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ABSTRACT Let f~l, 122 C ~g be two open, connected sets which are regular in
the sense of Wiener. Denote by Ao~ the Laplacian on Co(~j) , j 1, 2. Assume
that there exists a non-zero linear mapping U : Co(121) --4 Co(122) such 

(a) [U f[ = Ulf[ (f e Co(Q~)) 

(b) Uet~X~’ = et~’~:U (t >_ O) 

Then it is shown that ~t and f12 are congruent. This result complements [2]
where the Laplacian on Lv was considered and U was supposed to be bijective.

.0 INTRODUCTION

Let Ft C ~N be an open set. By A~ we denote the Dirichlet Laplacian on L2 (12) 
This is a self-adjoint operator generating a contraction semigroup (et’~)t>o If f~
is bounded, then A~ has compact resolvent and hence L2(~) has an orthogonal
basis {e~ : n e ~} consisting of eigenvectors of A~ ; i.e.

0<A~ <Ae ~As .... lim A~=~. Now let fl~ and ~ be two bounded open

sets. We say that ~ and fl~ are isospectral if the operators A~ and A~
have the same sequence of eigenv~lues. It w~s Marc Kac, who asked the following
question in his famous paper [12] of 1962:

Question (Marc Kac): Let fl~, ~2 be two bounded open, connected sets in 
which are of cl~s C~ . Assume that ~ and ~2 are isospectral. Does it follow
that ~ and ~2 are congruhnt?
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If we have in mind that the sequence of eigenvalues is just the same as the proper
fl’equencies of the body, one can indeed reformulate this question by asking "Can
you hear the shape of a drum?", which is precisely the title of Kac’s paper.

It was known already to Kac that the answer is negative if we consider the Laplace
Beltrami operator on a compact manifold instead of domains in ~v . In the
Euclidean case, a counterexample to Kac’s question was given by Urala~wa [21] if
dimension N > 4. For N _> 2 finally, a counterexample was given by Gordon,
Webb and Wolpert [10] in 1992.

Today, very elementary descriptions of examples are given (see Berard [4], Chap-
~nan [6]). For example, in dimension 2, seven triangles may be put together in the
two different ways shown below to produce two polygones which are isospectral but
not congruent.

However, it semns that so far no Euclidean counterexample with smooth boundary
is known. Thus Kac’s question in the precise form he asked it, is still open.

There is another way to look at isospectral sets. Let gt~, ~2 C ~r/g be open and
bounded. Then ~1 and ~ are isospectral if and only if there exists a unitary
operator U : Le(~,) -~ L~(~e) such 

eta~=U = Uet’~=~ (t _> O) (0.1)

In fact, we may define U by mapping the orthonormal basis diagonalizing A~~

onto the one which diagonalizes A2~= .

Let f ~ L~(FI~) . Then the function u(t, x) = (et’x= f)(x) is the unique 
of the heat equation:

Thus (0.1) is equivalent to saying that U maps solutions of (0.2) to solutions.
Now observe that u(t,x) >_ a.e. if f _ > 0. Moreover, if we thi nk of heat

conduction or diffusion as a physical model, then only positive solutions have a
physical meaning. So it is natural to consider mappings U which map positive
solutions to positive solutions.
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By an order isomorphism we unterstand a bijective lineal mapping U : L2 (~’~1) --~
L-" (f~2) satisfying

Uf >_ 0 if and only if f >_ 0 (0.3)

for all f E L~’(f~l) 
If in (0.1) we replace the unitary operator U by an order isomorphism U , then

the following result holds [2, Corollary 3.17].

THEOREM 0.1 Let f~1,122 be two open connected sets which are regular in ca-
pacity. If there exists an order isomorphism U : L~(ftl) -~ L2(~2) such that (0.1)
holds, then ~ and f~2 are congruent.

Having in mind the previous interpretation, we may reformulate Theorem 0.1
by saying that diffusion determines the domain. We refer to [2] for the proof of
Theorem 0.1 and to Section 2 - 4 for further explanations, in particular the notion
of regularity in capacity.

