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Does diffusion determine the body?

By W. Arendt at Ulm

Abstract. Kac’s famous question “Can one hear the shape of a drum?”, is equiva-
lent to asking whether two domains in R" are congruent whenever there exists a unitary
operator intertwining the corresponding Dirichlet Laplacians. In the present paper we show
that the answer is positive if the intertwining operator is supposed to be an order iso-
morphism instead of being unitary. This assumption signifies that positive solutions of the
heat equation are mapped onto positive solutions. So one may rephrase the result by saying
that diffusion determines the domain. This holds not only for Dirichlet but also for Neu-
mann and Robin boundary conditions. However, for mixed boundary conditions (namely,
periodic on one and Dirichlet on the other part of the boundary) a counterexample is given.

0. Introduction

In his famous paper “Can one hear the shape of a drum” M. Kac asked the follow-
ing question: Let Q;,Q; be two bounded domains in R" (satisfying a suitable regu-
larity condition) and consider the Laplacian 4; with Dirichlet boundary conditions on
L*(Q)) (j = 1,2). Assume that 41 and 4, have the same series of eigenvalues. Does it fol-
low that Q; and Q, are congruent? This problem can be formulated in terms of the semi-
groups ('), generated by 4; on L*(€))) in the following way. Consider an orthonormal
basis {e,: ne N} of L2(Q) con51st1ng of eigenfunctions of 4; and an orthonormal basis
{f,:neN} of L?(Q,) of eigenfunctions of A4,. Let U: L*(Q;) — L?*(Q,) be the unitary
operator for which Ue, = f, (n € N). Then the assumption that the spectra coincide is
equivalent to the relation

(0.1) Ue'h = e'2U  (1=0).

Thus, an equivalent formulation of Kac’s question is: Assume that U: L?(Q;) — L?*(Q,) is
a unitary operator satisfying (0.1). Does it follow that Q; and Q, are congruent? In 1992 it
has been shown by Gordon, Webb and Wolpert [GWW] that Kac’s question has a negative
answer, in general.

The purpose of this paper is to investigate whether congruence of Q; and €, can be
deduced from different assumptions on U. More precisely, instead of considering a unitary
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operator, we assume that U is an order isomorphism; i.e., U: L*(Q;) — L?*(,) is linear,
bijective and satisfies

fz0ae. < Uf 20a.e.
We show under this assumption that Q; and Q, are necessarily congruent if (0.1) holds.
Recall that for /e L*(€);), the function
t—efi R, — Lz(Qj)

is a solution of the diffusion equation determined by A4;, j = 1,2. Thus, assumption (0.1)
signifies that U maps positive solutions to positive solutions of the diffusion equation. Hence
our result might be rephrased by saying that diffusion determines the domain.

In our result we do not need that the boundary is smooth. Indeed, it turns out that the
precise condition on the open set needed for the result is “regularity in capacity”, a very
weak notion of regularity which we study in detail.

We also obtain positive results for Neumann and Robin boundary conditions. In fact,
we even show that diffusion determines the body and the boundary condition if we restrict
ourselves to the three types of conditions: Dirichlet, Neumann and Robin.

However, it is remarkable that the result is not true for arbitrary boundary conditions
which define a symmetric realization of the Laplacian on L?(Q). We give a counterexample
where periodic boundary conditions are imposed on one part of the boundary and Dirichlet
(or Neumann) boundary conditions on another part.

A different version of the result is obtained by replacing L> by L? for p = 2,
1 < p < oo and order isomorphisms by isometric isomorphisms. In all cases, we show
that the intertwining order isomorphism (or isometric isomorphism on L”, p % 2) is of
the form Uf =c¢-f ot (f € L?) where 7 is an isometric mapping from one domain to
the other and ¢ a constant.

Meanwhile there exists a very concrete counterexample to Kac’s question. Chapman
[Ch], following Bérard [Be], constructs an intertwining isomorphism U from L?(€;) onto
L*(©Q,) where Q; and Q, are non-congruent polygons. In fact, Q; and Q, are presented
as union of seven congruent triangles (put together in different ways). The operator U is
relatively simple. It comes from mapping triangles to triangles, reflection in the triangles
and superposition of such operations (see [Ch] for a detailed description). Our result shows
that the superposition is essential to make such an intertwining operator possible for non-
congruent domains.

There is an abundant literature on inverse spectral geometry, in particular for the
non-euclidean theory. We refer to Protter’s article [Pr] and the proceedings [AL] edited by
Andersson and Lapidus. Also, it should be mentioned that positive results for a very dif-
ferent kind of intertwining operators (viz, unitary Fourier integral operators) were obtained
by Zelditch [Z] in the framework of Riemannian manifolds. For other types of inverse
problems we refer to the monograph by Isakov [Is].
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The present paper is restricted to the Euclidean case with emphasis on the treatment
of different boundary conditions obtained by quadratic form methods (cf. Davies [Dav2]).
It is organized as follows: In Section 1 we present the main result for Dirichlet boundary
conditions. Moreover, we give counterexamples which are illuminating in context of the
proofs given later on. Arbitrary realizations of the Laplacian in L” are considered in Sec-
tion 2. The main results are contained in Section 3 where special boundary conditions are
considered. Finally, in Section 4 isometric isomorphisms on L?, p 2 are considered as
intertwining operators. Some extensions of the results presented here are given in [Are2].

Acknowledgement. This work was stimulated by a uniqueness result by W. Arveson
for compact Riemannian manifolds if the intertwining unitary operator also preserves the
ordering (unpublished). His motivation for such questions arose from his work [Arv] on the
Riemannian structure of some operator algebras. The author is most grateful for several
fruitful discussions with W. Arveson and the hospitality extended to him during his visit at
the University of California at Berkeley.

1. A typical result and a counterexample

This section has introductory character. We present the main result for Dirichlet
boundary conditions. Further boundary conditions and refinements are given along with
the proofs in Section 3. We also produce a counterexample showing that not all boundary
conditions are allowed. This example illustrates well the difficulties to be overcome in the
proofs and we may refer to it later on. Let Q;,Q, be two open subsets of R" and let
1 £ p < 0. A mapping 7: Q, — Q is called an isometry if it is of the form

(L.1) 1(y)=By+b (yey),

where B is an orthogonal matrix and b € RY. The sets Q; and Q, are called congruent, if
there exists an isometry 7 from Q; onto Q.

Definition 1.1. Let 1 < p < o0. A linear mapping U: L?(Q;) — L?(Q;,) is called an
order isomorphism if U is bijective and

(1.2) Uf =20 ifandonlyif f =0
for all f e L?(Q;). Here f = 0 stands for f(x) =0 a.e.

Let Q be an open subset of RY and let 1 < p < co0. The definition of the Laplacian
with Dirichlet boundary conditions in L?(Q) is standard and will be recalled in Section 3.
It is an operator generating a positive contraction semigroup on L?(Q). Throughout the
paper the term semigroup stands for Cy-semigroup. A semigroup 7 = T'(t),~, on L?(Q) is
called positive if T(f) =0 forall ¢t =0 (i.e. T(t)f = 0if f = 0). -

The following regularity condition on Q expresses in a weak form that Q lies on one
side of the boundary. We say that Q is regular in capacity if for all x € 6Q, r > 0,

(1.3) cap(B(x,r)\Q) >0,
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where B(x,r) = {y € RV:|x — y| < r} is the ball of center x and radius r. If Q is topolog-

ical regular (i.e. Q = Q) then Q is also regular in capacity, see Section 3 for further ex-
planations. Now we can formulate our main result for Dirichlet boundary conditions.

