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Abstract. Given aclosed linear operator oVd/ D-space, we characterize
maximal regularity of the non-homogeneous problem

u + Au=f

with periodic boundary conditions in terms Bfboundedness of the resol-
vent. HereA is not necessarily generator of g-semigroup. As main tool

we prove an operator-valued discrete multiplier theorem. We also character-
ize maximal regularity of the second order problem for periodic, Dirichlet
and Neumann boundary conditions.

Classical theorems abP-multipliers are no longer valid for operator-valued
functions unless the underlying space is isomorphic to a Hilbert space
(see Sect. 1 for precise statements of this result). However, recent work
of Clement-de Pagter-Sukochev-Witvliet [CPSW], Weis [W1], [W2] and
Clément-Piass [CP] show that the right notion in this contexiishoounded-
nesof sets of operators. This condition is strictly stronger than boundedness
in operator norm (besides in the Hilbert space) and may be defined with help
of the Rademacher functions. And indeed, Weis [W1] showed that Mikhlin’s
classical theorem on Fourier multipliers 6A(R; X') holds if boundedness

is replaced byz-boundedness (see [CP] for another proof based on results
of Clement-de Pagter-Sukochev and Witvliet [CPSW]).

This research is part of the DFG-project: “Regukriind Asymptotik fir elliptische und
parabolische Probleme”. The second author is supported by the Alexander-von-Humboldt
Foundation and the NSF of China.
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Motivation of these investigations are regularity problems for differential
equations in Banach spaces. Given the generatof a holomorphioCy-
semigroup, the problem afiaximal regularityof the inhomogeneous prob-

lem 0.1
U (t) = Au(t) + f(t) t € [0,1
P {u(O) =0

with Dirichlet boundary conditions obtained much attention since the pi-
oneering articles of Da Prato-Grisvard [DG] and Dore-Venni [DV]. And
indeed, it is now possible to characterize maximal regularity of the problem
Py in terms of R-boundedness of the resolvent (see Weis [W1], [W2] and
Cléement-Piass [CP]). In the present article we study maximal regularity of
the inhomogeneous problem with periodic boundary conditions

u'(t) = Au(t) + f(t) t € [0,27]
Fper {u( ) = u(2r) .

Now it is no longer natural to suppose thatis the generator of &'-
semigroup. We merely assume thiis a closed operator orfal D-space.

One of our main results (Theorem 2.3) says that. is strongly L”-well-
posed forl < p < oo if and only if the set{k(ik — A)~! : k € Z} is
R-bounded.

In order to treat the periodic case we need a multiplier theorem in the dis-
crete case. Our main result of Sect. 1 is an operator-valued version of the
Marcinkiewicz theorem which is very easy to formulate. It turns out that this
discrete multiplier theorem is not only suitable for the treatment of the peri-
odic problemP,., but gives an alternative approach to maximal regularity
for Py (Sect. 5). Itis possible to deduce our discrete multiplier theorem from
a more complicated version [8traklj and Weis [SW] whose formulation
and proof are quite involved. So we prefer to give a direct and easy proof in
Sect. 1.

Even though it became clear now tlidboundedness of resolvents is the
right notion for maximal regularity, it is not easy to verify this condition in
concrete cases. In Sect. 4 we show Héwoundedness ¢f|’ (is — A)~! for
6 € (0,1) can be deduced from boundednessstfis — A)~! (s € R).

This is used to prove that the mild solutions Bf,, are Hlder continu-

ous. Again this result is true for arbitrary closed operators. We need some
preparation to clarify the notion of mild solution in Sect. 3A4fgenerates

a Cy-semigrougdl’, then it can be defined with help of the variation of con-
stant formula, and by a result of s [Pr], mild well-posedness &1, is
equivalent to/ — T'(27)) being invertible. We show in Sect. 3 that this in
turn is equivalent tg(ik — A) )<z being anLP-multiplier. An analogous
continuous version of this is proved by Latushkin and Shvydkoy [LS] in
recent work.
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Finally, in Sect. 6 we characterize strohg-well-posedness of the sec-
ond order Cauchy problem with periodic, Dirichlet and Neumann boundary
conditions in terms oR-boundedness. Again the results are valid for arbi-
trary closed operators.

AcknowledgementsThe authors thank the referee for several valuable suggestions and
comments. They are most grateful to C. Le Merdy for illuminating information on Pisier’s
inequality and lacunary multipliers (cf. end of section 1).

1. The operator-valued Marcinkiewicz multiplier theorem

Let X be a complex Banach space. We consider the Banach space
LP(0,2m; X)) with norm

1
P

27
1flp = / To
0

wherel < p < oo. For f € LP(0,27; X)) we denote by

21
flk) = = / ¢ £(1)dt

:27'(‘
0

the k-th Four_ier coefficient off, wherek € Z. Fork € Z, x € X we
let e (t) = et and (e ® )(t) = ex(t)z (t € R). Then forz, € X,
k=-m,—m+1,...,m,

f = Z er X xg
k=—m
is the trigonometric polynomial given by
fy=> ez, (teR).
k=—m

Thenf (k) = 0if |k| > m. The spac@'(X) of all trigonometric polynomi-
als is dense ilL?(0, 2m; X ). In fact, letf € LP(0,2m; X). Then by Fejer’'s
theorem, one has

(1.1) f= lim on(f)
in L?(0, 27; X') where
1 n m .
onl(f)i= =g D D e f(k).

m=0k=—m
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As an immediate consequence we noteltlmqueness Theorenet f €
LY0,2m; X).

a) If f(k) =0forallk € Z, thenf(t) =0 t—a.e.
b) If f(k) =0forallk € Z\ {0}, thenf(t) = f(0) t—a.e.

Let X, Y be Banach spaces and IBtX, Y') be the set of all bounded linear
operators fromX to Y. If (My)rez C L(X,Y) is a sequence, we consider
the associated linear mapping

M : T(X) - T(Y)

given by
M <Z€k®l’k> = Zek@kak'
k k

We say that the sequenc@/;).cz is an LP-multiplier, if there exists a
constant’' such that

<C

p

Z e X Mk:Ek
k

Zek@):ﬂk
k

for all trigonometric polynomiald ex ® xy.
k

p

Proposition 1.1. Let (My)rez C L£(X,Y) be a sequence, then the follow-
ing two statements are equivalent

(i) (My)kez is an LP-multiplier.
(i) Foreachf € LP(0,2m; X) there existy € LP(0, 2m;Y") such that
g(k) = Mpf(k) forall keZ.

In that case there exists a unique operatdf < L(LP(0,27m;X),
LP(0,27;Y)) such that

(1.2) (M f)(k) = Myf(k) (k€Z)

forall f € LP(0,27; X). We callM the operator associated with/} ) xcz.
One has

) 1 n m R
(1.3) Mf = lim mZOk;m ex @ My f (k)

in LP(0,27;Y) forall f € LP(0,2m; X).
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Proof. (i) = (ii). DefineM : T(X) — T(Y) by M(3 e @ x1) =

> er ® Myxy. Then by the assumptiod/ has a unique extensialf €
L(X,Y). Then (1.3) follows by continuity. Clearly, (1.3) implies (1.2).

(i) = (i). DefineM f = g with (k) = Myf(k) (k € Z). Then the
uniqueness theorem and closed graph theorem show that
M e L(LP(0,2m; X), LP(0,27;Y)). O

Let1 < ¢ < co. Denote byr; the j-th Rademacher function dn, 1].
Forxz € X we denote by; @ « the vector-valued functioti— 7;(¢)x.

Definition 1.2. A family T C £(X,Y) is calledR-boundedf there exist
cq > 0 such that

(1.4) er ® Tjx; <c¢g Z r; @ T;

=1 L9(0,1;X) =1 L9(0,1;X)
forall 7y,...,T, € T, z1,---,z, € X andn € N, wherel < ¢ < oo.
By Kahane's inequality [LT, Theorem 1.e.13] if such constgngxists for
someq € [1,00), there also exists such constant for@le [1,00). We
denote byR,(T) the smallest constanj such that (1.4) holds. Sometimes
we say thafl' is R-bounded inf(X,Y") to be more precise.

