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Does di¤usion determine the body?

ByW. Arendt at Ulm

Abstract. Kac’s famous question ‘‘Can one hear the shape of a drum?’’, is equiva-
lent to asking whether two domains in RN are congruent whenever there exists a unitary
operator intertwining the corresponding Dirichlet Laplacians. In the present paper we show
that the answer is positive if the intertwining operator is supposed to be an order iso-
morphism instead of being unitary. This assumption signifies that positive solutions of the
heat equation are mapped onto positive solutions. So one may rephrase the result by saying
that di¤usion determines the domain. This holds not only for Dirichlet but also for Neu-
mann and Robin boundary conditions. However, for mixed boundary conditions (namely,
periodic on one and Dirichlet on the other part of the boundary) a counterexample is given.

0. Introduction

In his famous paper ‘‘Can one hear the shape of a drum’’ M. Kac asked the follow-
ing question: Let W1;W2 be two bounded domains in RN (satisfying a suitable regu-
larity condition) and consider the Laplacian Aj with Dirichlet boundary conditions on
L2ðWjÞ ð j ¼ 1; 2Þ. Assume that A1 and A2 have the same series of eigenvalues. Does it fol-
low that W1 and W2 are congruent? This problem can be formulated in terms of the semi-
groups ðetAjÞtf0 generated by Aj on L2ðWjÞ in the following way. Consider an orthonormal
basis fen: n A Ng of L2ðW1Þ consisting of eigenfunctions of A1 and an orthonormal basis
f f n: n A Ng of L2ðW2Þ of eigenfunctions of A2. Let U : L2ðW1Þ ! L2ðW2Þ be the unitary
operator for which Uen ¼ fn ðn A NÞ. Then the assumption that the spectra coincide is
equivalent to the relation

UetA1 ¼ etA2U ðtf 0Þ:ð0:1Þ

Thus, an equivalent formulation of Kac’s question is: Assume that U : L2ðW1Þ ! L2ðW2Þ is
a unitary operator satisfying (0.1). Does it follow that W1 and W2 are congruent? In 1992 it
has been shown by Gordon, Webb and Wolpert [GWW] that Kac’s question has a negative
answer, in general.

The purpose of this paper is to investigate whether congruence of W1 and W2 can be
deduced from di¤erent assumptions on U. More precisely, instead of considering a unitary



operator, we assume that U is an order isomorphism; i.e., U : L2ðW1Þ ! L2ðW2Þ is linear,
bijective and satisfies

f f 0 a:e: , Uf f 0 a:e:

We show under this assumption that W1 and W2 are necessarily congruent if (0.1) holds.

Recall that for f A L2ðWjÞ, the function

t 7! etAj f : Rþ ! L2ðWjÞ

is a solution of the di¤usion equation determined by Aj; j ¼ 1; 2. Thus, assumption (0.1)
signifies thatUmaps positive solutions to positive solutions of the di¤usion equation. Hence
our result might be rephrased by saying that di¤usion determines the domain.

In our result we do not need that the boundary is smooth. Indeed, it turns out that the
precise condition on the open set needed for the result is ‘‘regularity in capacity’’, a very
weak notion of regularity which we study in detail.

We also obtain positive results for Neumann and Robin boundary conditions. In fact,
we even show that di¤usion determines the body and the boundary condition if we restrict
ourselves to the three types of conditions: Dirichlet, Neumann and Robin.

However, it is remarkable that the result is not true for arbitrary boundary conditions
which define a symmetric realization of the Laplacian on L2ðWÞ. We give a counterexample
where periodic boundary conditions are imposed on one part of the boundary and Dirichlet
(or Neumann) boundary conditions on another part.

A di¤erent version of the result is obtained by replacing L2 by Lp for p3 2,
1 < p < y and order isomorphisms by isometric isomorphisms. In all cases, we show
that the intertwining order isomorphism (or isometric isomorphism on Lp; p3 2Þ is of
the form Uf ¼ c � f � t ð f A LpÞ where t is an isometric mapping from one domain to
the other and c a constant.

Meanwhile there exists a very concrete counterexample to Kac’s question. Chapman
[Ch], following Bérard [Be], constructs an intertwining isomorphism U from L2ðW1Þ onto
L2ðW2Þ where W1 and W2 are non-congruent polygons. In fact, W1 and W2 are presented
as union of seven congruent triangles (put together in di¤erent ways). The operator U is
relatively simple. It comes from mapping triangles to triangles, reflection in the triangles
and superposition of such operations (see [Ch] for a detailed description). Our result shows
that the superposition is essential to make such an intertwining operator possible for non-
congruent domains.

There is an abundant literature on inverse spectral geometry, in particular for the
non-euclidean theory. We refer to Protter’s article [Pr] and the proceedings [AL] edited by
Andersson and Lapidus. Also, it should be mentioned that positive results for a very dif-
ferent kind of intertwining operators (viz, unitary Fourier integral operators) were obtained
by Zelditch [Z] in the framework of Riemannian manifolds. For other types of inverse
problems we refer to the monograph by Isakov [Is].
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The present paper is restricted to the Euclidean case with emphasis on the treatment
of di¤erent boundary conditions obtained by quadratic form methods (cf. Davies [Dav2]).
It is organized as follows: In Section 1 we present the main result for Dirichlet boundary
conditions. Moreover, we give counterexamples which are illuminating in context of the
proofs given later on. Arbitrary realizations of the Laplacian in Lp are considered in Sec-
tion 2. The main results are contained in Section 3 where special boundary conditions are
considered. Finally, in Section 4 isometric isomorphisms on Lp; p3 2, are considered as
intertwining operators. Some extensions of the results presented here are given in [Are2].

Acknowledgement. This work was stimulated by a uniqueness result by W. Arveson
for compact Riemannian manifolds if the intertwining unitary operator also preserves the
ordering (unpublished). His motivation for such questions arose from his work [Arv] on the
Riemannian structure of some operator algebras. The author is most grateful for several
fruitful discussions with W. Arveson and the hospitality extended to him during his visit at
the University of California at Berkeley.

1. A typical result and a counterexample

This section has introductory character. We present the main result for Dirichlet
boundary conditions. Further boundary conditions and refinements are given along with
the proofs in Section 3. We also produce a counterexample showing that not all boundary
conditions are allowed. This example illustrates well the di‰culties to be overcome in the
proofs and we may refer to it later on. Let W1;W2 be two open subsets of RN and let
1e p < y. A mapping t: W2 ! W1 is called an isometry if it is of the form

tðyÞ ¼ Byþ b ðy A W2Þ;ð1:1Þ

where B is an orthogonal matrix and b A RN . The sets W1 and W2 are called congruent, if
there exists an isometry t from W1 onto W2.

Definition 1.1. Let 1e pey. A linear mapping U : LpðW1Þ ! LpðW2Þ is called an
order isomorphism if U is bijective and

Uf f 0 if and only if f f 0ð1:2Þ

for all f A LpðW1Þ. Here f f 0 stands for f ðxÞf 0 a.e.

Let W be an open subset of RN and let 1e p < y. The definition of the Laplacian
with Dirichlet boundary conditions in LpðWÞ is standard and will be recalled in Section 3.
It is an operator generating a positive contraction semigroup on LpðWÞ. Throughout the
paper the term semigroup stands for C0-semigroup. A semigroup T ¼ TðtÞtf0 on LpðWÞ is
called positive if TðtÞf 0 for all tf 0 (i.e. TðtÞf f 0 if f f 0).

The following regularity condition on W expresses in a weak form that W lies on one
side of the boundary. We say that W is regular in capacity if for all x A qW; r > 0,

cap
�
Bðx; rÞnW

�
> 0;ð1:3Þ
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where Bðx; rÞ ¼ fy A RN : jx� yj < rg is the ball of center x and radius r. If W is topolog-
ical regular (i.e. W

�
¼ WÞ then W is also regular in capacity, see Section 3 for further ex-

planations. Now we can formulate our main result for Dirichlet boundary conditions.

Theorem 1.2. Let W1;W2HRN be open sets which are regular in capacity. Assume
that one of the sets is connected. Denote by Aj the Laplacian with Dirichlet boundary con-
ditions on LpðWjÞ; j ¼ 1; 2, where 1 < p < y. Then the following conditions are equivalent:

(i) W1 and W2 are congruent.

(ii) There exist 1 < p < y and an order isomorphism U : LpðW1Þ ! LpðW2Þ such that

UetA1 ¼ etA2U ðtf 0Þ:ð1:4Þ

(iii) There exist 1 < p < y, p3 2 and an isometric isomorphism U : LpðW1Þ ! LpðW2Þ
such that (1.3) holds.

In that case, U is of the form

Uf ¼ c � f � t ð f A LpðW1ÞÞð1:5Þ

where t is an isometry from W2 onto W1 and c > 0 in the case (ii), c ¼ 1 or c ¼ �1 in the case
(iii).

