (¹¡¸0)Rn(¸0)z. Then
by the resolvent equation,R(¹)x = R(¸0)z andRn(¹)zn = Rn(¸0)z. By
hypothesis,limn!1 zn = z + (¹ ¡ ¸0)R(¸0)z = z + (¹ ¡ ¸0)R(¹)x =
x. Since supn2N kRn(¹)k < 1, it follows that R(¹)x = R(¸0)z =
limn!1Rn(¸0)z = limn!1Rn(¹)zn = limn!1[Rn(¹)(zn¡x)+Rn(¹)x]
= limn!1Rn(¹)x.

(b) Suppose that- 6½ ~-. Then there exists¹0 2 @~- \ -. Let ¹k 2 ~- \ -
be such thatlimk!1¹k = ¹0. Let M = supn2N kRn(¹0)k < 1. Then,
if j¹k ¡¹0j · 1=2M , it follows from Lemma 3.2(b) thatkRn(¹k)k · 2M
for all n 2 N. Since limn!1Rn(¹k) = R(¹k) strongly, it follows that
kR(¹k)k · 2M . This contradicts the maximality ofR by Proposition 3.5.
Thus- ½ ~-.

(c) Let x 2 X. It follows from (a) and (b) thatlimn!1Rn(¹)x = R(¹)x for
all ¹ 2-. Lemma 3.2 implies that the sequence(Rn)n2N is locally bounded.
Thus Vitali’s theorem (see [3, Appendix A], [4] or [10, pp. 104-105]) implies
that the convergence is uniform on compact subsets of-.

Remark 3.8. The proof of (a) shows also the following. Let- ½ C be
an arbitrary set, andR;Rn : - ! L(X) be pseudoresolvents. Assume that
supn2N kRn(¸)k < 1 for all ¸ 2 -. If there exists somȩ 0 2 - such that
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R(¸0) = limn!1Rn(¸0) strongly, thenRn(¸) converges strongly toR(¸) for all
¸ 2 -.

4. APPROXIMATION OFDEGENERATESEMIGROUPS

In this section, we investigate how strong convergence of degenerate semigroups
can be deduced from strong convergence of the associated pseudoresolvents.

We need the following lemma:

Lemma 4.1. Let T : (0;1) ! L(X) be a degenerate semigroup such that
kT(t)k ·Me!t (t > 0). Let R(¸)x=

R1
0 e¡¸tT (t)xdt (¸ > !). Then

(¸R(¸)¡ I)

Z t

0
T (r)dr = (T(t)¡ I)R(¸) (¸ > !; t > 0):

Proof.

(¸R(¸)¡ I)

tZ

0

T (r)dr=

1Z

0

¸e¡¸s(T (s)

tZ

0

T (r)dr ¡

tZ

0

T (r)dr)ds

=

1Z

0

¸e¡¸s(

t+sZ

s

T(r)dr¡

tZ

0

T(r)dr)ds

=

1Z

0

¸e¡¸s(

t+sZ

t

T(r)dr¡

sZ

0

T(r)dr)ds

=

1Z

0

e¡¸s(T(t+ s)¡ T (s))ds

= T(t)R(¸)¡R(¸);

where integration by parts has been used.

Now we can prove the following approximation result for degenerate semigroups.

Theorem 4.2. Let Tn : (0;1) ! L(X) be a continuous semigroup on a
reflexive Banach space X such that

kTn(t)k ·Me
!t (t ¸ 0)

for all n 2 N; where M;! ¸ 0. Denote by Rn(¸) = T̂n(¸) the associated
pseudoresolvents (¸ > !; n 2 N). Assume that Rn(¸0) converges strongly for
some ¸0 > !. Then the following holds.

The Banach space X is the direct sum of subspaces X0 and X1 such that
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(a) T (t)x := limn!1 Tn(t)x converges uniformly on [0; ¿ ] for all ¿ > 0 and all
x 2X1; and

(b) limn!1
R t
0 Tn(s)xds = 0 uniformly on [0; ¿ ] for all ¿ > 0 and all x 2 X0.

Moreover; T is a C0-semigroup onX1. Let A1 be its generator. Then R( ;̧ A1)x =
limn!1Rn(¸)x for all x 2 X1 and all ¸ > !.