The concept of2-boundedness (rediademacher boundednessan-
domized boundedngssas introduced by Bourgain [BO]. It is fundamen-
tal to recent work of Gdment-de Pagter-Sukochev-Witvliet [CPSW], Weis
[W1], [W2], Strkalj-Weis [SW] and Giment-Piass [CP]. We will use several
basic results of [CPSW].

Now we can formulate the following multiplier theorem which is the
discrete analog of the operator-valued version of Mikhlin’s theorem due to
Weis [W1] (see also [CP]).

Theorem 1.3 (Marcinkiewicz operator-valued multiplier theorem). Let
X,Y beUM D-spaces.Letl, € L(X,Y) (k€ Z).Ifthesetdk(My41—
My) - k € Z} and{ My, : k € Z} are R-bounded, thefiM},)xcz is an LP-
multiplier for 1 < p < oo.

We need the following definition. Léf; = NU {0}.

Definition 1.4. An unconditional Schauder compositioh X is a family
{Af : k € No} of projection in£(X) such that

(@) ArAp=0ifk£4
(b) > Argyz = xforallz € X and for each permutation : Ng — Np.
k=0
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The basic example for our purposes is the following

Example 1.5.Let X be aUMD—space.AFork: € NAdefine Akji =
Y em@f(m)andAof = e_1® f(—1)+eg® F(0) +e1 @ (1),

2k < |m|<2k+1

(f € LP(0,2m; X)). Then(Ag)ren, is an unconditional Schauder decom-

position of LP(0, 2m; X).

The proof of this result is due to Bourgain [Bo]. However, in the case
whereX = LP(£2),1 < p < oo, it can be deduced from the scalar case
which is a central part of classical Littlewood-Paley theory (see [EG]).

The following lemma due to @ment-de Pagter-Sukochev-Witvliet
[CPSW, Theorem 3.4] gives a sufficient condition for multipliers with re-
spect to an unconditional Schauder decomposition.

Proposition 1.6. Let (A )xen, be an unconditional Schauder decomposi-
tion of a Banach spac&’. Let{T}, : k € No} C L(X) be anR-bounded
sequence such that

TkAk = Aka
forall £ € N. Then
Ty = Z T, Arx
k=0

converges for al: € X and defines an operatdr € £(X).

Besides Proposition 1.6 we need the following properties for the proof of
the multiplier theorem.

Lemma 1.7 (Kahane's contraction principle [LT]). One has

m m

ZT]' X )\jl‘j < 2 max ‘)\]| ZT‘]‘ X T

—1 Jj=1,..m 1

7= p = P
forall \i,..., A €C,zq,..., 2, € X.

Lemma 1.8. LetS, T C £(X) be R-bounded sets. Theh- T = {S - T :
S €8S,T € T} is R-bounded and

R, (ST) < Ry(S) - By(T) .
This is easy to see.
Lemma 1.9 ([CPSW, Lemma 3.2))If S C £(X,Y) is R-bounded, then
R, (coS) < 2R,(S)
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(1 <p < o0)where

cos{Z)\ijZSjES,)\jGC,Z)\j<17m€N} :

J=1 J=1

If X isaUM D-space, then by a result of Burkholder [Bur],

N N
R(Z ek®xk>:Zek®xk
k=—N k=0

defines anLP-multiplier R for 1 < p < oo, which is called theRiesz-
projection
We need the following easy consequence.

Lemma 1.10. Let X be aU M D-space and < p < oo. Define the pro-
jectionsP, on LP(0, 2m; X) by

P> ex®@ap) = ep @y

kEZ k>(
Thenthe sef P, : ¢ € Z} is R-bounded inC(LP(0, 27; X)).

Proof. Forn € Z let S, € L(LP(0,27; X)) be S,,f = e_, - f. Then

P, = 5_yRS,. SinceR is a bounded operator, it suffices to show that the set
{S¢ : ¢ € Z}is R-boundedinC(LP(0,2m; X)). Thisis an easy consequence
of Kahane’s contraction principle. a

Proof of Theorem 1.3.a) We assume thak = Y. Let Z = {f €
Lr(0,2m;X) : f(k) = 0 forall k < 0}. Since the Riesz-projection is
bounded it suffices to show that for some constint 0

N

Z e @ Mkl'k
k=0

N

Zek@)l‘k

k=0

<C

p

p

whenever, ..., zy € X. Define@,, € L(Z) by

Qnf= Y e®f(k)forneN

27L71Sk<2n

andQof = eg ® f(()). It follows from Example 1.5 and the boundedness
of the Riesz-projection, that the sequer{€g,).cn, is an unconditional
Schauder decomposition &f. For eachk € Ny define A, € L(Z) by
(Apf)(t) = Mif(t) (t € [0,2x]). It follows from the assumption and
Fubini’s Theorem that the sefsl;, : k € Z} and{k(Ax+1 — Ax) : k € Z}

are R-bounded inl(Z2).
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Now letf = Y ex ® xx € Z be a trigonometric polynomial. Let
k>0

Tf= Z er ® Myxy,
k>0

=> @n (Z er ® kak)

n>0 k>0

)Zek@bxk

k>0

= (Z [:nZl (P, — Pry1)A

n>1 —on—1

+(Po— P1)Qo Y ex @ -

k>0
Thus
on—1
T=>"1| Y AP~ Pir1)| Qu+ (Po— P1)AoQo
n>1 Lg=2n-1
— Z AQn—lPQn—lQn - Z A2n71P2nQn
n>1 n>1
on—1
31 D (Ar— A1) Pe| Qu+ (Po— P1)AoQo
n>1 | k=2n—141

Since(Qn)nen, is an unconditional Schauder decompositiod diy Propo-
sition1.6andLemmal.8’ Asn-1Pon-1Qy, >, Aon_1 Pon@Q, and(Py—

n>1 n>1
Py)ApQo define bounded linear operators@nin order to estimate the third
2n—1
term observe that >  1; < 1. Hence by Lemma 1.9 and 1.8,
k=2n—141

({ P Ak—Ak 1) nEN})
k=2n-141
on—1
({ > — (kl)(AkAkl)Pk:neN})
({(

—on— 1+1
<2R,({(k —1)(Ax — Ag_1)P; : k € N}
< 2R {k(Ap1 — Ap) 1k € Z} - Ry({Py 1 k € Z}) <

This finishes the proof iX =Y.
b) Now we consider the general case. SixcandY areU M D-spaces, also
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XY isaUM D-space. Defindl, € L(X&Y) by My,(z,y) = (0, Myx).
It follows from the case a) th&i\/}, )<z is anLP-multiplier. It is easy to see
that this implies that M}, ) ez is anLP-multiplier (1 < p < o0). 0

Next we show that, converself-boundedness is a necessary condition
for LP-multipliers.

Proposition 1.11. Let X be a Banach space and led} )z be anLP-
multiplier, wherel < p < co. Then the sefM, : k € Z} is R-bounded.