Theorem 1.2. Let Q1,Q, < RY be open sets which are reqular in capacity. Assume
that one of the sets is connected. Denote by A; the Laplacian with Dirichlet boundary con-
ditions on L?(Q;), j = 1,2, where 1 < p < co. Then the following conditions are equivalent:

(i) Q; and Q, are congruent.
(i) There exist 1 < p < oo and an order isomorphism U: L?(Q;) — L?(Q,) such that
(1.4) Ue'M = e™2U  (1=0).

(iif) There exist 1 < p < oo, p % 2 and an isometric isomorphism U: L?(Q;) — L?({)
such that (1.3) holds.

In that case, U is of the form

(1.5) U =c-for (feLf(Q))
where T is an isometry from Q, onto Qy and ¢ > 0 in the case (ii), c = 1 or ¢ = —1 in the case
(iif).

Next we show by an example that Theorem 1.2 is no longer true if we consider peri-
odic or a mixture of periodic and Dirichlet boundary conditions.

We need some preparation. Let H be a Hilbert space with scalar product (|). By a
positive form we mean a pair (a, V') where V' is a Hilbert space, continuously injected into
H, such that V'is dense in H, and a: V' x V' — R is bilinear and continuous satisfying

(1.6) a(u,u) 20 forallueV,
(1.7) a(u,v) =a(v,u) forallu,veV,
(1.8) alu,w) + |ullzy Z ollully (we V),

for some constant o > 0. The space V is called the domain of the form a.
The operator A on H associated with a is defined by
D(A) = {u e V:3Jve H such that a(u, p) = —(v|p) forallp e V}, Au=nv.

The operator 4 is selfadjoint and generates a contraction semigroup () >0 on H.
See [Davl], [RS], [Fu], [BH] for example.

Lemma 1.3. Let a; be a positive form on a Hilbert space H; with domain V;, j =1,2.
Let U: Hy — H, be unitary. The following are equivalent:

(i) Uet = e 2U (1 = 0).
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(i) UVy = V3 and a,(Ux, Uy) = ay(x, y) for all x,y € 1.

Proof. (i) = (ii). It is well-known (cf. [Fu], §1.3) and easy to see by the spectral
theorem that

(19) i (7 v 9 12) =)

10 \ 1

for all x, y € V; whereas
(1.10) liml(x —eix,x) =
’ 110 ¢ ’

if x € H;\ V;. Using this one immediately obtains (ii) from (i).
(i) = (i). It follows from the definition of the associated operator that
UD(A)) = D(4;) and UA;x = A,Ux forall x e D(A4,).
This implies that
UR(Z, A1) = R(A,A2)U  forall 2 € o(A41) N o(A42).
Since ' is the strong limit of (I — éAj)_n as n — oo, assertion (i) follows. []

We first give a 1-dimensional example which describes in a simple way what can
happen.

Example 1.4. Let Q= (—1,1)and let z: (—1,1) — (—1,1) be given by
11—y ify>0,
(y)=<¢ —1—y if y <O,
0 if y=0.
Then 7 is isometric on (—1,0) and (0, 1) but not on (—1, 1). The operator
U: L*(—1,1) — L*(—1,1)
given by Uf = f o 7 is a unitary order isomorphism.

Consider the positive form @ on L?>(—1,1) given by

1
a(u,v) = [u'v
1

/

with domain

Vi={ue W' (=1, 1):u(-1) = u(1)}.
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Let A4 be the associated operator. Then it follows easily from Lemma 1.3 that
Ue't = U (120).
But U is not given as composition by an isometry. []
Remark 1.5. It is easy to see that
D(A) ={ue W>*(=1,D):u(l) = u(-1), u’(1) =u'(-1)}, Au=u".
Next we modify the example in order to produce non-congruent domains.

Example 1.6. Let 4 e C'[—1,1] such that 4(—1) = A(1) = h(0) = 1 and h(x) = 1 for
all x e [-1,1]. Let

Q={(x,y):—-1<x<l1, 0<y<h(x)}
Define 7: Q, — R? by
(1—-x,y) if x>0,
t(x,y) =4 (0,) if x=0,
(—1—x,y) if x<O0,
and let Q; = 7(€Q,). We may choose / in such a way that Q; and Q, are not congruent.

Denote by W12(Q;) = {f e L*(Q)): D.f € L*(Q;), D, f € L*(Q;)} the first Sobolev
0
space, where D, = e D, = 5
Define the positive form a; on L*(€;) by
a;(u,v) = [ VuVvdx
Q:

]
with domain

V= {ue W"2(Q): (Tu)(—1,y) = (Tu)(1,y) if 0 < y < 1,

(Tu)(x,h(x)) =0if x e (—1,1) and (Tu)(x,0) = 0if xe (—1,1)}
where 7: W12(Q;) — L?*(6Q;, #') denotes the trace operator [EG], p. 133. Let 4, be the
operator associated with a;. It follows from the definition that 2(Q;) = D(4;) and Aju = Au
for all u € D(A4;) (j = 1,2). Define the operator U: L*(Q;) — L*(Q) by Uf = f o . Then

U is unitary and an order isomorphism. Using integration by parts [EG], 4.3, Theorem 1
(i), p. 133, one sees that

(1.11) foteV, iffeWn

and
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(1.12) D.(fot)=—(Dyf)otr, Dy(fotr)=D,for.
This implies that UV} = V), and
a(Uf,Ug) =a1(f,g) forall f,ge 1.
So by Lemma 1.3 we deduce that
ey =Ue (t=0). O

Of course, in Example 1.6 we may glue together the boundaries {(—1, y): 0 < y < 1}
and {(1, y): 0 < y < 1} and obtain manifolds with boundaries which are isomorphic.

A different example is obtained by identifying some sides of rectangles:

Example 1.7. The Laplacian defined on a rectangle and an L-shaped domain, with
Neumann (or Dirichtlet) boundary conditions on part of the boundary and identifying
boundary conditions on the other part, are intertwined by a unitary order isomorphism.

a) More precisely, let N =2, Q; = (0,3) x (0,1), Q = Q) U (1,2) x {1} with

Q) =(0,2) x (0,1) U (1,2) x (1,2).
Then Q; and Q, are connected open sets which are not congruent. Let
Q1 = ((0,2) x (0,1)) U ((2,3) x (0,1)).
Thus L*(Q) = L*(Q)) (j = 1,2). Define the bijective mapping v: Q) — Q| by

[ (x) if’ (x, ) €(0,2) x (0,1),
T(x’y)_{(erl,y—l) if (x, ) € (1,2) x (1,2).

Then 7 is isometric on each component of Q). The mapping Uf = f o 7 a.e. defines a uni-
tary order isomorphism U from L?(Q;) onto L?(£,).

Define the closed form (;, V;) on L?(€;) by

Gu) = [VuVo (woeVj, j=1,2)
Q;

with
Vi ={ue W"(Q): (Tf)(x,1) = (Tf)(x + 1,0) for all x € (1,2)},
Vy=A{ue W1’2(Qz)3 (TH(1,y) =(1Tf)(2,y— 1) forall y € (1,2)},

where T: W12(Q;) — L*(0€;) (j = 1,2) is the trace operator. Let 4; be the operator asso-
ciated with a; (j = 1,2). Then it follows from Lemma 1.3 that

Ue'M = ey (1= 0).
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In fact, using integration by parts [EG], p. 133 one sees that UV} = V, and D, Uf = UD..f,

, 0 0 C
D,Uf = UD,f forall f eV, where D, = s D, = I This implies that
x y

a(Uf,Ug) = ai(f,g) forall f,ge .

b) Similarly, one could choose Dirichlet boundary conditions (instead of Neumann)
on all sides of Q; besides the sides (1,2) x {1} and (2,3) x {0} which are identified in the
case of Q) and the sides {1} x (1,2) and {2} x (1,2) which are identified in the case of Q.