The aim of the present paper is to extend Theorem 0.1 in two ways. First of all
we will prove that it holds even if we do no longer assume that U is onto. Secondly,
we will establish an analogous result where L2 is replaced by a space of continuous
function.

For our arguments it will be essential that the semigroup generated by the Dirich-
let Laplacian on Co (f~) is irreducible. We will prove this in Section 1 by using that.
the semigroup actually consists of classical solutions; i.e. that (0.2) holds. Using 
classical maximum principle we then obtain irreduciblity.

1 CLASSICAL SOLUTIONS OF THE HEAT EQUATION
AND STRICT POSITIVITY

In this section we show that the heat equation always has classical solution due
to interiour elliptic regularity. This is not new (cf. [5, IX 6]), but we use this 
prove irreducibility with help of the classical strict maximum principle for parabolic
equations. This is an alternative much more elementary way in comparison with
the use of lower Gaussian bounds (see Davies [7, Theorem 3.3.5]). In addition, 
obtain not only irreducibility in L~ but also in Co(m) which is stronger and will
be used in Section 2.

Let Ft c/R~ be an open set. We consider realizations of the Laplacian on L2 (~)
which generate differentiable positive semigroups. Our aim is to show that such a
semigroup is automatically strictly positive. The concrete example we will consider
later is the Laplacian with Dirichlet boundary conditions.

Let T = (T(t))t>_o be a semigroup on a Banach space X with generator A .
Then for each k E ~W , the space D(A~) is a Banach space for the norm

tlxlIA~ -- Ilxll + IIAxll +... + IIA~xll ¯ (1.1)

The semigroup is called differentiable if T(t)x ~ D(A) for all t > 0 , x ~ X .
In that case one has

T(.)x ~ ck((o, oc) ; D(Am)) (1.2)
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for all kEtV, mEgg, xeX (see e.g. Pazy[16]).
An operator A on L2(f~) is called a realization of the Laplacian, 

Af : A f (in T~(~)’)

for all f ¯ D(A) . We now show that a differentiable semigroup T whose generator
A is a realization of the Laplacian in L2(f~) governs a classical solution of the heat
equation. More precisely, we have the following:

THEOREM 1.1 Let T= (T(t))t>_o be a differentiable semigroup L2(f~) whose
generator is a realization of the Laplacian. Given f ~ L~(ft) let

u(t,x) = (T(t)f)(x) (t > O, 

Then u ¯ C~((0, c~) x ft) and

ut(t,’~) = ~Xu(t,z) (t > o, x ̄  (1.3)

We need the following two results on regularity which are easily proved with help
of the Fourier transform (see e.g., [18, Theorem 8.12.]).

By Hk(f~) we denote the k-th Sobolev Space; i.e.

H~(fl) = {f ¯ L2(ft): Daf ¯ L2(f~) if I~1 k),

N
where a = (al,... ,aN) e /N~v denotes a multi-index and lal = ~] o~j its order,

j=l

¯ 0D~=D~t ..DTv ’~’ , Dy= 0~ , J=I,’"N, ~W0=Zrv’k){0}={0,1,2,...}. The

local Sobolev spaces are defined by H~oc(f~) = {f ¯ L~o~(f~) : D~f e n~o~(E!) if’
lal < k} . Here xve consider, in the usual way, L~oc(f~) as a subspace of ’D(f~)’
and D~ as an operator on /9(f2)’ . We set H°(ft) = L2(f~) H~oc(f~) = L~oc(f~)
for consistency¯

LEMMA 1.2 Let k,m ¯ 1No , k > ~y . Then H~oc (l)) C Cm(~2) ̄  In particular,

Here we let C(f~) = C°(gt) be the space of all continuous fl~nctions on ft 
values in C’ and Ck(f~) is the space of all functions which arc k-times continu-
ously differentiable.

