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Abstract

Let A be the generator of an analytic C0-semigroup on a Banach space X. We
associate a closed operator A1 with A defined on Rad(X) and show that when X is
a UMD-space, the Cauchy problem associated with A has maximal regularity if and
only if the operator A1 generates an analytic C0-semigroup on Rad(X). This allows
us to exploit known results on analytic C0-semigroups to study maximal regularity.
Our results show that R-boundedness is a local property for semigroups: an analytic
C0-semigroup T of negative type is R-bounded if and only if it is R-bounded at
z = 0. As applications, we give a perturbation result for positive semigroups. Finally,
we show the following: when X is a UMD-space, T is an analytic C0-semigroup of
negative type, then for every f ∈ Lp(R+;X), the mild solution of the corresponding
inhomogeneous Cauchy problem with initial value 0 belongs toW θ,p(R+;X) for every
0 < θ < 1.

1. Introduction

Let A be the generator of a C0-semigroup T on a Banach space X and let 0 < τ <
∞. If f ∈ L1([0, τ );X) then u(t) = T ∗ f (t) =

∫ t
0 Tt−sf (s) ds defines the unique mild

solution of the problem {
u′(t) = Au(t) + f (t), t ∈ [0, τ )

u(0) = 0.
(1)

We say that A or T satisfies property MR (for maximal regularity) if u ∈ Lp([0, τ );
D(A))wW 1,p([0, τ );X) whenever f ∈ Lp([0, τ );X) for some (equivalently for all) 1 <
p <∞. This property of maximal regularity is important for non-linear problems and
has been studied extensively in the last years, see [AB, CPSW, CL, DPG, Do, DoV,
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dation and the NSF of China.
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HP, KL, KW, LLM, LeM, W1, W2]. It is shown by Dore that property MR implies
that T is analytic [Do]. Moreover on Hilbert space, each analytic semigroup has MR
[DS]. However, by a remarkable recent result by [KL] this property characterizes
Hilbert spaces among a large class of Banach spaces. This result makes it desirable
to have a characterization of MR for an individual operator A. And indeed, this
was done recently by [W2]: if X is a UMD-space (see [Bo1]), then the operator A
has MR if and only if the set {sR(ω + is, A): s ∈ R} is R-bounded for some ω larger
than the growth bound ω(A) of A. The notion of R-boundedness for sets of operators
is due to [Bo2] and is stronger than boundedness in operator norm (unless X is a
Hilbert space [AB]).

In the present article we find a reformulation of the characterization given by
Weis. We associate two closed operators A1 and A2 with A which are defined on a
Banach space Rad(X) (the closed space of all Rademacher functions in L1([0, 1];X)).
Assuming that T has negative growth bound, we show that A has MR if and only
if Aj generates an analytic C0-semigroup, where j may be 1 or 2. Both operators
A1 and A2 are useful to exploit known results on analytic semigroups to study
maximal regularity. For example, we obtain as an immediate corollary that A + B
has MR if A has MR and B is a small perturbation of A whenever X is a UMD-
space (a perturbation result due to [W1]). For positive C0-semigroups on X = Lp(Ω),
1 < p <∞, we obtain the following new perturbation result using the operator A2:
if A generates a positive C0-semigroup on X satisfying MR and if B:D(A) → X is
a positive operator such that A +B is resolvent positive, then A +B satisfies MR.

We also find a sufficient condition for positive interpolating semigroups on Lp(Ω)
to have MR. Finally, we refind a result due to [HP] showing that Gaussian estimates
implies MR. Gaussian estimates can be established for elliptic operators of second
order for diverse boundary conditions (see [AE]).

In view of Weis’ characterization and other results in this direction (e.g. [AB, CP])
it seems important to find criteria to verify R-boundedness. Our result shows that
maximal regularity is a local property of the semigroup T : if X is a UMD-space,
then the semigroup T has MR if and only if the set {Tz : | arg (z)| < θ, |z| < ε} is
R-bounded for some θ > 0 and some ε > 0.

It is not easy to verify R-boundedness in concrete cases. However, if A generates
an analytic C0-semigroup of negative type, then we show that {|s|βR(is, A): s ∈ R}
is R-bounded for each 0 < β < 1. This is used to show that when X is a UMD-space,
the mild solution u of (1) is actually in W θ,p(R+;X) for all 0 < θ < 1 whenever
f ∈ Lp(R+;X), 1 < p <∞.

We will also consider the problem (1) on R+. We say that A or T satisfies MR∞ if
the mild solution u of (1) belongs to Lp(R+;D(A)) wW 1,p(R+;X) for f ∈ Lp(R+;X).
It is known that A has MR∞ if and only if A has MR and ω(A) < 0 [Do], where
ω(A) denotes the growth bound of A. This result is most useful in the study of MR.
In fact, to study the property MR for A, it suffices to study the property MR∞ for
A−β for some β > 0 satisfying ω(A−β) < 0. Notice that for a C0-semigroup T with
generatorA, one has ω(A) < 0 if and only if T is exponentially stable (or equivalently,
of negative type), i.e. there exist M > 1 and ε > 0 such that ‖Tt‖ 6Me−εt whenever
t > 0. When T is analytic, we have s(A) = ω(A), where s(A) = sup{Re(z): z ∈ σ(A)}
is the spectral bound of A.

Let X,Y be Banach spaces, we will denote by B(X,Y ) the space of all bounded
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linear operators fromX to Y . WhenX = Y , we will denoteB(X,X) simply byB(X).
For 0 < θ < π,

∑
θ will be the sector {z ∈ C : | arg (z)| < θ}. For a closed operator A

on X, we denote by ρ(A) the resolvent set of A, and R(λ,A) = (λ−A)−1 for λ ∈ ρ(A).

2. R-boundedness

Let X,Y be Banach spaces. A set M ⊂ B(X;Y ) is called R-bounded if there exists
a constant C > 0, such that for all T1, T2, . . . , Tn ∈M , x1, x2, . . . , xn ∈ X, n ∈ N,∫ 1

0

∥∥∥∥∥
n∑
j=1

γj(t)Tjxj

∥∥∥∥∥
X

dt 6 C
∫ 1

0

∥∥∥∥∥
n∑
j=1

γj(t)xj

∥∥∥∥∥
X

dt, (2)

where (γj)j>1 is a fixed sequence of independent symmetric {−1, 1}-valued random
variables on [0, 1], e.g. the Rademacher functions γj(t) = sign(sin (2jπt)). We will
denote by R(M ) the smallest constant in (2). This concept was already used in [BG]
and [Bo2] in connection with multiplier theorems and more recently in [AB, CPSW,
KW, W1, W2]. Using Kahane’s inequality [LT, theorem 1·e·13], it is easy to see
that we can replace the L1-norm by any Lp-norm in (2). We should also notice that
if we require (2) only for distinct T1, T2, . . . , Tn ∈M , we will obtain the same notion
of R-boundedness with the same constant R(M ) [CPSW].

The notion of R-boundedness plays an important role in the study of MR and
MR∞. For instance we recall the following characterization of MR∞ in term of R-
boundedness due to [W2]. Its original statement is more general, but we will only
use the following more simple version.

