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APPROXIMATION OF DEGENERATE SEMIGROUPS
Wolfgang Arendt

Abstract. By a continuous degenerate semigroup we mean a stronghneont
uous mappingl’ : R, — £(X) having the semigroup property. ThuE(0)

is a projection which may be different from the identity. Timain theorem
is a Trotter-Kato type approximation result for such degatee semigroups.
It is used to study convergence of heat semigroups with cédpevariable
domains.

0. INTRODUCTION

Given an open se® in R, frequently it is useful to consider the spab?)
as a subspace df?(R") extending functions by zero. Given @-semigroupl’
on L?(£2), the canonical extension & to L?(R"™) gives a degenerate continuous
semigrouply, on L2(R™) such thatl, (0) is the orthogonal projection ont?(2).

Given a sequencg;, of open sets, we now obtain a sequence of degenerate semi-

groups on a fixed Hilbert spacg?(R™) and we may study its convergence. For
this, we need an extension of the Trotter-Kato theorem fgederate semigroups.
The Laplace transform of such a semigroup is a pseudoresolMédus, the nat-
ural assumption is strong convergence of pseudoresolaadtshe aim is to deduce
strong convergence of the degenerate semigroups. A mogtmient tool is an ap-
proximation theorem due to Chernoff [7], which was redigred recently by Xiao
and Liang [14]. In Section 1, we give a short proof of this fedoased merely
on the uniqueness theorem for Laplace transforms. Then e¢his theorem to
study approximation of degenerate semigroups. Under thael imundedness as-
sumptions one obtains always convergence on the closule séhge space of the
limit pseudoresolvent, but not on the kernel as easy exargilew. Things are
different for uniformly holomorphic sequences, which wesider in Section 5. As
application, we study convergence of heat semigroups itidBeg.
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1. CoNVERGENCE OFLAPLACE TRANSFORMS

Throughout this articleX denotes a Banach space dhd = [0, co) the closed
right half-line. Letf € Ll (R, X) be such thaf| [j f(s)ds|| < Me“t (t > 0),
whereM,w > 0. Then the Laplace transform

FO): = A TN ()t
= lim (e M f(t)dt

T— 00

exists for ReA >w andf : {\: Re A > w} — X is a holomorphic function. The
uniqueness theorem asserts the following: 1§ () = 0 for all A > Ao and some
X > w, thenf(t) =0 a.e.

Theorem 1.1 below describes convergence of a sequencectibhgin terms of
their Laplace transforms. This result was recently proyedibo and Liang in [14].
We are grateful to F. Neubrander, who informed us that, i, fallceorem 1.1 is
mentioned by Chernoff [7, p. 106], whose proof of the Prammsion resolvents in
[6] carries over to the general situation considered in fdmadl.1. The special case
of Lipschitz continuous functions had been considered bynithgy and Neubrander

[9].

Here we give a short proof of Theorem 1.1 by applying the wengss theorem
to the Banach spac€°(X) of all bounded sequences X with uniform norm.

Theorem 1.1. Let M,w > 0. Let f,, : Ry — X be continuous and satisfy

t
(1.1) || /0 fuls)ds]| < Me“t (¢ > 0)

for al n € N. Assume that
(a) the s=quence (fy)nen IS equicontinuous at each ¢ > 0 and that
(b) limy, 00 fn(\) eXistsfor all A > w.

Then the sequence (f, )nen converges uniformly on [0, 7] for each 7 > 0.

Proof. Assumption (a) says precisely thatt) = (f.(t))nen defines a contin-
uous mapping” : Ry — ¢°°(X). Since by (1.1)

t
H/ F(s)ds| < Met (¢ 0),
0

the function ' is Laplace transformable. Denote byX) the closed subspace
of ¢>°(X) consisting of all convergent sequencesXhand bygq : ¢*(X) —
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(>(X)/c(X) the quotient map. Then by assumption (BY\) = (fn(A))nen €
c(X) for all A > 0. Now the uniqueness theorem implies that ' = 0; i.e.,
(fn(t))nen converges for alt € R,. Since the sequence is equicontinuous at each
t € R4, simple convergence implies uniform convergence on eacipaot subset

K of Ry. ]

We remark that conditions (a) and (b) are necessary.