2. General realizations of the Laplacian

In this section we characterize order isomorphisms intertwining arbitrary realizations
of the Laplacian. We will show that they are given by composition of “local isometries’.
The results obtained here are the first step for the main result in Section 3 where special
boundary conditions are considered. Only for some, in fact the most familiar, boundary
conditions, “global” isometries are obtained.

Let Q = RY be a bounded and open set. By 2(Q) we denote the space of all test
functions and by Z(Q)’ the space of all distributions. As usual we identify L! (Q) with a

loc

subspace of Z(Q)". In particular, for f e L} (Q) the Laplacian Af of f is always defined
as an element of 2(Q)’.

Definition 2.1. Let 1 < p < c0. An operator 4 on L?(Q) is called a realization of the
Laplacian in L?(Q) if

(a) 2(Q) = D(A) and
(b) Af = Af in 2(Q)' for all f € D(A).

It should be emphasized that the definition above does depend on the open set Q and
not only on the space L?(€Q). We make this more precise.

If F = R" is a Lebesgue measurable set we denote by |F| its Lebesgue measure. Let
Q1,9 = RY be open sets. We consider L”(€);) as a subspace of L”(R") extending func-
tions defined on Q; by 0 to RV\Q;. Then

(2.1) LP(Q)) = LP(Q,) if and onlyif |Q;AQ,| =0,
where Q; AQ, = (Q1\Q) U (Q\Q)) denotes the symmetric difference. Now assume that
| AQy| = 0. Let A be a realization of the Laplacian in L?(€;). Then 4 might not be a

realization of the Laplacian in L?(€,). However, it is, if Q, < Q.

Let A; be an operator on a Banach space Ej, j = 1,2 and let U: E; — E; be linear,
continuous and invertible. We say that U intertwines A and A4, if

(2.2) UD(A,) = D(4;) and A Ux = UAx

for all x € D(A;). Note that this is equivalent to
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(2.3) Uett = e™2U (12 0)
whenever A; and A4, generate semigroups.
The purpose of this section is to prove the following:
Theorem 2.2. Let Q1, Qs be two open subsets of RV, 1 < p < co. Let Aj be a realiza-
tion of the Laplacian in L (Q;) (j = 1,2). Let U: Lp(Ql) — L?(Qy) be an order isomorphism
intertwining A, and A,. Then there exist open sets Q < Q; satisfying |Q \Q |=0(=1,2),

a homeomorphism t from Q5 onto Q| which is zsometrtc on each component of Q) and a
mapping h: Q5 — (0, 00) which is constant on each component of Q5 such that

Sor all f e 2(Q).
Examples 1.4, 1.5 and 1.6 show that Q; does not need to be connected even if € is.
For the proof of Theorem 2.2 we need several auxiliar results.

Proposition 2.3.  Let Q = RY be open and connected and let T € C'(Q, R") be a map-
ping such that (D7)(x) is orthogonal for all x € Q. Then t is an isometry.

Proof. a) Let B< Q be a ball, x, y € B. Then

Ld
7() = ()] = |[ G+ iy =) d
0

= jDr(x—&-t(y—x))(y—x)dt

<|y—x.

b) Applying a) locally to 7! we conclude that for each a € Q there exists r > 0 such
that B(a,r) < Q and |t(x) — 7(y)| = |[x — y| for all x, y € B(a,r).

c) Let B(a,r) = Q such that |t(x) — 7(y)| = |x — y| for all x,y e B(a,r). We show

that there exists 0 < ¢ < r such that 7 is an isometry on B(a,¢). We can assume a = 0.
Replacing 7 by 7 — 7(0) we can assume that 7(0) = 0. Since

1
(x]y) = §(IXI2 + = =)
we have (z(x) |7(»)) = (x|y) for all x, y € B(a,r). This implies that

[t(x +y) = 2(x) = 2(»)|* =0
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whenever x, y, x + y € B(0,r) and
7(Ax) = Atr(x) if x,Ax € B(0,r), 1 € R.
Thus 7 is linear in a neighborhood of 0.
d) We have shown that 7 is locally an isometry, i.e. (D7)(x) is locally constant and so
constant since Q is connected. Let B = (D7)(x). Let W(x) = 7(x) — Bx. Then (D¥)(x) =0

for all x e Q. Thus W is constant. []

Proposition 2.4. Let Q;,Q, = RY be open sets and let U: 2(Q)) — C*(Q,) be a
linear mapping satisfying

(2.5) f =0 implies Uf =0;
(2.6) f-9g=0 implies (Uf)-(Ug)=0;
(2.7) AUf = UAf (fe2(Q))).

Then there exists an open set Q) = Q,, a mapping t: Q5 — Qy which is isometric on each
component of Q, a function h: Q5 — (0, 00) which is constant on each component of Q5 such
that for all f € 2(Q,),

h Q)
Proof. a) The set Q) :={yeQ:3f € 2(Q),(Uf)(y) 0} is open. For yeQ,
define the linear form S, on Z(Q,) given by S,(f) = (Uf)(»). Since S, is positive, there

exists a Borel measure y, such that S,(f) = [ f du, (see [DL], p. 567). It follows from (2.6)
Q
that the support of y, is a singleton. Thus, there exist 7(y) € Qi, i(y) >0 such that

Sy(f) =h(p)f(z(y)). We have shown that U is of the form (2.8).

b) We show that 7 is continuous. If not, we find y, y, € Q}, &> 0 such that limy, =y
but [t(y,) —7(y)| 2 ¢ (neN). Let f € 2(Q) such that f(z(y)) =1 but f(z(y,)) =0 (neN).
Then Uf is not continuous, a contradiction.

b) We show that h € C*(Q)). Let @ = Q) be open, bounded such that @ = Q). Then
7(@) is compact. Choose f € Z(Q;) such that f =1 on 7(®). Then Uf = h on w. Thus
he C”(w).

c) Let je{l,...,N}. Choose fe2(€Q;) such that f(x)=x; on 7(®). Then
(Uf)(y) = h(p)7;(p) for y € w. Thus 7; € C*(Q)) where t = (11, ...,Ty).

d) It follows from (2.7) that
(2.9) A(h-for)=h-(Af)or onQ,

for all f € 2(Q;). Choose f € () such that f =1 on 7(@). Then it follows from (2.9)
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that Ah =0 on w. Since w = Q) is an arbitrary open relatively compact subset of Q), we
conclude that

(2.10) (Ah)(y) =0 forall ye Q).
Since for f,g e C2(Q}),
A(f-g) =(Af)-g+2Vf Vg +[fAg,
we deduce from (2.9) and (2.10),
(2.11) 2Vh-V(fot1)+hA(fo1)=h(Af)or onQ)

for all f e 2(Q).