Proof. We have the uniform estimate

kRn(¸)k ·
M

¸¡!
(¸ > !; n 2 N):

It follows from the hypothesis and Theorem 3.7 thatR(¸) = limn!1Rn(¸) exists
strongly for all¸ > !. Then(R(¸))¸>! is a pseudoresolvent satisfyingk¸R(¸)k ·
M for ¸ ¸ !+ 1. LetX1 =R(¸)X andX0 = ker R(¸); where¸ ¸ ! +1. Let
y 2 X; andx = R(¸)y. Let t ¸ 0. We show thatfTn(¢)xg is equicontinuous at
eacht. In fact, by Lemma 4.1 one has, for0 < s < t,

kTn(t)x¡Tn(s)xk = kTn(t)R(¸)y ¡Tn(s)R(¸)yk

· k(Tn(t)¡Tn(s))(R(¸)y ¡Rn(¸)y)k+

k(Tn(t)¡Tn(s))Rn(¸)yk

· k(Tn(t)¡Tn(s))(R(¸)y ¡Rn(¸)yk +

k(Tn(t)¡ I)Rn(¸)y ¡ (Tn(s)¡ I)Rn(¸)yk

= k(Tn(t)¡Tn(s))(R(¸)y ¡Rn(¸)y)k

+k(¸Rn(¸)¡ I)

tZ

s

Tn(r)ydrk

· M(e!t + e!s)kR(¸)y ¡Rn(¸)yk

+(M + 1)

tZ

s

Me!rdrkyk:

Given " > 0, we may choosen0 2 N such that the first expression is inferior
to "=2 for all n> n0 and all0 < s · t+1. Now choose0 < ± <maxft;1g such
that the second expression is inferior to"=2 wheneverjs¡ tj · ± and also

kTn(t)x¡ Tn(s)xk · " for n = 1;2; ¢ ¢ ¢ ;n0

if js¡tj · ±. ThenkTn(t)x¡Tn(s)xk · " for all n 2 Nwheneverjs¡tj · ±. This
shows that the sequencefTn(¢)x : n 2 Ng is equicontinuous att. Now it follows
from Theorem 1.1 thatTn(t)x converges uniformly on[0; ¿ ] asn!1. By density,
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this remains true for allx 2 X1. Thus (a) is proved. Consequently,T (t)x :=
limn!1Tn(t)x (x 2 X1, t ¸ 0) defines aC0-semigroup onX1. Moreover,
R(¸;A1)x =

R1
0 e¡¸tT(t)xdt = limn!1

R1
0 e¡¸tTn(t)xdt = limn!1Rn(¸)x

for all x 2 X1, ¸ > !. In order to show (b), letSn(t) =
R t
0 Tn(r)dr. Then

kSn(t)¡Sn(s)k ·M
R t
s e

!rdr for all n 2 N andRn(¸) = ¸
R1
0 e¡¸tSn(t)dt (¸ >

!). So the setfSn(¢)x : n 2 Ng is equicontinuous for eachx 2 X. Now it follows
from Theorem 1.1 thatlimn!1Sn(t)x = 0 for all x 2X0.

Whereas the integrated semigroups
R t
0 Tn(r)xdr converge asn!1 for each

x 2 X, we have seen in Example 1.4 that it can happen that the semigroupsTn(t)x
do not converge ifx 2X0. The situation is better if the semigroups are “uniformly
holomorphic” in a sense made precise in the next section.

5. HOLOMORPHICDEGENERATESEMIGROUPS

A bounded holomorphic degenerate semigroup is a degenerate semigroup
T : (0;1)! X which has a bounded holomorphic extension to a sector§(µ) :=
frei® : r > 0, j®j < µg for someµ 2 (0; ¼=2] with values inL(X). We also use
the letterT for this extension. It follows from the uniqueness of analytic extensions
that

T (z)T(z0) = T (z + z 0) for all z; z0 2 §(µ):

The semigroup is calledcontinuous if T(t) converges strongly ast # 0. By Vitali’s
theorem, this implies thatT (z) converges strongly asz ! 0 for z 2 §(µ0), for each
µ0 2 (0; µ) (cf. [3, Proposition 2.6.3] or [10, Theorem 3.14.3]. By Corollary 2.2, if
X is reflexive, then a bounded degenerate holomorphic semigroup is automatically
continuous.