LEMMA 1.3 Let u,f ¯ L~o~(fl ) such that Au = f in 79(fl)’. Then u 
¯ , Hk+2/f~) H?o~(a) Moreover, if f e Htoc(f~) then u e toc 

It is not difficult to see that for k ~ tvV0,

H~+c~ (f~) = {f ¯ Ht~o~(a): Djf e Htkoc(a) , j = 1,... ,N} . (1.4)

Proof of Theorem i.I. Let w C f~ be open, bounded such that ~ C f~. Since A
is a realization of the Laplacian, it follows from Lemma 1.2 that D(A
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N 2kg~oc(f~) Cfor all kE~W. Let p> ~ : Then for 2k>p, C2k-P(f~). Let wC~
be open and bounded such that c0 C fl. For g : f/-~ ~7, we denote by j(g) the
restriction of g to c0. It follows from the closed graph theorem that j defines
a bounded operator from D(Ak) into c2k-P(Co) Hence by(1. 2), for ] E L2(f
we have joT(.)f ~ cm((o, oc) , c2k-P(Co)) for all k, mE /5/, 2k>p. This
implies that u(., .) ~ C’n((0, ec) x w) . 

We recall the classical strict parabolic maximum principle, see e.g. [8, V § 5, 3.4,
p. 1081].

PROPOSITION 1.4 Let T > 0 ¯ Let f~ C ~=gN be open and connected. Let

u e C2((o,r) x ft) n C([O,r] x fi) such that
ut(t,x) = Au(t,x) t e (o,r) , 

Assume that there exist xo ~ I2 , to ~ (O,T] such that

u(to,xo) = max u(t, x) 
~E(O,’r|

Then u is constant.

From this we can now deduce that every semigroup generated by a realization of
the Laplacian is automatically strictly positive whenever it is positive.

THEOREM 1.5 Let 12 C 1RN be open and connected. Assume that T = (T(t))t>_o
is a differentiable positive semigroup whose generator A is a realization o] the
naplacian. Then T(t)f ~ C~(f~) for all t > 0 , L2(f ~) ; an d if 0 <_ f e
Le(fl) , f ~ O, then

(T(t)f)(x) > 0 (1.5)

for all x E f~ , t>0.

Proof. It follows from Theorem 1.1 that the function u given by u(t,x) 
(T(t)f)(x) is in C~((0, ec) x f~) and satisfies the heat equation (1.3). 
that f_>0. Then u(t,x) >_0 for all t>0, x~f~ by hypothesis. Assume that
there exists to> 0 , Xo ~ f~ such that u(to,xo) = 0. Let w be open bounded,
connected such that D C f~ ¯ The strict maximum principle applied to -u shows
that u(t, x) = for al l t ~ (0, to ] , x E w.Nowa si mple connectedness argument
shows that u(t,x) = for al l t e (0, to ] , x e f~¯ Since f = li t. r~oU(t,.) in L2(fl)

it follows that f = 0. []

REMARK 1.6 (Irreducibility) A positive semigroup T on a Banach lattice 
is called irreducible if for all f ~ E+ , f ¢ 0 and all qo ~ E~_ , ~o ¢ 0 there
exists t > 0 such that (T(t)f , qo) > 0. If in addition T is holomorphic then it
is automatically true that (T(t)f , qo) > 0 for all t > 0 (see [15, C-III Theorem
3.2]. Theorem 1.5 implies in particular that the semigroup T considcred here is
irreducible.
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REMARK 1.7 Of course there do exist realizations of the Laplacian which do
not generate a positive semigroup. For example, let A on L’)(0, 1) be given 
D(A) = {f g2(0,1): f( 0) = -f (1) , f’ (0) = -] Af = f". Then A
generates a semigroup which is not positive (cf. [1, 3.4], [15, p. 255]).

2 INTERTWINING LATTICE HOMOMORPHISMS ON L2

Let f~ C K/N be an open set. By AT we denote the Dirichlet Laplacian on
L2(f~) ;i.e.

D(A~) = {f ¯ H01(~): Af ¯ L~(gt)} f = Af.