Let je{l,...,N} and let f € Z(Q) such that f(x) = x; on w (where w is chosen
as in b)). Then f o7 = 7; on w. We deduce from (2.11) that

(2.12) 2Vh-Vij+hAt; =0 onQ) forj=1,...,N.
e) For f € 2(Q;) we compute on Q),
Di(fot) = (Dnf)ot - Djtm,

D}(f o) = 3 52(DiDnf) o7 Dyti - Dyt
+ Z(Dmf) oT- Dj2-[m7
A(f © T) = Z Xk:(DkDmf) oT- V‘L'kV‘L-m

+ > (Dnf) ot Aty.
Thus, in virtue of (2.12) the left hand side of (2.11) becomes
25 Djhy (Dmf) ot Dty +h-A(f o)
J m
=2 (Dyf)ot- ViV, +h-> (Dpf) ot Aty
+h- Z Z(DkDmf) ot- V1. Vt,
m k

=h- Z Z(DkDmf) oT:- VTkVTm.
m k

Hence (2.11) yields
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(2.13) S S (DD f) ot - ViV, = (Af) ot on Q)
m k

1
for all /e 2(Q;). Choosing f € Z(Q;) such that f(y) = Ey-z on t(w), we deduce from

(2.13) ’
Vz;-Vr;=1 (i=1,...,N).
Choosing f € Z() such that f(y) = y;y;, where i # j, we obtain from (2.13) that
V-V =0 (i ).

We have shown that (Dt)(y) is orthogonal for all y € Q). Thus, by Proposition 2.3, 7 is an
isometry on each component of Q).

In particular, A7; =0 (j=1,...,N). Thus by (2.12), Vh-V7;=00on Q), j=1,...,N.
Since (D7)(y) is orthogonal for all y € Q), it follows that Vi = 0 on Q5. This implies that /
is constant on each component of Q). []

Remark 2.5. a) Consider the situation described in Proposition 2.4. Let & < Q) be a
component. Denote by 7 the isometric extension of 7 . Then

(2.14) (0w N Q) < 09

In fact, let yo € 0w N €. Assume that 7(yy) € Q. Let f € 2(Q) be equal to 1 in a neigh-
borhood of 7(yy). Let y, € w such that lim y, = yo. Then lim 7(y,) = 7(»9). Note that /

is equal to a constant ¢ > 0 on w. It follows from (2.8) that (Uf)(»,) = ¢ > 0 for n suffi-
ciently large. On the other hand, by (2.8), (Uf)(y) = 0 since yo € Q,\Q5. This contradicts
the continuity of Uf.

b) Conversely, let Q;, Q) = RY be open, Qé < Q, open, 7: Qé — € 1sometric on each
component of Q) satisfying (2.14). Let h: Q) — (0, c0) be constant on each component of
Q). Then (2.8) defines a linear mapping U: 2(Q;) — C*(Q,) satisfying (2.5), (2.6) and (2.7).

Proof. Let f e 2(Q). It is clear that g = Uf is of class C* on each component
of Q). Let yy e Q,\Q5. Choose 0 < ¢ < dist (supp f, dQ;) such that B(yy, &) = Q,. We show

that g = 0 on B(yo,¢). In fact, let y € B(yo,¢) N Q;. Let w be the component of Q) such
that y € w. Let t; = inf{z € [0, 1]: yo + t(y — yo) € ®}, y1 = yo + t1(y — »o). Then

Y1 € 0w N B(yo,€) < 0w N Q.
Let 7 be the isometric extension of 7| . Then by (2.14), 7(y1) € 0€;. Hence
dist(z(y), Q) = [7(y) = 2y =y = nl <e.

Hence g(y) = h(y)f (z(¥)) = 0. We have shown that g € C*(Q,). The other properties are
clear. [

¢) In Proposition 2.4 it might happen that Q; and Q, are connected, but Q) has in-
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finite many components even if U extends to an order isomorphism on L?. To give an ex-
ample, let Q' be the union of all cubes

O,={(x,y) € R%Z2"<x,y< 2’”“},

n e N. Define 7: Q" — Q' as a rotation of angle 7/2 on Q, if n is even, and a rotation on Q,
of angle —7/2 if n is odd. Then (2.14) holds (with Q; = Q, = Q') and

o [f=) (veq),
o ={6™ ey

defines a mapping from Z(Q) into C*(Q) satisfying (2.5), (2.6) and (2.7). [

We need some regularity results for the Laplacian. Let Q = R be open, 1 < p < .
We consider the Sobolev spaces W*7(Q) and Wlﬁ’cp (Q) (ke Nu{0}). The following reg-
ularity result is well-known (see [DL], §3, Prop. 8, [Ru], Theorem 8.12 for p = 2, for gen-
eral p it follows from [GT], Theorem 9.11, p. 235).

Proposition 2.6. (a) (| W\7(Q) = C*(Q).

loc
keN

b) Letu, f € L? (Q). Assume that Au= [ in 2(Q)'. If f € WP (Q), then
loc

loc

ue WEP(Q).

loc

From this we deduce immediately:

Lemma 2.7. Let A be a realization of the Laplacian in L?(Q) where 1 < p < o0.
Then () D(A¥) = C*(Q).
keN
Proof. By Proposition 2.6 (a), it suffices to show that D(4*) Wlf)’;”’ (). This is
trivial for k = 0. Assuming it for k € Ny, let f € D(4**!). Then
Af = Af € D(4¥) = WX (Q)

loc

by the inductive hypothesis. Hence /€ W2X"*7(Q) by Proposition 2.6 (b). [

loc

Proof of Theorem 2.2. a) Since U intertwines A; and A,, it follows that
(2.15) UD(AY) = D(45) (keN).

Since 4 is a realization of the Laplacian in L?(Q;), we have 2(Q;) = () D(A¥). Hence
by (2.15), UZ(Q)) = (| D(4%). 1t follows from Lemma 2.7 that keN
keN

(2.16) UD(Q)) < C* ().

Since U is an order isomorphism, we have U(f A g) = Uf A Ug and |Uf| = U|f] for all
f,9€LP(Q), where (f Ag)(x)=inf{f(x),g(x)} a.e. In particular, f-g =0 implies
|f] A lg| =0, and hence |Uf| A |Ug| = U|f| A Ul|g|=0. Thus, the restriction of U to Z(Q)
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satisfies assumption (2.5), (2.6) and (2.7) of Proposition 2.4. So we find Q), A, 7 as in
Proposition 2.4 such that (2.8) holds. Since U is surjective and Z(Q;) dense in L?(Q;), it
follows that |Q,\ Q5] = 0.

Next we show that 7 is injective. Let w; and w, be two different components
of Q). It suffices to show that t(w;) N 7(w;) = 0. Assume that o := t(w;) N t(wy) * 0.
Then w is an open subset of Q;. Let 7; be the isometry which coincides with 7 ,

w; :rj‘l(w), j=1,2. Then |, w) are non-empty open subsets of Q) such that

o nwy =0 and o] c; (j=1,2). Let h=c; >0 on wj and h=c; >0 on w;. Let
g = Uf with f € 2(Q). Then for y € ],

c _ o
g(y)=caf(uy) = C—;sz(fzlefl(y)) = C—;g(fz 11 (»)).
Hence g(y) = %g(rglrl(y)) for all y € w} and all g in the image of U. This is impossible,
2
since UZ(Q) is dense in L7 ().

Let Q] = 7(Q}). Then Q; is open and 7 is a homeomorphism of Q] onto Q;. It is clear
that 7 is measure preserving. Thus, it follows from (2.8) that

(2.17) (UN () =h(»)f(x(y) ae.
on Q, for all f e L?(Q;). Since U is injective, it follows from (2.17) that

Q\Q{] = 1Q\r()[=0. O

3. Boundary conditions

Let Q = R be an open set. We consider realizations of the Laplacian by three dif-
ferent types of boundary conditions:

D) u,=0 (Dirichlet);
(N) %Im =0 (Neumann);

(R) (5+ ﬂu)l —=0 (Robin).