If we are merely interested in convergence( #(¢)),cn for almost allt > 0
then the proof of Theorem 1.1 shows that the measurability’ etiffices. This is
weaker than condition (a), which says precisely thas continuous. To illuminate
this point further, we use the following criterion for meeahility, which seems to
be new. Itis a consequence of Pettis’'s theorem and the Km@inlyan theorem,
analogous to Theorem 1.5 below for holomorphic functions.

We use the following terminology. A subsHt of the dual space(* of X is
calledsepar ating if for eachz € X'\ {0} there existg* € W such thatz*, ) # 0.

Theorem 1.2. Let X be a separable Banach space and f : (0,00) — X a
function. Assume that there exists a separating subset W of X* such that z* o f is
measurable for all x* € W. Then f is measurable.

Proof. LetY = {z* € X*: z%0o f is measurable ThenY is a subspace of *
which containdV. ThusY is ¢(X*, X )-dense inX*. LetY; =Y N B*, whereB*
denotes the closed unit ball df*. Since X is separable, the(X™*, X)-topology
is metrizable onB*. We show thafy; is o(X*, X)-closed. In fact, letz* be an
element in thes(X*, X)-closure ofY1. Then there exists a sequerfeg),_, in Y1
converging taz*. Hencelim, oo (z}, f(t)) = (x*, f(¢)) for all ¢ > 0. It follows
that z* o f is measurable; i.ex* € Y;. Now it follows from the Krein-Smulyan
theorem thal” is o(X*, X)-closed inX*. SinceY is dense, we have proved that
Y = X* i.e., f is weakly measurable. Now Pettis's theorem implies thas
measurable. [ |

With the help of Theorem 1.2 we can easily prove the following
Corollary 1.3. Let f,, : (0,00) — X be measurable (n € N) such that

sup || fu(8)]] < oo.

neN
t>0

Assume that there exists a separable subspace Y of £2°(.X) such that ( f,.(t) Jnen €
Y for amost all ¢ > 0. If (f,(\))nen converges for all A > w and some w > 0
then (f,.(t))nen converges for almog all ¢ > 0.



282 Wolfgang Arendt

Proof. We keep the notations in the proofs of Theorems 1.1 and 1&. F
¥ € X* andn €N, lete,\z" € Y* be defined bye,\a*, x) = (z*, ), where
x = (xp)neny € Y. ThenW = {e, \2* : n € N, 2* € X*} C Y* is separating
and(e, N\a*)o F' = x* o f,, is measurable for alk € N, z* € X*. It follows from
Theorem 1.2 that” is measurable. Now the proof is completed as for Theorem 1.1.
[ |

The following example shows that the separability conditannot be omitted,
even in the scalar case.

Example 14. Let X = C, fu(t) = ¢ Then f,(\) = 1/(A —in) — 0
(n — o0) for all A > 0; however( f,,(t)),cn does not converge fare R, \ 27Z.

Note that||( fn(s)) — (fn(t))]lee =2 Whenever|s — t| € Ry \ 277Z so that the
separability condition in Corollary 1.3 is not satisfied.

The separability condition in Corollary 1.3 seems difftdal apply in examples.
However, a stronger condition, namely holomorphy, is easyandle. One may use
the following criterion [4].

Theorem 15. Let Q@ ¢ C beopenand f : © — X a localy bounded
function. Assume that there exigs a separating subspace Y of X™* such that 4" o f
is holomorphic for all y* € Y. Then f is holomorphic.

Now we can prove the following result.

Theorem 1.6. Let M,w >0 andlet f,, : (0,00) — X be continuous such that
|l fn(®)] < Me*t (t > 0) for all n € N. Assume that for each ¢ > 0 there exigs an
open disc B(t, ;) = {z € C: |t — z| < &}, where ¢; > 0, such that each f,, has
a holomorphic extenson to B(t, d:), still denoted by f,,, such that

sup sup [|faul2)] < o
n€eN zeB(t,6;)

If f,,(\) convergesasn — oo for A > w, then £, (t) converges asn — oo uniformly
on conpact intervals of (0, co).

Proof. By Theorem 1.5, the function

F(z) := (fa(2))nen

is holomorphic onQ) := |J,- B(t, 6;) with values in¢>*(X). As in the proof
of Theorem 1.1, we conclude thhtn, .~ f,(t) exists a.e. It now follows from
Vitali's theorem (see [3, Appendix A], [10, pp. 104-105] &) that (fr(2)),en
converges uniformly on compact subset<of [ ]
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2. DEGENERATE SEMIGROUPS

Let X be a Banach space. degenerate semigroup is a strongly continuous
mappingT : (0, c0) — L(X) satisfying

.1) Tt+s)=Tt)T(s) (s,t>0)
and
(2.2) sup || T(t)]| < oo.