Theorem 2·1. Let A be the generator of an analytic C0-semigroup T on X. Assume
that X is a UMD-space and ω(A) < 0. Then the operator A has MR∞ if and only if the
set {sR(is, A): s ∈ R} is R-bounded.

The following proposition summarizes the most useful properties concerning R-
boundedness (see [CPSW, lemma 3·2] and [W2, 2·4, 2·6, 2·8]).

Proposition 2·2. (i) Let Ω be an open subset of C, and let T : Ω → B(X) be an
analytic mapping. Then for every compact subset K ⊂ Ω, R{T (z): z ∈ K} <∞.

(ii) Let Ω ⊂ C be a simply connected Jordan region such that C\Ω has interior
points. Let T : Ω→ B(X) be a bounded, strongly measurable function, analytic in Ω. If
R{T (z): z ∈ ∂Ω} <∞, then R{T (z): z ∈ Ω} <∞.

(iii) Let M1,M2, . . . ,Mn be subsets of B(X), then

R

(
n⋃
i=1

Mi

)
6

n∑
i=1

R(Mi).

(iv) Let M be an R-bounded set, then R(co(M )) 6 2R(M ), where co(M ) = {∑m
j=1 λjSj :

λj ∈ C, Sj ∈M,
∑m

j=1 |λj | 6 1,m ∈ N}.
(v) Let T ∈ B(X) be fixed, Ω ⊂ C be a bounded subset. Then R{λT : λ ∈ Ω} is

R-bounded and

R{λT : λ ∈ Ω} 6 2‖T‖ sup
λ∈Ω
|λ|.

The following lemma will be very useful in the study of R-boundedness.
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Lemma 2·3. Let S be a set, I be an interval of R, f : S × I → B(X). Assume that for

each s ∈ S, f (s, .) ∈ L1(I,B(X)) and that there exists a measurable function g on I, such
that R{f (s, t): s ∈ S} 6 g(t) for each t ∈ I. Then

R

{∫
I

f (s, t) dt: s ∈ S
}
6
∫
I

g(t) dt.

Proof. Let s1, s2, . . . , sn ∈ S, x1, x2, . . . , xn ∈ X. Then∫ 1

0

∥∥∥∥∥
n∑
j=1

γj(ω)
∫
I

f (sj , t) dt xj

∥∥∥∥∥ dω 6
∫
I

∫ 1

0

∥∥∥∥∥
n∑
j=1

γj(ω)f (sj , t)xj

∥∥∥∥∥ dω dt
6
∫
I

g(t) dt
∫ 1

0

∥∥∥∥∥
n∑
j=1

γj(ω)xj

∥∥∥∥∥ dω.
Thus

R

{∫
I

f (s, t) dt : s ∈ S
}
6
∫
I

g(t) dt.

Corollary 2·4. Let T be a C0-semigroup on X with generator A. Assume that there
exist constants M > 1 and ω > 0 such that ‖Tt‖ 6Me−ωt for all t > 0. Then

R{R(z,A): Re(z) > 0} 6 2M/ω.

Proof. This is a simple consequence of Lemma 2·3 and the equality

R(z,A) =
∫ ∞

0
e−ztTt dt, Re(z) > 0.

For 0 < θ < π/2,M > 1 and ω > 0, we denote by E(θ,M, ω) the class of all analytic
C0-semigroups T defined on

∑
θ satisfying

‖Tz‖ 6Me−ω|z|, z ∈ Σθ.

We will use the following lemma.

Lemma 2·5. Let A be the generator of an analytic C0-semigroup T on X. Assume that
ω(A) < 0. Then there exist 0 < θ < π/2, ω > 0 and M > 1 such that T ∈ E(θ,M, ω).

Proof. As the semigroup T is analytic, we have s(A) = ω(A) < 0 and there exist
ω > 0 and α > 0 such that {z ∈ C : | arg (z−ω)| < α+π/2} ⊂ ρ(A). This implies that∑

(A) ⊂ {z ∈ C: Re(z) 6 s(A)}w{z ∈ C : |(z−ω)| > α+π/2}. From this we can find
β > 0 such that e±iβA generate analytic C0-semigroup and ω(e±iβA) = s(e±iβA) < 0.
In particular, the semigroup (Tte±iβ )t>0 generated by e±iβA is exponentially stable.
There exist ω > 0 and M > 1 satisfying

‖Tte±iβ‖ 6Me−ωt, t > 0.

[AMH, proposition 4·5] implies that

‖ezA‖ 6Me−ωRe(z), z ∈ Σβ.

As Re(z) > |z|/cos β for z ∈ Σβ, the claim is proved.

Notice that when a C0-semigroup T has MR∞, then T is analytic and has negative
growth bound [Do]. So by Lemma 2·5, T ∈ E(θ,M, ω) for some θ > 0, M > 1 and
ω > 0. Lemma 2·3 has the following useful corollary.
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Corollary 2·6. Let A be the generator of an analytic C0-semigroup T. Assume that

ω(A) < 0. Then for some θ > 0 and each r > 0, we have R{Tz : |z| > r, z ∈ Σθ} <∞.

Proof. By Lemma 2·5, there exist θ0 > 0, M > 1 and ω > 0 such that
T ∈E(θ0,M, ω). For each |α| < θ0, eiαA generates an analytic C0-semigroup in
the class E(θ0 − |α|, M,ω). By Proposition 2·2, it suffices to show that R{T (t):
t > t0} <∞ for each t0 > 0.

Let t0 > 0 be fixed. Denote by B(s, r) the closed ball centered on s with radius
r in the complex plane. We have B(t0, t0 sin θ0/2) ⊂ Σθ0 . For z ∈ B(t0, t0 sin θ0/4),
z = t0 + t0 sin θ0re

iα/2, 0 6 r < 1/2, α ∈ [0, 2π], since T is analytic in Σθ0 , we have

Tz =
∫ 2π

0
Tt0+t0 sin θ0eiβ/2Pr(α− β)

dβ

2π
,

where

Pr(β) =
1− r2

1 + r2 − 2r cos β

is the Poisson kernel. By Lemma 2·3,

R{Tz: z ∈ B(t0, t0 sin θ0/4)} 6 sup
06r61/2,α∈[0,2π]

2Pr(α)
∫ 2π

0
‖Tt0+t0 sin θ0eiβ/2‖dβ2π

6 6Me−ωt0(1−sin θ0/2).

In particular

R{Tt: t ∈ [(1− sin θ0/4)t0, (1 + sin θ0/4)t0]} 6 6Me−ωt0(1−sin θ0/2).

Letα= (4+sin θ0/4− sin θ0), then [t0,∞)⊂xn>0[(1−sin θ0/4)αnt0, (1+sin θ0/4)αnt0]
and thus by Proposition 2·2

R{Tt: t > t0} 6
∑
n>0

R{Tt: t ∈ [(1− sin θ0/4)αnt0, (1 + sin θ0/4)αnt0]}

6
∑
n>0

6Me−ωt0α
n(1−sin θ0/2) <∞

since α > 1. The claim is proved.