Proof. By Kahane’s contraction principle we have fgre R, z; € X

Zm@emjmj <2 er@)xj
J J

Lr(0,1;X) LP(0,1;X)

=2 g r;@e ey,

J L2(0,1;X)

<4 er ® ez,
J LP(0,1;X)
By assumption there exists> 0 such that

‘ Zek@)xk
k

Hence for allt € [0, 27]

Z er ® Mpxp
k

<c

Lr(0,2m;X) LP(0,2m;X)

> 1 ® Mz, <2|> rj@e(t) Mz
J L7(0,1;X) J LP(0,1;X)
Integrating ovet € [0, 27] yields

p
2 er®ijj <

J LP(0,1;X)
p

27 1
2p/ / er(s)ej(t)Mja?j dsdt =
o Jo ||
j

p

1 pr2n
2p/0/0 Zej(t)rj(s)ijj dtds <

J
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. P
2pcp/ Zej(t)rj(s)xj dtds =
0 -
J

p

27
2pcp/ er X ej(t)xj dt <
0 J LP(0,1;X)
p

21
2pcp2p/ E T QT dt =
0 -
J

Lr(0,1;X)

2PcP2P2r|| Z r; ® ﬂfj”lip(og;x) :
J

ThusR,{Mj, : k € Z} < 4ec. 0

We conclude this section by several comments about optimality of the
operator-valued Marcinkiewicz theorem above (Theorem 1.3).

First of all we remark that on a Hilbert spa&eeach bounded sequence
(My)kez C L(X) is anL?-multiplier. This follows from the fact that the
Fourier transform given by

feL?0,2m X) — (f(k))kez € C2(X)

is an isometric isomorphism X is a Hilbert space. On the other hand, if

X is not isomorphic to a Hilbert space then there always exists a bounded
sequencéMy,)rez C L(X), which may even be chosen lacunary, such that
(M3,)rez is not anL2-multiplier.

This phenomenon had been discovered by G. Pisier (unpublished). We
want to explain this in more detail and give some extensions showing in
particularthat Theorem 1.3 holds merely on Hilbert spacBdibundedness
is replaced by boundedness.

A sequencg My)rez C L(X) is calledlacunaryif My = 0 for all
ke Z\{£2™:m € Ny} U{0}. We recall the following inequality due to
Pisier [Pil]: forl < p < oo, there existy, 5 > 0 such that

a er®xj < Zegj®xj
J J

Lr(0,1;X) Lr(0,2m;X)

Sﬁ ZT‘j@l‘j

4 Lr(0,1;X)

which holds for allz; € X, whereX is an arbitrary Banach space.
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Recall that a Banach spagdeis of typel < p < 2if, there exist” > 0

such that forq, 9, - - -, z, € X, we have
n n 1/p
DT <C (Z ) :
J=1 L2(0,1;X) J=1

X is of cotype2 < g < o if, there exist”” > 0 such that forr, 2o, - - -,
T, € X, we have

n n
Ol 1Y < 1>y @ agllr20,1x)-
i=1 j=1

(with the usual modification i = oo) [Pi2] (see also [LT]). Itis well known
that every Banach space is of typand of cotypex, and for every measure
spacg (2, X, 1) and for everyl < p < oo, the spacd.’((2, X, u) is of type
Min(2,p) and of cotypeMaz(2,p). Kwapien has shown that a Banach
spaceX is isomorphic to a Hilbert space if and only¥f is of type2 and

of cotype2 [Kw] (see also [LT, p. 73, 74]). Finally, a Banach space is said
to have a non trivial type if it is of type for somel < p < 2.

Proposition 1.12. Let X be a Banach space and < p < oo. Then the
following assertions are equivalent:

() X has a non trivial type;

(i) for every Banach spac&’, each lacunaryR-bounded sequence in
L(X,Y) defines arl.’-multiplier;

(iii) each lacunaryR-bounded sequence (X ) defines ar.”-multiplier.

Proof. (i) = (4i). Assume thatX has a non trivial type and Iét be a
Banach space. By Lemma 6 of [Le] (see also [Pi2]), there e&lsts0 such
that for f € LP(0, 2m; X),

Z eon @ f(27) < Clfller(o,27:x)
n=0 Lr(0,27m;X)
D e @ f(—2") < Clfller(0,2m:x) -
n=20 Lr(0,2m;X)

Let (My)rez C L(X,Y) be a lacunary?-bounded sequence. By Pisier’s
inequality,

> en @ My f(k)

keZ

LP(0,2m;Y)
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<D er @ My f (k) + 1> er © My f(k)
k>0 L7(0,2mY) k<0 LP(0,2m;Y)
<p Z rri1 @ Mo f(2F)
k=0 LP(0,1;Y)
+ Zrkﬂ ® M_y f(—2") + I Moll[| 1o 0,27, %)
k20 L2(0,1;Y)

<BRy(My ke Z) ||| ren @ f(29)

k>0

+ID e ® f(—25)

k>0

LP(0,1;:X)

Lr(0,1;X)

+ [ Mol[ll |l » (0,27;x)

<a ARy (M ke Z) || eq ® f(29)

k>0

+D e ® f(=2°)

k>0

Lr(0,27;X)

LP(0,2m;X)

+ Mol £1l » (0,275 )

< (207 BCRy(My, : k € Z) + || Mo|))[| f1] Lo 0,27:) -

This shows that M}, )<z is an LP-multiplier.
(7i) = (di7) is trivial by takingY = X.

(7i7) = (7). Assume that every lacunafy-bounded sequend@/; )icz C
L(X) defines ar.P-multiplier. DefineM;, = I if k = 2" for somen € Ny
and M = 0 otherwise. Ther My )rcz is lacunary andR-bounded, by
assumption there exists’ > 0 such that forf € LP(0, 27; X),

> e ® f(27) < O fll e 0.2 x)-

n=0 Lr(0,27;X)

This implies that the closed subspace 80, 27; X ) generated byesn ®
Zn : n € Ny, z, € X}iscomplemented il” (0, 27; X'). By Lemma 6 of

[Le] X has a non trivial type.

O
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If X is isomorphic to a Hilbert space, then a subbedf £(X) is R-
bounded if and only if it is bounded. Actually the following more general
proposition holds. The authors are indebted to C. Le Merdy and G. Pisier
for communicating them this result. We include the short proof for com-
pleteness.

Proposition 1.13. Let X andY be Banach spaces. Then the following as-
sertions are equivalent:

(i) X is of cotype2 andY is of type2;
(i) Each bounded subset ii(X,Y) is R-bounded.

Proof. Assume thafX is of cotype2 andY  is of type2. Let M C L(X,Y)
be a bounded subset and &tC’ > 0 be the constants in the definitions
of type and cotype. Then far, Ts,---, T, € M, x1,x2, -, Ty, € X, W€
have

n n
> r @ Ty <Oy |*) 2
J=1 L2(0,1;Y) j=1

. 1/2
< Csuprenm| T D [l
j=1
n

< CCsuprem|T| || rj® x;

7=l L2(0,1;X)

This shows thafl/ is R-bounded.

Conversely, assume that each bounded séti, V) is R-bounded. Let
e € X, e* € X*suchthate,e*) = |le]| = |le*]| = 1.
ThentheseT = {e*®@y :y € Y, ||y|| < 1}is R-bounded, by assumption.
Lety,...,ym € Y. ThenT; = e* ® H%H e T. Hence

m m
er ® yj = 27’3‘ ® lly; || - Tiell 20,17
j=1 2(0,1y)  117=1

m
< Ro(T) ||D> @ w5 - ell2(0,1:x)
j=1

2

= Ro(T) [ Y lysl®
j=1
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This shows that” is of type2. In order to prove thak is of cotype2, let
a:= Roy({z* ® f : z* € X*, ||z*|] < 1}) which is finite by assumption,
wheref € Y, ||f|| = 1is fixed. Letzy,...,x,, € X. Chooser] € X~
such that|z}[| = 1 and(z},z;) = ||z;||. LetS; = 27 ® f. Then

m m
Z [EAR = Z"”j @ [l - fll2(0,1:v)
i=1

m
= E i ® ijj
7=l L£2(0,15)

IA

m
e} E T Q Tj
j=1

L2(0,1;X)
This proves thalX is of cotype2. O

In view of Proposition 1.13 we may now formulate the following inter-
esting special case of the Marcinkiewicz multiplier theorem.

