Math. Proc. Camb. Phil. Soc. (2003), **134**, 317 © 2003 Cambridge Philosophical Society DOI: 10.1017/S0305004102006345 Printed in the United Kingdom

Tools for maximal regularity[†]

BY WOLFGANG ARENDT

Abteilung Angewandte Analysis, Universität Ulm, 89069 Ulm, Germany. e-mail: arendt@mathematik.uni-ulm.de

AND SHANGQUAN BU

Department of Mathematical Science, University of Tsinghua, Beijing 100084, P. R. of China. e-mail: bu@mathematik.uni-ulm.de

(Received 22 January 2001)

Abstract

Let A be the generator of an analytic C_0 -semigroup on a Banach space X. We associate a closed operator \mathscr{A}_1 with A defined on $\operatorname{Rad}(X)$ and show that when X is a UMD-space, the Cauchy problem associated with A has maximal regularity if and only if the operator \mathscr{A}_1 generates an analytic C_0 -semigroup on $\operatorname{Rad}(X)$. This allows us to exploit known results on analytic C_0 -semigroups to study maximal regularity. Our results show that \mathscr{R} -boundedness is a local property for semigroups: an analytic C_0 -semigroup T of negative type is \mathscr{R} -bounded if and only if it is \mathscr{R} -bounded at z = 0. As applications, we give a perturbation result for positive semigroups. Finally, we show the following: when X is a UMD-space, T is an analytic C_0 -semigroup of negative type, then for every $f \in L^p(\mathbb{R}_+; X)$, the mild solution of the corresponding inhomogeneous Cauchy problem with initial value 0 belongs to $W^{\theta,p}(\mathbb{R}_+; X)$ for every $0 < \theta < 1$.

1. Introduction

Let A be the generator of a C_0 -semigroup T on a Banach space X and let $0 < \tau < \infty$. If $f \in L^1([0,\tau); X)$ then $u(t) = T * f(t) = \int_0^t T_{t-s}f(s) ds$ defines the unique mild solution of the problem

$$\begin{cases} u'(t) = Au(t) + f(t), & t \in [0, \tau) \\ u(0) = 0. \end{cases}$$
(1)

We say that A or T satisfies property $\mathcal{M}R$ (for maximal regularity) if $u \in L^p([0,\tau); D(A)) \cap W^{1,p}([0,\tau); X)$ whenever $f \in L^p([0,\tau); X)$ for some (equivalently for all) 1 . This property of maximal regularity is important for non-linear problems and has been studied extensively in the last years, see [AB, CPSW, CL, DPG, Do, DoV,

[†] This research is part of the DFG-project: 'Regularität und Asymptotik für elliptische und parabolische Probleme'. The second author is supported by the Alexander-von-Humboldt Foundation and the NSF of China.

318 Wolfgang Arendt and Shangquan Bu

HP, **KL**, **KW**, **LLM**, **LeM**, **W1**, **W2**]. It is shown by Dore that property $\mathcal{M}R$ implies that T is analytic [**Do**]. Moreover on Hilbert space, each analytic semigroup has $\mathcal{M}R$ [**DS**]. However, by a remarkable recent result by [**KL**] this property characterizes Hilbert spaces among a large class of Banach spaces. This result makes it desirable to have a characterization of $\mathcal{M}R$ for an individual operator A. And indeed, this was done recently by [**W2**]: if X is a UMD-space (see [**Bo1**]), then the operator A has $\mathcal{M}R$ if and only if the set $\{sR(\omega + is, A): s \in \mathbb{R}\}$ is \mathcal{R} -bounded for some ω larger than the growth bound $\omega(A)$ of A. The notion of \mathcal{R} -boundedness for sets of operators is due to [**Bo2**] and is stronger than boundedness in operator norm (unless X is a Hilbert space [**AB**]).