3. Associated semigroups on Rad(X)

Let X be a Banach space and let A be the generator of an analytic C0-semigroup
T on X. Let (γj)i>1 be the sequence of Rademacher functions on [0, 1]. Define

R(X) =

{
n∑
j=1

γjxj : xj ∈ X,n ∈ N
}

and Rad(X) the closure of R(X) in L1([0, 1];X). We obtain the same space Rad(X)
if we replace the L1-norm by any other Lp-norm by Kahane’s inequality, see [LT,
theorem 1·e·13]. Notice that

Rad(X) =

{ ∞∑
j=1

γjxj : the series
∞∑
j=1

γjxj converges in L1([0, 1];X)

}
.
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In fact, the subset in the right hand side is closed in L1([0, 1];X). Indeed, let fn =∑∞

j=1 γjx
(n)
j ∈ L1([0, 1];X) and let f = limn→∞ fn in L1([0, 1];X). For j ∈ N, let Fj

be the σ-algebra of Borel subsets of [0, 1] generated by the functions γ1, γ2, . . . , γj .
Then the σ-algebra generated by x∞j=1Fj is exactly the σ-algebra of all Borel subsets
of [0, 1]. Therefore if gj = E(f |Fj), then (gj)j>1 is a martingale with respect to
the filtration Fj and lim j→∞ gj = f in L1([0, 1];X), where E(f |Fj) denotes the
expectation of f with respect to Fj . Each gj is of the form

gj =
j∑
k=1

hk(γ1, . . . , γk−1)γk,

where hk is a function defined on {−1, 1}k−1 with values in X. It is easy to see that
for m,n, j ∈ N

‖x(n)
j − x(n+m)

j ‖X 6 ‖fn − fn+m‖L1([0,1];X).

This implies that limn→∞ x
(n)
j ÷ xj exists in X. On the other hand, for j, n ∈ N

‖hj(γ1, . . . , γj−1)− x(n)
j ‖L1([0,1];X) 6 ‖f − fn‖L1([0,1];X).

Let n tend to ∞, we obtain that hj is a constant function and hj ≡ xj . We deduce
from this that the series

∑∞
j=1 γjxj converges in L1([0, 1];X) to f .

Let (qj)j>1 be a fixed dense sequence in (0, 1) and let (pj)j>1 be a fixed dense
sequence in (1,∞). We introduce two operators A1 and A2 on Rad(X) in the fol-
lowing way: D(A1) =

{∑∞
j=1 γjxj ∈ Rad(X):xj ∈ D(A),

∑∞
j=1 qjγjAxj ∈ Rad(X)

}
A1

(∑∞
j=1 γjxj

)
=
∑∞

j=1 qjγjAxj .
(3)

 D(A2) =
{∑∞

j=1 γjxj ∈ Rad(X):xj ∈ D(A),
∑∞

j=1 pjγjAxj ∈ Rad(X)
}

A2

(∑∞
j=1 γjxj

)
=
∑∞

j=1 pjγjAxj .
(4)

It is easy to verify that A1 and A2 are densely defined closed operators. We will use
the following lemma.

Lemma 3·1. Let λ ∈ C, λ = reiθ, then λ ∈ ρ(A1) if and only if R{seiθR(seiθ, A): s >
r} <∞ and λ ∈ ρ(A2) if and only if R{seiθR(seiθ, A): 0 < s 6 r} <∞. In that case
we have

‖λR(λ,A1)‖ = R{seiθR(seiθ, A): s > r}
‖λR(λ,A2)‖ = R{seiθR(seiθ, A): 0 < s 6 r}.

Proof. We will only give the proof for A1, the proof for A2 is similar. First
assume that λ = reiθ ∈ ρ(A1), let s1, s2, . . . , sm be distinct such that si > r. We have
0 < r/si < 1, so there exists qi,n subsequence of qn satisfying limn→∞ qi,n = r/si.
We may assume furthermore that for n > 1, q1,n, q2,n, . . . , qm,n are distinct. For



Tools for maximal regularity 323
x1, x2, . . . , xn ∈ X, we have∫ 1

0

∥∥∥∥∥
m∑
j=1

γj(t)sjeiθR(sjeiθ, A)xj

∥∥∥∥∥
X

dt

= lim
n→∞

∫ 1

0

∥∥∥∥∥
m∑
j=1

γj(t)
r

qj,n
eiθR

(
r

qj,n
ei,θ, A

)
xj

∥∥∥∥∥
X

dt

= lim
n→∞

∫ 1

0

∥∥∥∥∥
m∑
j=1

γj(t)reiθR(reiθ, qj,nA)xj

∥∥∥∥∥
X

dt

6 ‖λR(λ,A1)‖
∥∥∥∥∥
m∑
j=1

γjxj

∥∥∥∥∥
Rad(X)

.

Thus we deduce that

R{seiθR(seiθ, A) : s > r} = R{seiθR(seiθ, A) : s > r} 6 ‖λR(λ,A1‖.
Conversely let

∑∞
j=1 γjxj ∈ Rad(X). Then∥∥∥∥∥λR(λ,A1)

( ∞∑
j=1

γjxj

)∥∥∥∥∥
Rad(X)

=

∥∥∥∥∥
∞∑
j=1

γjλR(λ, qjA)xj

∥∥∥∥∥
Rad(X)

=

∥∥∥∥∥
∞∑
j=1

γj
λ

qj
R

(
λ

qj
, A

)
xj

∥∥∥∥∥
Rad(X)

6 R{seiθR(seiθ, A) : s > r}
∥∥∥∥∥
∞∑
j=1

γjxj

∥∥∥∥∥
Rad(X)

.

Thus ‖λR(λ,A1)‖ 6 R{seiθR(seiθ, A): s > r}. The claim is proved.

The following is the main result of this section.

Theorem 3·2. Let A be the generator of an analytic C0-semigroup on X. Assume that
X is a UMD-space and ω(A) < 0. Then the following are equivalent:

(i) A has MR∞.
(ii) A1 generates a bounded analytic C0-semigroup on Rad(X).

(iii) A2 generates a bounded analytic C0-semigroup on Rad(X).

Proof. First notice that there exist θ > 0, M > 1 and ω > 0 such that T ∈
E(θ,M, ω) by Lemma 2·5. Assume that A has MR∞. Then by Theorem 2·1 the
set {λR(λ,A):λ ∈ iR} is R-bounded. By an argument used in [CP], there ex-
ists π/2 < θ′ < π, such that the set {λR(λ,A):λ ∈ Σθ′ x {0}} is R-bounded. By
Lemma 3·1 we have Σθ′ ⊂ ρ(A1) w ρ(A2) and

sup
λ∈∑θ′

‖λR(λ,A1)‖ 6 R{λR(λ,A): λ ∈ Σθ′} <∞

sup
λ∈∑θ′

‖λR(λ,A2)‖ 6 R{λR(λ,A): λ ∈ Σθ′} <∞.
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So A1 and A2 generate bounded analytic C0-semigroups on Rad(X) (see
[N, theorem 4·6]). This shows the implications (i) ⇒ (ii) and (i)⇒ (iii).

If A1 generates a bounded analytic C0-semigroup on Rad(X), we have {is: s ∈
R, s� 0} ⊂ ρ(A1) and

sup
s∈R,s�0

‖isR(is,A1)‖ <∞.

By Lemma 3·1 for each r > 0

R{itR(it, A): t > r} 6 sup
s∈R,s�0

‖isR(is,A1)‖.