Next we show by an example that Theorem 1.2 is no longer true if we consider peri-
odic or a mixture of periodic and Dirichlet boundary conditions.

We need some preparation. Let H be a Hilbert space with scalar product ð j Þ. By a
positive form we mean a pair ða;VÞ where V is a Hilbert space, continuously injected into
H, such that V is dense in H, and a: V � V ! R is bilinear and continuous satisfying

aðu; uÞf 0 for all u A V ;ð1:6Þ

aðu; vÞ ¼ aðv; uÞ for all u; v A V ;ð1:7Þ

aðu; uÞ þ kuk2H f akuk2V ðu A VÞ;ð1:8Þ

for some constant a > 0. The space V is called the domain of the form a.

The operator A on H associated with a is defined by

DðAÞ ¼ fu A V : bv A H such that aðu; jÞ ¼ �ðvjjÞ for all j A Vg; Au ¼ v:

The operator A is selfadjoint and generates a contraction semigroup ðetAÞtf0 on H.
See [Dav1], [RS], [Fu], [BH] for example.

Lemma 1.3. Let aj be a positive form on a Hilbert space Hj with domain Vj; j ¼ 1; 2.
Let U : H1 ! H2 be unitary. The following are equivalent:

(i) UetA1 ¼ etA2U ðtf 0Þ.
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(ii) UV1 ¼ V2 and a2ðUx;UyÞ ¼ a1ðx; yÞ for all x; y A V1.

Proof. (i)) (ii). It is well-known (cf. [Fu], §1.3) and easy to see by the spectral
theorem that

lim
t#0

1

t
ðx� etAjxÞ j y

� �
¼ ajðxjyÞð1:9Þ

for all x; y A Vj whereas

lim
t#0

1

t
ðx� etAjx; xÞ ¼ yð1:10Þ

if x A HjnVj. Using this one immediately obtains (ii) from (i).

(ii)) (i). It follows from the definition of the associated operator that

UDðA1Þ ¼ DðA2Þ and UA1x ¼ A2Ux for all x A DðA1Þ:

This implies that

URðl;A1Þ ¼ Rðl;A2ÞU for all l A %ðA1ÞX %ðA2Þ:

Since etAj is the strong limit of I � t

n
Aj

� ��n
as n! y, assertion (i) follows. r

We first give a 1-dimensional example which describes in a simple way what can
happen.

Example 1.4. Let W ¼ ð�1; 1Þ and let t: ð�1; 1Þ ! ð�1; 1Þ be given by

tðyÞ ¼
1� y if y > 0;

�1� y if y < 0;

0 if y ¼ 0:

8<
:

Then t is isometric on ð�1; 0Þ and ð0; 1Þ but not on ð�1; 1Þ. The operator

U : L2ð�1; 1Þ ! L2ð�1; 1Þ

given by Uf ¼ f � t is a unitary order isomorphism.

Consider the positive form a on L2ð�1; 1Þ given by

aðu; vÞ ¼
Ð1
�1
u 0v 0

with domain

V :¼ fu AW 1;2ð�1; 1Þ: uð�1Þ ¼ uð1Þg:
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Let A be the associated operator. Then it follows easily from Lemma 1.3 that

UetA ¼ etAU ðtf 0Þ:

But U is not given as composition by an isometry. r

Remark 1.5. It is easy to see that

DðAÞ ¼ fu AW 2;2ð�1; 1Þ: uð1Þ ¼ uð�1Þ; u 0ð1Þ ¼ u 0ð�1Þg; Au ¼ u 00:

Next we modify the example in order to produce non-congruent domains.

Example 1.6. Let h A C1½�1; 1� such that hð�1Þ ¼ hð1Þ ¼ hð0Þ ¼ 1 and hðxÞf 1 for
all x A ½�1; 1�. Let

W2 ¼ fðx; yÞ: �1 < x < 1; 0 < y < hðxÞg:

Define t: W2 ! R2 by

tðx; yÞ ¼
ð1� x; yÞ if x > 0;

ð0; yÞ if x ¼ 0;
ð�1� x; yÞ if x < 0;

8<
:

and let W1 ¼ tðW2Þ. We may choose h in such a way that W1 and W2 are not congruent.

Denote by W 1;2ðWjÞ ¼ f f A L2ðWjÞ: Dx f A L2ðWjÞ;Dy f A L2ðWjÞg the first Sobolev

space, where Dx ¼
q

qx
, Dy ¼

q

qy
.

Define the positive form aj on L
2ðWjÞ by

ajðu; vÞ ¼
Ð
Wj

‘u‘v dx

with domain

Vj ¼
�
u AW 1;2ðWjÞ: ðTuÞð�1; yÞ ¼ ðTuÞð1; yÞ if 0 < y < 1;

ðTuÞ
�
x; hðxÞ

�
¼ 0 if x A ð�1; 1Þ and ðTuÞðx; 0Þ ¼ 0 if x A ð�1; 1Þ

�

where T :W 1;2ðWjÞ ! L2ðqWj;H
1Þ denotes the trace operator [EG], p. 133. Let Aj be the

operator associated with aj. It follows from the definition thatDðWjÞHDðAjÞ and Aju ¼ Du
for all u A DðAjÞ ð j ¼ 1; 2Þ. Define the operator U : L2ðW1Þ ! L2ðW2Þ by Uf ¼ f � t. Then
U is unitary and an order isomorphism. Using integration by parts [EG], 4.3, Theorem 1
(ii), p. 133, one sees that

f � t A V2 if f A V1ð1:11Þ

and
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Dxð f � tÞ ¼ �ðDx f Þ � t; Dyð f � tÞ ¼ Dy f � t:ð1:12Þ

This implies that UV1 ¼ V2 and

a2ðUf ;UgÞ ¼ a1ð f ; gÞ for all f ; g A V1:

So by Lemma 1.3 we deduce that

etA2U ¼ UetA1 ðtf 0Þ: r

Of course, in Example 1.6 we may glue together the boundaries fð�1; yÞ: 0 < y < 1g
and fð1; yÞ: 0 < y < 1g and obtain manifolds with boundaries which are isomorphic.

A di¤erent example is obtained by identifying some sides of rectangles:

Example 1.7. The Laplacian defined on a rectangle and an L-shaped domain, with
Neumann (or Dirichtlet) boundary conditions on part of the boundary and identifying
boundary conditions on the other part, are intertwined by a unitary order isomorphism.

a) More precisely, let N ¼ 2, W1 ¼ ð0; 3Þ � ð0; 1Þ, W2 ¼ W 0
2W ð1; 2Þ � f1g with

W 0
2 ¼ ð0; 2Þ � ð0; 1ÞW ð1; 2Þ � ð1; 2Þ:

Then W1 and W2 are connected open sets which are not congruent. Let

W 0
1 ¼

�
ð0; 2Þ � ð0; 1Þ

�
W
�
ð2; 3Þ � ð0; 1Þ

�
:

Thus L2ðWjÞ ¼ L2ðW 0
j Þ ð j ¼ 1; 2Þ. Define the bijective mapping t: W 0

2 ! W 0
1 by

tðx; yÞ ¼ ðx; yÞ if ðx; yÞ A ð0; 2Þ � ð0; 1Þ;
ðxþ 1; y� 1Þ if ðx; yÞ A ð1; 2Þ � ð1; 2Þ:



Then t is isometric on each component of W 0
2. The mapping Uf ¼ f � t a.e. defines a uni-

tary order isomorphism U from L2ðW1Þ onto L2ðW2Þ.

Define the closed form ðaj;VjÞ on L2ðWjÞ by

ajðu; vÞ ¼
Ð
Wj

‘u‘v ðu; v A Vj; j ¼ 1; 2Þ

with

V1 ¼ fu AW 1;2ðW1Þ: ðTf Þðx; 1Þ ¼ ðTf Þðxþ 1; 0Þ for all x A ð1; 2Þg;

V2 ¼ fu AW 1;2ðW2Þ: ðTf Þð1; yÞ ¼ ðTf Þð2; y� 1Þ for all y A ð1; 2Þg;

where T :W 1;2ðWjÞ ! L2ðqWjÞ ð j ¼ 1; 2Þ is the trace operator. Let Aj be the operator asso-
ciated with aj ð j ¼ 1; 2Þ. Then it follows from Lemma 1.3 that

UetA1 ¼ etA2U ðtf 0Þ:
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In fact, using integration by parts [EG], p. 133 one sees that UV1 ¼ V2 and DxUf ¼ UDx f ,

DyUf ¼ UDy f for all f A V1, where Dx ¼
q

qx
, Dy ¼

q

qy
. This implies that

a2ðUf ;UgÞ ¼ a1ð f ; gÞ for all f ; g A V1:

b) Similarly, one could choose Dirichlet boundary conditions (instead of Neumann)
on all sides of Wj besides the sides ð1; 2Þ � f1g and ð2; 3Þ � f0g which are identified in the
case of W1 and the sides f1g � ð1; 2Þ and f2g � ð1; 2Þ which are identified in the case of W2.