Q
We show that intertwining order isomorphisms exist only if the boundary conditions
are the same and the domains are congruent.

Definition 3.1. An operator 4 on L*(Q) is called a symmetric realization of the Lap-
lacian in L*(Q) if A is associated with a positive form (a, V) on L*(Q) satisfying the fol-
lowing two conditions:

(3.1) V is a closed subspace of W!?(Q) containing Z(Q)

and
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(3.2) a(u,p) = [VuVep forallue V,pe 2(Q).
Q

The operator A4 is called a submarkovian symmetric realization of the Laplacian in L*(Q) if
in addition the following two Beurling-Deny criteria are satisfied:

(3.3) ueV=utu eV and alu,u)=0
and
(3.4) 0sueV=1ArueV and a(l Au,1 Au)=a(u,u).

It follows from conditions (3.1) and (3.2) that a symmetric realization of the Lap-
lacian in L?(Q) is also a realization of the Laplacian in the sense of Definition 2.1. Con-
ditions (3.3) and (3.4) imply that the semigroup (e?),., generated by A is positive and
contractive in the sense of L?(Q) for all p € [1, co]. In particular, for I < p < oo, there exist
positive contraction semigroups T, = (7,(1)),, on L?(Q) which are consistent (i.e.

(3.5) T,(t)f =T,(t)f forfeL’nLi t=0

whenever 1 < p, g < o) such that

(see [Dav2], [BH], Chap. I, [Ful, [RS] for example). We call T}, the extension of (¢'!),- in
L?(Q) and denote by A4, its generator.

An operator on L?(Q) defined in this way via a positive form satisfying (3.1)—(3.4) is
called a symmetric submarkovian realization of the Laplacian in L?(Q), 1 < p < oo. This is
justified by the following:

Lemma 3.2. The operator A, satisfies
(@) 2(Q) = D(4))
and
(b) A,f = Af in 2(Q)' for all e D(A4,);
i.e. A, is a realization of the Laplacian in L?(Q) in the sense of Definition 2.1.

Proof. Recall, if S is a semigroup on a Banach space X with generator B, then for
x,y € X one has x € D(B), Bx = y if and only if

t

S(t)x —x= JS(s)yds (t=0).

Let u e 2(Q), Au = v. Then

(3.6) T,()u—u= [ Ty(s)vds (t=0)
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holds for p = 2. Hence (3.6) also holds for p € (1, o) by consistency. Thus u € D(4,) and
Apu = v = Au.

Next we show that 4,u = Au for all u € D(A,). For that consider the space
F={felL?nD(A4y): A>f € L"}.

Then F is invariant under 7, and dense in L?(Q) since () < F. Thus Fis a core of 4,,.
Since 4, = A>f = Af for all f € F, the claim follows. []

Now the examples we are interested in are defined in the following way.

Example 3.3 (Dirichlet boundary conditions). Let V := W1 2(Q) be the closure of
2(Q) in W2(Q) and let
a(u,v) = [VuVv = fZDuDv

Then (3.1)—(3.4) are satisfied (see [Dav2]). The operator on L?(Q) associated with a by the
procedure above is called the Laplacian with Dirichlet boundary conditions, or simply the
Dirichlet Laplacian, on L?(Q).

Example 3.4 (Neumann boundary conditions). Choosing V = W!2(Q) and
a(u,v) = [Vu-Vo
we call the associated operator on L?(Q) the Laplacian with Neumann boundary conditions,
or simply Neumann Laplacian, on L?(Q). Conditions (3.1)—(3.4) are satisfied (see [Dav2],
[BH], Chapt. 1, [Fu] or [RS]).
Example 3.5 (Robin boundary conditions). Assume that Q is bounded with Lip-

schitz boundary. Denote by ¢ the surface measure on 0Q (i.e. the (N — 1)-dimensional
Hausdorff measure, cf. [EG]). Let 0 < f € L*(0Q,da). Let V = W2(Q) and

a(u,v) = jVu Vo + fuvﬂda

Here, in the right integral, we identify # and v with their traces on 0Q (see [EG]). Then the
positive form « satisfies (3.1)—(3.4) (see also [AtE], [Danl], [Dan2]). We call the operator
associated with this form the Laplacian with Robin boundary conditions on L?(Q) associ-
ated with f. Note that we refind the Neumann Laplacian if f = 0.

Example 3.6 (Partial periodic boundary conditions). Also the forms occuring in
Examples 1.4, 1.5 and 1.6 satisfy assumptions (3.1)—(3.4).

In order to treat the Dirichlet Laplacian we need some preparation. By

cap(A) = inf{|ul|; g u € H'(RY),u = 1 in a neighborhood of 4}
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we define the capacity of a subset A4 of R (cf. [BH], [EG], [Fu]). We use the following
notation and facts.

A property is said to hold quasi everywhere (q.e.) if it holds outside a set of capacity
0. Let Q = RY be open. A function f: Q — R is called quasi continuous if for every ¢ > 0
there exists an open set O = Q of capacity cap(0O) < ¢ such that f is continuous on Q\O. If
/ is quasi-continuous and f(x) = 0 a.e., then f = 0 qg.e. (see [BH], Prop. 8.1.6). For every
f € H'(R") there exists a quasi-continuous function f: Q — R such that f(x) = f(x) a.e.
(see [BH], Prop. 8.2.1 or [EG], 4.8). It follows that f is uniquely determined q.e.

We can identify Wol’2 (Q) with a closed subspace of W2(R") in the following way:
(3.7) Wy A(Q) = {f e WI(RY): f(x) =0 qe. on RM\Q}

(see e.g. [AM], Theorem 1.1, [Den], p. 143, [He], Theorem 3.1, p. 241 or [Fu], Example
3.3.2, p. 81).

Lemma 3.7. Let Q;,Q; = RY be open. If cap(Q;\Qy) > 0, then there exists
v e D(Q)\ Wy ().

Proof. Let K, < K, be compact such that |J K, = Q. Then

neN

cap(Q21\Q2) = lim cap(K,\€2)

(by [BH], Prop. 8.1.3). Hence there exists n € N such that cap(K,\Q,) > 0. Let ¢ € Z(Q)
such that ¢ = 1 on K,,. Then ¢ ¢ WOI’Z(QZ) by (3.7). O

In view of (3.7) we deduce from Lemma 3.7 the following. Recall, that we identify
W, %(Q) with a subspace of L*(R").

Proposition 3.8. Let Q;,Q, = RY be two open sets. Then W()I’Z(Ql) = WOI’Z(QQ) if
and only if cap(Q; AQ,) = 0.

Corollary 3.9. Let Q;,Q < RY be open such that |QAQy| =0 and hence
L2(Q)) = L*(Q,). Denote by A; the Dirichlet Laplacian on L*(Q;) (j = 1,2). Then A; = 4,
if and only if cap(Q; AQ,) = 0.

We need the following result:

Proposition 3.10. Let Q be an open connected set. Let Q' = Q be open such that
cap(Q\Q') = 0. Then Q' is connected.

We use an argument from the theory of positive semigroups (cf. [Na]) to prove this. A
positive semigroup 7' = (T'(1)),., on L?(Q) (1 £ p < o) is called irreducible if there does
not exist any non-trivial closed ideal of L”(Q) which is invariant under 7. Here, a closed
ideal of L?(Q) is a subspace J of the form
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J={feL?(Q): f(x) =0a.e. on Q\S}
where S < Q is a Borel set.