So

R{itR(it, A): t > 0} 6 sup
s∈R,s�0

‖isR(is,A1)‖.

Therefore

R{itR(it, A): t ∈ R} 6 2 sup
s∈R,s�0

‖isR(is,A1)‖ <∞.

It follows that A has MR∞ by Theorem 2·1. This shows the implication (ii) ⇒ (i).
The implication (iii)⇒ (i) is similar.

Remark 3·3. (i) When A has MR∞, the bounded analytic C0-semigroups gener-
ated by A1 and A2 are given by

Tz

( ∞∑
j=1

γjxj

)
=
∞∑
j=1

γjTqjzxj

Sz

( ∞∑
j=1

γjxj

)
=
∞∑
j=1

γjTpjzxj ,

respectively.
(ii) Let A be the generator of an analytic C0-semigroup T . Assume that ω(A) < 0.

The semigroup T does not exist in general since {Tt: 0 6 t 6 1} is not necessarily
R-bounded. However by Corollary 2·6, S is well defined and S defines a semigroup
on Rad(X), but it is not always strongly continuous (or equivalently, S is not always
bounded on Σθ wB(0, 1) for θ > 0).

As application of Theorem 3·2, we deduce the following result due to [W1].

Theorem 3·4. Let T be an analytic C0-semigroup with generator A. Assume that X
is a UMD-space and ω(A) < 0. Then A has MR∞ if and only if {Tz: z ∈ Σθ} is
R-bounded for some 0 < θ < π/2.

Proof. When A has MR∞, by Theorem 3·2 A1 generates a bounded analytic C0-
semigroup T on Σθ for some 0 < θ < π/2. By Remark 3·3 the semigroup generated
by A1 is given by

Tz

( ∞∑
j=1

γjxj

)
=
∞∑
j=1

γjTqjzxj
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for z ∈ Σθ. A similar argument as in the proof of Lemma 3·1 shows that

R{Tse±iθ′ : s > 0} <∞
for all 0 < θ′ < θ. It follows from Proposition 2·2 that R{Tz: z ∈ Σθ′} <∞.

Conversely, suppose that R{Tz: z ∈ Σθ} < ∞ for some 0 < θ < π/2. Then the
C0-semigroup

Tz

( ∞∑
j=1

γjxj

)
=
∞∑
j=1

γjTqjzxj

is bounded analytic on Σθ.
Furthermore, T is strongly continuous. Indeed, it is clear that for

∑N
j=1 γjxj ∈

Rad(X), we have lim z→0,z∈∑θ
Tz(

∑N
j=1 γjxj) =

∑N
j=1 γj lim z→0,z∈∑θ

Tqjzxj =∑N
j=1 γjxj . It follows from the uniform boundedness of T and the density of

{∑n
j=1 γjxj : xj ∈ X,n ∈ N} in Rad(X) that for every

∑∞
j=1 γjxj ∈ Rad(X), we have

lim z→0,z∈∑θ
Tz(

∑∞
j=1 γjxj) =

∑∞
j=1 γjxj .

The generator of T is given by A1. Therefore A1 generates a bounded analytic
C0-semigroup. It follows from Theorem 3·2 that A has MR∞.

As an immediate consequence of Corollary 2·6 and Theorem 3·4, we obtain the
following.

Corollary 3·5. Let T be an analytic C0-semigroup on X and let A be the generator
of T. Assume that X is a UMD-space and ω(A) < 0. Then T has MR∞ if and only if
there exist r > 0 and θ > 0 such that R{T (z): |z| 6 r, z ∈ Σθ} <∞.

For MR, it is more natural to work with analytic C0-semigroups which are not
necessarily of negative type. In that case, the semigroup generated by A1 is not nec-
essarily bounded and there is no analogous characterization involving the operator
A2. The following characterization of MR is analogous to the equivalence between
(i) and (ii) in Theorem 3·2.

Theorem 3·6. Let A be the generator of an analytic C0-semigroup on X. Assume
that X is a UMD-space. Then A has MR if and only if A1 generates an analytic
C0-semigroup on Rad(X).

Proof. First recall that A generates an analytic C0-semigroup if and only if there
exists r > 0, such that {z: Re(z) > r} ⊂ ρ(A) and supRe(z)>r ‖zR(z,A)‖ < ∞, see
[N, A-II, theorem 1·14].

Assume now that A has MR. Let T be the analytic C0-semigroup generated by A.
There exists ω > 0 such that (e−ωtTt)t>0 is exponentially stable, so A−ω has MR∞.
We have by Theorem 2·1 and Corollary 2·4 that

R{isR(is, A− ω): s ∈ R} <∞
R{R(is, A− ω): s ∈ R} <∞.

Thus

R{λR(λ,A): Re(λ) = ω} <∞.
By Proposition 2·2

R{λR(λ,A): Re(z) > ω} <∞.
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For λ ∈ C, Re(λ) > w, λ = a + ib, a > ω,∥∥∥∥∥λR(λ,A1)

( ∞∑
j=1

γjxj

)∥∥∥∥∥
Rad(X)

=

∥∥∥∥∥
∞∑
j=1

γj

(
a

qj
+ i

b

qj

)
R

(
a

qj
+ i

b

qj
, A

)
xj

∥∥∥∥∥
Rad(X)

6 R{λR(λ,A): Re(λ) > ω}
∥∥∥∥∥
∞∑
j=1

γjxj

∥∥∥∥∥
Rad(X)

as a/qj > a > ω. So supRe(λ)>ω ‖λR(λ,A1)‖ < ∞, thus A1 generates an analytic
C0-semigroup on Rad(X).

Conversely assume that A1 generates an analytic C0-semigroup on Rad(X), there
exists r > 0 satisfying {λ: Re(λ) > 0, |λ| > r} ⊂ ρ(A1) and there exists C > 0 such
that

sup
Re(λ)>0,|λ|>r

‖λR(λ,A1)‖ 6 C.

AsA also generates an analytic C0-semigroup onX, we can suppose that {λ: Re(λ) >
0, |λ| > r} ⊂ ρ(A) and

sup
Re(λ)>0,|λ|>r

‖λR(λ,A)‖ 6 C.

From ‖irR(ir,A1)‖ 6 C, we get R{isR(is, A): s > r} 6 C by Lemma 3·1. Similarly
R{isR(is, A)(:) s 6 −r} 6 C. Define

Λ = {λ ∈ C : |Im(λ)| = r, 0 6 Re(λ) 6 r} x {λ ∈ C : Re(λ) = r, |Im(λ)| 6 r}.
We have Λ ⊂ ρ(A) and Λ is a compact subset. By Proposition 2·2, R{λR(λ,A): λ ∈
Λ} <∞, hence R{λR(λ,A):λ ∈ Λ or λ ∈ iR, |λ| > r} <∞. Again by Proposition 2·2

R{λR(λ,A): Re(λ) > r} <∞.
Without loss of generality, we can assume that the semigroup (e−rtTt)t>0 is expo-
nentially stable. By Corollary 2·4 this implies that

R{R(is + r,A): s ∈ R} <∞.
Therefore

R{isR(is + r,A): s ∈ R} <∞.
By Theorem 2·1 this is equivalent to say that A− r has MR∞ which implies that A
has MR.