Then AT is a form negative operator which generates a positive contraction semi-
group T = (eta~)~>o on Le(f~) 

By cap(F) in f(HuH~ : u >_1 o n a nei ghborhood of F} we denote the
capacity of a subset F of ~g . Then cap defines an outer measure on ]Rg .
An open subset 12 of ~RN is called regular in capacity if

cap(B(z, r) \ f~) 

for all z 6 cOl2 , r > 0. Note that 12 is regular in capacity whenever it is

topologically regular, i.e. l~ = f~ ¯ But also the set

f~ ---- B(0, 1) \ {(Xl,0): > 0) C K~

is regular in capacity.
The aim of this section is to prove the following result which extends Theorem

0.1 mentioned in the introduction.

THEOREM 2.1 Let ~1,~’~2 C 1~ N be open, connected and regular in capacity.
Assume that there exists a linear operator U : L2(ft~) -> L2(~2) such that U ~ 0
and

(a) lUll Ulfl (f ¯ L 2(n,)) ;

(b) Uet"x~’ = e~a~=U (t >_ O) 

Then f~ is congruent to f~ . More precisely, there exist an isometry "r : ff~.N __~
~N and a constant c > 0 such that "c(~) = f~t and

(U f)(y) : CI(T(y)) (y (2.1)

for all f ¯ L:(f~) 

Here a mapping ~- : ~ ~ ~N is called an isometry if there exist an orthogonal
matrix B and a vector b ¯ ~N such that T(y) By+ bfo r all y ¯/ R~: . Two
open sets 12~ and f~_ are called congruent if there exists an isometry such that
~-(~2~) = f~ . In that case it is easy to see that

Uf= fo’r
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defines a unitary operator satisfying (a) and (b).
Note that the regularity assumption in Theorem 2.1 cannot be omitted. This is

made clear in the following remark.

R.EMARK 2.2 Let ft C ~ be an open set. Then there exists a unique open
set fi which is regular in capacity such that (~ D ft and cap(~ \ f~) = 0. This

implies in particular that L2(ft) = L2(~) and T =AT(see [2] for the proofs).
Now, if ft is not regular in capacity, then we have gt ¢ f~ , and (a) and {b) 
satisfied for U the identity operator.

Proof of Theorem 2.1. It follows as in [2, (2.16)I that UD(Ftl) C C~(a2) 
that

(U f)(y) = { h(y)f(r(y))o y eefl~fl’2 \ ai (2.2)

for all f e D(fl~), where fl~ C fl~ is open, r : ~ ~ fl~ isometric oneach
component of f12 and h : fl~ ~ (0,~) is constant on each component of fl~ 
Moreover, as in [2, (3.10)] one sees that U induces a continuous operator from

H~(~) into H~(fl~). Now let 0 < f 6 D(fl~) et ~Uf. Then g
C~(~) and 9(y)>O for all y~fl~.

Ontheother hand 9 = Uet~ f in H~(fl~). Let k = et~ f. Then 
H~(fl~). Let kn ~ D(fl~) such that k~ ~ k in H~(fl~). Uk,~ ~ Uk
in H~(fl~) and so q.e. after extraction of a suitable subsequence. But Uk = 9 .
Hence Uk~9 q.e. Since Uk(y)=O for yeQ~fl~,itfollowsthat 9(y)=O
q.e. on f~z ~ fl~ ¯ Since 9 is strictly positive it follows that cap(~ ~ ~) = 0. By
[2, Proposition 3.10], it follows that ~ is connected. Thus ~ is an isometry and
h eqnal to a constant e > 0. It follows fi’om (2.1) and density that

(UI)(~) ~/(~(~)) (2.3)

a.e. on ~ for all f e L~(~I) . Note that ~3 := T(~) is an open subset 
which is regular in capacity. If suffices to show that cap(~ ~ fiz) = 0 in order to
deduce that r(~) = fl~ . Consider the mapping V : L~(~z) ~ L~(~z) given 
Vg=c-~goT -~. Let W:L2(fi~)~L2(~z) begivenby W=VoU. 

Wet~’ = e~7~W (t ~ O)
and

(W/)(~) 

for all xe~ and all f~(~). But Wf~H~(fl3). Hence f=0 on
q.e. for all f ~ ~(~t) . This implies that cap(~ ~ ~3) = 0, by [2, (3.7)].