Let T : (0;1)! L(X) be a bounded holomorphic degenerate semigroup with
Laplace transformT̂ (¸) (Re ¸ > 0). Then one sees as in theC0-case that there
exists a constantM ¸ 0 such that

k¸T̂ (¸)k ·M (Re ¸ > 0):

Conversely, as in theC0-case, one proves (e.g., with help of [3, Theorem 2.7.1])
the following converse result. We letC+ = f¸ 2C : Re ¸ > 0g.

Theorem 5.1. Let M ¸ 0. There exist ~M ¸ 0; µ 2 (0;¼=2] such that the
following holds. Let R : C+ !L(X) be a pseudoresolvent such that

k¸R(¸)k ·M (Re ¸ > 0):
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Then there exists a bounded holomorphic degenerate semigroupT such that T̂ (¸) =
R(¸) (Re ¸ > 0). Moreover; T has a holomorphic extension to §(µ) such that
kT (z)k · ~M (z 2§(µ)).

We callT the bounded holomorphic degenerate semigroup associated with
R.

Now we obtain the following approximation result.

Theorem 5.2. Let M ¸ 0. For each m 2 N; let Rm : C+ ! L(X) be a
pseudoresolvent such that k¸Rm(¸)k ·M for all ¸ 2 C+, m 2 N. Let Tm be the
bounded holomorphic degenerate semigroup associated with Rm. If for some ¸ >
0; Rm(¸) converges strongly as m!1; then there exists a bounded holomorphic
degenerate semigroup T such that limm!1Tm(t)x = T (t)x uniformly on [0; ¿ ]
for all ¿ > 0 and all x 2X.

Proof. By Theorem 5.1, there existµ 2 (0;¼=2], ~M ¸ 0 such thatTm has a
holomorphic extension to§(µ) with values inL(X) satisfyingkTm(z)k · ~M for
all z 2 §(µ),m2 N. It follows from Theorem 1.6 thatT (z)x := limm!1Tm(z)x
converges uniformly on compact subsets of§(µ) for all x 2 X. ThenT is holo-
morphic by Vitali’s theorem. Moreover,T (z+z0) = T (z)T (z0) for all z;z 0 2 §(µ)
by the semigroup property ofTm.

We remark that it is also possible to prove Theorem 5.2 with the help of a
contour argument.

6. CONVERGENCE OFHEAT SEMIGROUPS

Let - ½ R
n be an open set. We identifyL2(-) with a closed subspace of

L2(Rn) extending functions by zero. ByD(-) we denote the test functions on-
and byH1(Rn) the first Sobolev space inL2(Rn). The spaceH10 (-) is defined as
the closure ofD(-) in H1(Rn). Now we define theDirichlet Laplacian as the
operator¢- onL2(-) given by

D(¢-) = ff 2 H10(-) : ¢f 2 L
2(-)g;

¢-f = ¢f in D(-)0:

Here we considerL2(-) as a subspace ofD(-)0 as usual. The operator¢- is
selfadjoint and form negative, so it generates a holomorphicC0-semigroup(et¢-)t¸0
onL2(-). We define the degenerate semigroupT-(t) onL2(Rn) by

(T-(t)f)(x) =

(
(et¢-fj-)(x) if x 2 -

0 if x 62 -:



Approximation of Degenerate Semigroups 293

ThenT- is continuous andT-(0) is the orthogonal projection ontoL2(-) given by
T-(0)f = 1-f.

Definition 6.1 (convergence of open sets). If -m, - ½ Rn are open sets
(m 2 N), we write limm!1-m = - if the following two conditions are satisfied:

(a) For each compact setK ½ -, there existsm0 2 N such thatK ½ -m for all
m ¸m0, and

(b) limm!1 j-m n -j = 0, wherejF j denotes the Lebesgue measure of a mea-
surable subsetF of Rn.