In the present article we find a reformulation of the characterization given by Weis. We associate two closed operators \mathscr{A}_1 and \mathscr{A}_2 with A which are defined on a Banach space $\operatorname{Rad}(X)$ (the closed space of all Rademacher functions in $L^1([0, 1]; X)$). Assuming that T has negative growth bound, we show that A has $\mathscr{M}R$ if and only if \mathscr{A}_j generates an analytic C_0 -semigroup, where j may be 1 or 2. Both operators \mathscr{A}_1 and \mathscr{A}_2 are useful to exploit known results on analytic semigroups to study maximal regularity. For example, we obtain as an immediate corollary that A + Bhas $\mathscr{M}R$ if A has $\mathscr{M}R$ and B is a small perturbation of A whenever X is a UMDspace (a perturbation result due to $[\mathbf{W1}]$). For positive C_0 -semigroups on $X = L^p(\Omega)$, $1 , we obtain the following new perturbation result using the operator <math>\mathscr{A}_2$: if A generates a positive C_0 -semigroup on X satisfying $\mathscr{M}R$ and if $B: D(A) \to X$ is a positive operator such that A + B is resolvent positive, then A + B satisfies $\mathscr{M}R$.

We also find a sufficient condition for positive interpolating semigroups on $L^{p}(\Omega)$ to have $\mathcal{M}R$. Finally, we refind a result due to [**HP**] showing that Gaussian estimates implies $\mathcal{M}R$. Gaussian estimates can be established for elliptic operators of second order for diverse boundary conditions (see [**AE**]).

In view of Weis' characterization and other results in this direction (e.g. [AB, CP]) it seems important to find criteria to verify \mathscr{R} -boundedness. Our result shows that maximal regularity is a local property of the semigroup T: if X is a UMD-space, then the semigroup T has $\mathscr{M}R$ if and only if the set $\{T_z : |\arg(z)| < \theta, |z| < \epsilon\}$ is \mathscr{R} -bounded for some $\theta > 0$ and some $\epsilon > 0$.

It is not easy to verify \mathscr{R} -boundedness in concrete cases. However, if A generates an analytic C_0 -semigroup of negative type, then we show that $\{|s|^{\beta}R(is, A): s \in \mathbb{R}\}$ is \mathscr{R} -bounded for each $0 < \beta < 1$. This is used to show that when X is a UMD-space, the mild solution u of (1) is actually in $W^{\theta,p}(\mathbb{R}_+; X)$ for all $0 < \theta < 1$ whenever $f \in L^p(\mathbb{R}_+; X), 1 .$

We will also consider the problem (1) on \mathbb{R}_+ . We say that A or T satisfies $\mathscr{M} \mathbb{R}_{\infty}$ if the mild solution u of (1) belongs to $L^p(\mathbb{R}_+; D(A)) \cap W^{1,p}(\mathbb{R}_+; X)$ for $f \in L^p(\mathbb{R}_+; X)$. It is known that A has $\mathscr{M} \mathbb{R}_{\infty}$ if and only if A has $\mathscr{M} \mathbb{R}$ and $\omega(A) < 0$ [**Do**], where $\omega(A)$ denotes the growth bound of A. This result is most useful in the study of $\mathscr{M} \mathbb{R}$. In fact, to study the property $\mathscr{M} \mathbb{R}$ for A, it suffices to study the property $\mathscr{M} \mathbb{R}_{\infty}$ for $A - \beta$ for some $\beta > 0$ satisfying $\omega(A - \beta) < 0$. Notice that for a C_0 -semigroup T with generator A, one has $\omega(A) < 0$ if and only if T is exponentially stable (or equivalently, of negative type), i.e. there exist $M \ge 1$ and $\epsilon > 0$ such that $||T_t|| \le Me^{-\epsilon t}$ whenever $t \ge 0$. When T is analytic, we have $s(A) = \omega(A)$, where $s(A) = \sup \{\operatorname{Re}(z) : z \in \sigma(A)\}$ is the spectral bound of A.

Let X, Y be Banach spaces, we will denote by B(X, Y) the space of all bounded

linear operators from X to Y. When X = Y, we will denote B(X, X) simply by B(X). For $0 < \theta < \pi$, \sum_{θ} will be the sector $\{z \in \mathbb{C} : |\arg(z)| < \theta\}$. For a closed operator A on X, we denote by $\rho(A)$ the resolvent set of A, and $R(\lambda, A) = (\lambda - A)^{-1}$ for $\lambda \in \rho(A)$.