3 THE CONGRUENCE PROBLEM WITH RESPECT TO Co([l)

Let fl C NN be an open non-empty set. We consider the Dirichlet Laplacian A0n
on

Co(fl) {f e C(f~) : for all e > 0 there exists K C f~ compact such

that f(x) = 0 whenever x E f~ \ K} 
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i.e. the operator Ao~ is given by

D(Ao~) --- {f e C0(12) : Afe Co(f~)} , A0~f = 

Here Af is a distribution. Since C0(12) C L.~oc(f~) C 79(12)’ , the definition 
sense. Note that D(Ao~) ¢: C2(12) since the Laplacian does not satisfy maximal
regularity on spaces of continuous functions.

It has been investigated in [3] under which conditions Ao~ is generator of a
Co -semigroup. The result uses classical notions of Poteutial Theory.

DEFINITION 3.1 a) Let z E 012 . A barrier is a function w ~ C(12 f’l B) such
that Aw <_ 0 in 73(12nB)’ , w(z) = O, w(x) > 0 for x ~ (O7t B)~,{z}
where B = B(z,r) is a ball centered at z 
b) 12 ist regular (in the sense of Wiener) if at each point z ~ 012 there ezists 
barrier.

Every open subset of ~ is regular. In higher dimension, if the boundary of f~
is locally Lipschitz, then gt is regular. But, for example, if N _> 2, then for every
x ~ 12, 12 \ {x} is not regular. A bounded open set 12 is regular if and only if the
Dirichlet problem is well-posed; i.e. for all ~ e 012 there exists u ~ C((~) such

that .ulo~ = qo and
AU --- 0 in/9(12)’ 

Now we describe when Ao~ generates a semigroup (by which we always mean 
Co-semigroup) . The following characterization is proved in [3, Section 3].

THEOREM 3.2

(i) 12 is regular (in the sense of Wiener).

(ii) ~(A~o) ~0 

(iii) A~o generates a holomorphic semigroup.

In that case, the semigroup T(t) = ~’xno generated by Ano
rive.

Moreover, T is consistent with the semigroup (e~)~o

e~I = e~f (~ > 0) 

Let ft C ~;~N be open. The following conditions are equivalent.

is positive and contrac-

on L~(~) ; i.e. for

It follows from Theorem 1.5 that the semigroup (etZX~)t_>o is strictly positiw~:

THEOREM 3.3 Let 12 C ~N be open and regular (in the sense of Wiener), Let

O < f E Co(f~) . Then

(e"Xo"f)(x) for all x e 12, t > 0. (3.2)

Here we use the notation

f>_O :¢:~ f(x)>_O forall x~12;
f>0 :¢:~ f_>0 and f~0.
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Next we consider two open subsets f~l,~t2 of ~N. A linear operator U :
C0(~) -~ C0(ft..)) is called a lattice homomorphism 

IUfl = UIfI for all f e C0(fl) (3.3)

where Ifl(x) = tf(x)l (x E fll) 
If U is an order isomorphism (i.e. U is bijective, U >_ 0 and -1 _> 0) ,

then U is clearly a lattice homomorphism (see [19] for more details). Note that
every lattice homomorphism U is disjointness preserving, i.e.

f . g = 0 implies (U f). (Ug) (3.4)

for all f,g ~ Co(~1) 
In fact, if f. g = 0, then inf{[fl ,[gl} = 0. This implies inf{U[fl,Ulgl} = O..

Hence
IU f] " lUll : (ulfl), (Ulgl) O .

Now we prove the first result on congruence. The space C0(12) is easier to handle
than LV-spaces since point evaluations are continuous.

PROPOSITION 3.4 Let fll,f~2 C ~.N be open and connected, Let U : Co(fh)
Co(fl2) be a bounded operator such that

(a) f .g = 0 implies (U:). (Ug) = 0 for all f,g e 79(fh) 

(b) for all y ~ ~ there exists f ~ Co(~) such that (Uf)(y) 

(c) ~UT=U~f for all f~V(~i) 

Then there exist a constant c ~ ~{0} and an isometr~ r : ~ ~ ~ satisfying
T(~2) : ~1 such that

= e
for all f e Co(~2) . In particular, ~ and ~2 are congruent.