0<t<L1

If T(0) := limy o T(t) exists strongly, we say thaf is continuous. ThenT'(0)
is a continuous projection ont&; = 7(0)X. The restrictionST(t)|X1 define a
Cp-semigroup onX;, whereaSZ”(t)‘XO =0 whereX, = (I — T(0))X.
Let 2 C C be a subset. A functioR : 2 — L£(X) is called apseudoresolvent
if
R(A) — R(p)
W= A

Then the kernel&er R(\) and the imageR(A\) X are independent ok € Q. If
ker R(\) = {0}, then there exists an operatdron X such that{ A\— A) is invertible
andR(\) = (A — A)~! for all A € Q. If Q is open, then it follows from (2.3) that
R is a holomorphic function.

(2.3) = R(\)R(n) wheneveru,\ € Q , p # .

Conversely, ifQ2 is open and connected ail: 2 — £(X) is holomorphic and
if (2.3) is valid for all A\, € Q9, A # u, whereQy C Q is a subset of2 having
a limit point in , then it follows from the uniqueness theorem for holomarphi
functions thatR is a pseudoresolvent.

Let T : (0,00) — L(X) be a degenerate semigroup. Then, as in the case of
Co-semigroups, there exidt/ > 0, w € R such that

(2.4) IT()] < Met (¢ > 0).

Thus, we may consider the Laplace transfafii) € £(X) of T defined by

T

~

— 1 At
TNz := lim [e T(t)xdt
0

for all z € X, A € C such thatRe A > w. One sees as in [1, Proposition 2.2]
or [3, Theorem 3.1.7] thel’ is a pseudoresolvent. Conversely/Tif: (0,00) —
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L(X) is strongly continuous and satisfies (2.4), and'if (w,c0) — £(X) is a
pseudoresolvent, théfi is a degenerate semigroup (by the references given above).
Similar to the mean ergodic theorem, one has the followingpohposition result

on reflexive spaces (cf. [13, Corollary VIII.4.1] or [2]). é\give a proof for
completeness.

Proposition 2.1. Let R : (w, 00) — L£(X) be a pseudoresolvent on a reflexive
Banach space X. Assume that

(2.5) limsup [[AR(N)|| < 0.
A—00

Then X isthe direct sum X = Xy @ X, where Xy = ker R(\) and X; = R(A\)X.
Consequently, there exists an operator A on X; such that (w,00) C ¢(A) and
R(AA) = Ry, (A> w).

Proof.

(@) Lety > w, = R(p)y. ThenARA)R(u)y = (A/(A—p)(R(y—R(N)y) —
R(u)y as\ — oo. Hencelimy_,., AR(N)z = z for all x € X;.

(b) Letz € X and letz be ac(X, X*)-limit point of A\AR(\)z as\ — co. Then
(R(p)z, z*) is a limit point of (AR(\)z, R(u)*z*) as A — oo. Since the
last expression converges {&(u)x,z*) as A — oo by a), it follows that
(R(p)(z—z),2") =0for all z* € X*. Thusz —x € Xp andz € X;. We
have shown thak c Xy + X;.

(c) Since forz € X1, limy 00 AR(A\)z = z, it follows that XoN X; = {0}. =

Corollary 2.2. Each degenerate semigroup on a reflexive space X is continu-
ous.

Proof. Let T' be a degenerate semigroup. ThEnsatisfies (2.4) for some
M >0, weR. ThenT : (w,00) — L(X) is a pseudoresolvent. Hengé =
Xo @ X1 according to Proposition 2.1. It follows from the uniquentdseorem that
T(t)|y, = 0. There is an operatod on X; such thatR(A\)z = (A — A)~ Lz for
x € X1, A > w. ThusD(A) = R(\)X is dense inX;. It follows from [1, Theorem
2.4] that A satisfies the Hille-Yosida condition. Hen(iét)|x1 is a Cp-semigroup.

[ |

We mention that on a Banach spaewhich is not reflexive there may exist a
degenerate semigroup which is not continuous evex lias the Radon-Nikodym

property (see [1]).