2. General realizations of the Laplacian

In this section we characterize order isomorphisms intertwining arbitrary realizations
of the Laplacian. We will show that they are given by composition of ‘‘local isometries’’.
The results obtained here are the first step for the main result in Section 3 where special
boundary conditions are considered. Only for some, in fact the most familiar, boundary
conditions, ‘‘global’’ isometries are obtained.

Let WHRN be a bounded and open set. By DðWÞ we denote the space of all test
functions and by DðWÞ0 the space of all distributions. As usual we identify L1locðWÞ with a
subspace of DðWÞ0. In particular, for f A L1locðWÞ the Laplacian D f of f is always defined
as an element of DðWÞ0.

Definition 2.1. Let 1 < p < y. An operator A on LpðWÞ is called a realization of the
Laplacian in LpðWÞ if

(a) DðWÞHDðAÞ and

(b) Af ¼ D f in DðWÞ0 for all f A DðAÞ.

It should be emphasized that the definition above does depend on the open set W and
not only on the space LpðWÞ. We make this more precise.

If FHRN is a Lebesgue measurable set we denote by jF j its Lebesgue measure. Let
W1;W2HRN be open sets. We consider LpðWjÞ as a subspace of LpðRNÞ extending func-
tions defined on Wj by 0 to RNnWj. Then

LpðW1Þ ¼ LpðW2Þ if and only if jW1hW2j ¼ 0;ð2:1Þ

where W1hW2 ¼ ðW1nW2ÞW ðW2nW1Þ denotes the symmetric di¤erence. Now assume that
jW1hW2j ¼ 0. Let A be a realization of the Laplacian in LpðW1Þ. Then A might not be a
realization of the Laplacian in LpðW2Þ. However, it is, if W2HW1.

Let Aj be an operator on a Banach space Ej, j ¼ 1; 2 and let U : E1 ! E2 be linear,
continuous and invertible. We say that U intertwines A1 and A2 if

UDðA1Þ ¼ DðA2Þ and A2Ux ¼ UA1xð2:2Þ

for all x A DðA1Þ. Note that this is equivalent to
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UetA1 ¼ etA2U ðtf 0Þð2:3Þ

whenever A1 and A2 generate semigroups.

The purpose of this section is to prove the following:

Theorem 2.2. Let W1;W2 be two open subsets of RN ; 1 < p < y. Let Aj be a realiza-
tion of the Laplacian in LpðWjÞ ð j ¼ 1; 2Þ. Let U : LpðW1Þ ! LpðW2Þ be an order isomorphism
intertwining A1 and A2. Then there exist open sets W

0
j HWj satisfying jWjnW 0

j j ¼ 0 ð j ¼ 1; 2Þ,
a homeomorphism t from W 0

2 onto W 0
1 which is isometric on each component of W

0
2 and a

mapping h: W 0
2 ! ð0;yÞ which is constant on each component of W 0

2 such that

ðUf ÞðyÞ ¼ hðyÞ f
�
tðyÞ

�
ðy A W 0

2Þ;
0 ðy A W2nW 0

2Þ


ð2:4Þ

for all f A DðW1Þ.

Examples 1.4, 1.5 and 1.6 show that W 0
j does not need to be connected even if Wj is.

For the proof of Theorem 2.2 we need several auxiliar results.

Proposition 2.3. Let WHRN be open and connected and let t A C1ðW;RNÞ be a map-
ping such that ðDtÞðxÞ is orthogonal for all x A W. Then t is an isometry.

Proof. a) Let BHW be a ball, x; y A B. Then

jtðxÞ � tðyÞj ¼
Ð1
0

d

dt
t
�
xþ tðy� xÞ

�
dt

�����
�����

¼
Ð1
0

Dt
�
xþ tðy� xÞ

�
ðy� xÞ dt

�����
�����

e jy� xj:

b) Applying a) locally to t�1 we conclude that for each a A W there exists r > 0 such
that Bða; rÞHW and jtðxÞ � tðyÞj ¼ jx� yj for all x; y A Bða; rÞ.

c) Let Bða; rÞHW such that jtðxÞ � tðyÞj ¼ jx� yj for all x; y A Bða; rÞ. We show
that there exists 0 < e < r such that t is an isometry on Bða; eÞ. We can assume a ¼ 0.
Replacing t by t� tð0Þ we can assume that tð0Þ ¼ 0. Since

ðxjyÞ ¼ 1
2
ðjxj2 þ jyj2 � jx� yj2Þ

we have
�
tðxÞ j tðyÞ

�
¼ ðxjyÞ for all x; y A Bða; rÞ. This implies that

jtðxþ yÞ � tðxÞ � tðyÞj2 ¼ 0
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whenever x; y; xþ y A Bð0; rÞ and

tðlxÞ ¼ ltðxÞ if x; lx A Bð0; rÞ; l A R:

Thus t is linear in a neighborhood of 0.

d) We have shown that t is locally an isometry, i.e. ðDtÞðxÞ is locally constant and so
constant since W is connected. Let B ¼ ðDtÞðxÞ. Let CðxÞ ¼ tðxÞ � Bx. Then ðDCÞðxÞ ¼ 0
for all x A W. Thus C is constant. r

Proposition 2.4. Let W1;W2HRN be open sets and let U : DðW1Þ ! CyðW2Þ be a
linear mapping satisfying

f f 0 implies Uf f 0;ð2:5Þ

f � g ¼ 0 implies ðUf Þ � ðUgÞ ¼ 0;ð2:6Þ

DUf ¼ UD f ð f A DðW1ÞÞ:ð2:7Þ

Then there exists an open set W 0
2HW2, a mapping t: W 0

2 ! W1 which is isometric on each
component of W 0

2, a function h: W
0
2 ! ð0;yÞ which is constant on each component of W 0

2 such

that for all f A DðW1Þ,

ðUf ÞðyÞ ¼ hðyÞf
�
tðyÞ

�
ðy A W 0

2Þ;
0 ðy A W2nW 0

2Þ:


ð2:8Þ

Proof. a) The set W 0
2 :¼ fy A W2: bf A DðW1Þ; ðUf ÞðyÞ3 0g is open. For y A W 0

2

define the linear form Sy on DðW1Þ given by Syð f Þ ¼ ðUf ÞðyÞ. Since Sy is positive, there
exists a Borel measure my such that Syð f Þ ¼

Ð
W

f dmy (see [DL], p. 567). It follows from (2.6)

that the support of my is a singleton. Thus, there exist tðyÞ A W1, hðyÞ > 0 such that
Syð f Þ ¼ hðyÞ f

�
tðyÞ

�
. We have shown that U is of the form (2.8).

b) We show that t is continuous. If not, we find y; yn AW
0
2; e> 0 such that lim yn¼ y

but jtðynÞ�tðyÞjfe ðn ANÞ. Let f ADðW1Þ such that f
�
tðyÞ

�
¼ 1 but f

�
tðynÞ

�
¼ 0 ðn ANÞ.

Then Uf is not continuous, a contradiction.

b) We show that h A CyðW 0
2Þ. Let oHW 0

2 be open, bounded such that oHW 0
2. Then

tðoÞ is compact. Choose f A DðW1Þ such that f ¼ 1 on tðoÞ. Then Uf ¼ h on o. Thus
h A CyðoÞ.

c) Let j A f1; . . . ;Ng. Choose f A DðW1Þ such that f ðxÞ ¼ xj on tðoÞ. Then
ðUf ÞðyÞ ¼ hðyÞtjðyÞ for y A o. Thus tj A CyðW 0

2Þ where t ¼ ðt1; . . . ; tNÞ.

d) It follows from (2.7) that

Dðh � f � tÞ ¼ h � ðD f Þ � t on W 0
2ð2:9Þ

for all f A DðW1Þ. Choose f A DðW1Þ such that f ¼ 1 on tðoÞ. Then it follows from (2.9)
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that Dh ¼ 0 on o. Since oHW 0
2 is an arbitrary open relatively compact subset of W

0
2, we

conclude that

ðDhÞðyÞ ¼ 0 for all y A W 0
2:ð2:10Þ

Since for f ; g A C2ðW 0
2Þ,

Dð f � gÞ ¼ ðD f Þ � gþ 2‘f � ‘gþ fDg;

we deduce from (2.9) and (2.10),

2‘h � ‘ð f � tÞ þ hDð f � tÞ ¼ hðD f Þ � t on W 0
2ð2:11Þ

for all f A DðW1Þ.