Corollary 1.14. Let X = LP1 (2, X, ), Y = LP2(£2, X, u) wherel <

p1 <2< py <ocand(f2, X u)isameasure space. Then each bounded
sequencéMy)iez In L(X,Y) satisfyingsupycz [|k(Myy1 — My)|| < oo

is an LP-multiplier for eachl < p < oc.

Proposition 1.13 shows that in Proposition 1A-boundedness may not
be replaced by boundedness, unl&sss a Hilbert space. More precisely,
the following holds.

Proposition 1.15. Let X be a Banach space afid< p < oo. The following
assertions are equivalent:

(i) X isisomorphic to a Hilbert space;
(i) Each bounded lacunary sequencedfX) is an LP-multiplier.

Proof. (i) = (ii). Let X be a Banach space isomorphic to a Hilbert space
and(My,)kez be abounded lacunary sequence. TheR) <z is R-bounded
by Proposition 1.13 aX is of type2 and of cotype (or by direct verifica-
tion). Proposition 1.12 shows that the sequence isfamultiplier.
(73) = (7). It follows from the assumption and Proposition 1.11 that each
bounded sequence if(X) is R-bounded. By Proposition 1.13 and
Kwapien’s Theorem, this implies thaf is isomorphic to a Hilbert space.

O
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Remark 1.16.Using Proposition 1.12 and the same argument as in the proof
of Proposition 1.15, we can easily establish the followingXlhas a non
trivial type, thenX is of cotype2 andY is of type2 if and only if each
bounded lacunary sequencedX, Y') is an LP-multiplier.

The following proposition shows that we can not replaceftHsounded-
ness in Theorem 1.3 by boundedness in operator norm unless the underlying
Banach spaceX is of cotype 2 and” is of type 2 (whenX =Y, thisis
equivalent to say thaX is isomorphic to a Hilbert space).

Proposition 1.17. Let X andY be U M D-spaces. Then the following as-
sertions are equivalent:

(i) X is of cotype 2 and@” is of type 2;

(i) There existd < p < oo such that each sequeng®ly)rcz C L(X,Y)
satisfyingsupcy || Mk|| < oo andsupycy ||k(Myr1 — My)|| < oois
an LP-multiplier.

Proof. (i) = (ii). Assume thalX is of cotype 2 and” is of type 2, then by
Proposition 1.13 each bounded subsef (X, Y) is actually R-bounded,
so the result follows from Theorem 1.3.

(17) = (7). Assume thatforsome< p < oo, each sequeng@/y)icz C
L(X,Y)satisfyingsupyc, || M| < coandsupycy, [[k(Mi+1—Mp)|| < oo
defines arLP-multiplier. Let(My)r>0 C £L(X,Y') be a bounded sequence.
Define(Ny,)nez € L(X,Y) by

0 if n<0
N, = M, if n = 2% for somek > 0
My, + %(Mkﬂ — My) if 28 < n < 2¥*+1 for somek > 0.

Then one can easily verify that

sup || Ny || = sup || M| < oo
nez k>0

sup ||[n(Np41 — Np)|| < 4sup || Mg < oo.
nez k>0
Therefore the sequendéV, ),cz is an LP-multiplier by assumption. By
Proposition 1.11 this implies that the sequefidg ),z is R-bounded, in
particular the sequendé/y);>o is R-bounded. We deduce from this that
each bounded subset £ X,Y") is actually R-bounded, By Proposition
1.13, this implies thak is of cotype 2 and” is of type 2. O

Finally, we remark that in the scalar case more general conditions are
known to be sufficient in Theorem 1.3. Let/;)rcz be a bounded scalar
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sequence. Instead of assuming th@t/;; — M) is bounded, it suffices
to assume that

sup Y [Myy1 — My| < o0
TEN 9j <)<+

in order to deduce thdtM}, ),z is an LP-multiplier for 1 < p < oo (see

[EG, Chapter 8]). This is the classical Marcinkiewicz multiplier theorem.
Strkalj and Weis [SW] give an operator-valued version of this result, where
the absolute value is replaced by a certain n¢rfix which is defined as

the gauge function of aR-bounded seT' in £(X). Actually, our Theorem

1.3 can be deduced from the results in [SW], but the proofs given there are
more complicated. They depend in particular on the work by Zimmermann
[Zi].

2. Strong LP-well posedness of the periodic problem

We first introduce periodic Sobolev spaces. Kebe a Banach space.

Lemma2.1. Letl < p < oo and letu, v’ € LP(0,2n; X). The following
are equivalent:

2m
(i) [ «/(t)dt = 0 and there exists € X such that
0
t
u(t) =z + /u’(s)ds a.e.on[0, 27] ;
0

(i) (WY(k) = ika(k) (k€ Z).

Proof. (i) = (i7). Letk € Z \ {0}. Integration by parts yields,

1 ~
v/ (s)dsdt = —ku/(k) .

1

>
=
N
I
|-
\
®
L
T
o\“

. 2
Sincew'(0) = 5= [ u/(s)ds = 0, assertior{ii) is proved.
0
t

(ii) = (i). Leto(t) = [u/(s)ds. Sinced’(0) = 0 one haw(2r) = 0. As
0

above one has(k) = iﬂ’(k) = u(k) fork € Z \ {0}. Thusu —vis a

constant function. O
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If w € LP(0,27; X), then there exists at most oné € LP(0, 2m; X)
such that the equivalent conditions of Lemma 2.1 are satisfied. We denote
by H;ée the space of alu € LP(0,2m; X) such that there exists' €
LP(0, 27; X)) such that the equivalent conditions of Lemma 2.1 are satisfied.
Ifu e H;ée, it follows from (i) thatu has a unique continuous representative.
We always identifyu with this continuous function. Thus we have

u(t) = u(0) + /u’(s)ds (t €10,27])
0

andu(0) = u(27) for all u € Hp2.

Next we describe multipliers mappirdd (0, 27; X) into H;%é’f«.

Lemma2.2. Let]l < p < oo. Let My, € L(X) (k € Z). The following
assertions are equivalent:

(i) (My)rez is an LP-multiplier such that the associated operatbf €
L(LP(0,2m; X)) mapsL?(0, 2r; X) into HpZ;
(i) (kMy)rez is an LP-multiplier.

Proof. (i) = (i4). Let f € LP(0,2m; X). By assumption, there exisise
Hp® such thatj(k) = M f(k) (k € Z). Henceg/ (k) = ik M, f(k)(k €
7).

(i) = (7). Let f € LP(0,2m; X). By assumption, there exists €
LP(0,27; X) such thatikM, f (k ) 0(k) for all £ € Z. In particular,

?[Wv(t)dt = 270(0) = 0. Let w(¢ ftv )ds. Then fork € Z \ {0},

fa(k) = 5(1@ My f(k). Letu = w0+ eo @ (Mo f(0) — @(0)). Then
u(t) = z + f s)ds wherez = u(0). Henceu € HpZ. Moreover,
a(k) = w(k) = My f(k) for k € Z\ {0} anda(0) = My f(0). u|

Now let A be a closed operator of. Forl < p < oo, f € LP(0,2m; X),
we consider the problem

u'(t) = Au(t) + f(t) t € (0,2m)
Prer {u(()) — u(2r) .

By a strong LP-solution we understand a function < Hﬁé’ﬁ such that
u(t) € D(A) andu/(t) = Au(t) + f(t) for almost allt € [0, 27].
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Theorem 2.3 (Strong LP-well-posedness)Assume thatX is a UM D-
space. Let < p < oo. Then the following assertions are equivalent:

(i) Foreachf € LP(0,2m; X) there is a unique strond.”-solution of
Pper;

(i) iZ C o(A) and(kR(ik, A))rez is an LP-multiplier;

(i) iZ C o(A) and the sequendg R(ik, A))kez is R-bounded.

We say thatP,., is strongly LP-well-posedif these equivalent conditons
hold.