We conclude, showing by an example, that condition (2.5nhothbe omitted in
Proposition 2.1.
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Example 2.3. There exists a bounded pseudoresolgnt [1,00) — L(X),
where X is a Hilbert space such thaf, + X; # X, where Xy = ker R(\) and
X1 =RMNX (A>1). Infact, let X = {z = (zn)neny C C: > 02 |zn?/(1+
n?) < oo}. ThenX is a Hilbert space for the scalar product

[eS) _
(@]y)=> +—%
n=1

1+4+n2’

Let X = {2 € X : (Ton + T2ni1)nen € £2}, with norm lz|% = ||x||§~( + ||(z2n +
Tont1)nenl7- ThenX is a Hilbert space. Defin&()) € L(X) by

/\J%nxn (n € 2N)

(B2 = { 0 ngoN

ThenR : [1,00) — L(X) is a bounded pseudoresolvent. Consider (1,—1,1,—1,
--+) € X. It is obvious thatXy = {x € X : x2, = 0 for all n € N} and X; C
{re X :xop—1=0foralneN}. Letu=(1,-1,1,—-1,---) € X. Assume that
u=wup+u; € Xo+ X1. Thenuyp = (1,0,1,0---) andu; = (0,—1,0,—1,---).
But ug ¢ X andu; € X;; a contradiction.

3. APPROXIMATION OF PSEUDORESOLVENTS

We start this section by showing that each bounded operatobe embedded
into a unique pseudoresolvent. To make this precise, weéhadeltowing definition.

Definition 31. Let R : Q — L£(X) be a pseudoresolvent, whetec C is
open and connected.

(&) We say thaR? is maximal if for each pseudoresolver®; : ; — £(X) with
Q; an open connected set containfigsuch thatR;(\) = R(\) on (2, one
has() = Q.

(b) Let@ € L(X), Ao € C. We say that) is embedded into R at \g if Ao €2
andR(\o) = Q.
In the sequel, we will frequently use the following lemma.

Lemma 3.2. Let R: Q — L(X) be a pseudoresolvent, where (2 C C is open.
(@) Let A € Q. Thenfor € Q one has

3.1) R(u) = (I — (A= w)RN))'R()

wheneverl\ — u| < ||[R(N)]|7L.
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(b) In particular, |R(p)| <2M if [R(\)|| < M and |A —pu| < (2M) ™!
Proof. SinceR(A\) — R(u) = (u— A)R(N)R(w), one hasR(\) = (I — (A —
w)R(XN))R(p), which implies (3.1). Thus

(0.9}

R(u) = R(A) Y (A= p)"R(N)™

n=0

This implies (b).
Next we prove consistency. [ |

Lemma 3.3. Let ©;,Q, C C be open such that 2; N2, is connected. Let
do € Q1 NQ. Assumethat R; : Q; — L£(X) are pseudoresolvents (j = 1,2) such
that Ry ()\()) = Ra(\p). Then

(a) Ry ()\) = Rg()\) for all Ae Q1 Ny and

(b)
Ri(d) (A efh),
R(N) =
() { Ro(A) (A €Qa)
defines a pseudoresolvent on 21 U Q.

Proof. (a) LetQs = {A € 21N D : Ri(N) = Re(N)}. Then)g € Q3
and(s is relatively closed irf2; N € since pseudoresolvents are continuous. Let
A€ Q3. ThenR; (M) = Ra(N). It follows from Lemma 3.2(a) thaR(u) = Ra(u)
if € QN such thaty — A < ||R;(A\)]|~t. We have shown tha®; is an open,
closed and non-empty subsetf N Q,. Sincef2; N, is connected, it follows
thatQ3 - Ql ﬂ QQ.

(b) Let A € €. Set
Ri(A) —R
23 := {M €y %)\2() Ri(A\) Ro( )}

Then Q; N Qe C Qs by (a), and hencéls # (. We show that2s is open. Let
po € Q3. Then by Lemma 3.2, folir — po| < || Re(uo)|| ! we have
Ri(X) = Ra(p)= Ra(N) — (I = (uo — 1) Ra(p0)) ™" Ra(po)
= [Ri(A) I = (1o — 1) Ra(p0)) — Ra(po)]
(I — (o — )R (o))
= [(ro = A)R1(A) Ra(po) — Ra(A)(po — p) Ra(po)]
(I — (1o — p)R2(p0)) ™"
= (1= N R1(N)R2 (o) (I = (o — p) Ra(p0)) ™
= (1= N R1(A)Ra (1)
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Hencep € Q3. Thus(s is open, closed and nonempty. It follows titag = Qo.
Thus R satisfies the resolvent equation. [ ]

Next we embed an operator locally into a pseudoresolvehttwi help of (3.1).