We have also the following characterization of MR in term of R-boundedness of
the semigroup T .

Proposition 3·7. Let A be the generator of an analytic C0-semigroup T . Assume that
X is a UMD-space. Then A has MR if and only if for some r > 0 and θ > 0, the set
{Tz: z ∈ Σθ, |z| 6 r} is R-bounded.

Proof. First assume that A has MR, there exists ε > 0 such that the analytic C0-
semigroup (e−εzTz)z∈Σθ belongs to the class E(θ,M, ω) for some θ > 0, M > 1 and
ω > 0. As (e−εtTt)t>0 is exponentially stable, A − ε has MR∞ and by Theorem 3·4
the set {e−εzTz: z ∈ Σθ′} is R-bounded for some 0 < θ′ < θ. On the other hand by
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Corollary 2·6 there exists r > 0 such that the set {e−εzTz: z ∈ Σθ′ , |z| > r} is R-
bounded, and so

R{e−εzTz: z ∈ Σθ′ , |z| 6 r} <∞,
by Kahane’s contraction principle

R{Tz: z ∈ Σθ′ , |z| 6 r} <∞.
For the converse, assume that there exist r > 0 and θ > 0 such that R{Tz: z ∈

Σθ, |z| 6 r} < ∞. There exists ε > 0 such that the C0-semigroup (e−εtTt)t>0

belongs to the class E(θ′,M, ω) for some 0 < θ′ < θ, M > 1 and ω > 0. We deduce
from Corollary 2·6 that R{e−εzTz: z ∈ Σθ′ , |z| > r} < ∞. By hypothesis we have
R{Tz: z ∈ Σθ′ , |z| 6 r} < ∞, so R{e−εzTz: z ∈ Σθ′ , |z| 6 r} <∞ by Kahane’s con-
traction principle. Finally we get R{e−εzTz: z ∈ Σθ′} <∞, this implies by Theo-
rem 3·4 that A− ε has MR∞; and so A has MR. The claim is proved.

Let A be the generator of an analytic C0-semigroup T . Assume that ω(A) < 0. By
Lemma 2·5 the semigroup T belongs to the class E(θ,M, ω) for some 0 < θ < π/2,
M > 1 and ω > 0. By Proposition 2·2 and Corollary 2·6 there exists 0 < θ0 < π/2
such that for all r > 0

sup
z∈Σθ0 ,|z|>r

‖Sz‖ <∞.

One can easily check that when X is a UMD-space, A has MR∞ if and only if
the semigroup Sz is strongly continuous at z = 0. One can also show that when
X is a UMD-space, A has MR∞ if and only if the semigroup Sz is bounded on
{z ∈ Σθ0 , |z| 6 1}.

In the following we study the behaviour of ‖λR(λ,A2)‖ when |λ| → ∞, and the
behaviour of ‖Sz‖ when |z| → 0. We will need the following lemma.

Lemma 3·8. Let A be the generator of an analytic C0-semigroup T. Assume that
ω(A) < 0. Then there exists π/2 < θ < π such that for each 0 < α < 1

R {|λ|αR(λ,A): λ ∈ Σθ} <∞.
Proof. Under the assumption of the lemma, the semigroup T belongs to E(θ,M, ω)

for some θ > 0, M > 1 and ω > 0 by Lemma 2·5. As for each |β| < θ, eiβA also
generates an analytic C0-semigroup on X in the class E(θ − |β|,M, ω), to show the
lemma it suffices to show that for each 0 < θ < π/2, 0 < α < 1, we have

R{|λ|αR(λ,A): λ ∈ Σθ} <∞.
We have

|λ|αR(λ,A) =
∫ ∞

0
|λ|αe−λtTt dt.

By Lemma 2·3

R{|λ|αR(λ,A): λ ∈ Σθ} 6
∫ ∞

0
2‖Tt‖ sup

λ∈Σθ

|λ|αe−Re(λ)t dt

6 2M
cosα θ

∫ ∞
0
e−ωt sup

λ>0
λαe−λt dt

=
2Mαα

e cosα θ

∫ ∞
0
e−ωt

dt

tα
<∞.
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Under the hypothesis of the previous lemma, there exists π/2 < θ < π such that

for all 0 < α < 1, the subset {|λ|αR(λ,A): λ ∈ Σθ} is R-bounded. For λ ∈ Σθ

|λ|αR(λ,A2)

( ∞∑
j=1

γjxj

)
=
∞∑
j=1

γj
|λ|α
pj

R

(
λ

pj
, A

)
xj

as |λ|α/pj 6 |λ|α/pαj for pj > 1 and 0 < α < 1, by Kahane’s contraction principle
‖|λ|αR(λ,A2)‖ 6 Cα,θ, where Cα,θ is a constant depending only on 0 < α < 1 and
θ. So

sup
λ∈Σθ

‖|λ|αR(λ,A2)‖ 6 Cα,θ.

It is clear by Remark 3·3 that the semigroup Sz is well defined and

Sz

( ∞∑
j=1

γjxj

)
=
∞∑
j=1

γjTpjzxj .

One can represent Sz in term of R(λ,A2) in a standard way:

St =
∫

Γ
eλtR(λ,A2) dλ,

where for t > 0, the path Γ is composed by Γ1, Γ2 and Γ3, where Γ1 = {re−iθ′ : t−1 6
r < ∞}, Γ2 = {t−1eiφ : −θ′ 6 φ 6 θ′} and Γ3 = {reiθ′ : t−1 6 r < ∞} for a fixed
π/2 < θ′ < θ. Γ is orientated in such a way that Im(z) increases. Using the known
estimate of R(λ,A2) when |λ| is big, we easily obtain that

‖St‖ 6 Cα/tα 0 < t 6 1

for some constant Cα depending only on 0 < α < 1. So there exists 0 < β < π/2 and
a constant Cα,β depending only on 0 < α < 1 and β, such that

‖Sz‖ 6 Cα,β/|z|α

for all z ∈ Σβ, 0 < |z| 6 1. So we have shown the following.

Proposition 3·9. Let A be the generator of an analytic C0-semigroup T . Assume that
ω(A) < 0. Then there exists 0 < β < π/2 such that for each 0 < α < 1, there exists
Cα,β <∞ depending only on α and β such that

sup
λ∈Σβ+π/2

‖|λ|αR(λ,A2)‖ 6 Cα,β

sup
z∈Σβ

‖|z|1−αSz‖ 6 Cα,β.

Remark 3·10. By the counterexample of Kalton and Lancien, when X is a Banach
space with an unconditional basis and ifX is not isomorphic to l2, there exists an ana-
lytic C0-semigroup T with generatorA satisfying ω(A) < 0 such that the correspond-
ing Cauchy problem does not have MR∞. This implies that R{sR(is, A): s ∈ R} =∞,
or equivalently supλ∈Σβ+π/2

‖|λ|R(λ,A2)‖ =∞ for some 0 < β < π/2. This means
that we cannot expect to extend the conclusion of Lemma 3·8 or Proposition 3·9 to
the case α = 1.
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4. Applications

Let (Ω,Σ, µ) be a σ-finite measure space. Let 1 6 p0 < p1 <∞ and let Tp, p0 6
p 6 p1 be a family of interpolating C0-semigroups on Lp(Ω) (i.e., Tp(t)f = Tq(t)f for
all f ∈ Lp(Ω) w Lq(Ω) whenever t > 0, p0 6 p, q 6 p1). If each Tp is bounded (on R+)
and if T2 is bounded analytic in a sector Σθ for some 0 < θ < π/2, then by Stein’s
interpolation theorem (see [RS, theorem IX·21]), each Tp is bounded analytic on
some sector (depending on p), p0 < p < p1.