For the proof we need classical regularity properties of the Laplacian. They will
be used in the following form.

LEMMA3.5 Let ~2 C ~N be open, k e ~V ~ {O} , g ~ C(f~) . If Ag ~ ~(f~) ,

then g ~ CTM(~) .

Proof. We recall that for a distribution u 6 7)(fl)’ , if Au ~ LP(fl) for 
p > N, then u e C~(fl) (see e.g. [8, Chapter II, § 3, Proposition 6]). 
the assertion of the lemma holds for k = 0. Assume that it holds for some k ~
zNt_){0}. Assume that Age k+~(12). Then g6 C~(fl) (by th e case k = 0)
and ADjg = DjAg ~ C~(fl) Hence Djg ~ C~+x(~) bytheinductive hypo thesis
(j=I~...,N). We have shown that g~Ck+2(l~). []

Proof of Proposition 3.4.
Then

1. Weshowthat U’D(~’~I) C CC~(~’~2) Let k e ~WU{O} .

U/)(fh) C Ck(f~2) (3.5)
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for k=0. Assume that (3.5) holds for some k. Let f¯:D(~l). Then AUf=
UAf ¯ Ck(~) Hence Uf¯ Ck+l(i)2) by the lemma.
2. Let y ¯ gt2 . Then ~(f) (Uf)(y) defines a functional ~ ¯ Co(f~t)’ \ {0} . 
follows fi’om assumption b) that supp ~ is a singleton. Thus, there exist 7(y) ¯ 
and h(y) ¯ ~ {0} such th at ~( f) = h(y)f(T(y)) fo r al l f ¯ C0(f~) .
3. Now the proof of [2, Proposition 2.4] shows that h is constant h = c ~ 0 and
r : i22 -4 f~l is an isometry. We denote its isometric extension to ~N still by r.
It remains to show that T(gt2) = i)~ 
4. We show that r((~’)2)(~ 1 . Let Y o ¯ vqf ~2. Assume r(yo) ¯ ~. Take
y,~ ¯ f~.~ such that lira y, = Yo ̄  Choose f ¯ /)(f~2) such that f(v(yo)) =: 1 .

Then lim (Uf)(y,~) = lira Cf(T(y,~)) = C ~t This contradicts the fact that

u.f ¯ c0(~).
5. The set V(f~:) is open. Since by 4., 0(r(fl.))) = ~-(0gt2) C 0~1 , it 
that r([)2) is relatively closed in f~ . Since f~l is connected, we conclude that
fffh) = gh ̄  []

Condition b) cannot be omitted in Proposition 3.6. In order to see this, it suffices
to choose i)~ -- (0, 1) C ~ = ft~ and to take for U the embedding from Co(0, 
into Co(~) 

It is surprising that we can omit b) if we strengthen the intertwining condition
slightly. For that we will suppose that Aoa~ and Aoa~ are generators. We recall
the following easy description of intertwining operators.

PROPOSITION 3.6 Let Aj be the generator of a semigroup Tj on a Banach
space Ej , j = 1,2 . Let U ̄  ~(E~,E~) . The following are equivalent:

(i) UT~(t) : Te(t)U (t 

(ii) UD(A~) C D(.4~) and A.zUx : UA~x for all x ¯ D(A~

Assuming Wiener regularity and the intertwining property we can now show that
condition b) of Proposition 3.4 is automatically satisfied. The key argument is strict
positivity in the sense of Theorem 3.3.

THEOREM 3.7 Let f~,f~2 C ~,N be open, connected and regular (in the sense
of Wiener). Let U : Co(fl~) ~ Co(~) bea l attice homomorphism, U ~0,such
that

Ve’A~o’ = e~h~°~V (t > 0) . (3.6)

Then there exist a constant c > 0 and an isometry T : j~IV --r IRN satisfying
v(l~) = ~ such that

(uf)(~/) = ~f(~-(~/)) (~/¯ 

for all f ¯ Co(12~) 

REMARK 3.8
v,f ¯ Co(as)