Proof. (i) = (ii).Letk € Z.Lety € X, f = ex®y. There exista € Hp
such that/ = Au + f. Taking Fourler transforms on both S|des we obtain
thata(k) € D(A) andika(k) = o' (k) = Ada(k) + f(k) = Aa(k) + y.
Thus(ik — A) is surjective. If(ik — A)x = 0, thenu(t) = e, ® = defines
a periodic solution of/ = Au. Henceu = 0 by the assumption of unique-
ness. We have shown th@t — A) is bijective. Sinced is closed we deduce
thatik € p(A).

Nextwe showthatk R(ik,A))rez isanLP-multiplier. Letf € LP(0, 27; X).
By assumption, there exists a uniquec H;}ée such thatu’ = Au + f.
Taking Fourier transforms, we deduce thidk) € D(A) andika(k) =
Ai(k) + f(k); ie., a(k) = R(ik, A)f(k) for all k € Z. Consequently,
ﬁ’(k:) = iki(k) = ikR(ik, A) f (k) for all k € Z. This proves the claim.
(ii) = (i).Letf € LP(0,2m; X). By Lemma 2.2 there existse H,2 such
thata(k) = R(ik, A)f(k) forall k € Z. SinceAR(ik, A) = ikR(ik, A) —

I, the sequenc@AR(ik, A))kez C L(X) is anLP-multiplier. Observe that
A~ is an isomorphism ofX onto D(A) (seen as a Banach space with
the graph norm). HencéR(ik, A))rez is anLP-multiplier in £(X, D(A)).
This shows thatu € LP(0,2r; D(A)). Since u/(k) = ika(k) =
ikR(ik, A) f(k) = AR(ik, A) f(k) + f(k) = Au(k) + f(k) forall k € Z,
one has/’ = Au + f by the uniqueness theorem; i.e.is a strong solution
of P,,. It remains to show uniqueness.df e Hy® 1 LP(0,2m; D(A))
such that/(t) = Au(t) (¢t € (0,2n)), theni(k) € D(A) andiki(k) =
Au(k). Sinceik € p(A) this implies thatu(k) = 0 for all £ € Z and thus
u = 0.

(74) = (i74) follows from Proposition 1.11.

(7i1) = (ii). Let My = ikR(ik, A). We show that the st (M1 — M) :

k € Z} is R-bounded. Thefi) follows Theorem 1.3. One has

k(Miy1 — My)

k(i(k + 1) R(i(k + 1), A) — ikR(ik, A))
ikR(i(k+1),A)((k+1)(ik—A) —k(i(k+ 1) — A))R(ik, A) =
ikR((i(k + 1), A)(—A)R(ik, A) =
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ikR(i(k + 1), A)(I — ikR(ik, A)) .

Since the product ak-bounded sequencesfisbounded, the claim follows.
0

Corollary 2.4. Let X be aUM D-space. If there exists € (1, 00) such
that P,., is stronglyL”-well-posed therP,., is stronglyL”-well-posed for
allp € (1,00).

We conclude this section mentioning analogue non-discrete results. In
one of the first investigation on maximal regularity, Mielke [Mi] studies
strong LP-well-posedness on the entire line. This leads to "bisectorial op-
erators” which are not necessarily generator<Cgfsemigroups. Mielke
provesp-independance of maximal regularity and gives a characterization
on Hilbert spaces. Further results@i/ D-spaces are obtained recently by
Schweiker [Sch].

3. Mild solutions

Let A be a closed operator on a Banach spacd.et f € L'(0,2m; X).
A functionu € C([0, 27]; X) is called amild solutionof the problempP,.,
(see Sect. 2) ifi(0) = u(27) and

ftu(s)ds € D(A) and
(3.1) 0
u(t) —u(0 :Af ds—i—ff

for all t € [0,2n]. Itis clear that every strong?-solution is a mild solu-
tion. Conversely, ifu is a mild solution and. € H,2, thenu is a strong
LP-solution. We want to describe mild solutions in terms of the Fourier co-
efficients.

For this we need the following lemma.

Lemma 3.1. Let f, g € LP(0,2m; X), wherel < p < oco. Then the follow-
ing are equivalent.

(i) f(t)e D(A)andAf(t) =g(t) a.e,;

(i) f(k) e D(A)andAf(k) = g(k) forall k € Z.

Proof. (i) = (ii). This follows from the closedness of (cf. [ABHN,

Proposition 1.1.7]).

(73) = (7). There exists, converging tac as¢ — o suchthat,,, (f)(t) —

f(t) a.e.andr,,(9)(t) — g(t) a.e. a¥ —  (cf. (1.1)). Sincer,,, (f)(t) €

D(A) and Aoy, (f)(t) = on,(g)(t) for all t € [0, 2], the claim follows
from the closedness of. 0
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Proposition 3.2. Letu € C([0, 27}, X) such thatu(0) = u(27). Assume
that D(A) = X. Thenu is a mild solution ofP,., if and only if

(3.2) a(k) € D(A) and (ik — A)a(k) = f(k) forall ke Z.
Proof. 1. Assume that is a mild solution. Letting = 27 in (3.1) we see that

@(0) € D(A)and—Adu(0) = f(0). Consider the functions(t) = fu(s)ds
0

andg(t) = u(t) — ff )ds. Then by Lemma 3.%4j(k) € D(A) and
Ad(k) = g(k) fo raIIk:eZ Fork#Owe haved (k) = —a(0) + & a(k),
andg(k) = a(k) + 2 £(0) — L f(k). Since—Aa(0) = f(0) we obtain
(3.2).

2. Conversely, assume that (3.2) holds.tet D(A*). By [ABHN, Propo-
sition B.10], it suffices to show that

/t , Aa)ds = (u(t), 27) — (u(0) , =7) /t<f(8)
0 0

Consider the functionv(s) = (u(s), A*z*) + (f(s), *). Thenw(k) =

t
ik(a(k),z*) forall k € Z by assumption (3.2). Consideft) = [ w(s)ds—
0
(u(t), z*). Then fork € Z\ {0}, (k) = —1w(0) + (k) — (a(k),
x*) = 0 sincew(0) = 0. It follows from the Uniqueness Theorem thais
constant; i.eg(t) = g(0) = —(u(0), z*) forallt € [0, 27]. Thisis precisely
what we claimed. O

As a corollary we obtain the following characterization of uniqueness of
mild solutions ofP,.,. By 0,,(A) we denote the set of all eigenvalueshf

Corollary 3.3. The following assertions are equivalent:

(i) Forall f e L'(0,2m; X) there exists at most one mild solution/f, ;
(i) iZNop(A) =0.

Next we want to characterize well-posednes#£gf. in the mild sense.

Proposition 3.4. Assume thaD(A) = X. Let]l < p < co. Assume that
forall f € LP(0,2m; X) there exists a unique mild solution 8f.,.. Then
iZ C o(A) and (R(ik, A))kez is an LP-multiplier.

Proof. As in the proof of Theorem 2.3 one sees tHatC o(A). Let f €

LP(0,2m; X). Letu be the mild solution of?,,.. It follows from (3.2) that

a(k) = R(ik, A) f(k)forall k € Z.Nowthe claim follows from Proposition
1.1. O
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We do notknow whether the converse of Proposition 3.4 is true ingeneral.
Given f, u € LP(0,2m; X) such thati(k) = R(ik, A)f(k) (k € Z), the
problem is to show that is continuous.

Thisisthe caseifl generates@\-semigroup. Inthat case, mild solutions

can be described differently [ABHN, Proposition 3.1.16]:

Lemma 3.5. Let T be a Cy-semigroup with generatod. Let 7 > 0,
f e LY0,7;X),u € C([0,7],X), z € X. The following assertions are
equivalent:

0) ftu(s)ds € D(A) and
0
t

w(t)—z = A / u(s)ds + /t f(s)ds ae.
0

0
(i) u(t) =TE)x+T = f(t) (¢t € [0,7]), whereT * f(t) = ftT(t —
0
s)f(s)ds.