Lemma 34. La Q € L(X), M = ||Q||, and Ao € C. Define R(n) =
(I—(No—wQ)'Q for u € B(Xo,1/2M):={pn € C:|Xo—p| <1/2M}. Then
R is a pseudoresol vent.

Proof. Let A\, € B(Xo,1/2M). Then

RN —R()= (I~ (do —2)Q)Q— (I (o —NQ)R(u)]
== (M —-NQ) QU — (M —w)Q) — (I — (Mo —NQ)Q]
(I = (Mo —p)Q) 1
= (I = (M=) 'Q(k—=NQU — (M — Q)™
= (k= ANR(NR(p). -

Next we characterize maximality.

Propogtion 35. A pseudoresolvent R : Q@ — L£(X) defined on an open
connected set Q2 C C ismaximal if and only if

lim |[ROV)| = o0
—00
for each sequence (A )ren in 2 converging to a boundary point Ag € 9€2.

Proof. Assume that the condition is not satisfied. Then theret exjisc 0f)
and a sequenag\;).cn in §2 converging to\, such that

M :=sup |R(\)]| < oo.
keN
Let k£ € N be such that\o — A\x| < 1/2M. Then by Lemmas 3.3 and 3.& has

an extension t®2U B(\, 1/2M) which contains\g. ThusR is not maximal. The
other implication is obvious since pseudoresolvents andiragous. [ ]

Now we can prove the embedding result.

Theorem 3.6. Let Q € L(X), and Ay € C. Then there exist an open, connected
%t QO C C and a unique maximal pseudoresolvent R : 2 — £(X) such that @ is
enbedded into R at \g.
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Proof. The setl := {V C C open : Ao € V, there exists a pseudoresolvent
Ry : V — L(X) such thatQ is embedded intd?, at Ao} is nonempty by Lemma
3.4. It contains a maximal element by Zorn’s lemma. The wngss ofRR follows
also from Lemma 3.3. [ |

Using Theorem 3.6, we can prove the following approximatesult for pseudore-
solvents.

Theorem 3.7. Let Q C C be open and connected and let R, : @ — £(X) be
a pseudoresolvent for each n € N. Assume that

sup [| Rn(A)[| < oo

neN
for all A € Q. Assumethat (R,,(\g))nen CONvergesstrongly for some A\ € €2. Then
there exists a pseudoresolvent R : 2 — £(X) suchthat R(\)z = lim,,_,o R,,(N)z
uniformly on compact subsets of 2 for all x € X.

Proof. Let Q be the strong limit of R(Xo))nen. Denote byR : Q — £(X)
the maximal pseudoresolvent such tgais embedded intd? at Ay (see Theorem
3.6).

(@) Letu e QN Q. We show thatR(u) = limy, ;e R (1) strongly. In fact, let
zeX. Letz=2+ (Ao — p)R(p)z andz, = z+ (1 — Xo)Rn(Xo)z. Then
by the resolvent equatio?()z = R(X\o)z and Ry, (i) z, = Rn(Xo)z. By
hypothesis limy, 00 2n = 2z + (1 — Xo)R(Mo)z = z + (1 — Ao)R(p)z =
x. Sincesup,en |Rn(p)|| < oo, it follows that R(u)x = R(X\)z =
limy,—s 00 Rp(A0) 2 = limy 00 R (1) 20 = limips 00 [Rn (1) (20 — ) + R (1) 7]
= limp 00 Ry (1) 2.

(b) Suppose thaf2 ¢ . Then there existgiy € IQN Q. Letur € QN QO
be such thatimy o0 i = po. Let M = supyen ||Rn(0)]] < oo. Then,
if |ux —po| < 1/2M, it follows from Lemma 3.2(b) thal R, (ux)|| < 2M
for all n € N. Sincelimy oo Rn(ux) = R(pk) strongly, it follows that
IR (uk)|| < 2M. This contradicts the maximality d® by Proposition 3.5.
ThusQ c Q.