Lemma 3.11. Let Q < RY be an open set and let T be the semigroup generated by the
Dirichlet Laplacian on L*(Q). Then T is irreducible if and only if Q is connected.

Proof. If Q is connected, then T is irreducible by [Dav2|, Theorem 3.3.5 or [Are2],
Theorem 1.5. Conversely, assume that Q is the disjoint union of two open sets Q; and
Q. Let J ={f e L?*(Q): f =0a.. on}. Let A4 be the generator of 7. We show that
T(t)J = J (t=0). For this, it suffices to show that R(4,4)J < J for all 1> 0. Let
u= R(A,A)v, where v e J; i.e.

[VuVe + 2 up = [vp
Q Q Q
for all p € 2(Q). Let uy = u - lg,. Then uy € H} (Q) and Vuy; = Vu - 1g,. So

JVurVo+ 24 [up = [ve
Q Q Q

for all p € 2(Q). Hence (A — A)u; =v. Thusu =u;. [
Proof of Proposition 3.10. Since cap(Q\Q') = 0 we have L*(Q) = L*(Q’) and the
semigroup generated by the Dirichlet Laplacian with respect to Q and to Q' coincide.

Thus the latter is irreducible and the claim follows from Lemma 3.11. [J

Next we introduce some regularity properties of an open set Q which all express in
some weak form that Q lieso only on one side of 0Q. Recall that an open set Q = RY is

called topological regular if Q = Q. It is easy to see that this is equivalent to saying that
B(z,r)\Q has non-empty interior for all z € 0Q,r > 0.
Definition 3.12. An open set Q < R” is called regular in measure if
|B(z,r)\Q| >0 forallzedQ,r>0.
The set Q is called regular in capacity if
cap(B(z,7)\Q) >0 forall z e dQ,r > 0.

Finally, we say that Q is locally connected at the boundary if for all z € 0Q there exists
ro > 0 such that B(z,r) n Q is connected for all r € (0, rp).

It is clear that topological regularity implies regularity in measure and regularity in
measure implies regularity in capacity. The set

Q={xeR%|x| <1\{(q,0:0=a< 1}

is regular in capacity but not in measure.
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The third property in Definition 3.12 is independent of the others. For example,
Q = R*\{0} is locally connected but not regular in capacity. On the other hand
Q =R>\{(x,y): x> +y> < 1,x-y = 0} is topological regular but not locally connected at
the boundary (at z = 0).

Proposition 3.13.  Let Q;,Q, = RY be open.
(a) Assume that Q and Q, are regular in measure. If |Q AQy| =0, then Q) = Q,.

(b) Assume that Q) and Q) are regular in capacity. If cap(Q;AQ,) =0, then
Q =0,

Proof. (a) Let |Q; AQy| = 0. Assume that there exists x € Q;\Q,. Then x € Q. Let

¢ >0 such that B(x,¢) < Q. Since €, is regular in measure we have |B(x,¢&)\Q»| > 0.
Hence |Q;\Q,| > 0, a contradiction.

(b) This is completely analogous. []
Now we can prove the main result for Dirichlet boundary conditions.

Theorem 3.14. Let Q;,Q, = RY be open and regular in measure. Assume that
Q, is connected. Let 1 < p < oo and denote by A the Dirichlet Laplacian on L?(€;). Let
Ay be a symmetric submarkovian realization of the Laplacian in L?(Q;). Assume that
U: L?(Q) — L?(Q,) is an order isomorphism satisfying

(3.8) Ue'M = e2U (1= 0).
Then A, is the Dirichlet Laplacian on L? () and U is of the form
(3.9) Uf=c-for (feLf(Q))

where T is an isometry from Q) onto Qi and ¢ > 0.

Proof. By Theorem 2.2 there exist open sets Q]f < Q; satisfying |Q,~\Q; | =0,
J = 1,2, a homeomorphism 7: Q) — Q| which is isometric on each component of Q} and
h: Q5 — (0, 00) which is constant on each component of Q) such that (2.4) holds. More-
over, U is given by (2.17) on L?(Q). It is easy to see that

o™ < h(y) < Ul

for all y e Q). Since 7 is measure preserving U has an extension as an order isomorphism
from L?(Q;) onto L4(€Q;) for all 1 < ¢ < co. Thus we can assume that p = 2.

a) We show that cap(:\Q;) = 0. It follows from (3.8) and [Pa], (6.9), p. 70 that
(3.10) (I —4) " PU=U(I - 4) ™
Denote by V' = (I — Az)_l/sz(Qz) the form domain of A4,.

Since (I — 4) 2LA(Q;) = W 2(Qy) it follows from (3.10) that
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UWy2(Q) =V
0 ="

Now by the closed graph theorem, U induces a continuous operator from Wol’z(Ql) into
V. Suppose that cap(Q,\Q5) > 0. Then there exists a compact subset K of Q, such that
cap(K\Q ) > 0 (cf proof of Lemma 3.7). Let p € 2(€),) such that ¢ > 1 on K. Since QZ(QI)
is dense in W 2(Q)), there ex1st [ € 2(€) such that g, = Uf, converges to ¢ in H'(Q,).
Then h, = pg, converges to p> in H'(Q,). Taking a subsequence, if necessary, we can as-
sume that /, converges to ¢? q.e. But i,(y) =0 and ¢?(y) = 1 for all y € K\Q5. This is a
contradiction. We have shown that cap(Q,\Q}) = 0.

b) Now it follows from Proposition 3.10 that Q) is connected. Thus 7 is an isometry
from Q) onto Q| and h is a constant. The set t(Q,) is regular in measure since Q, is.
Moreover, [Q Az(Qy)] = 0 (since [2;\Qj| = 0 and 7(Q;) = Q). It follows from Proposi-
tion 3.13 that Q; = 7(Qy).

Since (3.9) holds a.e. for all f € 9(91) with ¢ = A, it is also true on L?(Q;) by den-
sity. We can assume c = 1. Then U is unitary. From the special form of U one sees
that UW,>(Q) = W,"*(Q;,) and J"Vng_ jv Uf)V(Ug) for all f,ge W, *(Q;). Now

it follows from Lemma 1.3 that A2 1s the Dlrlchlet Laplacian. []

By the following example we show that the roles of A; and A, in Theorem 3.14 can-
not be exchanged; i.e., the theorem is false, in general, if we assume that Q; is connected
but Q, is not.

Example 3.15. Let Q; =(0,2), Q,=(0,1)u(2,3). Observe that Q; and Q, are both
regular in measure (and even topologically regular). Let Q| = Q;\{1} and define the ho-
meomorphism 7: Q, — Q by

[y if ye(0,1),
T(y)_{y—l if ye(2,3).

Then Uf = f o 7 defines a unitary order isomorphism U from L?(€;) onto L*(,). Let A4;
be the Dirichlet Laplacian and consider the positive form (ay, V>) on L*(Q,) given by

Va={feH' (Q): /(1) =/(2), /(0) =f(3) =0}, ax(f.g) ng’g’

Let A, be the operator associated with a,. Then A, is a symmetric submarkovian realiza-
tion of the Laplacian in L?(Q,). It follows from Lemma 1.3 that (3.8) holds. []

The following example shows that Theorem 3.14 does not hold in general if Q, is not
regular in measure.