Now we obtain the following characterization of milé-well-posedness.

Theorem 3.6. Let A be the generator of &y-semigroupdl” and letl < p <
oo. Then the following are equivalent:

(i) Forall f e LP(0,2m; X) there exists a unique mild solutiaof P, ;
(i) iZ C o(A) and(R(ik, A))kez is an LP-multiplier;
(i) 1€ o(T(2m)).

Proof. (i) = (i) is Proposition 3.4.
(it) = (4) . It will be convenient to identifyL? (0, 27; X)) with L) (R, X)
of all 2z-periodic X -valued functionsf such that the restriction of on

0, 27] is p-integrable. Leff € LE, (R, X), fu = =L > > e f(k).

m=0k=—m

Then f,, € C*(R, X) is 2w-periodic and li_>m fn = fin LP(0,27; X).

Letu, = -1 Z_jo k; er @ R(ik, A)f(k). The hypothesis implies that

u = lim w, exists inLP(0,27; X). The functionu, is in C*°(R, D(A))

n—o0

andu/,(t) = Au,(t) + fu(t) (t € R). We find a subsequence such that
Up, (1) = u(r) and fp,(r) — f(r) a.e. a¥ — oo. Fix rop < 0 such that
glim Un, (r0) = u(ro). Letv,(t) = uy(t + ro). Thenv! (t) = Av,(t) +

— 00

fn(t +70). It follows that

v (t) = T(t)up(ro) + /T(s)fn(t + 79— s)ds
0
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for all ¢ > 0. The right hand side converges t4t) := T'(t)u(ro) +
t

JT(s)f(t +r9 — s)ds in X forallt > 0asn — oo. Observe that
0

v : Ry — X is continuous. Since,, is 2r-periodic, alsav is 27-periodic.
Sinceu,, — va.e.we have(t+ry) = v(t) (¢t>0)a.e.Changingona
set of measure, we may assume thatt + ) = v(t) forall ¢ > 0. In par-
ticular, takingt = —rp, we haveu(0) = Eli}m U, (—T0) = hm une(())

Thus we may choose; = 0 in the above argument and deduce that
t
u(t) = T(t)u(0) + [T(s)f(t — s)ds. Sinceu(2w) = u(0), it follows

from Lemma 3.5 tha(z)u is a mild solution ofP,.,.. Uniqueness of the solu-
tion follows from (3.2) by the Uniqueness Theorem.

(iii) = (). Letf € LP(0,2m; X). Chooser = (I —T'(27))~Y(T  f)(27)
andu(t) = T(t)x+ (T* f)(t). Thenu(0) = u(27) andu is a mild solution
of P, by Lemma 3.5.

(1) = (¢i7) follows from Piiss [Pr]. 0

Next we show that the condition in Theorem 3.6 cannot be replaced by
the weaker condition thafz(is, A))scr be R-bounded. In other words, the
well-known characterization of negative type on Hilbert space by bounded-
ness of the resolvent on the right half plane [ABHN, Theorem 5.2.1] due to
Priss [Pr] is not true oiP-spaces fop # 2 even if boundedness is replaced
by the stronger assumption &fboundedness.

Example 3.7.There exists the generater of a Cy-semigroupT’ on the
spaceX = LP(0,00), where2 < p < oo, such thats(A) := sup{ReA :
A € 0(A)} < 0and such that the s¢RR(\, A) : ReA > 0} is R-bounded
But (R(ik, A))kez is not anL?-multiplier for anyq € [1, o).

Proof. Let 2 < p < oo. In [Ar] (see also [ABHN, Example 5.1.11]) a
positive Cyp-semigroup? onY := LP(0,00) N L?(0, 00) is constructed
whose generatod satisfiess(A) < 0 but T has typew(T') = 0. Since
T is positive, this implies that = ¢ = »(T(t)) € o(T(t)). Thus
{R(ik, A) : k € Z} is not anL?-multiplier for anyq € [1, c0). We show
that still, { R(ik, A) : k € Z} is R-bounded. In fact, by [LT, Remark on p.
191 and Section 2.f], the spa&eis isomorphic tol.”(0, o) as a Banach
space. By [LT, 1.d.7 (ii)], it follows thal” is a p-concave Banach lattice.

SinceR(\, A) f = [ e MT(t) fdt one has
0

[R(A,A)f| < R(0,A)|f| forall f €Y

wheneverReA > 0. Now it follows from Maurey’s result [LT, Theorem
1.d.6] that the sefR(\, A) : ReX > 0} is R-bounded. Sinc#&” is isomor-
phic to L?(0, o) all claims are proved. 0
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4. Holder continuous solution

In this section we show thak,., has a unique Blder continuous solution
whenever the resolvent decreases fast enough on the imaginary agiscFor
a < 1 we denote byC*(]0, 27]; X) the space of all continuous functions
f:[0,27] — X such that

[f(t) = ()l < clt —s]* (s,t €]0,2n])
for somec > 0. The following is the main result of this section.

Theorem 4.1. Let A be a closed operator on @M D-spaceX such that
iZ C p(A). Assume that

4.1) sup \n\9||R(7jn,A)H < 00
nez

where3/4 < 6 < 1. Let 2 < p < 00,0 < a < 49—3—%.Then
for eachf € LP(0,27; X) there exists a unique mild solutianof P, .
Moreoveru € C*([0, 27]; X).

We need the following lemma.

Lemma4.2. Letp > 0, A\; > 0,0 < ¢ < 1. Define inductively\,, ;1 =
An + 0A2. Then fory > 1 — ¢ the series) A% converges.

n=1

Proof. Let o > 0 such that

0+fy—1_7—(1—9)> a
0% N v 1+a

Letd > 0,e > 0suchthatyp —e > 6(1 + a) +¢. Letforn € N,

A, =X
0+~—1

Bn+1 =B, + (’YQ - 5)Bn 7 s B =1
CnJrl:Cn"‘((s(l—Fa)—FE)OF s Cl =1
Dy, = (1+nd)' .
Then

lim A, = lim B, = lim C, = lim D, =o00.
n—oo n—o0 n—0o0 n—oo
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One has

5 1+a
Dyi1 = (1+ns)tte <1 + )

14+nd

1+ a) 1
_ 1+«
= (14 nd) (1+ Ty +0<1+n5>>

= D +6(1+0)DE 40 (D)

< Dy + (6(1 + ) + ) DAt

whenn > ng for someny € N. Letn; € N such thatD,,, < C,,,. One
shows byinductionthdﬂno+m < Cp,y4+m forallm € N. Since) | Di < 00

we conclude thatz —~ < oo. Choosen; € N such that’; < B,,,. Since

n=1
(6(1+a)+e) <yo—eand; < 9*”" it follows thatC 1, < Bpytm
forallm € N. Consequentlyz — < co. Similarly as above one has

Api1 = N (14 o1y
=\ (1+ 0\t +o(X07h))

0+~v—1

Z An+(7Q_5)An 7

for n > ng if ng is large enough. Choosg such thatB; < A,,,. Then it
follows thatB,, 1 < A,,4+n, forallm € N. Since) ﬁ < 00, it follows

that” 4~ < oc. O

Proposition 4.3. Letsp > 1,1/2 < 0 < 1. Assumethafis: s € R, |s| >
so} C 0o(A) and
(4.2) sup |s|?||R(is, A)|| < oo .

Is|>s0
Then the sef|s|’R(is, A) : |s| > so} is R-bounded whenever < 3 <
20 — 1.