2. *R*-boundedness

Let X, Y be Banach spaces. A set $M \subset B(X; Y)$ is called \mathscr{R} -bounded if there exists a constant C > 0, such that for all $T_1, T_2, \ldots, T_n \in M, x_1, x_2, \ldots, x_n \in X, n \in \mathbb{N}$,

$$\int_0^1 \left\| \sum_{j=1}^n \gamma_j(t) T_j x_j \right\|_X dt \leqslant C \int_0^1 \left\| \sum_{j=1}^n \gamma_j(t) x_j \right\|_X dt, \tag{2}$$

where $(\gamma_j)_{j\geq 1}$ is a fixed sequence of independent symmetric $\{-1, 1\}$ -valued random variables on [0, 1], e.g. the Rademacher functions $\gamma_j(t) = \operatorname{sign}(\sin(2^j \pi t))$. We will denote by $\mathscr{R}(M)$ the smallest constant in (2). This concept was already used in [**BG**] and [**Bo2**] in connection with multiplier theorems and more recently in [**AB**, **CPSW**, **KW**, **W1**, **W2**]. Using Kahane's inequality [**LT**, theorem 1·e·13], it is easy to see that we can replace the L^1 -norm by any L^p -norm in (2). We should also notice that if we require (2) only for distinct $T_1, T_2, \ldots, T_n \in M$, we will obtain the same notion of \mathscr{R} -boundedness with the same constant $\mathscr{R}(M)$ [**CPSW**].

The notion of \mathscr{R} -boundedness plays an important role in the study of $\mathscr{M}R$ and $\mathscr{M}R_{\infty}$. For instance we recall the following characterization of $\mathscr{M}R_{\infty}$ in term of \mathscr{R} -boundedness due to [**W2**]. Its original statement is more general, but we will only use the following more simple version.

THEOREM 2.1. Let A be the generator of an analytic C_0 -semigroup T on X. Assume that X is a UMD-space and $\omega(A) < 0$. Then the operator A has $\mathcal{M}R_{\infty}$ if and only if the set $\{sR(is, A): s \in \mathbb{R}\}$ is \mathcal{R} -bounded.

The following proposition summarizes the most useful properties concerning \mathscr{R} -boundedness (see [**CPSW**, lemma 3.2] and [**W2**, 2.4, 2.6, 2.8]).

PROPOSITION 2.2. (i) Let Ω be an open subset of \mathbb{C} , and let $T: \Omega \to B(X)$ be an analytic mapping. Then for every compact subset $K \subset \Omega$, $\Re\{T(z): z \in K\} < \infty$.

(ii) Let $\Omega \subset \mathbb{C}$ be a simply connected Jordan region such that $\mathbb{C}\backslash\Omega$ has interior points. Let $T: \overline{\Omega} \to B(X)$ be a bounded, strongly measurable function, analytic in Ω . If $\mathscr{R}\{T(z): z \in \partial\Omega\} < \infty$, then $\mathscr{R}\{T(z): z \in \Omega\} < \infty$.

(iii) Let M_1, M_2, \ldots, M_n be subsets of B(X), then

$$\mathscr{R}\left(\bigcup_{i=1}^{n}M_{i}\right)\leqslant\sum_{i=1}^{n}\mathscr{R}(M_{i})$$

(iv) Let M be an \mathscr{R} -bounded set, then $\mathscr{R}(co(M)) \leq 2\mathscr{R}(M)$, where $co(M) = \{\sum_{j=1}^{m} \lambda_j S_j : \lambda_j \in \mathbb{C}, S_j \in M, \sum_{j=1}^{m} |\lambda_j| \leq 1, m \in \mathbb{N}\}.$

(v) Let $T \in B(X)$ be fixed, $\Omega \subset \mathbb{C}$ be a bounded subset. Then $\mathscr{R}\{\lambda T: \lambda \in \Omega\}$ is \mathscr{R} -bounded and

$$\Re{\lambda T: \lambda \in \Omega} \leqslant 2 \|T\| \sup_{\lambda \in \Omega} |\lambda|$$

The following lemma will be very useful in the study of \mathcal{R} -boundedness.