Next we suppose that p1 = 2, and let Tp is exponentially stable, p0 6 p 6 2. By
Corollary 2·6 the semigroup

Sp(t)

( ∞∑
j=1

γjfj

)
=
∞∑
j=1

γjTp(tpj)fj

is well defined on Rad(Lp(Ω)) and in general it is not aC0-semigroup. As T2 is bounded
analytic and exponentially stable and L2(Ω) is a Hilbert space, T2 has MR∞ [DS].
By Theorem 3·2 this implies that the C0-semigroup S2 is bounded analytic. Again
by Theorem 3·2 Tp has MR∞ if and only if Sp is bounded analytic on Rad(Lp(Ω)).

Recall the well-known Khintchine’s inequality: for 1 < q <∞, there exists Cq > 0
such that for fj ∈ Lq(Ω)

1
Cq

∥∥∥∥∥∥
( ∞∑
j=1

|fj |2
) 1

2

∥∥∥∥∥∥
Lq(Ω)

6
∥∥∥∥∥
∞∑
j=1

γjfj

∥∥∥∥∥
Rad(Lq(Ω))

6 Cq

∥∥∥∥∥∥
( ∞∑
j=1

|fj |2
) 1

2

∥∥∥∥∥∥
Lq(Ω)

.

This shows that Rad(Lq(Ω)) is isomorphic to the space Lq(Ω; l2). In order to show
that Sp is bounded analytic, it suffices to show that the semigroup

Sp(t)(f1, f2, . . .) = (Tp(p1t)f1, Tp(p2t)f2, . . .)

is bounded analytic on Lp(Ω, l2). It is easy to verify that for p0 6 p, q 6 2

Sp(t)(f1, f2, . . .) = Sq(t)(f1, f2, . . .)

for (f1, f2, . . .) ∈ Lp(Ω; l2) w Lq(Ω; l2) and t > 0. So Sp are again ‘vector-valued’ inter-
polating semigroups, p0 6 p 6 2. Now we are in the position to state a result which
gives a sufficient condition for an interpolating C0-semigroup of negative type to
have MR∞.

Theorem 4·1. Let (Ω,Σ, µ) be a σ-finite measure space and let Tp be interpolating C0-
semigroups on Lp(Ω), p0 6 p 6 2. Assume that for all p0 6 p 6 2, Tp is exponentially
stable, that T2 is analytic and R{Tp0 (t): t > 0} <∞. Then Tp has MR∞ for all p0 <
p 6 2.

This theorem is an immediate consequence of the above discussion and the fol-
lowing vector-valued Stein’s interpolation theorem. Its proof is similar to the scalar
case and can be omitted (see [RS, theorem IX·21] for the scalar case).

Theorem 4·2. Let (Ω,Σ, µ) be a σ-finite measure space,X be a Banach space, 1 < p1,
p2 <∞, 0 < θ < π/2. Let z → T (z) be an application defined on Σθ with values in
B(Lp2 (Ω;X)) which is bounded continuous on Σθ and analytic on Σθ. Assume that there
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exist M1,M2 <∞ such that

sup
r>0
‖T (re±iθ)‖Lp2→Lp2

6M2

and

‖T (r)f‖Lp1
6M1‖f‖Lp1

for all r > 0, f ∈ Lp1 (Ω;X) w Lp2 (Ω;X). Then for all 0 < α < 1,

‖T (reiαθ)f‖Lp 6M 1−α
1 Mα

2 ‖f‖Lp
for all f ∈ Lp(Ω;X) w Lp2 (Ω;X), where

1
p

=
α

p2
+

1− α
p1

.

Now we can prove the following interpolation result for maximal regularity.

Theorem 4·3. Let (Ω,Σ, µ) be a σ-finite measure space, 1 < p0 < 2. For p0 < p 6 2,
let Tp be a C0-semigroups on Lp(Ω) verifying Tp(t)f = Tq(t)f for f ∈ Lp(Ω) w Lq(Ω) and
t > 0. Assume that T2 is analytic and there exists δ > 0 such that R{Tp0 (t): 0 < t <
δ} <∞. Then Tp has MR for all p0 < p 6 2.

Proof. Define for ε > 0

Wp(t) = e−εtTp(t).

Fix one ε > 0 big enough to ensure that each Wp is exponentially stable. In this case
W2 is bounded analytic and by Corollary 2·6, R{Wp0 (t): t > δ} <∞. As R{Tp0 (t): 0 <
t 6 δ} < ∞, we deduce that R{Wp0 (t): t > 0} <∞. By Theorem 4·2 Wp has MR∞
for p0 < p 6 2, and so Tp has MR.

Remark 4·4. Of course, if we have 2 < p0 <∞, we can give similar results for
2 6 p < p0 as in Theorem 4·1 and Theorem 4·3.

As a direct application of Theorem 4·3, we deduce the following result due to [HP]
(see also [CP] and [W1]).

Corollary 4·5. Let Ω ⊂ Rn be a measurable subset. For 1 < p <∞, let Tp be a C0-
semigroup on Lp(Ω) such that for t > 0, f ∈ Lp(Ω) w Lq(Ω), we have Tp(t)f = Tq(t)f .
Assume that T2 is analytic and has Gaussian estimates. Then Tp has MR for 1 < p <∞.

Proof. As T2 has Gaussian estimates, there exist constants C > 0 and a > 0 such
that for f ∈ L2(Ω), one has |T2(t)f |(ω) 6 C[G2(at)|f |](ω) for almost all ω ∈ Ω, and all
0 < t 6 1, where Gp denotes the Gaussian semigroup on Lp(Rn). We have R{Gp(t) :
0 < t 6 1} <∞ by [St, theorem 1, p. 51]. This implies that R{Tp(t) : 0 < t 6 1} <∞
by Khintchine’s inequality. The result follows from Theorem 4·3.

Remark 4·6. Let (Ω,
∑
, µ) be a σ-finite measure space, 1 < p <∞, and let Tp be

interpolating C0-semigroups on Lp(Ω;X), i.e. for all 1 < p, q <∞ and f ∈ Lp(Ω;X)w
Lq(Ω;X), we have Tp(t)f = Tq(t)f for all t > 0. Using Kahane’s inequality it is easy
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to see that the linear mapping

Rad(Lp(Ω;X))→ Lp(Ω; Rad(X))

∞∑
j=1

γjfj →
{
ω →

∞∑
j=1

γjfj(ω)

}
is an isomorphism between Banach spaces. So we can use Theorem 4·2 to obtain a
vector-valued version of Theorem 4·1, Theorem 4·3 and Corollary 4·5 (for this we have
to introduce the notion of vector-valued Gaussian estimates). Since the adaptation
is standard, we omit the detail.