Proof. Letc > 1 be larger than the supremum in (4.2). Let> so such
that Ao — 5=A\) > so. By Taylor's formula we have

R(i\, A) = R(iXo, A Z iAo — i) kR (1), A)
k=0

wheneven\ € I(Xg) := [Ao — 25, Ao + 1A)). Hence forl < ¢ < oo,

R AN RGN, A): X e I(\o)}
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< ||R(io, A HZR{A‘) (iXo, A)F (A = Xo)¥ = A € T(Xo)}
C o0

g7,2 (120, A) [ *2sup{|AI°|A = Xol* : A € I(Xo)}
0 k=0
C s C 9 k

< = e oA —)\9 —\

=\ Z;)()\g) ( 0t 5 0) (2C 0>

k
10\’ 1\’
=dec| 14+ —A <4e|14+— ) <8c.
C(+2CO > _c<+20) < 8c

Define,, inductively by, 1 = A\, + = \’. Then

2c¢'n*

Ro{ls|°Ris, A) : s = X} <> Ref[s|"R(is, A) : s € [An, Ansa]}
n>0

1
-2 sup  |s]ff < 16CZTB < 0
SEP\nAnJﬁl} n>0 \n

by Lemma 4.2 sincé — 3 > 1 — 6. The estimate fog < —)\q is similar.
a

Proof of Theorem 4.1a) Using Taylor’s formula (4.2) one sees that o(A)
and||R(is, A)|| < C; whenever|s| > ko, whereky € N, C; > 0 are
suitable. Lets > ko. Chooses € [k, k + 1]. Then

s?R(is, A) — kP R(ik, A) =(s* — k%) R(is, A) + k°(R(is, A) — R(ik, A))
=(s? — k%) R(is, A)
+kPR(ik, A)R(is, A)i(k — s) .

Similar fors < —kq. This shows that

C = sup |s|’|R(is, A)|| < oo .

[s|>ko

b) Let0 < 8 < 40 — 3. It follows from Proposition 4.3 that the set
(4.3) (151”3 R(is, A) : |s| > ko}

is R-bounded. It follows from Lemma 1.8 that algts|*+! R(is, A)?

|s| > ko} is R-bounded. Sincg < 20 — 1, also{|s|’R(is, A) : |s| > ko}

is R-bounded by Proposition 4.3. Lét/(s) = s°R(is, A) (|s| > ko).

ThensM'(s) = BM(s) — is®T1R(is, A)2. Hence{M(s) : |s| > ko} and
k1

{sM'(s) : |s| > ko} are R-bounded. Sinc@/; 1 — My, = [ M'(s)ds,
k
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the set{k(My1 — My) : k € Z; |k| > ko} is contained irco{sM’(s) :

|s| > ko} and soR-bounded by Lemma 1.9. Theorem 1.3 implies that
(My)rez is an LP-multiplier.

c) Let f € LP(0,2m; X). Applying b) to5y = 0 and0 < 3 < 46 — 3 we
find unique functions:, v € LP(0, 27; X) such that

a(k) = R(ik, A)f(k) , o(k) = (i)’ R(ik, A)f (k)

forall k € Z. Thusu € HYE := {w € LP(0,2r; X): there existyy €
LP(0,2m; X) satisfyingg(k) = (ik) (k) for all k € Z}. Now we choose
1/p < B < 46 — 3. Then by [Zy, Theorem 9.1, p. 138] one has

1

HEP ¢ {w e ¢77([0,21]; X) : w(0) = w(2m)} .

5. Maximal regularity

In this section we compare the periodic probléi, with the first order
problem with Dirichlet boundary condition

W(t) = Au(t) + £(0) (1€ [0.7)
no {3 o,

whereA is the generator of &y -semigrougl” andf € L'(0,7; X), 7 > 0.
There exists a unique mild solutien= T « f (see Lemma 3.5).

We say thatP(7) is strongly LP-well-posedf for every f € LP(0,7; X)
one has"  f € HYP(0,7; X).

It is easy to see that strong’-well-posedness af(7) implies the same
property if A is replaced byd — X for all A € C. Moreover, it is well-known
that LP-well-posedness afy () for somer > 0 implies the same property
for Py(') for all 7' > 0 (see Dore [Do]).

Theorem 5.1. Let A be the generator of &y-semigroupl” on a Banach
spaceX. Letl < p < co. The following assertions are equivalent:

(i) Po(2r) is stronglyLP-well-posed and € o(T'(27));
(i) Pper is stronglyLP-well-posed.

Proof. If Py(2x) is LP-well-posed, thed" is holomorphic (see Dore [Do]).
Conversely, it is not difficult to see from the necessity of condition (iii) in
Theorem 2.3 (for which thé& M D-property is not needed) th@f’-well-
posedness oF,., implies thatT" is holomorphic. Thus, for the proof of
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equivalence of (i) and (ii) we can assume tffats holomorphic. By the
trace theorem we have

(X,D(A))k%’p ={re X :AT()x € LP(0,2m; X)}
= {u(0) : w € LP(0,2m; D(A)) N H'*?(0,2m; X)} ,

see Lunardi [Lu, 1.2.2 and 2.2.1].

(1) = (ii). Let f € LP(0,2m; X). Then by assumption = T« f €
H?(0,27; X). It follows from the trace theorem above thaf2r) €
(X, D(A))i-1/p,p- Hence also

2= (I = T(2m))  0(27) € (X, D(A))1_1/pp -

Sinced T'(t)x = AT (t)z on(0, o), itfollows thatT(-)z € H'P(0,2m; X).
Let u(t) = T(t)r + v(t). Thenu € HYP(0,27; X) andu(0) = = =
T(2m)x + v(27) = w(2m). Thusw is a strong solution of2,,.. Since
e2m(4) c (T (2m)) and1 € o(T(27)), it follows thatiZ C o(A), and
unigueness of the solution &, follows from Corollary 3.3.

(ii) = (i). Let f € L?(0,2; X ). By assumption, there existse Hp. so-
lution of P,.,. It follows from the trace theorem again that= v(0) €
(X,D(A))1-1/pp: henceT()z € HYP(0,2m; X). Let u(t) = v(t) —
T'(t)x. Thenu is a strongLP-solution of Py(27). 0

With the help of Theorem 1.3 we now obtain the following characteri-
zation of strongL”-well-posedness aPy (7).

Corollary 5.2. LetA be the generator of &@,-semigroup on & M D-space
X and letl < p < co. The following assertions are equivalent:

(i) Py(r) is stronglyLP-well-posed for all- > 0;
(i) there existsw > w(T) such that{kR(w + ik, A) : k € Z} is R-
bounded.

Proof. ReplacingA by A — w this follows directly from Theorem 5.1 and
Theorem 2.3 O

Corollary 5.2 shows in particular that strohg-well-posedness dfy (1)
isindependentgf € (1, co) (whichis well-known). It became customary to
say that a closed operatdihas the propertyM R) (for maximal regularity
if Py(7) is stronglyLP-well-posed for one and hence glE (1, c0), 7 > 0.

Thus condition (i) is a characterization @¥/ R).

We obtain this characterization as a consequence of the discrete mul-
tiplier theorem (Theorem 1.3). It is also possible to use Weis’ multiplier
theorem [W1, Theorem 3.4]) and the criterion [W2, Section 1e)(i)]. For
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that one has to show that condition (ii) of Corollary 5.2 implies that the set
{sR(is +w, A) : s € R} is R-bounded. This is not difficult to do.

Finally, we should mention that in contrast to the periodic problem, in
the context of problenPy(7) it is natural to assume that generates a
holomorphicCy-semigroup. In fact, for densely defined closed operators
this is a necessary assumption (see Dore [Do]). By a spectacular result of
Kalton and Lancien [KL] it is not sufficient ifX is a Banach space with
unconditional basis, which is not isomorphic to a Hilbert space.

6. The second order problem

Let A be a closed operator orfa\l D-spaceX and letl < p < co. In this
section we characterize strofg-well-posedness of the problem

u”(t) + Au(t) = f(t)

on bounded intervall with periodic, Dirichlet and Neumann boundary con-
ditions. Fora < b we denote by

H*P(a,b; X) := {u € H"(a,b; X) : v/ € H"P(a,b; X)}

the second Sobolev space. Note thet? (a, b; X) C C*([a,b]; X). Using
the notion of Sect. 2 we let

H2P .= {uc HY® ' € H.P

per per per

Letu € LP(0,2m; X). It is easy to see that € Hgée if and only if there
existsv € LP(0,2m; X) such thati(k) = —k?a(k) for all k € Z. In that
casev = (u) =: u”.