LEMMA 2.3. Let S be a set, I be an interval of \mathbb{R} , $f: S \times I \to B(X)$. Assume that for each $s \in S$, $f(s, .) \in L^1(I, B(X))$ and that there exists a measurable function g on I, such that $\Re\{f(s, t): s \in S\} \leq g(t)$ for each $t \in I$. Then

$$\mathscr{R}\left\{\int_{I} f(s,t) \, dt \colon s \in S\right\} \leqslant \int_{I} g(t) \, dt.$$

Proof. Let $s_1, s_2, \ldots, s_n \in S, x_1, x_2, \ldots, x_n \in X$. Then

$$\int_0^1 \left\| \sum_{j=1}^n \gamma_j(\omega) \int_I f(s_j, t) \, dt \, x_j \right\| d\omega \leqslant \int_I \int_0^1 \left\| \sum_{j=1}^n \gamma_j(\omega) f(s_j, t) x_j \right\| d\omega \, dt$$
$$\leqslant \int_I g(t) \, dt \int_0^1 \left\| \sum_{j=1}^n \gamma_j(\omega) x_j \right\| d\omega.$$

Thus

$$\mathscr{R}\left\{\int_{I} f(s,t) \, dt : s \in S\right\} \leqslant \int_{I} g(t) \, dt.$$

COROLLARY 2.4. Let T be a C_0 -semigroup on X with generator A. Assume that there exist constants $M \ge 1$ and $\omega > 0$ such that $||T_t|| \le M e^{-\omega t}$ for all $t \ge 0$. Then

$$\mathscr{R}\{R(z,A): Re(z) \ge 0\} \le 2M/\omega.$$

Proof. This is a simple consequence of Lemma 2.3 and the equality

$$R(z, A) = \int_0^\infty e^{-zt} T_t \, dt, \quad Re(z) \ge 0.$$

For $0 < \theta < \pi/2$, $M \ge 1$ and $\omega > 0$, we denote by $\mathscr{E}(\theta, M, \omega)$ the class of all analytic C_0 -semigroups T defined on \sum_{θ} satisfying

$$||T_z|| \leq M e^{-\omega|z|}, \quad z \in \Sigma_{\theta}.$$

We will use the following lemma.

LEMMA 2.5. Let A be the generator of an analytic C_0 -semigroup T on X. Assume that $\omega(A) < 0$. Then there exist $0 < \theta < \pi/2$, $\omega > 0$ and $M \ge 1$ such that $T \in \mathscr{E}(\theta, M, \omega)$.

Proof. As the semigroup T is analytic, we have $s(A) = \omega(A) < 0$ and there exist $\omega > 0$ and $\alpha > 0$ such that $\{z \in \mathbb{C} : |\arg(z-\omega)| < \alpha + \pi/2\} \subset \rho(A)$. This implies that $\sum(A) \subset \{z \in \mathbb{C} : \operatorname{Re}(z) \leq s(A)\} \cap \{z \in \mathbb{C} : |(z-\omega)| \ge \alpha + \pi/2\}$. From this we can find $\beta > 0$ such that $e^{\pm i\beta}A$ generate analytic C_0 -semigroup and $\omega(e^{\pm i\beta}A) = s(e^{\pm i\beta}A) < 0$. In particular, the semigroup $(T_{te^{\pm i\beta}})_{t\ge 0}$ generated by $e^{\pm i\beta}A$ is exponentially stable. There exist $\omega > 0$ and $M \ge 1$ satisfying

$$\|T_{te^{\pm i\beta}}\| \leqslant Me^{-\omega t}, \quad t > 0.$$

[AMH, proposition 4.5] implies that

$$||e^{zA}|| \leq M e^{-\omega Re(z)}, \quad z \in \Sigma_{\beta}.$$

As $\operatorname{Re}(z) \ge |z|/\cos \beta$ for $z \in \Sigma_{\beta}$, the claim is proved.

Notice that when a C_0 -semigroup T has $\mathcal{M}R_{\infty}$, then T is analytic and has negative growth bound [**Do**]. So by Lemma 2.5, $T \in \mathscr{E}(\theta, M, \omega)$ for some $\theta > 0$, $M \ge 1$ and $\omega > 0$. Lemma 2.3 has the following useful corollary.

COROLLARY 2.6. Let A be the generator of an analytic C_0 -semigroup T. Assume that $\omega(A) < 0$. Then for some $\theta > 0$ and each r > 0, we have $\Re\{T_z : |z| \ge r, z \in \Sigma_{\theta}\} < \infty$.

Proof. By Lemma 2.5, there exist $\theta_0 > 0$, $M \ge 1$ and $\omega > 0$ such that $T \in \mathscr{E}(\theta_0, M, \omega)$. For each $|\alpha| < \theta_0$, $e^{i\alpha}A$ generates an analytic C_0 -semigroup in the class $\mathscr{E}(\theta_0 - |\alpha|, M, \omega)$. By Proposition 2.2, it suffices to show that $\mathscr{R}\{T(t): t \ge t_0\} < \infty$ for each $t_0 > 0$.