Let j A f1; . . . ;Ng and let f A DðW1Þ such that f ðxÞ ¼ xj on o (where o is chosen
as in b)). Then f � t ¼ tj on o. We deduce from (2.11) that

2‘h � ‘tj þ hDtj ¼ 0 on W 0
2 for j ¼ 1; . . . ;N:ð2:12Þ

e) For f A DðW1Þ we compute on W 0
2,

Djð f � tÞ ¼
P
m

ðDm f Þ � t �Djtm;

D2j ð f � tÞ ¼
P
m

P
k

ðDkDm f Þ � t �Djtk �Djtm

þ
P
m

ðDm f Þ � t �D2j tm;

Dð f � tÞ ¼
P
m

P
k

ðDkDm f Þ � t � ‘tk‘tm

þ
P
m

ðDm f Þ � t � Dtm:

Thus, in virtue of (2.12) the left hand side of (2.11) becomes

2
P
j

Djh
P
m

ðDm f Þ � t �Djtm þ h � Dð f � tÞ

¼ 2
P
m

ðDm f Þ � t � ‘h‘tm þ h �
P
m

ðDm f Þ � t � Dtm

þ h �
P
m

P
k

ðDkDm f Þ � t � ‘tk‘tm

¼ h �
P
m

P
k

ðDkDm f Þ � t � ‘tk‘tm:

Hence (2.11) yields
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P
m

P
k

ðDkDm f Þ � t � ‘tk‘tm ¼ ðD f Þ � t on W 0
2ð2:13Þ

for all f A DðW1Þ. Choosing f A DðW1Þ such that f ðyÞ ¼
1

2
y2i on tðoÞ, we deduce from

(2.13)

‘ti � ‘ti ¼ 1 ði ¼ 1; . . . ;NÞ:

Choosing f A DðW1Þ such that f ðyÞ ¼ yi yj, where i3 j, we obtain from (2.13) that

‘ti � ‘tj ¼ 0 ði3 jÞ:

We have shown that ðDtÞðyÞ is orthogonal for all y A W 0
2. Thus, by Proposition 2.3, t is an

isometry on each component of W 0
2.

In particular, Dtj ¼ 0 ð j ¼ 1; . . . ;NÞ. Thus by (2.12), ‘h � ‘tj ¼ 0 on W 0
2, j ¼ 1; . . . ;N.

Since ðDtÞðyÞ is orthogonal for all y A W 0
2, it follows that ‘h ¼ 0 on W 0

2. This implies that h
is constant on each component of W 0

2. r

Remark 2.5. a) Consider the situation described in Proposition 2.4. Let oHW 0
2 be a

component. Denote by t the isometric extension of tjo . Then

tðqoXW2ÞH qW1:ð2:14Þ

In fact, let y0 A qoXW2. Assume that tðy0Þ A W1. Let f A DðW1Þ be equal to 1 in a neigh-
borhood of tðy0Þ. Let yn A o such that lim

n!y
yn ¼ y0. Then lim

n!y
tðynÞ ¼ tðy0Þ. Note that h

is equal to a constant c > 0 on o. It follows from (2.8) that ðUf ÞðynÞ ¼ c > 0 for n su‰-
ciently large. On the other hand, by (2.8), ðUf Þðy0Þ ¼ 0 since y0 A W2nW 0

2. This contradicts
the continuity of Uf .

b) Conversely, let W1;W2HRN be open, W 0
2HW2 open, t: W

0
2!W1 isometric on each

component of W 0
2 satisfying (2.14). Let h: W

0
2 ! ð0;yÞ be constant on each component of

W 0
2. Then (2.8) defines a linear mappingU : DðW1Þ ! CyðW2Þ satisfying (2.5), (2.6) and (2.7).

Proof. Let f A DðW1Þ. It is clear that g ¼ Uf is of class Cy on each component
of W 0

2. Let y0 AW2nW 0
2. Choose 0< e< dist ðsupp f ; qW1Þ such that Bðy0; eÞHW2. We show

that g ¼ 0 on Bðy0; eÞ. In fact, let y A Bðy0; eÞXW 0
2. Let o be the component of W

0
2 such

that y A o. Let t1 ¼ infft A ½0; 1�: y0 þ tðy� y0Þ A og, y1 ¼ y0 þ t1ðy� y0Þ. Then

y1 A qoXBðy0; eÞH qoXW2:

Let t be the isometric extension of tjo . Then by (2.14), tðy1Þ A qW1. Hence

dist
�
tðyÞ; qW1

�
e jtðyÞ � tðy1Þj ¼ jy� y1j < e:

Hence gðyÞ ¼ hðyÞf
�
tðyÞ

�
¼ 0. We have shown that g A CyðW2Þ. The other properties are

clear. r

c) In Proposition 2.4 it might happen that W1 and W2 are connected, but W
0
2 has in-
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finite many components even if U extends to an order isomorphism on Lp. To give an ex-
ample, let W 0 be the union of all cubes

Qn ¼ fðx; yÞ A R2: 2�n < x; y < 2�nþ1g;

n A N. Define t: W 0 ! W 0 as a rotation of angle p=2 on Qn if n is even, and a rotation on Qn

of angle �p=2 if n is odd. Then (2.14) holds (with W1 ¼ W2 ¼ W 0Þ and

Uf ðyÞ ¼ f
�
tðyÞ

�
ðy A W 0Þ,

0 ðy A WnW 0Þ



defines a mapping from DðWÞ into CyðWÞ satisfying (2.5), (2.6) and (2.7). r

We need some regularity results for the Laplacian. Let WHRN be open, 1 < p < y.
We consider the Sobolev spaces Wk;pðWÞ and Wk;p

loc ðWÞ ðk A NW f0gÞ. The following reg-
ularity result is well-known (see [DL], §3, Prop. 8, [Ru], Theorem 8.12 for p ¼ 2, for gen-
eral p it follows from [GT], Theorem 9.11, p. 235).

Proposition 2.6. (a)
T
k AN

W
k;p
loc ðWÞ ¼ CyðWÞ.

(b) Let u; f A Lp
locðWÞ. Assume that Du ¼ f in DðWÞ0. If f AWk;p

loc ðWÞ, then

u AWkþ2;p
loc ðWÞ:

From this we deduce immediately:

Lemma 2.7. Let A be a realization of the Laplacian in LpðWÞ where 1 < p < y.
Then

T
k AN

DðAkÞHCyðWÞ.

Proof. By Proposition 2.6 (a), it su‰ces to show that DðAkÞHW
2k;p
loc ðWÞ. This is

trivial for k ¼ 0. Assuming it for k A N0, let f A DðAkþ1Þ. Then

D f ¼ Af A DðAkÞHW
2k;p
loc ðWÞ

by the inductive hypothesis. Hence f AW 2kþ2;p
loc ðWÞ by Proposition 2.6 (b). r

Proof of Theorem 2.2. a) Since U intertwines A1 and A2, it follows that

UDðAk
1 Þ ¼ DðAk

2 Þ ðk A NÞ:ð2:15Þ

Since A1 is a realization of the Laplacian in L
pðW1Þ, we have DðW1ÞH

T
k AN

DðAk
1 Þ. Hence

by (2.15), UDðW1ÞH
T
k AN

DðAk
2 Þ. It follows from Lemma 2.7 that

UDðW1ÞHCyðW2Þ:ð2:16Þ

Since U is an order isomorphism, we have Uð f5gÞ ¼ Uf5Ug and jUf j ¼ U j f j for all
f ; g A LpðW1Þ, where ð f5gÞðxÞ ¼ inff f ðxÞ; gðxÞg a.e. In particular, f � g ¼ 0 implies
j f j5 jgj ¼ 0, and hence jUf j5 jUgj ¼U j f j5U jgj ¼ 0. Thus, the restriction of U to DðW1Þ
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satisfies assumption (2.5), (2.6) and (2.7) of Proposition 2.4. So we find W 0
2, h, t as in

Proposition 2.4 such that (2.8) holds. Since U is surjective and DðW1Þ dense in LpðW1Þ, it
follows that jW2nW 0

2j ¼ 0.

Next we show that t is injective. Let o1 and o2 be two di¤erent components
of W 0

2. It su‰ces to show that tðo1ÞX tðo2Þ ¼ j. Assume that o :¼ tðo1ÞX tðo2Þ3j.
Then o is an open subset of W1. Let tj be the isometry which coincides with tjoj

,
o 0
j ¼ t�1j ðoÞ, j ¼ 1; 2. Then o 0

1, o 0
2 are non-empty open subsets of W 0

2 such that
o 0
1Xo 0

2 ¼ j and o 0
j Hoj ð j ¼ 1; 2Þ. Let h ¼ c1 > 0 on o 0

1 and h ¼ c2 > 0 on o 0
2. Let

g ¼ Uf with f A DðW1Þ. Then for y A o 0
1,

gðyÞ ¼ c1 f
�
t1ðyÞ

�
¼ c1

c2
c2 f

�
t2t

�1
2 t1ðyÞ

�
¼ c1

c2
g
�
t�12 t1ðyÞ

�
:

Hence gðyÞ ¼ c1

c2
g
�
t�12 t1ðyÞ

�
for all y A o 0

2 and all g in the image of U. This is impossible,

since UDðW1Þ is dense in LpðW2Þ.