For 1 < p <∞, if Tp are positive interpolating C0-semigroups on Lp(Ω), we can
establish the following result which gives a sufficient condition for MR. Notice that
by Proposition 2·2 and Lemma 2·3, the hypothesis here is weaker than that of
Theorem 4·3.

Theorem 4·7. Let (Ω,
∑
, µ) be a σ-finite measure space and let 1 < p0 < 2. For p0 6

p 6 2, let Tp be a positive C0-semigroup on Lp(Ω) with generator Ap. Assume that
T2 is analytic and for p0 6 p, q 6 2 and t > 0, we have Tp(t)f = Tq(t)f whenever
f ∈ Lp(Ω) w Lq(Ω). Assume that R{tR(t + ω,Ap0 ): t > 0} <∞ for some ω > ω(Ap0 ).
Then Tp satisfies MR for p0 < p 6 2.

Proof. First notice that it suffices to show the same conclusion for the semigroups
(e−εtTp(t))t>0 for some ε > 0. So without loss of generality, we can assume that each
Tp is exponentially stable and R{tR(t, Ap0): t > 0} <∞. L2(Ω) is a Hilbert space, T2

is analytic and exponentially stable, so T2 has MR∞ [DS]. By Theorem 2·1 and an
argument used in [CP], there exist α > 0 such that R{λR(λ,A2): λ ∈ Σπ/2+α} <∞.

Let 0 < θ < π/2 be fixed. For λ ∈ Σθ and f ∈ Lp0 (Ω), one has

|λR(λ,Ap0 )f | 6 |λ|
∫ ∞

0
e−Re(λ)tTp0 (t)|f | dt = |λ|R(Re(λ), Ap0 )|f |

6 1
cos θ

Re(λ)R(Re(λ), Ap0 )|f |.

By Khintchine’s inequality this implies that R{λR(λ,Ap0 ) : λ ∈ Σθ} <∞.
Notice that 0 < θ < π/2 is arbitrary, so a similar argument as in [La, section

II] shows that for each p0 < p 6 2, the set {sR(is, Ap): s ∈ R} is R-bounded. By
Theorem 2·1, Tp has MR.

Using Theorem 3·6, we can also give an easy new proof of the following perturba-
tion result due to [W1].

Theorem 4·8. Let A be the generator of an analytic C0-semigroup on a UMD-space
X, B a closed operator in X such that D(A) ⊂ D(B). Assume that for each a > 0 there
exists b > 0 satisfying

‖Bx‖ 6 a‖Ax‖ + b‖x‖, x ∈ D(A).

Then if A has MR, A +B also has MR.
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Proof. Let A1 and B1 be the corresponding closed operators associated to A and

B respectively, defined by (3·1). We have for xj ∈ D(A)∥∥∥∥∥B1

( ∞∑
j=1

γjxj

)∥∥∥∥∥
Rad(X)

6 a
∥∥∥∥∥A1

( ∞∑
j=1

γjxj

)∥∥∥∥∥
Rad(X)

+ b

∥∥∥∥∥
∞∑
j=1

γjxj

∥∥∥∥∥
Rad(X)

.

This follows from Kahane’s contraction principle and the estimate∥∥∥∥∥
∞∑
j=1

γjBxj

∥∥∥∥∥
Rad(X)

6 a
∥∥∥∥∥
∞∑
j=1

γjAxj

∥∥∥∥∥
Rad(X)

+ b

∥∥∥∥∥
∞∑
j=1

γjxj

∥∥∥∥∥
Rad(X)

.

The semigroup generated by A1 is strongly continuous and analytic since A has
MR. By [ABHN, theorem 3·7·23], A1 + B1 generates an analytic C0-semigroup.
This implies that A +B has MR by Theorem 3·6.

Theorem 3·2 combined with [AR, theorem 1·1] gives the following perturbation
result for positive C0-semigroups. Recall that an operator A on Lp(Ω) is called re-
solvent positive if, for some λ0 ∈ R one has [λ0,∞) ⊂ ρ(A) and R(λ,A) > 0 for all
λ > λ0.

Theorem 4·9. Let A be the generator of a positive C0-semigroup on Lp(Ω) for some
measure space (Ω,Σ, µ) and 1 < p <∞. Let B : D(A)→ Lp(Ω) be linear and positive.
Assume that A+B is resolvent positive and that A has MR. Then A + C has MR when-
ever C: D(A)→ Lp(Ω) is a linear mapping satisfying |Cu| 6 Bu for all u ∈ D(A)+.

Proof. By [AR, theorem 1·1], A +B and A +C generate analytic C0-semigroups.
Since A + B is resolvent positive, there exist λ > ω(A) and k ∈ N satisfying
‖(BR(λ,A))k‖ < 1, see [V, theorem 1·1]. Without loss of generality we can assume
that ω(A) < 0, ω(A +B) < 0, ω(A + C) < 0 and λ = 0. Let A2, B2 and C2 be the
corresponding closed operators associated with A, B and C respectively, defined
by (3·2). By Khintchine’s inequality, there exists a constant C > 0 such that for
fj ∈ Lp(Ω)

1
C

∥∥∥∥∥∥
( ∞∑
j=1

|fj |2
)1/2

∥∥∥∥∥∥
Lp(Ω)

6
∥∥∥∥∥
∞∑
j=1

γjfj

∥∥∥∥∥
Rad(Lp(Ω))

6 C

∥∥∥∥∥∥
( ∞∑
j=1

|fj |2
)1/2

∥∥∥∥∥∥
Lp(Ω)

.

So the application J

Rad(Lp(Ω)) −→ Lp(Ω; l2)

∞∑
j=1

γjfj −→ {ω −→ (fj(ω))j>1}

is an isomorphism between Banach spaces. We will consider Lp(Ω; l2) as a Banach
lattice in the natural way. Let A = JA2J

−1, B = JB2J
−1 and C = JC2J

−1 be the
corresponding operators on Lp(Ω; l2).

The operator B: D(A) → Lp(Ω; l2) is well defined and positive. Indeed, for
(fj)j>1 ∈ D(A), we have (pjAfj)j>1 ∈ Lp(Ω; l2). As BA−1 is bounded, we deduce that
(pjBfj)j>1 ∈ Lp(Ω; l2) and so D(A) ⊂ D(B). It is also clear that C: D(A)→ Lp(Ω; l2)
is well defined and satisfies |Cu| 6 Bu for each u ∈ D(A)+ and A generates an ana-
lytic C0-semigroup by Theorem 3·2.
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Notice that A is injective with dense range since A is injective with dense range.

Furthermore for (fj)j>1 ∈ Lp(Ω; l2), one has ‖A−1((fj)j>1)‖ 6 ‖( 1
pj
A−1fj)j>1‖ 6

‖A−1‖‖((fj)j>1)‖ since pj > 1. This means that 0 ∈ ρ(A). Next for (fj)j>1 ∈ Lp(Ω; l2)
and n ∈ N, one has

‖(BR(0,A))nk(fj)j>1‖Lp(Ω;l2) = ‖((BR(0, A))nkfj)j>1‖Lp(Ω,l2)

6 C
∥∥∥∥∥
∞∑
j=1

γj(BR(0, A))nkfj

∥∥∥∥∥
Rad(Lp(Ω))

6 C‖(BR(0, A))k‖n
∥∥∥∥∥
∞∑
j=1

γjfj

∥∥∥∥∥
Rad(Lp(Ω))

6 C2‖(BR(0, A))k‖n‖(fj)j>1‖Lp(Ω;l2).

We deduce that ‖(BR(0,A))nk‖ 6 C2‖B(R(0, A))k‖n and so ‖(BR(0,A))nk‖ < 1 for
large n ∈ N. This implies by [V, theorem 1·1] that A + B is resolvent positive. By
[AR, theorem 1·1], A + C generates an analytic C0-semigroup on Lp(Ω; l2). We will
show that ω(A + C) < 0, this will finish the proof by Theorem 3·2 and Lemma 2·5.