Let $t_0 > 0$ be fixed. Denote by $\overline{B}(s, r)$ the closed ball centered on s with radius r in the complex plane. We have $\overline{B}(t_0, t_0 \sin \theta_0/2) \subset \Sigma_{\theta_0}$. For $z \in \overline{B}(t_0, t_0 \sin \theta_0/4)$, $z = t_0 + t_0 \sin \theta_0 r e^{i\alpha}/2$, $0 \leq r < 1/2$, $\alpha \in [0, 2\pi]$, since T is analytic in Σ_{θ_0} , we have

$$T_z = \int_0^{2\pi} T_{t_0+t_0 \sin \theta_0 e^{i\beta}/2} P_r(\alpha - \beta) \frac{d\beta}{2\pi},$$

where

$$P_r(\beta) = \frac{1 - r^2}{1 + r^2 - 2r\cos\beta}$$

is the Poisson kernel. By Lemma 2.3,

$$\begin{aligned} \mathscr{R}\{T_z: z \in \overline{B}(t_0, t_0 \sin \theta_0/4)\} &\leqslant \sup_{0 \leqslant r \leqslant 1/2, \alpha \in [0, 2\pi]} 2P_r(\alpha) \int_0^{2\pi} \|T_{t_0 + t_0 \sin \theta_0 e^{i\beta}/2}\| \frac{d\beta}{2\pi} \\ &\leqslant 6M e^{-\omega t_0(1 - \sin \theta_0/2)}. \end{aligned}$$

In particular

$$\mathscr{R}\{T_t: t \in [(1 - \sin \theta_0/4)t_0, (1 + \sin \theta_0/4)t_0]\} \leqslant 6Me^{-\omega t_0(1 - \sin \theta_0/2)}$$

Let $\alpha = (4 + \sin \theta_0/4 - \sin \theta_0)$, then $[t_0, \infty) \subset \bigcup_{n \ge 0} [(1 - \sin \theta_0/4)\alpha^n t_0, (1 + \sin \theta_0/4)\alpha^n t_0]$ and thus by Proposition 2.2

$$\begin{aligned} \mathscr{R}\{T_t:t \ge t_0\} &\leqslant \sum_{n \ge 0} \mathscr{R}\{T_t:t \in [(1 - \sin \theta_0/4)\alpha^n t_0, (1 + \sin \theta_0/4)\alpha^n t_0]\} \\ &\leqslant \sum_{n \ge 0} 6Me^{-\omega t_0 \alpha^n (1 - \sin \theta_0/2)} < \infty \end{aligned}$$

since $\alpha > 1$. The claim is proved.

3. Associated semigroups on $\operatorname{Rad}(X)$

Let X be a Banach space and let A be the generator of an analytic C_0 -semigroup T on X. Let $(\gamma_j)_{i \ge 1}$ be the sequence of Rademacher functions on [0, 1]. Define

$$\mathscr{R}(X) = \left\{ \sum_{j=1}^{n} \gamma_j x_j \colon x_j \in X, n \in \mathbb{N} \right\}$$

and $\operatorname{Rad}(X)$ the closure of $\mathscr{R}(X)$ in $L^1([0, 1]; X)$. We obtain the same space $\operatorname{Rad}(X)$ if we replace the L^1 -norm by any other L^p -norm by Kahane's inequality, see [LT, theorem 1·e·13]. Notice that

$$\operatorname{Rad}(X) = \left\{ \sum_{j=1}^{\infty} \gamma_j x_j \colon \text{the series } \sum_{j=1}^{\infty} \gamma_j x_j \text{ converges in } L^1([0,1];X) \right\}.$$