Let W 0
1 ¼ tðW 0

2Þ. Then W 0
1 is open and t is a homeomorphism of W

0
2 onto W

0
1. It is clear

that t is measure preserving. Thus, it follows from (2.8) that

ðUf ÞðyÞ ¼ hðyÞ f
�
tðyÞ

�
a:e:ð2:17Þ

on W2 for all f A LpðW1Þ. Since U is injective, it follows from (2.17) that

jW1nW 0
1j ¼ jW1ntðW 0

2Þj ¼ 0: r

3. Boundary conditions

Let WHRN be an open set. We consider realizations of the Laplacian by three dif-
ferent types of boundary conditions:

(D) ujqW ¼ 0 (Dirichlet);

(N)
qu

qnjqW
¼ 0 (Neumann);

(R)
qu

qn
þ bu

� �
jqW
¼ 0 (Robin).

We show that intertwining order isomorphisms exist only if the boundary conditions
are the same and the domains are congruent.

Definition 3.1. An operator A on L2ðWÞ is called a symmetric realization of the Lap-
lacian in L2ðWÞ if A is associated with a positive form ða;VÞ on L2ðWÞ satisfying the fol-
lowing two conditions:

V is a closed subspace of W 1;2ðWÞ containing DðWÞð3:1Þ

and
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aðu; jÞ ¼
Ð
W

‘u‘j for all u A V ; j A DðWÞ:ð3:2Þ

The operator A is called a submarkovian symmetric realization of the Laplacian in L2ðWÞ if
in addition the following two Beurling-Deny criteria are satisfied:

u A V ) uþ; u� A V and aðuþ; u�Þf 0ð3:3Þ

and

0e u A V ) 15u A V and að15u; 15uÞe aðu; uÞ:ð3:4Þ

It follows from conditions (3.1) and (3.2) that a symmetric realization of the Lap-
lacian in L2ðWÞ is also a realization of the Laplacian in the sense of Definition 2.1. Con-
ditions (3.3) and (3.4) imply that the semigroup ðetAÞtf0 generated by A is positive and
contractive in the sense of LpðWÞ for all p A ½1;y�. In particular, for 1e p < y, there exist
positive contraction semigroups Tp ¼

�
TpðtÞ

�
tf0
on LpðWÞ which are consistent (i.e.

TpðtÞ f ¼ TqðtÞ f for f A LpXLq; tf 0ð3:5Þ

whenever 1e p; q < yÞ such that

T2ðtÞ ¼ etA ðtf 0Þ

(see [Dav2], [BH], Chap. I, [Fu], [RS] for example). We call Tp the extension of ðetAÞtf0 in
LpðWÞ and denote by Ap its generator.

An operator on LpðWÞ defined in this way via a positive form satisfying (3.1)–(3.4) is
called a symmetric submarkovian realization of the Laplacian in LpðWÞ; 1 < p < y. This is
justified by the following:

Lemma 3.2. The operator Ap satisfies

(a) DðWÞHDðApÞ

and

(b) Ap f ¼ D f in DðWÞ0 for all f A DðApÞ;

i.e. Ap is a realization of the Laplacian in L
pðWÞ in the sense of Definition 2.1.

Proof. Recall, if S is a semigroup on a Banach space X with generator B, then for
x; y A X one has x A DðBÞ, Bx ¼ y if and only if

SðtÞx� x ¼
Ðt
0

SðsÞy ds ðtf 0Þ:

Let u A DðWÞ, Du ¼ v. Then

TpðtÞu� u ¼
Ðt
0

TpðsÞv ds ðtf 0Þð3:6Þ
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holds for p ¼ 2. Hence (3.6) also holds for p A ð1;yÞ by consistency. Thus u A DðApÞ and
Apu ¼ v ¼ Du.

Next we show that Apu ¼ Du for all u A DðApÞ. For that consider the space

F ¼ f f A LpXDðA2Þ: A2 f A Lpg:

Then F is invariant under Tp and dense in L
pðWÞ since DðWÞHF . Thus F is a core of Ap.

Since Ap f ¼ A2 f ¼ D f for all f A F , the claim follows. r

Now the examples we are interested in are defined in the following way.

Example 3.3 (Dirichlet boundary conditions). Let V :¼W
1;2
0 ðWÞ be the closure of

DðWÞ in W 1;2ðWÞ and let

aðu; vÞ ¼
Ð
‘u‘v ¼

Ð PN
j¼1
DjuDjv:

Then (3.1)–(3.4) are satisfied (see [Dav2]). The operator on L2ðWÞ associated with a by the
procedure above is called the Laplacian with Dirichlet boundary conditions, or simply the
Dirichlet Laplacian, on LpðWÞ.

Example 3.4 (Neumann boundary conditions). Choosing V ¼W 1;2ðWÞ and

aðu; vÞ ¼
Ð
‘u � ‘v

we call the associated operator on LpðWÞ the Laplacian with Neumann boundary conditions,
or simply Neumann Laplacian, on LpðWÞ. Conditions (3.1)–(3.4) are satisfied (see [Dav2],
[BH], Chapt. 1, [Fu] or [RS]).

Example 3.5 (Robin boundary conditions). Assume that W is bounded with Lip-
schitz boundary. Denote by s the surface measure on qW (i.e. the ðN � 1Þ-dimensional
Hausdor¤ measure, cf. [EG]). Let 0e b A LyðqW; dsÞ. Let V ¼W 1;2ðWÞ and

aðu; vÞ ¼
Ð
W

‘u � ‘vþ
Ð
qW

uvb ds:

Here, in the right integral, we identify u and v with their traces on qW (see [EG]). Then the
positive form a satisfies (3.1)–(3.4) (see also [AtE], [Dan1], [Dan2]). We call the operator
associated with this form the Laplacian with Robin boundary conditions on LpðWÞ associ-
ated with b. Note that we refind the Neumann Laplacian if b ¼ 0.

Example 3.6 (Partial periodic boundary conditions). Also the forms occuring in
Examples 1.4, 1.5 and 1.6 satisfy assumptions (3.1)–(3.4).

In order to treat the Dirichlet Laplacian we need some preparation. By

capðAÞ ¼ inffkuk2H 1ðRN Þ: u A H
1ðRNÞ; uf 1 in a neighborhood of Ag
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we define the capacity of a subset A of RN (cf. [BH], [EG], [Fu]). We use the following
notation and facts.

A property is said to hold quasi everywhere (q.e.) if it holds outside a set of capacity
0. Let WHRN be open. A function f : W ! R is called quasi continuous if for every e > 0
there exists an open set OHW of capacity capðOÞ < e such that f is continuous on WnO. If
f is quasi-continuous and f ðxÞ ¼ 0 a.e., then f ¼ 0 q.e. (see [BH], Prop. 8.1.6). For every
f A H 1ðRNÞ there exists a quasi-continuous function ~ff : W ! R such that ~ff ðxÞ ¼ f ðxÞ a.e.
(see [BH], Prop. 8.2.1 or [EG], 4.8). It follows that ~ff is uniquely determined q.e.

We can identify W 1;2
0 ðWÞ with a closed subspace of W 1;2ðRNÞ in the following way:

W
1;2
0 ðWÞ ¼ f f AW 1;2ðRNÞ: ~ff ðxÞ ¼ 0 q:e: on RNnWgð3:7Þ

(see e.g. [AM], Theorem 1.1, [Den], p. 143, [He], Theorem 3.1, p. 241 or [Fu], Example
3.3.2, p. 81).

Lemma 3.7. Let W1;W2HRN be open. If capðW1nW2Þ > 0, then there exists

j A DðW1ÞnW 1;2
0 ðW2Þ:

Proof. Let KnHKnþ1 be compact such that
S
n AN

Kn ¼ W1. Then

capðW1nW2Þ ¼ lim
n!y

capðKnnW2Þ

(by [BH], Prop. 8.1.3). Hence there exists n A N such that capðKnnW2Þ > 0. Let j A DðW1Þ
such that jf 1 on Kn. Then j BW 1;2

0 ðW2Þ by (3.7). r

In view of (3.7) we deduce from Lemma 3.7 the following. Recall, that we identify
W 1;2
0 ðWÞ with a subspace of L2ðRNÞ.

Proposition 3.8. Let W1;W2HRN be two open sets. Then W 1;2
0 ðW1Þ ¼W 1;2

0 ðW2Þ if
and only if capðW1hW2Þ ¼ 0.

Corollary 3.9. Let W1;W2HRN be open such that jW1hW2j ¼ 0 and hence

L2ðW1Þ ¼ L2ðW2Þ. Denote by Aj the Dirichlet Laplacian on L2ðWjÞ ð j ¼ 1; 2Þ. Then A1 ¼ A2
if and only if capðW1hW2Þ ¼ 0.

We need the following result:

Proposition 3.10. Let W be an open connected set. Let W 0HW be open such that

capðWnW 0Þ ¼ 0. Then W 0 is connected.