(c) Letz € X. It follows from (a) and (b) thatim,, ., R, (x)z = R(u)x for
all p € . Lemma 3.2 implies that the sequeriég,),,«y is locally bounded.
Thus Vitali's theorem (see [3, Appendix A], [4] or [10, pp.4tQ05]) implies
that the convergence is uniform on compact subsefs. of

Remark 3.8. The proof of (a) shows also the following. L&t C C be
an arbitrary set, and?, R, : Q@ — L(X) be pseudoresolvents. Assume that
sup,y [|[Rn(A)]| < oo for all A € Q. If there exists some\y € €2 such that
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R(X\o) = limy, 00 Rn(Ao) strongly, thenR,, (\) converges strongly t& () for all
Ae

4, APPROXIMATION OF DEGENERATE SEMIGROUPS

In this section, we investigate how strong convergence gélerate semigroups
can be deduced from strong convergence of the associatedgossolvents.

We need the following lemma:

Lemma 4.1 Let T : (0,00) — £(X) be a degenerate semigroup such that
IT(t)|| < Me“t (t>0). Let RNz = [;° e MT(t)zdt (A > w). Then

(AR(\) — I) A "T)dr = (T() — DROY) (A> w, ¢ > 0).

Proof.

0
=T(H)R(\) — R()),
where integration by parts has been used. [ ]
Now we can prove the following approximation result for deg@te semigroups.

Theorem 4.2. Let T,, : (0,00) — L£(X) be a continuous semgroup on a
reflexive Banach space X such that

ITa(t)]| < Me™ (¢ = 0)

for all n € N, where M,w > 0. Denote by R,(\) = T,()\) the associated
pseudoresolvents (A > w, n € N). Assunme that R, (o) converges srongly for
ome \g > w. Then the following holds.

The Banach space X is the direct sum of subspaces Xy and X; such that
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(@) T'(t)x :=lim, 00 Tp(¢)z converges uniformly on [0, 7] for al 7 > 0 and all
x € Xp,and

(b) limy, o0 f§ Tn(s)zds = 0 uniformiy on [0, 7] for all 7 >0 and al z € Xo.

Moreover, T isa Cp-semigroup on X;. Let A; beitsgenerator. Then R(\, Ay)z =
lim,_,o, R,(Nx for all z € X; and al A > w.

Proof. We have the uniform estimate

B < 22 (A >w, neN),
It follows from the hypothesis and Theorem 3.7 thR\) = lim,, 00 Rp(A) €Xists
strongly for allA > w. Then(R(\))r>w is @ pseudoresolvent satisfyifg R(\)|| <
M for A > w+ 1. Let X7 = R(\)X and Xy =ker R()\), where\ > w +1. Let
y € X, andx = R(\)y. Lett > 0. We show that{ 7, (-)z} is equicontinuous at
eacht. In fact, by Lemma 4.1 one has, for< s < t,

1Tn )z = Tu(s)zl| = [ Tu(O) RNy —Tu(s) RNy
< I(Tn(®) = Tn(s))(B(Ny — Ba(My)l +
(T (t) — Tn(s))Rn (M)l
t) = Tu(s))(R(Ny — Bu(M)yl| +

IA
/\Af/\

=
A~~~ /N o/~

HABa(A) — 1) / T, (r)ydr]|

IN

M(e”" +e*)|[R(\y — Ru(Ny

t
HM+D/MWWMW

Givene > 0, we may choosey € N such that the first expression is inferior
toe/2 forall n > ng and all0 < s < ¢4 1. Now choosé) < § < max{¢,1} such
that the second expression is inferioref® whenevels — t| < § and also

| Tn(t)z — T (s)z|| <eforn=1,2,--- ng

if |s—t| <9d. Then||T,,(t)x—T,(s)z| <eforalln € Nwhenevers—t| <4. This
shows that the sequend&,(-)z : n € N} is equicontinuous at. Now it follows
from Theorem 1.1 thél,(¢)z converges uniformly off), 7] asn — oco. By density,
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this remains true for all: € X;. Thus (a) is proved. Consequentl(t)z :=
limy, 00 Th(t)x (x € X1, t > 0) defines aCp-semigroup onX;. Moreover,
R\ Az = [7° e NMT(H)adt = limpsoo [y e M ()zdt = limpeo Ry ()
for all z € Xy, A > w. In order to show (b), letS,(t) = ngn(T)dr. Then
|Sn(t) —Sn(s)|| < M f; e dr foralln € NandR,(\) = A [;° e ™S, (t)dt (A >
w). Sothe sefS,(-)x : n € N} is equicontinuous for each< X. Now it follows
from Theorem 1.1 thalim,, . Sy, (t)z =0 for all z € Xp. [ |

Whereas the integrated semigroqfatsil“n(r):cdr converge as — oo for each
x € X, we have seen in Example 1.4 that it can happen that the serp&f,, (¢)z
do not converge it € Xy. The situation is better if the semigroups are “uniformly
holomorphic” in a sense made precise in the next section.