Wolfgang Arendt and Shangquan Bu

In fact, the subset in the right hand side is closed in $L^1([0, 1]; X)$. Indeed, let $f_n = \sum_{j=1}^{\infty} \gamma_j x_j^{(n)} \in L^1([0, 1]; X)$ and let $f = \lim_{n \to \infty} f_n$ in $L^1([0, 1]; X)$. For $j \in \mathbb{N}$, let \mathscr{F}_j be the σ -algebra of Borel subsets of [0, 1] generated by the functions $\gamma_1, \gamma_2, \ldots, \gamma_j$. Then the σ -algebra generated by $\bigcup_{j=1}^{\infty} \mathscr{F}_j$ is exactly the σ -algebra of all Borel subsets of [0, 1]. Therefore if $g_j = \mathbf{E}(f|\mathscr{F}_j)$, then $(g_j)_{j \ge 1}$ is a martingale with respect to the filtration \mathscr{F}_j and $\lim_{j\to\infty} g_j = f$ in $L^1([0, 1]; X)$, where $\mathbf{E}(f|\mathscr{F}_j)$ denotes the expectation of f with respect to \mathscr{F}_j . Each g_j is of the form

$$g_j = \sum_{k=1}^j h_k(\gamma_1, \dots, \gamma_{k-1})\gamma_k,$$

where h_k is a function defined on $\{-1, 1\}^{k-1}$ with values in X. It is easy to see that for $m, n, j \in \mathbb{N}$

$$\|x_j^{(n)} - x_j^{(n+m)}\|_X \leq \|f_n - f_{n+m}\|_{L^1([0,1];X)}.$$

This implies that $\lim_{n\to\infty} x_j^{(n)} \coloneqq x_j$ exists in X. On the other hand, for $j, n \in \mathbb{N}$

$$\|h_j(\gamma_1,\ldots,\gamma_{j-1})-x_j^{(n)}\|_{L^1([0,1];X)} \leq \|f-f_n\|_{L^1([0,1];X)}$$

Let n tend to ∞ , we obtain that h_j is a constant function and $h_j \equiv x_j$. We deduce from this that the series $\sum_{j=1}^{\infty} \gamma_j x_j$ converges in $L^1([0, 1]; X)$ to f.

Let $(q_j)_{j\geq 1}$ be a fixed dense sequence in (0,1) and let $(p_j)_{j\geq 1}$ be a fixed dense sequence in $(1,\infty)$. We introduce two operators \mathscr{A}_1 and \mathscr{A}_2 on $\operatorname{Rad}(X)$ in the following way:

$$\begin{cases} D(\mathscr{A}_1) = \left\{ \sum_{j=1}^{\infty} \gamma_j x_j \in \operatorname{Rad}(X) : x_j \in D(A), \quad \sum_{j=1}^{\infty} q_j \gamma_j A x_j \in \operatorname{Rad}(X) \right\} \\ \mathscr{A}_1\left(\sum_{j=1}^{\infty} \gamma_j x_j \right) = \sum_{j=1}^{\infty} q_j \gamma_j A x_j. \end{cases}$$
(3)

$$\begin{cases} D(\mathscr{A}_2) = \left\{ \sum_{j=1}^{\infty} \gamma_j x_j \in \operatorname{Rad}(X) : x_j \in D(A), \quad \sum_{j=1}^{\infty} p_j \gamma_j A x_j \in \operatorname{Rad}(X) \right\} \\ \mathscr{A}_2\left(\sum_{j=1}^{\infty} \gamma_j x_j \right) = \sum_{j=1}^{\infty} p_j \gamma_j A x_j. \end{cases}$$
(4)

It is easy to verify that \mathcal{A}_1 and \mathcal{A}_2 are densely defined closed operators. We will use the following lemma.

LEMMA 3.1. Let $\lambda \in \mathbb{C}$, $\lambda = re^{i\theta}$, then $\lambda \in \rho(\mathscr{A}_1)$ if and only if $\mathscr{R}\{se^{i\theta}R(se^{i\theta}, A): s \geq r\} < \infty$ and $\lambda \in \rho(\mathscr{A}_2)$ if and only if $\mathscr{R}\{se^{i\theta}R(se^{i\theta}, A): 0 < s \leq r\} < \infty$. In that case we have

$$\begin{split} \|\lambda R(\lambda,\mathscr{A}_1)\| &= \mathscr{R}\{se^{i\theta}R(se^{i\theta},A):s \geqslant r\}\\ \|\lambda R(\lambda,\mathscr{A}_2)\| &= \mathscr{R}\{se^{i\theta}R(se^{i\theta},A):0 < s \leqslant r\}. \end{split}$$

Proof. We will only give the proof for \mathscr{A}_1 , the proof for \mathscr{A}_2 is similar. First assume that $\lambda = re^{i\theta} \in \rho(\mathscr{A}_1)$, let s_1, s_2, \ldots, s_m be distinct such that $s_i > r$. We have $0 < r/s_i < 1$, so there exists $q_{i,n}$ subsequence of q_n satisfying $\lim_{n\to\infty} q_{i,n} = r/s_i$. We may assume furthermore that for $n \ge 1$, $q_{1,n}, q_{2,n}, \ldots, q_{m,n}$ are distinct. For