Example 3.16. Let Q; = {xeR? |x| <1} and Q, =Q;\{(4,0): 0 <a < 1}. Note that
Q, is connected and regular in capacity but not regular in measure. Since Q, < Q,
1Q1\ Q| = 0, we have L*(Q;) = L*(€,). Let U be the identity operator and let 4] = A4, be
the Dirichlet Laplacian on L?(Q;) (with respect to ©; in both cases). Then 4, is a sym-
metric submarkovian realization of the Laplacian on L?(Q,). Condition (3.8) is trivially
satisfied, but ; and Q, are not congruent. []
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However, if we already know that A, is the Dirichlet Laplacian on L?(Q,), the reg-
ularity condition in Theorem 3.1 can be relaxed.

Corollary 3.17. Let Q;,Q c RY be two open sets which are regular in capacity.
Assume that €, is connected. Let 1 < p < oo and denote by A; the Dirichlet Laplacian on
L?(Q)) (j=1,2). Let U: LP(Q;) — L?(Q,) be an order lsomorphlsm such that the com-
mutator condition (3.8) is satisfied. Then there exist an isometry t from Q, onto Q) and a
constant ¢ > 0 such that Uf =c¢-f ot (f € LP(Q))).

Proof. We proceed as in the proof of Theorem 3.14 to deduce that U is of the
form Uf =c-fot (feL*Q)), where ¢ >0 and 7 is an isometry from Q) onto Q.
Moreover, cap(€,\Q}) = 0 as before. Since [Q;\Q[| = 0 it follows that L*(Q]) = L*(€y). It
follows from Lemma 1.3 and the assumption (3.8) that A4; is the Dirichlet Laplacian on
L?(Q]) (with respect to Q). So Corollary 3.9 implies that cap(Q;\Q]) = 0. Consequently,
cap (91 Ar(Qz)) = 0. Since Q; and 7(Q;,) are regular in capacity, it follows from Proposi-
tion 3.13 that Q; = 7(Q). [

One can associate to every open set an open set which is regular in capacity without
changing the Dirichlet Laplacian.

Proposition 3.18. Let Q c RY be open. Then there exists a unique open set g~2 >0
which is regular in capacity and satisfies cap(Q\Q) = 0. In particular, L*(Q) = L?*(Q) and
the Dirichlet Laplacians with respect to Q and Q coincide. Moreover, Q is connected if and
only if Q is connected.

Proof. Let Q be the union of all balls B(x, r) satisfying cap(B(x,r)\Q) = 0. Then
Q is clearly open and contains Q. We show that cap(Q\Q) = 0. Let K, = K,,,1 be compact
sets such that |J K, = Q. Let n € N. Then there exist finitely many balls

neN
B(x;,r), i=1,...,m,

covering K, and satisfying cap(B(x;,r;)\K,) = 0. Thus, using the usual properties of ca-
pacity [BH], Proposition 8.1.3, we conclude that

m

cap(K,\Q) < > cap(B(x;,r:)\Ky) =0

i=1
and hence cap(Q\Q) = hm cap(K,\Q) = 0. Next we show that Q is regular in capacity.
In fact, let B(x,r) be a ball such that cap(B(x,7)\Q) = 0. Then

cap(B(x,7)\Q) < cap(B(x,r)\Q) + cap(Q\Q) = 0.

Thus x € Q by definition of Q. In order to show uniqueness let Q; > Q be open, regular in
capacity such that cap(Q;\Q) = 0. Then cap(Q;\Q) < cap(2;\Q) =0 and

cap(Q\Q)) < cap(Q\Q) = 0.

It follows from Proposition 3.14 that Q; = Q. The remaining assertion follows from Prop-
osition 3.9 and 3.11. [

For non-regular open sets Corollary 3.17 now obtains the following form.
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Corollary 3.19. Let Q;,Q, c RY be open, ) connected. Let the remaining assump-
tions of Corollary 3.17 be satisfied. Then Q| and Q, are congruent.

Next we consider Neumann boundary conditions.

Theorem 3.20. Let Q;,Q = RY be two open sets which are regular in measure. As-
sume that Q; is connected and Q; is locally connected at the boundary. Let 1 < p < oo and
let Ay be the Neumann Laplacian on L?(Q)) and A, a symmetric submarkovian realization of
the Laplacian in L?(Q,). Let U: LP(Q;) — L?(Q,) be an order isomorphism such that

Ue'M = e™2U  (1=0).

Then there exists an isometry t from €, onto Qy and a constant ¢ >0 such that
Uf =c-fort (feL?(Q)). Moreover, Ay is the Neumann Laplacian on LP(Q;).

Proof. a) By Theorem 2.2 there exist open sets QJ{ < Q; such that
Q\Q[=0 (j=1,2)

and a homeomorphism 7 from Q) onto Q| which is isometric on each component of Q) and
a mapping h: Q) — (0,00) which is constant on each component of Q) such that (2.4)
holds. As in the proof of Theorem 3.14 we can assume that p = 2. Moreover, it follows that

(3.11) UH' Q) =V
where V' is the form domain of 4,.

b) We will show that Q) = Q,. For this let w be a component of Q). We claim that
dw N Qy = 0. Since €, is connected, this implies w = Q, and so Qé = Q,. The mapping 7 is
isometric on w. Denote by 7 the isometric extension of 7| to RY. Recall from (2.14) that

(3.12) (0w N Q) < 09

Now assume that there exists yo € 0w Q. Let zp:=7(yg). Let ¢ >0 be such that
B(y9,¢) < €, and such that B(zp, &) N Q; is connected. We claim that

(3.13) t(w N B(yo,¢)) = Q1 N B(zo,¢).
In fact, 7(B(yo,¢)) = B(zo,¢) since 7 is an isometry. So t(w N B(y,€)) is a non-empty open

subset of Q| N B(zo,¢). In order to prove (3.13), it suffices to show that t(w n B(yo,¢)) is
relatively closed in Q; N B(zp, €).

Let y, € w N B()o,¢) such that x = lim z(y,) € Q| N B(zo,¢). Then
n— oo

y = lim y, = 77'(x)

n— oo

exists and |y — yo| = |7(¥) —T(»0)| = |x — z0| < &. Thus y € B(yy,¢) < ©Q,. Assume that y ¢ w.
Then y € 0w N Q,. Hence by (3.12), 7(y) = x € 0Q, a contradiction. Thus y € w N B(yy, ¢)
and 7(y) = x. Now (3.13) is proved. Next recall from (2.17) that
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(3.14) (UN ) =h(y)f(x(»)) ae.
forall f € L?(Q). Let f € 2(R") such that supp / = B(zo,¢) and f = 1 on B(zo,g).Then
fo, € Wh2(Q). Let g = U(f], ). Then g is in the form domain ¥ and so in W'?(Q,).

Q

Moreover, by (3.14), g(y) =h(y)f (z(»)) =h(y) =c>0a.. onme(yo,g). Let ye Q)\w.
Then, in view of (3.13), 7(y) ¢ B(zo,¢). Hence by (3.14), g(y) = 0 a.e. on B(yo,g)\co. Now
define k e W'2(B), B= B(zo,g), by k(x) =g(t7'(x)). Then k = ¢ a.e. on BN, and

k=0 a.e. on B\Q,. Since Q; is regular in measure, it follows that k is discontinuous at
each x € 0Q; N B. But k has a quasicontinuous representative (because it has an extension
in W12(R"Y)). Hence cap(dQ; n B) = 0. It follows that Wol’z(B) = W()I’Z(B\aﬂl). But, since
Q; is regular in measure, one has |B\Q;| > 0. Since |0Q; N B| = 0, it follows that B\Q; + 0.
Thus B\0Q; is not connected. This contradicts Proposition 3.10. We have finished the proof
that Q) = Q,.