5. HoLomMORPHIC DEGENERATE SEMIGROUPS

A bounded holomor phic degenerate semigroup is a degenerate semigroup
T :(0,00) — X which has a bounded holomorphic extension to a sectdy :=
{re* :r >0, |a] < 0} for somed € (0, 7/2] with values inL(X). We also use
the letterT for this extension. It follows from the uniqueness of analgixtensions
that
T(2)T(¢)=T(z+27") for all 2,2 € %(0).

The semigroup is callecontinuous if 7'(¢) converges strongly as| 0. By Vitali's
theorem, this implies th&'(z) converges strongly as— 0 for z € 3(¢'), for each
¢’ € (0,0) (cf. [3, Proposition 2.6.3] or [10, Theorem 3.14.3]. By Qtaxy 2.2, if
X is reflexive, then a bounded degenerate holomorphic senygis automatically
continuous.

Let T': (0,00) — L(X) be a bounded holomorphic degenerate semigroup with
Laplace transforn¥’(\) (Re A > 0). Then one sees as in tli&-case that there
exists a constand/ > 0 such that

INT(A)|| <M (Re A > 0).

Conversely, as in thé€'p-case, one proves (e.g., with help of [3, Theorem 2.7.1])
the following converse result. We I€t; = {\ € C: Re A > 0}.

Theorem 51. Let M > 0. There exig M > 0, 6 € (0,7/2] such that the
following holds. Let R : C. — £(X) be a pseudoresolvent such that

INRV)|| <M (Re A >0).
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Then there exists a bounded holomorphic degenerate semigroup 7" such that T(A) =
R()\) (Re A > 0). Moreover, T has a holomorphic extension to () such that
IT(2)ll <M (z € 5(0)).

We call T' the bounded holomorphic degener ate ssmigroup associated with
R.

Now we obtain the following approximation result.

Theorem 52. Let M > 0. For eechm € N, let R, : C, — L(X) be a
pseudoresolvent such that || AR,,(A\)|| < M for all Ae C,, m € N. Let T}, bethe
bounded holomor phic degenerate semigroup associated with R,,,. If for some A >
0, Rm(A) converges strongly as m — oo, then there exists a bounded holomorphic
degenerate semigroup 7' such that limy, o0 Trm(t)z = T'(t)z uniformly on [0, 7]
foral 7 >0andal z € X.

Proof. By Theorem 5.1, there exigte (0,7/2], M > 0 such thatT}, has a
holomorphic extension t&(0) with values inL(X) satisfying |7y, (z)|| < M for
all z € 3(0), m € N. It follows from Theorem 1.6 thaf'(z)z := limy,— 00 Tin(2)x
converges uniformly on compact subsets3iyp) for all z € X. ThenT is holo-
morphic by Vitali's theorem. Moreovet(z +2') = T'(2)T'(2') for all z, 2" € £(6)
by the semigroup property @,,. [ ]

We remark that it is also possible to prove Theorem 5.2 withliblp of a
contour argument.

6. CONVERGENCE OFHEAT SEMIGROUPS

Let © C R™ be an open set. We identif§y?(Q) with a closed subspace of
L?(R™) extending functions by zero. BP(2) we denote the test functions &
and byH! (R™) the first Sobolev space ih*(R™). The spacdd} () is defined as
the closure ofD(Q2) in H'(R™). Now we define theDirichlet Laplacian as the
operatorAg on L?(Q) given by

D(Ag) = {feHy():Af e LX)},
Aof = AfinD(Q).

Here we considef.?(2) as a subspace @P(Q2)’ as usual. The operatdk, is
selfadjoint and form negative, so it generates a holomogfisemigrouet22);>o
on L2(Q). We define the degenerate semigrdiyp(t) on L2(R™) by

(e fi)(x) if zeQ

(Ta(t)f)(x)={ 0 i reQ
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ThenTy, is continuous andy,(0) is the orthogonal projection ont?(Q2) given by
Ta(0)f = 1af.