 $x_1, x_2, \ldots, x_n \in X$, we have

$$\begin{split} \int_0^1 \left\| \sum_{j=1}^m \gamma_j(t) s_j e^{i\theta} R(s_j e^{i\theta}, A) x_j \right\|_X dt \\ &= \lim_{n \to \infty} \int_0^1 \left\| \sum_{j=1}^m \gamma_j(t) \frac{r}{q_{j,n}} e^{i\theta} R\left(\frac{r}{q_{j,n}} e^{i,\theta}, A\right) x_j \right\|_X dt \\ &= \lim_{n \to \infty} \int_0^1 \left\| \sum_{j=1}^m \gamma_j(t) r e^{i\theta} R(r e^{i\theta}, q_{j,n} A) x_j \right\|_X dt \\ &\leqslant \left\| \lambda R(\lambda, \mathscr{A}_1) \right\| \left\| \sum_{j=1}^m \gamma_j x_j \right\|_{\operatorname{Rad}(X)}. \end{split}$$

Thus we deduce that

$$\mathscr{R}\{se^{i\theta}R(se^{i\theta},A):s\geqslant r\}=\mathscr{R}\{se^{i\theta}R(se^{i\theta},A):s>r\}\leqslant \|\lambda R(\lambda,\mathscr{A}_1\|.$$

Conversely let $\sum_{j=1}^{\infty} \gamma_j x_j \in \operatorname{Rad}(X)$. Then

$$\begin{split} \left\| \lambda R(\lambda, \mathscr{A}_{1}) \left(\sum_{j=1}^{\infty} \gamma_{j} x_{j} \right) \right\|_{\operatorname{Rad}(X)} &= \left\| \sum_{j=1}^{\infty} \gamma_{j} \lambda R(\lambda, q_{j} A) x_{j} \right\|_{\operatorname{Rad}(X)} \\ &= \left\| \sum_{j=1}^{\infty} \gamma_{j} \frac{\lambda}{q_{j}} R\left(\frac{\lambda}{q_{j}}, A\right) x_{j} \right\|_{\operatorname{Rad}(X)} \\ &\leqslant \mathscr{R}\{ se^{i\theta} R(se^{i\theta}, A) : s \geqslant r \} \left\| \sum_{j=1}^{\infty} \gamma_{j} x_{j} \right\|_{\operatorname{Rad}(X)} \end{split}$$

Thus $\|\lambda R(\lambda, \mathscr{A}_1)\| \leq \mathscr{R}\{se^{i\theta}R(se^{i\theta}, A): s \geq r\}$. The claim is proved.

The following is the main result of this section.

THEOREM 3.2. Let A be the generator of an analytic C_0 -semigroup on X. Assume that X is a UMD-space and $\omega(A) < 0$. Then the following are equivalent:

- (i) A has $\mathcal{M}R_{\infty}$.
- (ii) \mathscr{A}_1 generates a bounded analytic C_0 -semigroup on $\operatorname{Rad}(X)$.
- (iii) \mathscr{A}_2 generates a bounded analytic C_0 -semigroup on $\operatorname{Rad}(X)$.

Proof. First notice that there exist $\theta > 0$, $M \ge 1$ and $\omega > 0$ such that $T \in \mathscr{E}(\theta, M, \omega)$ by Lemma 2.5. Assume that A has $\mathscr{M}R_{\infty}$. Then by Theorem 2.1 the set $\{\lambda R(\lambda, A): \lambda \in i\mathbb{R}\}$ is \mathscr{R} -bounded. By an argument used in [**CP**], there exists $\pi/2 < \theta' < \pi$, such that the set $\{\lambda R(\lambda, A): \lambda \in \Sigma_{\theta'} \cup \{0\}\}$ is \mathscr{R} -bounded. By Lemma 3.1 we have $\Sigma_{\theta'} \subset \rho(\mathscr{A}_1) \cap \rho(\mathscr{A}_2)$ and

$$\sup_{\lambda \in \sum_{\theta'}} \|\lambda R(\lambda, \mathscr{A}_1)\| \leqslant \mathscr{R}\{\lambda R(\lambda, A) \colon \lambda \in \Sigma_{\theta'}\} < \infty$$
$$\sup_{\lambda \in \sum_{\theta'}} \|\lambda R(\lambda, \mathscr{A}_2)\| \leqslant \mathscr{R}\{\lambda R(\lambda, A) \colon \lambda \in \Sigma_{\theta'}\} < \infty.$$