We use an argument from the theory of positive semigroups (cf. [Na]) to prove this. A
positive semigroup T ¼

�
TðtÞ

�
tf0
on LpðWÞ ð1e p < yÞ is called irreducible if there does

not exist any non-trivial closed ideal of LpðWÞ which is invariant under T. Here, a closed
ideal of LpðWÞ is a subspace J of the form
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J ¼ f f A LpðWÞ: f ðxÞ ¼ 0 a:e: on WnSg

where SHW is a Borel set.

Lemma 3.11. Let WHRN be an open set and let T be the semigroup generated by the

Dirichlet Laplacian on L2ðWÞ. Then T is irreducible if and only if W is connected.

Proof. If W is connected, then T is irreducible by [Dav2], Theorem 3.3.5 or [Are2],
Theorem 1.5. Conversely, assume that W is the disjoint union of two open sets W1 and
W2. Let J ¼ f f A L2ðWÞ: f ¼ 0 a:e: on W2g. Let A be the generator of T. We show that
TðtÞJH J ðtf 0Þ. For this, it su‰ces to show that Rðl;AÞJH J for all l > 0. Let
u ¼ Rðl;AÞv, where v A J; i.e.

Ð
W

‘u‘jþ l
Ð
W

uj ¼
Ð
W

vj

for all j A DðWÞ. Let u1 ¼ u � 1W1 . Then u1 A H 1
0 ðWÞ and ‘u1 ¼ ‘u � 1W1 . So

Ð
W

‘u1‘jþ l
Ð
W

uj ¼
Ð
W

vj

for all j A DðWÞ. Hence ðl� AÞu1 ¼ v. Thus u ¼ u1. r

Proof of Proposition 3.10. Since capðWnW 0Þ ¼ 0 we have L2ðWÞ ¼ L2ðW 0Þ and the
semigroup generated by the Dirichlet Laplacian with respect to W and to W 0 coincide.
Thus the latter is irreducible and the claim follows from Lemma 3.11. r

Next we introduce some regularity properties of an open set W which all express in
some weak form that W lies only on one side of qW. Recall that an open set WHRN is

called topological regular if W
�
¼ W. It is easy to see that this is equivalent to saying that

Bðz; rÞnW has non-empty interior for all z A qW; r > 0:

Definition 3.12. An open set WHRN is called regular in measure if

jBðz; rÞnWj > 0 for all z A qW; r > 0:

The set W is called regular in capacity if

cap
�
Bðz; rÞnW

�
> 0 for all z A qW; r > 0:

Finally, we say that W is locally connected at the boundary if for all z A qW there exists
r0 > 0 such that Bðz; rÞXW is connected for all r A ð0; r0Þ.

It is clear that topological regularity implies regularity in measure and regularity in
measure implies regularity in capacity. The set

W ¼ fx A R2: jxj < 1gnfða; 0Þ: 0e a < 1g

is regular in capacity but not in measure.
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The third property in Definition 3.12 is independent of the others. For example,
W ¼ R2nf0g is locally connected but not regular in capacity. On the other hand
W ¼ R2nfðx; yÞ: x2 þ y2e 1; x � yf 0g is topological regular but not locally connected at
the boundary (at z ¼ 0).

Proposition 3.13. Let W1;W2HRN be open.

(a) Assume that W1 and W2 are regular in measure. If jW1hW2j ¼ 0, then W1 ¼ W2.

(b) Assume that W1 and W2 are regular in capacity. If capðW1hW2Þ ¼ 0, then
W1 ¼ W2.

Proof. (a) Let jW1hW2j ¼ 0. Assume that there exists x A W1nW2. Then x A W2. Let
e > 0 such that Bðx; eÞHW1. Since W2 is regular in measure we have jBðx; eÞnW2j > 0.
Hence jW1nW2j > 0, a contradiction.

(b) This is completely analogous. r

Now we can prove the main result for Dirichlet boundary conditions.

Theorem 3.14. Let W1;W2HRN be open and regular in measure. Assume that

W2 is connected. Let 1 < p < y and denote by A1 the Dirichlet Laplacian on L
pðW1Þ. Let

A2 be a symmetric submarkovian realization of the Laplacian in LpðW2Þ. Assume that
U : LpðW1Þ ! LpðW2Þ is an order isomorphism satisfying

UetA1 ¼ etA2U ðtf 0Þ:ð3:8Þ

Then A2 is the Dirichlet Laplacian on L
pðW2Þ and U is of the form

Uf ¼ c � f � t ð f A LpðW1ÞÞð3:9Þ

where t is an isometry from W2 onto W1 and c > 0.

Proof. By Theorem 2.2 there exist open sets W 0
j HWj satisfying jWjnW 0

j j ¼ 0,
j ¼ 1; 2, a homeomorphism t: W 0

2 ! W 0
1 which is isometric on each component of W

0
2 and

h: W 0
2 ! ð0;yÞ which is constant on each component of W 0

2 such that (2.4) holds. More-
over, U is given by (2.17) on LpðW1Þ. It is easy to see that

kU�1k�1e hðyÞe kUk

for all y A W 0
2. Since t is measure preserving U has an extension as an order isomorphism

from LqðW1Þ onto LqðW2Þ for all 1 < q < y. Thus we can assume that p ¼ 2.

a) We show that capðW2nW 0
2Þ ¼ 0. It follows from (3.8) and [Pa], (6.9), p. 70 that

ðI � A2Þ�1=2U ¼ UðI � A1Þ�
1
2:ð3:10Þ

Denote by V ¼ ðI � A2Þ�1=2L2ðW2Þ the form domain of A2.

Since ðI � A1Þ�
1
2L2ðW1Þ ¼W 1;2

0 ðW1Þ it follows from (3.10) that
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UW 1;2
0 ðW1Þ ¼ V :

Now by the closed graph theorem, U induces a continuous operator from W 1;2
0 ðW1Þ into

V. Suppose that capðW2nW 0
2Þ > 0. Then there exists a compact subset K of W2 such that

capðKnW 0
2Þ> 0 (cf. proof of Lemma 3.7). Let j ADðW2Þ such that jf 1 on K. Since DðW1Þ

is dense in W 1;2
0 ðW1Þ, there exist fn A DðW1Þ such that gn ¼ Ufn converges to j in H 1ðW2Þ.

Then hn ¼ jgn converges to j2 in H 1ðW2Þ. Taking a subsequence, if necessary, we can as-
sume that hn converges to j2 q.e. But hnðyÞ ¼ 0 and j2ðyÞf 1 for all y A KnW 0

2. This is a
contradiction. We have shown that capðW2nW 0

2Þ ¼ 0.

b) Now it follows from Proposition 3.10 that W 0
2 is connected. Thus t is an isometry

from W 0
2 onto W 0

1 and h is a constant. The set tðW2Þ is regular in measure since W2 is.
Moreover, jW1htðW2Þj ¼ 0 (since jWjnW 0

j j ¼ 0 and tðW 0
2Þ ¼ W 0

1Þ. It follows from Proposi-
tion 3.13 that W1 ¼ tðW2Þ.

Since (3.9) holds a.e. for all f A DðW1Þ with c ¼ h, it is also true on LpðW1Þ by den-
sity. We can assume c ¼ 1. Then U is unitary. From the special form of U one sees
that UW 1;2

0 ðW1Þ ¼W 1;2
0 ðW2Þ and

Ð
W1

‘f‘g ¼
Ð
W2

‘ðUf Þ‘ðUgÞ for all f ; g AW 1;2
0 ðW1Þ. Now

it follows from Lemma 1.3 that A2 is the Dirichlet Laplacian. r

By the following example we show that the roles of A1 and A2 in Theorem 3.14 can-
not be exchanged; i.e., the theorem is false, in general, if we assume that W1 is connected
but W2 is not.

Example 3.15. Let W1¼ ð0; 2Þ, W2¼ ð0; 1ÞWð2; 3Þ. Observe that W1 and W2 are both
regular in measure (and even topologically regular). Let W 0

1 ¼ W1nf1g and define the ho-
meomorphism t: W2 ! W 0

1 by

tðyÞ ¼ y if y A ð0; 1Þ;
y� 1 if y A ð2; 3Þ:



Then Uf ¼ f � t defines a unitary order isomorphism U from L2ðW1Þ onto L2ðW2Þ. Let A1
be the Dirichlet Laplacian and consider the positive form ða2;V2Þ on L2ðW2Þ given by

V2 ¼ f f A H 1ðW2Þ: f ð1Þ ¼ f ð2Þ; f ð0Þ ¼ f ð3Þ ¼ 0g; a2ð f ; gÞ ¼
Ð
W2

f 0g 0:

Let A2 be the operator associated with a2. Then A2 is a symmetric submarkovian realiza-
tion of the Laplacian in L2ðW2Þ. It follows from Lemma 1.3 that (3.8) holds. r

The following example shows that Theorem 3.14 does not hold in general if W2 is not
regular in measure.