Definition 6.1 (convergence of open s&ts). If Q,,, Q@ C R™ are open sets
(m € N), we writelim,,,_, 2,,, = Q if the following two conditions are satisfied:
(a) For each compact sé&t C 2, there existsng € N such thatK c €, for all
m > my, and
(b) limy, 00 |2 \ 2| = 0, where|F'| denotes the Lebesgue measure of a mea-
surable subsef’ of R™.

In the following theorem, we need a mild regularity assuamptin the limit set

Q. We let
H}(Q) = {f € HY(R"): f(z) =0 a.e. onR™ \ Q}.

Then H} () is a closed subspace &f!(R™) containingH}(€2). We will need the
assumption thaf}(Q) = HL(Q). It is satisfied if the boundary d® is sufficiently
regular. For example, i is bounded and has Lipschitz continuous boundary, then
HA(Q) = H}(Q). However, forQ = (0,1) U (1,2) C R one hasi} () # H(Q).
We refer to [2] for further details.

Theorem 62. Let 2, Q,, C R™ be open (m € N) such that limy,— .o Qm = €2
Assumethat H§ (Q) = H (). Thenfor each f € L2 (R™), one haslimy, o T, (t)
f=Ta(t)f in L2(R") uniformly on [0, 7] for all 7> 0.

Proof. It follows from the spectral theorem that

AR\ Ao, ) <1 (Re A>0)

for all m € N. Denote byR,, : Cy — L(L?*(R")) the pseudoresolvent associated
with T, ; i.e.,
(R(/\7Aﬂm)f)(x) (x € Qm):
A g
(Bm(A)f)(x) { 0 0 20

and let R be the pseudoresolvent associated Vith Let f € L2(R"), u,, =
Rn(1)f, andu = R(1)f. In order to apply Theorem 5.2 we have to show that
limy, 00 um = u in L2(R™). For this, it suffices to show that each subsequence of
(Um)men POSSESSES @ subsequence which convergesNiote thatu,, € Hg ()
andu,, — Au,, = f in D(Q,); i.e.,

/umgo + /Vungodac:
O Do

/umgo — /umAgod:L’:/fgodm
Qm

m m
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for all ¢ € D(Qyy,). By density, we deduce that

/um<p+/Vung0d:v: /fcpd:z:
Q Orm Om

m

for all ¢ € H}(Q4y,). In particular,

/|um|2dx+/|Vum|2d:c: /fumda:
Qm Qm Q

< |[fllze@n) - lumllL2@n)

1
< U Zany + [l [Z2)-

Thus, (um )men is bounded inf}(R™). SinceH!(R™) is reflexive, we may assume
thatu,, converges weakly to a function € H'(R™) asm — oo (considering a
subsequence otherwise). Since for each Bah R™ the embedding off!(B) into
L?(B) is compact, we can assume thgt converges ta in L2 (R™) asm — oo.
So we can also assume thaf,(z) converges tax(z) a.e. asn — oo (taking a
subsequence again).

Now observe thatu,,| < R(1,A)|f| for all m € N, whereA denotes the
Laplacian onL?(R"), i.e., the generator of the Gaussian semigroup.4iR™) (see
[2] for example). Thus it follows from the dominated conwege theorem that
um — v in L*(R™) asm — oo. The assumption b) implies thag, .\, converges
to 0 in measure asm — oco. As is well-known, this implies that a subsequence
converges td a.e. Hencey(r) = 0 a.e. onR™\ Q. Thusv € H}(Q) = H} (Q).
Let ¢ € D(Q?). Then there exists, € N such that supp C €, for all m > my
(by property a)). Since,,, — Au,, = f in D(%,,), it follows that

/umg0+/Vung0:/fcpdm
Rﬂ RTL Rn

for all m > my. Taking the limit asm — oo, we deduce that

/vcp—f—/VvVgo:/fgo.
R» Rn R

We have shown that — Av = f in D(Q). Thusv = u, and the proof is complete.
[

It is not difficult to generalize Theorem 6.2 to strong cagemce inL?(Q) (1 <
p < o). In I*(Q), one may also use convergence theorems for quadratic forms
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if the sequence of forms is monotonic; see [2], Simon [12] Bedd-Simon [11,

App

endix]. Concerning convergence with respect to the doofahe corresponding

elliptic problem with different boundary conditions, wéeeto Henrot [8] and Bucur

[5].

can

10.

11.

12.

13.
14.

15.

Abte

A wealth of further results on the convergence of heatigeoups (Section 6)
be found in [15].
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