We have A + B = A(I − R(0,A)B), so (A + B)−1 = (I − BR(0,A))−1A−1 =∑∞
j=0(BR(0,A))jA−1. As BR(0,A) and R(0,A) are positive, we deduce that

R(0,A + B) is positive. This implies that s(A + B) = ω(A + B) < 0, see [ABHN,
proposition 3·11·2]. By [AR, theorem 1·2], the semigroup generated byA + C is
exponentially stable and so ω(A + C) < 0. The claim is proved.

When T is a positive contractive analytic C0-semigroup on Lp(Ω)(1 < p < ∞), T
has MR [W1]. The following corollary is an immediate consequence of the previous
theorem, and enlarges the class of semigroups to which Weis’ theorem is applicable.

Corollary 4·10. Let A be the generator of a positive contractive analytic C0-
semigroup on Lp(Ω) for some measure space (Ω,Σ, µ) and 1 < p <∞. Let B:
D(A) → Lp(Ω) be linear and positive. Assume that A + B is resolvent positive. Then
A + C has MR whenever C: D(A)→ Lp(Ω) is a linear mapping satisfying |Cu| 6 Bu
for all u ∈ D(A)+.

We give a concrete example of a Schrödinger operator.

Example 4·11. Let X = Lp(Rn), 1 < p < ∞, Af ÷ ∆f , D(A) = W 2,p(Rn). Let
0 6 V ∈ Lr(Rn), where r > max{p, n/2} if p � n/2 and r > n/2 if p = n/2.
Then A + V with domain D(A + V ) = D(A) generates an analytic C0-semigroup on
Lp(Rn) which satisfies MR. We refer to [AR, section 3] for more details and further
examples.

Finally we prove that the mild solutions of the inhomogeneous Cauchy problem are
always in some fractional Sobolev space without any assumption of R-boundedness.
Let X be a Banach space, 1 < p <∞, let S(R;X) be the space of all rapidly decreas-
ing smooth X-valued functions and denote by S′(R;X)÷B(S(R);X) the X-valued
Schwartz space. As usual, we identify Lp(R;X) with a subspace of S′(R;X). For
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f ∈S(R;X), the Fourier transform of f is defined by

(Ff )(y) =
1√
2π

∫ ∞
0
e−ixyf (x) dx, y ∈ R.

It is known that for f ∈ S(R;X), Ff ∈S(R;X). So for T ∈S′(R;X), we can define
FT ∈S′(R;X) in a natural way: 〈FT, φ〉 = −〈T,Fφ〉 for φ ∈S(R;C). It is known
that F is an isomorphism from S(R;X) onto S(R;X), and it is also an isomorphism
from S′(R;X) onto S′(R;X).

For β > 0, we can define the fractional Sobolev space W β,p(R;X) by

W β,p(R;X) = {f ∈S′(R;X): F−1((1 + y2)β/2(Ff )(y)) ∈ Lp(R;X)}
where F−1 denotes the inverse Fourier transform on S′(R;X). DefineW β,p(R+;X) =
{f ∈W β,p(R;X): f (x) = 0 for x < 0}.

Let T be an analyticC0-semigroup with generatorA. Assume that ω(A) < 0. When
X is a UMD-space and {isR(is, A): s ∈ R} is R-bounded, then the Cauchy problem
(1) has maximal regularity in W β,p(R+;X) for 1 < p <∞ and 0 < β < 1: for each
f ∈W β,p(R+;X), there exists a unique u, solution of (1) such thatAu ∈W β,p(R+;X).
This follows easily from the operator-valued Fourier multiplier theorem due to [W2].

Using Lemma 3·8 and the same operator-valued Fourier multiplier theorem, we
can establish the following result.

Theorem 4·12. Let A be the generator of an analytic C0-semigroup T on a UMD-
spaceX and letA be the generator of an analyticC0-semigroup onX satisfying ω(A) < 0.
Then the following holds.

(i) For all f ∈ W β,p(R+, X), 0 < β < 1, there exists a unique solution u of the
problem (1) such that Au ∈W β′,p(R+;X) for all 0 < β′ < β.

(ii) For all f ∈ Lp(R+, X), the mild solution u of the problem (1) belongs to W β,p

(R+, X) for every 0 < β < 1.

Proof. First we give the proof for the second conclusion. For f ∈ Lp(R+;X), the
mild solution of the problem (1) is given by u(t) = T ∗ f (t) =

∫ t
0 Tt−sf (s) ds. Since

T is exponentially stable, one has u ∈ Lp(Rn;X) and the Fourier transform of u is
given by û(y) = R(iy, A)f̂ (y), y ∈ R. Let 0 < β < 1 be fixed, by Lemma 3·8, the
set {|y|βR(iy, A): y ∈ R} is R-bounded. In order to show that u ∈W β,p(R+, X), it
suffices to show that Mβ: y → (1 + y2)β/2R(iy, A) is a Fourier multiplier, see [W2] for
a definition. By the operator-valued Fourier multiplier theorem of [W2], it will suffice
to show that both {Mβ(y): y ∈ R} and {yM ′β(y): y ∈ R} are R-bounded. Notice that
yM ′β(y) = βy2(1 + y2)β/2−1R(iy, A)− iy(1 + y2)β/2R(iy, A)2. So the R-boundedness of
{Mβ(y): y ∈ R} and {yM ′β(y): y ∈ R} follows from Kahane’s contraction principle,
the R-boundedness of {|y|βR(iy, A): y ∈ R} and Proposition 2·2.

Now let f ∈ W β,p(R+, X), 0 < β < 1 and let u be the mild solution of the
problem (1). We have to show that F−1((1 + y2)β

′/2A(Fu)(y)) = F−1((1 + y2)β
′/2AR

(iy, A)(Ff )(y)) ∈ Lp(R;X). Since F−1((1 + y2)β/2(Ff )(y)) ∈ Lp(R;X), it suffices to
show that

y −→ (1 + y2)
β′−β

2 AR(iy, A)

is a Fourier multiplier. This follows from Kahane’s contraction principle, the R-
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boundedness of {|y|αR(iy, A): y ∈ R} for 0 < α < 1 and Proposition 2·2. The claim
is proved.

Remark 4·13. By [KL], for each Banach space X with an unconditional basis, if X
is not isomorphic to l2, there exists an analyticC0-semigroup T onX of negative type,
such that the corresponding Cauchy problem does not have MR∞. This implies that
we cannot expect to extend the first conclusion of Theorem 4·12 to the case β′ = β,
or the second conclusion of Theorem 4·12 to the case β = 1.
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