Example 3.16. Let W1¼fx AR2: jxj< 1g and W2¼W1nfða; 0Þ: 0ea< 1g. Note that
W2 is connected and regular in capacity but not regular in measure. Since W2HW1,
jW1nW2j ¼ 0, we have L2ðW1Þ ¼ L2ðW2Þ. Let U be the identity operator and let A1 ¼ A2 be
the Dirichlet Laplacian on L2ðW1Þ (with respect to W1 in both cases). Then A2 is a sym-
metric submarkovian realization of the Laplacian on L2ðW2Þ. Condition (3.8) is trivially
satisfied, but W1 and W2 are not congruent. r
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However, if we already know that A2 is the Dirichlet Laplacian on L
2ðW2Þ, the reg-

ularity condition in Theorem 3.1 can be relaxed.

Corollary 3.17. Let W1;W2HRN be two open sets which are regular in capacity.
Assume that W2 is connected. Let 1 < p < y and denote by Aj the Dirichlet Laplacian on

LpðWjÞ ð j ¼ 1; 2Þ. Let U : LpðW1Þ ! LpðW2Þ be an order isomorphism such that the com-

mutator condition (3.8) is satisfied. Then there exist an isometry t from W2 onto W1 and a
constant c > 0 such that Uf ¼ c � f � t ð f A LpðW1ÞÞ.

Proof. We proceed as in the proof of Theorem 3.14 to deduce that U is of the
form Uf ¼ c � f � t ð f A L2ðW1ÞÞ, where c > 0 and t is an isometry from W 0

2 onto W 0
1.

Moreover, capðW2nW 0
2Þ ¼ 0 as before. Since jW1nW 0

1j ¼ 0 it follows that L2ðW 0
1Þ ¼ L2ðW1Þ. It

follows from Lemma 1.3 and the assumption (3.8) that A1 is the Dirichlet Laplacian on
L2ðW 0

1Þ (with respect to W 0
1Þ. So Corollary 3.9 implies that capðW1nW 0

1Þ ¼ 0. Consequently,
cap

�
W1htðW2Þ

�
¼ 0. Since W1 and tðW2Þ are regular in capacity, it follows from Proposi-

tion 3.13 that W1 ¼ tðW2Þ. r

One can associate to every open set an open set which is regular in capacity without
changing the Dirichlet Laplacian.

Proposition 3.18. Let WHRN be open. Then there exists a unique open set ~WWIW
which is regular in capacity and satisfies capð~WWnWÞ ¼ 0. In particular, L2ðWÞ ¼ L2ð~WWÞ and
the Dirichlet Laplacians with respect to W and ~WW coincide. Moreover, W is connected if and

only if ~WW is connected.

Proof. Let ~WW be the union of all balls Bðx; rÞ satisfying cap
�
Bðx; rÞnW

�
¼ 0. Then

~WW is clearly open and contains W. We show that capð~WWnWÞ ¼ 0. Let KnHKnþ1 be compact
sets such that

S
n AN

Kn ¼ ~WW. Let n A N. Then there exist finitely many balls

Bðxi; riÞ; i ¼ 1; . . . ;m;

covering Kn and satisfying cap
�
Bðxi; riÞnKn

�
¼ 0. Thus, using the usual properties of ca-

pacity [BH], Proposition 8.1.3, we conclude that

capðKnnWÞe
Pm
i¼1
cap

�
Bðxi; riÞnKn

�
¼ 0

and hence capð~WWnWÞ ¼ lim
n!y

capðKnnWÞ ¼ 0. Next we show that ~WW is regular in capacity.

In fact, let Bðx; rÞ be a ball such that cap
�
Bðx; rÞn~WW

�
¼ 0. Then

cap
�
Bðx; rÞnW

�
e cap

�
Bðx; rÞn~WW

�
þ capð~WWnWÞ ¼ 0:

Thus x A ~WW by definition of ~WW. In order to show uniqueness let W1IW be open, regular in
capacity such that capðW1nWÞ ¼ 0. Then capðW1n~WWÞe capðW1nWÞ ¼ 0 and

capð~WWnW1Þe capð~WWnWÞ ¼ 0.

It follows from Proposition 3.14 that W1 ¼ ~WW. The remaining assertion follows from Prop-
osition 3.9 and 3.11. r

For non-regular open sets Corollary 3.17 now obtains the following form.
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Corollary 3.19. Let W1;W2HRN be open, W2 connected. Let the remaining assump-
tions of Corollary 3.17 be satisfied. Then ~WW1 and ~WW2 are congruent.

Next we consider Neumann boundary conditions.

Theorem 3.20. Let W1;W2HRN be two open sets which are regular in measure. As-
sume that W2 is connected and W1 is locally connected at the boundary. Let 1 < p < y and

let A1 be the Neumann Laplacian on L
pðW1Þ and A2 a symmetric submarkovian realization of

the Laplacian in LpðW2Þ. Let U : LpðW1Þ ! LpðW2Þ be an order isomorphism such that

UetA1 ¼ etA2U ðtf 0Þ:

Then there exists an isometry t from W2 onto W1 and a constant c > 0 such that

Uf ¼ c � f � t ð f A LpðW1ÞÞ. Moreover, A2 is the Neumann Laplacian on LpðW2Þ.

Proof. a) By Theorem 2.2 there exist open sets W 0
j HWj such that

jWjnW 0
j j ¼ 0 ð j ¼ 1; 2Þ

and a homeomorphism t from W 0
2 onto W

0
1 which is isometric on each component of W

0
2 and

a mapping h: W 0
2 ! ð0;yÞ which is constant on each component of W 0

2 such that (2.4)
holds. As in the proof of Theorem 3.14 we can assume that p ¼ 2. Moreover, it follows that

UH 1ðW1Þ ¼ Vð3:11Þ

where V is the form domain of A2.

b) We will show that W 0
2 ¼ W2. For this let o be a component of W

0
2. We claim that

qoXW2 ¼ j. Since W2 is connected, this implies o ¼ W2 and so W
0
2 ¼ W2. The mapping t is

isometric on o. Denote by t the isometric extension of tjo to RN . Recall from (2.14) that

tðqoXW2ÞH qW1:ð3:12Þ

Now assume that there exists y0 A qoXW. Let z0 :¼ tðy0Þ. Let e > 0 be such that
Bðy0; eÞHW2 and such that Bðz0; eÞXW1 is connected. We claim that

t
�
oXBðy0; eÞ

�
¼ W1XBðz0; eÞ:ð3:13Þ

In fact, t
�
Bðy0; eÞ

�
¼ Bðz0; eÞ since t is an isometry. So t

�
oXBðy0; eÞ

�
is a non-empty open

subset of W1XBðz0; eÞ. In order to prove (3.13), it su‰ces to show that t
�
oXBðy0; eÞ

�
is

relatively closed in W1XBðz0; eÞ.

Let yn A oXBðy0; eÞ such that x ¼ lim
n!y

tðynÞ A W1XBðz0; eÞ. Then

y :¼ lim
n!y

yn ¼ t�1ðxÞ

exists and jy� y0j ¼ jtðyÞ� tðy0Þj ¼ jx� z0j< e. Thus y A Bðy0; eÞHW2. Assume that y Bo.
Then y A qoXW2. Hence by (3.12), tðyÞ ¼ x A qW1, a contradiction. Thus y A oXBðy0; eÞ
and tðyÞ ¼ x. Now (3.13) is proved. Next recall from (2.17) that
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ðUf ÞðyÞ ¼ hðyÞ f
�
tðyÞ

�
a:e:ð3:14Þ

for all f A LpðW1Þ. Let f A DðRNÞ such that supp f HBðz0; eÞ and f ¼ 1 on B z0;
e

2

� �
. Then

fjW1
AW 1;2ðW1Þ. Let g ¼ U

�
fjW1

�
. Then g is in the form domain V and so in W 1;2ðW2Þ.

Moreover, by (3.14), gðyÞ ¼ hðyÞ f
�
tðyÞ

�
¼ hðyÞ ¼ c> 0 a.e. on oXB y0;

e

2

� �
. Let y AW 0

2no.

Then, in view of (3.13), tðyÞ B Bðz0; eÞ. Hence by (3.14), gðyÞ ¼ 0 a.e. on B y0;
e

2

� �
no. Now

define k AW 1;2ðBÞ, B ¼ B z0;
e

2

� �
, by kðxÞ ¼ g

�
t�1ðxÞ

�
. Then k ¼ c a.e. on BXW1 and

k ¼ 0 a.e. on BnW1. Since W1 is regular in measure, it follows that k is discontinuous at
each x A qW1XB. But k has a quasicontinuous representative (because it has an extension
inW 1;2

�
RNÞ). Hence capðqW1XBÞ ¼ 0. It follows thatW 1;2

0 ðBÞ ¼W
1;2
0 ðBnqW1Þ. But, since

W1 is regular in measure, one has jBnW1j > 0. Since jqW1XBj ¼ 0, it follows that BnW13j.
Thus BnqW1 is not connected. This contradicts Proposition 3.10. We have finished the proof
that W 0

2 ¼ W2.

c) Thus t: W2 ! W 0
1 is an isometry and h is a positive constant c. Since W

0
1 ¼ tðW2Þ

and W1 are regular in measure and since jW1nW 0
1j ¼ 0 we conclude from Proposition 3.13

that W1 ¼ W 0
1. We can assume c ¼ 1. Then it follows from Lemma 1.3 that A2 ¼ UA1U

�1

is the Neumann Laplacian on L2ðW2Þ. r

The same proof applies to Robin boundary conditions yielding the following result.