¢) Thus 7: Q, — Qj is an isometry and / is a positive constant ¢. Since Q| = ()
and Q; are regular in measure and since |Q;\Q{| = 0 we conclude from Proposition 3.13
that Q; = Q{. We can assume ¢ = 1. Then it follows from Lemma 1.3 that 4, = U4, U}
is the Neumann Laplacian on L?(Q,). [

The same proof applies to Robin boundary conditions yielding the following result.

Theorem 3.21. Let Q;,Q be two bounded open subsets of R™ with Lipschitz bound-
ary. Assume that € is connected. Let 1 < p < oo and let 0 < ff; € L*(0Qy,do). Let Ay be
the Laplacian with Robin boundary condition on L?(Q;) associated with [3,. Let A, be a
symmetric submarkovian realization of the Laplacian in L?(€). Let U: L?(Q)) — L?(£)
be an order isomorphism such that

Ue't = eU  (120).
Then U is of the form
(3.15) Uf=c-for (feLf(Q))

where T is an isometry from Q, onto Qi and ¢ > 0. Moreover, A, is the Laplacian with Robin
boundary condition associated with , = f; o 1.

Proof.  As in the proof of the previous theorem one sees that U is of the form (3.15).
To prove that A, is of the special form we can assume ¢ = 1 and p = 2 (as we did already).
It follows from Lemma 1.3, that A4, is associated with the form b given on the form domain
UW'2(Q) by

b(Uf,Ug) = a(f,g)

= [VfVg+ [ fgp, do.
Q oQ

But UW2(Q) = W2(Q,) and we find for f,g e WH2(Q,),
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b(f.g)=a(for ' ,gor")
= [V(for YW(gor )+ [for'gor ' do

(?‘Q[ FQI
= [VfVg+ [ fgpiordo.
l‘?Qz 892

Thus, by Lemma 1.3, A4, is the Laplacian with Robin boundary conditions associated with
Pioz. O

Remark 3.22. If p = 2 then we can omit the assumption that 4, be submarkovian in
Theorems 3.14, 3.20 and 3.21.

4. Intertwining isometric isomorphisms
In Theorem 3.14, if p = 2, then we are not allowed to replace “order isomorphism”
by “isometric isomorphism”, i.e. ““unitary’”. This is exactly what the counterexample to
Kac’s question shows, see Introduction. However, things are different, if p =+ 2. Isometries

on L? are of special nature if p =+ 2. This follows from the following lemma [Ro], p. 416.

Lemma 4.1. Let1 <p < oo, p+2andlet f,ge L?. Then
(4.1) 1/ +gll” + 1./ = gll” = 217" + 2llgll”
ifand only if f-g=0 a.e.
We deduce from this the following:
Proposition 4.2. Let U: L?(Q;) — L?(Q,) be an isometric isomorphism where

Q1,9 « RY are open and 1 < p < oo, p + 2. Then there exists a unique order isomor-
phism |U|: L?(Q,) — L?(Qy) such that

(4.2) \Uf1=UIf (fell(Q), f=z0).
Moreover,
(43) o = ol

Proof. 1t follows from (4.1) that U is disjointness preserving; i.e.,
(4.4) f-g=0ae. < (U)(Ug) =0ae.

for all f,g e L?(Q;). Now the claim follows from [Arel], Section 1. In this case one could
also use Lamperti’s theorem [Ro], p. 416, together with [Ro], Theorem 17, p. 410. [

Proposition 4.3. Let U: L?(Q;) — L?(,) be an isometric isomorphism where
1<p<o, p+2. Let Sje L(LP(Q))) be a positive operator (j=1,2) such that
S, U = US,. Then
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S,|U| = |U|S;.
Proof. Let0 < f e L?(Q;). Then by (4.2),
|UIS1f = [US\f] = |S2Uf| < S:|Uf| = S:|U|f.

Hence

(4.5) UIS) < S:|U].
The same argument applied to U~! gives |U~!|S, < S1|U~!|. Hence by (4.3),

U, < si|up

which implies S>|U| < |U|S;. Together with (4.5), this proves the claim. []

Now, if 1 < p < oo, p + 2, we may replace order isomorphism by isometric iso-
morphism in Theorem 3.15, Corollary 3.16, Theorem 3.18 and Theorem 3.19. In addition,
the constant ¢ in the conclusion is 1 or —1. We give an explicit formulation in the case of
Dirichlet boundary conditions.

Theorem 4.4. Let Q;,Q, = RY be open and regular in capacity. Assume that Q,
is connected. Denote by A; the Dirichlet Laplacian on L?(L;), j = 1,2, where 1 < p < o0,
p + 2. Assume that

(4.6) Ue'l =2 (+=0).

Then there exists an isometry t _from Q, onto Q such that
Uf =c-fot forall feL’(Q)
where ¢ =1 or ¢ = —1.

Proof. It follows from Proposition 4.3 that |Ule™! = ¢™|U| (1 Z 0). By Corollary
3.16, there exist an isometry 7 from Q, onto Q; and a constant ¢y > 0 such that

|[Ulf =co-for (feLl(Q)).

Since |U| is isometric, we have ¢y = 1. Note that UZ(Q;) < C*(Q,) by (2.13). Let y € Q5.
Then |(UF)(»)| < (U] |fD(») = |f(z(»))] for all /€ 2(€). This implies that

(TN () =h(»)f(x(»)
for all f e 2(Q;) where h(y) e {—1,1}. By the proof of Proposition 2.6, the function %
is continuous. This implies that 4 is a constant ¢ € {1,—1}. Thus Uf =c¢-f oz for all

f € 2(Q). By density, we deduce that Uf = c-fora.e. forall fe L?(Q;). [

Now the proof of Theorem 1.2 is complete.
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Concluding, we give another formulation of this theorem, which might illuminate
somehow modelisation of the heat equation in a functional analytic framework.

Let Q = RY be open and non-empty, 1 < p < co. Then the Banach lattice L?(Q) is
isomorphic to E := L?(0, 1). Here we call two Banach lattices isomorphic if there exists an
order isomorphism from one onto the other. Given a positive semigroup 7 on L”(Q) we
may consider it as well as a positive semigroup on E = L?(0,1). Then the question arises
whether we can refind the set Q.

For N e N let Oy be the set of all non-empty connected open subsets of RY which are
regular in capacity identifying two sets if they are congruent. For 1 < p < oo we denote by
S+ the set of all positive semigroups on E. We identify two semigroups 77 = (T 1(z))

=20
and T, = (T»(1)),., if there exists an order isomorphism U on E such that

=0

(4.7) (U = UTy(1) (1= 0).

To each Q € Oy we associate the semigroup T generated by the Dirichlet Laplacian on
L?(Q) but considered as an element of .%,,. Then our result says that Q — Tj, is injective.

Similarly, L?(Q) is isomorphic to £ = L?(0, 1) as a Banach space. Here we call two
Banach spaces isomorphic if there exists an isometric isomorphism which maps one space
onto the other. For I < p < o, p # 2, denote by ., the set of all semigroups on E identi-
fying two semigroups 7 and 73 if (4.7) holds for some isometric isomorphism U on E.
Then Q — Ty, is injective as mapping from Oy into %,

An inspection of the proof of Proposition 2.4 shows that also the dimension can be
identified. More precisely, let Q; = RY be open, connected and regular in capacity where
Jj=1,2. Assume that T, and Tq, are equivalent as semigroup on E (in the sense of
Banach lattices or of Banach spaces). Then N; = N, and Q; and Q, are congruent.

Of course, for bounded domains, it is well-known that the spectrum alone does de-
termine the dimension (see [Kal).
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