By Proposition 3.6, condition (3.6) is equivalent to saying that for

Av = f in D(f~t)’ =~ AUv = Uf in D(f~.~)’ (3.7)
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which is stronger than condition (C) of Proposition 3.4.
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Proof. By the second part of the proof of Proposition 3.4 the operator U is of
the form

I h(y)f(T(y)) 
(U f)(y) = 0 y e f~2 \ 

where f~ = {y e ft2 : ~ f E Co(ftl) , Vf(y) 0} , h : fl ~ --+ (0, ec) and
T:ft~-+f~l are functions. Let 0< fECo(f~i) such that Uf>O. By Theorem
3.3 we have

(ue f)(u) = (e vf)(y) 
for all y~ ~2,where t >0. This implies that ~t2 =ft~. Thus condition b) in
Proposition 3.6 is satisfied and the claim follows. []

We conclude this section showing by a counterexample that Theorem 3.7 is not
true if we replace Dirichlet boundary conditions by periodic houndary conditions,
even if U is an order isomorphism.

EXAMPLE 3.9 Consider the Banach lattice E = {f ~ C[-1, 1]: f(-1) = f(1)}
with supremum norm and let A be the operator on E given by D(A) = 
C~[-1,1] : f(~)(-1) = f(~)(1) for k = , Af = f" . T hen A generat es
semigroup T. Let U : E ~ E be given by

f(1-y) if 0_<y_<l
(Uf)(y) = f(-1-y) if -l_<y<0.

Then UT(t) = T(t)U (t _> 0) even though U is not co~nposition by an isometry.

Proof. The operator given Bf = f’ , D(B) = {f ~ EOCI[-1,1] : f’(-1) 
f~(1)} generates the shift group on E. Hence A = 2 generates aholomorphic
semigroup T. One easily sees that UD(A) = D(A) and AUx = UAx (x 
D(A)) . 

4 APPENDIX: REGULARITY IN THE SENSE OF WIENER
AND REGULARITY IN CAPACITY

Let f~ be an open set in /R~ . We say that ~ is regular in measure (resp.,
in capacity) if for all z ~ Oft and all r > 0, Ift\B(z,r)l >0 (resp., cap(f~\
B(z,r)) > 0) . Here IFI denotes the Lebesgue measure of a measurable set 

in h’~ N . It is clear that toplogical regularity (i.e. ~= Ft) implies regnlarity 
measure, and regularity in measure implies regularity in capacity.

EXAMPLE 4.1 Let B = B(0,1) be the euclidean unit ball in e . Then ft =
B \ {(x~,0) :0 _< x~ < 1} is regular in capacity but not regular in measure.

The reason why these notions of regularity are introduced in [2] is the following.
Consider L2(~t) as a subspace of L:(J~ N) by extending functions by 0 out of
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gt . Then L2(gtl) = L2(Ft2) if and only if [~t~ A f12[ = 0. This in turn, i~nplies

that ~ = ~2 if gtl and ft2 are regular in ~neasure. Here fl~,fl~ C ~g arc
open sets.

If lgtl A ~] = 0, then A~1 = A2~ if and only if cap(12~ A 12,~) = 0, and this
in turn implies that f~l = 122 whenever ~1 and ~t2 are regular in capacity (see

[2]).

REMARK 4.2 The condition "regular in measure" did occur in different context
(under different name). It seems to be a crucial condition for smooth approxima,tion
in Sobolev spaces (cf. [20]). For example, if f~ C ~2 is open, bounded and
star-shaped, then regularity in measure is sufficient for C~(~) being dense 
I,V~’~(ft) (k ~ ~VV , < p < ~), s ee[20,Theorem B]. I t is also anecessary
condition in special situations (see [20, Theorem C and Example 1]).

Next we show that regularity in the sense of Wiener implies regularity in capacity.
Our proof is based on the results of [3].

PROPOSITION 4.3 Let ~ C ff~N be an open set which is regular in the sense of
Wiener. Then ~ is regular in capacity.