Theorem 3.21. Let W1;W2 be two bounded open subsets of RN with Lipschitz bound-

ary. Assume that W2 is connected. Let 1 < p < y and let 0e b1 A L
yðqW1; dsÞ. Let A1 be

the Laplacian with Robin boundary condition on LpðW1Þ associated with b1. Let A2 be a
symmetric submarkovian realization of the Laplacian in LpðW2Þ. Let U : LpðW1Þ ! LpðW2Þ
be an order isomorphism such that

UetA1 ¼ etA2U ðtf 0Þ:

Then U is of the form

Uf ¼ c � f � t ð f A LpðW1ÞÞð3:15Þ

where t is an isometry from W2 onto W1 and c > 0.Moreover, A2 is the Laplacian with Robin
boundary condition associated with b2 ¼ b1 � t.

Proof. As in the proof of the previous theorem one sees that U is of the form (3.15).
To prove that A2 is of the special form we can assume c ¼ 1 and p ¼ 2 (as we did already).
It follows from Lemma 1.3, that A2 is associated with the form b given on the form domain
UW 1;2ðW1Þ by

bðUf ;UgÞ ¼ að f ; gÞ

¼
Ð
W1

‘f‘gþ
Ð

qW1

fgb1 ds:

But UW 1;2ðW1Þ ¼W 1;2ðW2Þ and we find for f ; g AW 1;2ðW2Þ,
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bð f ; gÞ ¼ að f � t�1; g � t�1Þ

¼
Ð

qW1

‘ð f � t�1Þ‘ðg � t�1Þ þ
Ð

qW1

f � t�1g � t�1b1 ds

¼
Ð

qW2

‘f‘gþ
Ð

qW2

fgb1 � t ds:

Thus, by Lemma 1.3, A2 is the Laplacian with Robin boundary conditions associated with
b1 � t. r

Remark 3.22. If p ¼ 2 then we can omit the assumption that A2 be submarkovian in
Theorems 3.14, 3.20 and 3.21.

4. Intertwining isometric isomorphisms

In Theorem 3.14, if p ¼ 2, then we are not allowed to replace ‘‘order isomorphism’’
by ‘‘isometric isomorphism’’, i.e. ‘‘unitary’’. This is exactly what the counterexample to
Kac’s question shows, see Introduction. However, things are di¤erent, if p3 2. Isometries
on Lp are of special nature if p3 2. This follows from the following lemma [Ro], p. 416.

Lemma 4.1. Let 1e p < y, p3 2 and let f ; g A Lp. Then

k f þ gkp þ k f � gkp ¼ 2k f kp þ 2kgkpð4:1Þ

if and only if f � g ¼ 0 a.e.

We deduce from this the following:

Proposition 4.2. Let U : LpðW1Þ ! LpðW2Þ be an isometric isomorphism where

W1;W2HRN are open and 1e p < y, p3 2. Then there exists a unique order isomor-
phism jU j: LpðW1Þ ! LpðW2Þ such that

jUf j ¼ jU j f ð f A LpðW1Þ; f f 0Þ:ð4:2Þ

Moreover,

jU�1j ¼ jU j�1:ð4:3Þ

Proof. It follows from (4.1) that U is disjointness preserving; i.e.,

f � g ¼ 0 a:e: , ðUf ÞðUgÞ ¼ 0 a:e:ð4:4Þ

for all f ; g A LpðW1Þ. Now the claim follows from [Are1], Section 1. In this case one could
also use Lamperti’s theorem [Ro], p. 416, together with [Ro], Theorem 17, p. 410. r

Proposition 4.3. Let U : LpðW1Þ ! LpðW2Þ be an isometric isomorphism where

1e p < y, p3 2. Let Sj A L
�
LpðWjÞ

�
be a positive operator ð j ¼ 1; 2Þ such that

S2U ¼ US1. Then
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S2jU j ¼ jU jS1:

Proof. Let 0e f A LpðW1Þ. Then by (4.2),

jU jS1 f ¼ jUS1 f j ¼ jS2Uf jeS2jUf j ¼ S2jU j f :

Hence

jU jS1eS2jU j:ð4:5Þ

The same argument applied to U�1 gives jU�1jS2eS1jU�1j. Hence by (4.3),

jU j�1S2eS1jU j�1

which implies S2jU je jU jS1. Together with (4.5), this proves the claim. r

Now, if 1 < p < y, p3 2, we may replace order isomorphism by isometric iso-
morphism in Theorem 3.15, Corollary 3.16, Theorem 3.18 and Theorem 3.19. In addition,
the constant c in the conclusion is 1 or �1. We give an explicit formulation in the case of
Dirichlet boundary conditions.

Theorem 4.4. Let W1;W2HRN be open and regular in capacity. Assume that W2
is connected. Denote by Aj the Dirichlet Laplacian on L

pðWjÞ, j ¼ 1; 2, where 1 < p < y,
p3 2. Assume that

UetA1 ¼ etA2U ðtf 0Þ:ð4:6Þ

Then there exists an isometry t from W2 onto W1 such that

Uf ¼ c � f � t for all f A LpðW1Þ

where c ¼ 1 or c ¼ �1.

Proof. It follows from Proposition 4.3 that jU jetA1 ¼ etA2 jU j ðtf 0Þ. By Corollary
3.16, there exist an isometry t from W2 onto W1 and a constant c0 > 0 such that

jU j f ¼ c0 � f � t ð f A LpðW1ÞÞ:

Since jU j is isometric, we have c0 ¼ 1. Note that UDðW1ÞHCyðW2Þ by (2.13). Let y A W2.
Then jðUf ÞðyÞje ðjU j j f jÞðyÞ ¼

�� f �tðyÞ��� for all f A DðW1Þ. This implies that

ðUf ÞðyÞ ¼ hðyÞ f
�
tðyÞ

�

for all f A DðW1Þ where hðyÞ A f�1; 1g. By the proof of Proposition 2.6, the function h
is continuous. This implies that h is a constant c A f1;�1g. Thus Uf ¼ c � f � t for all
f A DðW1Þ. By density, we deduce that Uf ¼ c � f � t a.e. for all f A LpðW1Þ. r

Now the proof of Theorem 1.2 is complete.
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Concluding, we give another formulation of this theorem, which might illuminate
somehow modelisation of the heat equation in a functional analytic framework.

Let WHRN be open and non-empty, 1e p < y. Then the Banach lattice LpðWÞ is
isomorphic to E :¼ Lpð0; 1Þ. Here we call two Banach lattices isomorphic if there exists an
order isomorphism from one onto the other. Given a positive semigroup T on LpðWÞ we
may consider it as well as a positive semigroup on E ¼ Lpð0; 1Þ. Then the question arises
whether we can refind the set W.

For N A N let ON be the set of all non-empty connected open subsets of RN which are
regular in capacity identifying two sets if they are congruent. For 1 < p < y we denote by
Spþ the set of all positive semigroups on E. We identify two semigroups T1 ¼

�
T1ðtÞ

�
tf0

and T2 ¼
�
T2ðtÞ

�
tf0
if there exists an order isomorphism U on E such that

T2ðtÞU ¼ UT1ðtÞ ðtf 0Þ:ð4:7Þ

To each W A ON we associate the semigroup TW generated by the Dirichlet Laplacian on
LpðWÞ but considered as an element of Spþ. Then our result says that W 7! TW is injective.

Similarly, LpðWÞ is isomorphic to E ¼ Lpð0; 1Þ as a Banach space. Here we call two
Banach spaces isomorphic if there exists an isometric isomorphism which maps one space
onto the other. For 1 < p < y, p3 2, denote by Sp the set of all semigroups on E identi-
fying two semigroups T1 and T2 if (4.7) holds for some isometric isomorphism U on E.
Then W 7! TW is injective as mapping from ON into Sp.

An inspection of the proof of Proposition 2.4 shows that also the dimension can be
identified. More precisely, let Wj HRNj be open, connected and regular in capacity where
j ¼ 1; 2. Assume that TW1 and TW2 are equivalent as semigroup on E (in the sense of
Banach lattices or of Banach spaces). Then N1 ¼ N2 and W1 and W2 are congruent.

Of course, for bounded domains, it is well-known that the spectrum alone does de-
termine the dimension (see [Ka]).
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