Theorem 6.1. The following are equivalent:
(i) Forall f e LP(0,2m; X) there exists a unique
u € LP(0,2m; D(A)) N H*P(0,2m; X)
such that

u’(t) + Au(t) = f(t) a.e.
Py(2m) {u(()) = u(2r) , ' (0) = u/(27) ;

(i) one hask? € o(A) for all k € Z and {K*R(k*,A) : k € Z} is
R-bounded.
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Proof. (i) = (ii). One shows as in Theorem 2.3 thadtc o(A) for all k €
Z.Letf € LP(0,2m; X). Letubethe solution ofi). Theni(k) € D(A)and
—k20(k) + Aa(k) = f(k). Hencei(k) = —R(k2, A) f (k) and (u” (k) =
—K2a(k) = K*R(K*, A)f(k) (k € Z). Sinceu” € LP(0,2r; X) this
proves(ii).

(ii) = (i). Let My = k*R(k?, A) (k € Z). Then

k(M1 — My) = kR((k + 1)%, A){(k + 1)*(k* — A)
—k2((k+1)% = A)}R(K*, A)
= —k(2k+ 1)R((k +1)%, A)(K*R(K*, A) — I) .

It follows that the set{k(Myp11 — My) : k € Z} is R-bounded. Now

Theorem 1.3 implies thatk? R(k?, A))ez is an LP-multiplier. Let f €

LP(0,2m; X). Then there exists” € LP(0,2m; X) such that(u”)(k) =

E2R(k2, A)f(k) (k € Z). A simple computation shows that there exist
t

y,z € X suchthatifwelet(t) = [(t—s)u"(s)ds+ty+zfort € [0, 2x],
0

thena(k) = —R(k2, A) f (k) for all k € Z.
SinceAR(k?, A) = k2R(k?, A) — I, it follows that (R(k?, A))rez is an
L(X, D(A))-multiplier. Thusu € LP(0,2m; D(A)). Since

(u" + Au)(k) = K2R(K?, A) f(k) — AR(K?, A) f (k)
=f(k) (kez)

it follows from the Uniqueness Theorem thas a solution ofP» (27). Since
(u"Y(0) = (u')(0) = 0 it follows thatu'(0) = «/(27) andu(0) = u(27).
Uniqueness is proved as in Sect. 2. a

In order to treat Dirichlet boundary conditions we will consider odd
functions f on (—, 7); i.e. functions satisfyingf (k) = —f(—k) for all
k € Z. We need the following lemma.

Lemma 6.2. Let M}, € £(X) such thatM, = M_, (k € Z). Assume
that for each oddf € LP(—=,m; X) there exists: € LP(—m,m; X) such
thatu(k) = M f(k) (k€ Z). Then(My)rez is an LP-multiplier.

Proof. Let f € LP(—m,m; X). We have to show that there exigjse
LP(—m,m; X) such thatMy f(k) = g(k) for all & € Z. We can assume
that f(0) = 0. Considerf; € LP(—m, m; X) such that

) fk) k>0
fi(k) = {f(k) if k<0
0 ifk=0.
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Notice thatf; € LP(—m,m; X) exists asX is aU M D-space [Bur]. There
existsh; € LP(—m, m; X) suchthat\l, i (k) = hy(k) (k € Z). Since the
Riesz projection is bounded we figgd € LP(—=, 7; X ) such thag, (k) =
hy (k) for k > 0andg; (k) = 0for k < 0. Thusg (k) = My f(k) fork > 0.
Similarly, we findg, € LP(—x, 7; X) such thatjy (k) = M f (k) fork < 0
andgs (k) = 0 for k£ > 0. Choosgy = g1 + ¢2. O

Now we obtain the following characterization of strob®well-posed-
ness in the case of Dirichlet boundary conditions. Hemay be in the
spectrum ofA4.

Theorem 6.3. The following are equivalent:

(i) Forall f € LP(0,m; X) there exists a unique € LP(0,m; D(A)) N
H?P(0,7; X) satisfying

{u”(t)—l—Au(t) = f(t) a.e.
u(0) = u(m) =0

(i) k2 € o(A)forall k € Nand{k?R(k? A) : k € N} is R-bounded.

Proof. (i) = (ii). Letk € N. We show that? € o(A). If z € D(A)
such that(—k? + A)x = 0, thenu(t) = (sin kt)x defines a solution of
u” 4+ Au = 0. Henceu = 0, and sar = 0. Lety € X. There exists a strong
solutionu of " + Au = (sin kt)y. Extendu to an odd function. Comparing
Fourier coefficients we see thaft) = (sinkt) - « for somez € D(A)
satisfying(—k? + A)z = y. We have shown thdt-k2 + A) is bijective,
thusk? € o(A).

Let f € LP(0,m; X). There exists a unique functiom satisfying (7).
Extendingu and f to odd functions we see thatk?u(k) + Aa(k) =
f(k), henceii(k) = —R(k2, A)f(k) for all k € Z. Moreover,(u" (k) =
—k2R(k%, A)f(k) (k € Z). Now (ii) follows from Lemma 6.2.

(ii) = (i). Let My = 0, M}, = K*R(k* A) for k € Z \ {0}. One
sees as in the proof of Theorem 6.1 thiat )z is an LP-multiplier.
Let f € LP(0,m;X). Extend f to an odd function. Then there exists
W' € LP(—m,m; X) such that(u” (k) = k2R(k2, A)f(k) for k # 0 and
(u"Y(0) = 0. A simple computation shows that there exist& X such

that if we letu(t) = f(t —s)u"(s)ds +tx fort € [0, n] and extend. to an
0

[0,
odd function or{—r, x], thend(k) = —R(k?, A) f (k) for k # 0. Souy,, |
solves the problem ifi). 0

Finally we consider Neumann boundary conditions.

Theorem 6.4. The following assertions are equivalent:
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(i) Forall f € LP(0,m; X) there exists a unique € LP(0,m; D(A)) N
H?P(0,7; X) satisfying

{u”(t) + Au(t) = f(t) a.e.
w'(0) =u/(m) =0;

(i) one hask? € o(A) for all & € Ny and {k?R(k* A) : k € N} is
R-bounded.

The proof may be given similarly to the one of Theorem 6.3 replacing
odd by even functions there and in Lemma 6.2.

Finally we mention that @ment and Guerre-Delakre [CG] studied
the relation of first and second order problems. To be more precide det
a closed operator and consider the periodic problem

'+ Bu=f
Pper {U(O) — u(27)

of Sect. 2. Letd = —B2. Letl < p < co. Assume thab,, is stronglyL?-
well-posed. Then by Theorem 2.3 we haeC o(—B) and{k(ik+B)~" :

k € Z} is R-bounded. Thei? € o(A) andR(k?, A) = (k* + B?)~! =
(ik+B)~1(—ik+B) ' forallk € Z.Itfollows that{k*R(k? A) : k € Z}

is R-bounded and Theorem 6.1, 6.3 and 6.4 give stidhgell-posedness of

the second order problems definedAyThis is shown in [CG] by different
methods inthe case whernB generates an exponentially stable holomorphic
Cp-semigroup?. In that case they also show the other implication. From
our results this other implication can be seen as follows. One may represent
the resolvent of3 by the resolvent of3? via a contour integral [Ta, (2.29)
page 36]. If the equivalent conditions appearing in Theorem 6.1, 6.3 or
6.4 are satisfied, then it is not difficult with help of this formula to prove
R-boundedness dfk(ik — B)~! : k € Z} which implies strong.?-well-
posedness aF,., by Theorem 2.3 again.
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