Proo]. Let ~ be open, regular in capacity such that cap((~ \ fl) = 0 (see 
Proposition 3.18]). Then L2((~)= L2(gt) and A~ = A~. Now assume t, hat
l~ # ~. Choose z ~ 0~t~. Let 0 < f ~ Co(f~)~L2(~). Then by [3,

(3.3)] (e*A~of) = etA~f. It follows from Theorem 1.5 that c*&gf e C~(~) and

(et~ f)(z) > 0 . But etA~ f ~ C~(l~) and etA~ f = et~ f . This contradicts ~hat

et~f ~ C0(~) ¯ 

There is a remarkable criterion due to Wiener which describes regularity. Assume
that N _> 3. Then f~ is regular in the sense of Wiener if and only if

E 2J(N-~) cap (B(z, 2-j) \ a) = (4.1)

for every point z ~ 0~t.

Thus Wiener’s criterion is a quantitative version of regularity in capacity. One
can also see from Wiener’s criterion that regularity implies regularity in capacity
(note however that here N _> 3) . Every open set in ~’~ which satisfies the exterior
cone condition (meaning that for each z ~ 0gt there exists a cone in ~3 \ 12 with
vertex z) is regular. But there exist cusps which are not regular (see [14, p. 288]).
Such a cusp gives an example of an open set in if/3 (or higher dimension) which
is regular in capacity but not in the sense of Wiener.

In dimension N = 2 the situation is more complicated. In fact, it is known that
12 C ~ is regular whenever for each z ~ 0f~ there exists a continuous, injective
function f: [0,1] -~ ~ \ ~ such that f(0) = z (see [11, p. 173]).

Here is an example of a set in g~2 which is not regular in the sense of Wiener
but regular in capacity (and even topologically regular).
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PROPOSITION 4.4 Let B be the open unit ball in 1~2 and let

ft : B \ ( U -~(an,rn) {0}) (4.2)

where a,~=(a,~,0), an>0, lira a,~=0, an+r,~>0 are chosen such that the

closed balls -~(an,r,~) are disjoint. Thus ft is open and regular in capacity (and
even topologically). However, one can choose r,~ > 0 such that ft is not regular.

We are grateful to Charles Batty for the following probabilistic proof. Some
preparation concerning Brownian motion and potential theory is needed (see [17]
for example). Let f~ C/~N be an open, bounded set. By {Bt : t >_ 0} we denote
the Brownian motion and by P’~ the Wiener measure (x E/RN) . Then regularity
can be characterized in terms of Brownian motion in the following way (see [17]).

PROPOSITION 4.5

for all x ~ Oft .

The set ~ is regular if and only if

> 0: e v s e = 0 (4.3)

REMARK 4.6 a) Condition (4.3) says that Brownian motion starting at 
Oft has to leave immediately ft with a positive probability (equivalently with
probability ~).
b) To see the relation with the Dirichlet problem we mention that for f ~ C(Oft)

u(x) = E~[f(B~,)] (x (4.4)

defines a har~nonic function on ft . Here rfl = inf{t > 0 : Bt ~’ ~} is the first exit
time. If (4.3) is satisfied, then !i~ u(z) f( z) for al l z ~ Oft . Thus u is the

solution of the Dirichlet problem. []

We ~nention that for N>_2 and xe/R N\{0}, t>0

P°[B(s) = for so me 0 < s < t] = 0.

Now we can prove the proposition.

(4.5)

Proof of Proposition ~.5. We fix a sequence an $ 0 . Let an = (C~n,0) . Let
t>0. Then fi~(r) =P°[B(s) ~B(a,~,r) for some s<_t] is decreasing in r>0,
and by (4.5), lim,.,0 f,~(r) = 0. This allows us to choose rn > 0 satisfying the
requirements of the proposition and such that f~(r~) < 2-~ tbr all n ~ t~r . Thus

P°[B(s) E U B(a,~,r,~) for some s <_ t] <_ E P°[B(s) ~ B(x,~,rn) for some
n=l

s _< t] < 1. Consequently, P°[Sr > 0: B(s) e f~ for all s e (0, r)] >_ P°[B(s) ~ 
for all s E (0, t)] > 0. Thus (4.3) is violated. 

Of course, the example is also valid in higher dimensions than 2.
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