In the following theorem, we need a mild regularity assumption on the limit set
-. We let

~H10(-) = ff 2H
1(Rn) : f(x) = 0 a.e. onRn n -g:

Then ~H10 (-) is a closed subspace ofH1(Rn) containingH1
0(-). We will need the

assumption thatH10(-) = ~H1
0(-). It is satisfied if the boundary of- is sufficiently

regular. For example, if- is bounded and has Lipschitz continuous boundary, then
H10(-) = ~H1

0 (-). However, for-= (0;1)[ (1; 2) ½ R one hasH10 (-) 6= ~H10(-).
We refer to [2] for further details.

Theorem 6.2. Let -, -m ½ Rn be open (m 2 N) such that limm!1-m = -.
Assume thatH10 (-) = ~H10(-). Then for each f 2L2(Rn); one has limm!1 T-m (t)
f = T-(t)f in L2(Rn) uniformly on [0; ¿ ] for all ¿ > 0.

Proof. It follows from the spectral theorem that

k¸R( ;̧¢-m)k · 1 (Re ¸ > 0)

for all m 2 N. Denote byRm : C+ ! L(L2(Rn)) the pseudoresolvent associated
with T-m ; i.e.,

(Rm(¸)f)(x) =

(
(R(¸;¢-m)f)(x) (x 2-m);

0 (x 62-m);

and letR be the pseudoresolvent associated withT-. Let f 2 L2(Rn), um =
Rm(1)f, andu = R(1)f. In order to apply Theorem 5.2 we have to show that
limm!1um = u in L2(Rn). For this, it suffices to show that each subsequence of
(um)m2N possesses a subsequence which converges tou. Note thatum 2 H10(-m)
andum ¡¢um = f in D(-m)0; i.e.,

Z

-m

um' +

Z

-m

rumr'dx=

Z

-m

um' ¡
Z

-m

um¢'dx=

Z

-m

f'dx
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for all ' 2 D(-m). By density, we deduce that
Z

-m

um'+

Z

-m

rumr'dx=

Z

-m

f'dx

for all ' 2 H10 (-m). In particular,
Z

-m

jumj
2dx+

Z

-m

jrumj
2dx=

Z

-m

fumdx

· kfkL2(Rn) ¢ kumkL2(Rn)

·
1

2
(kfk2L2(Rn)+ kumk

2
L2):

Thus,(um)m2N is bounded inH1(Rn). SinceH1(Rn) is reflexive, we may assume
thatum converges weakly to a functionv 2 H1(Rn) asm ! 1 (considering a
subsequence otherwise). Since for each ballB in Rn the embedding ofH1(B) into
L2(B) is compact, we can assume thatum converges tov in L2loc(R

n) asm!1.
So we can also assume thatum(x) converges tov(x) a.e. asm ! 1 (taking a
subsequence again).

Now observe thatjumj · R(1;¢)jf j for all m 2 N, where¢ denotes the
Laplacian onL2(Rn), i.e., the generator of the Gaussian semigroup onL2(Rn) (see
[2] for example). Thus it follows from the dominated convergence theorem that
um ! v in L2(Rn) asm!1. The assumption b) implies that1-mn- converges
to 0 in measure asm ! 1. As is well-known, this implies that a subsequence
converges to0 a.e. Hencev(x) = 0 a.e. onRn n -. Thusv 2 ~H10 (-) = H

1
0 (-).

Let ' 2 D(-). Then there existsm0 2 N such that supp'½ -m for all m ¸m0
(by property a)). Sinceum ¡¢um = f in D(-m)0, it follows that

Z

Rn

um'+

Z

Rn

rumr' =

Z

Rn

f'dx

for all m ¸m0. Taking the limit asm!1, we deduce that
Z

Rn

v'+

Z

Rn

rvr'=

Z

Rn

f':

We have shown thatv¡¢v = f in D(-)0. Thusv = u, and the proof is complete.

It is not difficult to generalize Theorem 6.2 to strong convergence inLp(-) (1 ·
p < 1). In L2(-), one may also use convergence theorems for quadratic forms
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if the sequence of forms is monotonic; see [2], Simon [12] andReed-Simon [11,
Appendix]. Concerning convergence with respect to the domain of the corresponding
elliptic problem with different boundary conditions, we refer to Henrot [8] and Bucur
[5]. A wealth of further results on the convergence of heat semigroups (Section 6)
can be found in [15].
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