So \mathscr{A}_1 and \mathscr{A}_2 generate bounded analytic C_0 -semigroups on $\operatorname{Rad}(X)$ (see $[\mathbf{N}, \text{theorem 4-6}]$). This shows the implications (i) \Rightarrow (ii) and (i) \Rightarrow (iii).

If \mathscr{A}_1 generates a bounded analytic C_0 -semigroup on $\operatorname{Rad}(X)$, we have $\{is: s \in \mathbb{R}, s \neq 0\} \subset \rho(\mathscr{A}_1)$ and

$$\sup_{s\in\mathbb{R},s\neq 0}\|isR(is,\mathscr{A}_1)\|<\infty.$$

By Lemma 3.1 for each r > 0

$$\mathscr{R}\{itR(it,A):t \ge r\} \leqslant \sup_{s \in \mathbb{R}, s \neq 0} \|isR(is,\mathscr{A}_1)\|.$$

 \mathbf{So}

$$\mathscr{R}\{itR(it,A):t \ge 0\} \leqslant \sup_{s \in \mathbb{R}, s \neq 0} \|isR(is,\mathscr{A}_1)\|.$$

Therefore

$$\mathscr{R}\{itR(it,A): t \in \mathbb{R}\} \leqslant 2 \sup_{s \in \mathbb{R}, s \neq 0} \|isR(is,\mathscr{A}_1)\| < \infty$$

It follows that A has $\mathcal{M}R_{\infty}$ by Theorem 2.1. This shows the implication (ii) \Rightarrow (i). The implication (iii) \Rightarrow (i) is similar.

Remark 3.3. (i) When A has $\mathcal{M}R_{\infty}$, the bounded analytic C_0 -semigroups generated by \mathcal{A}_1 and \mathcal{A}_2 are given by

$$\begin{aligned} \mathcal{F}_z \left(\sum_{j=1}^{\infty} \gamma_j x_j \right) &= \sum_{j=1}^{\infty} \gamma_j T_{qjz} x_j \\ \mathcal{F}_z \left(\sum_{j=1}^{\infty} \gamma_j x_j \right) &= \sum_{j=1}^{\infty} \gamma_j T_{pjz} x_j, \end{aligned}$$

respectively.

(ii) Let A be the generator of an analytic C_0 -semigroup T. Assume that $\omega(A) < 0$. The semigroup \mathscr{T} does not exist in general since $\{T_t: 0 \leq t \leq 1\}$ is not necessarily \mathscr{R} -bounded. However by Corollary 2.6, \mathscr{S} is well defined and \mathscr{S} defines a semigroup on Rad(X), but it is not always strongly continuous (or equivalently, \mathscr{S} is not always bounded on $\Sigma_{\theta} \cap B(0, 1)$ for $\theta > 0$).

As application of Theorem $3 \cdot 2$, we deduce the following result due to $[\mathbf{W1}]$.

THEOREM 3.4. Let T be an analytic C_0 -semigroup with generator A. Assume that X is a UMD-space and $\omega(A) < 0$. Then A has $\mathcal{M}R_\infty$ if and only if $\{T_z: z \in \Sigma_\theta\}$ is \mathscr{R} -bounded for some $0 < \theta < \pi/2$.

Proof. When A has $\mathcal{M}R_{\infty}$, by Theorem 3.2 \mathcal{A}_1 generates a bounded analytic C_0 -semigroup \mathcal{T} on Σ_{θ} for some $0 < \theta < \pi/2$. By Remark 3.3 the semigroup generated by \mathcal{A}_1 is given by

$$\mathscr{T}_z\left(\sum_{j=1}^{\infty}\gamma_j x_j\right) = \sum_{j=1}^{\infty}\gamma_j T_{qjz} x_j$$

for $z \in \Sigma_{\theta}$. A similar argument as in the proof of Lemma 3.1 shows that

$$\mathscr{R}\{T_{se^{\pm i\theta'}}:s\geqslant 0\}<\infty$$

for all $0 < \theta' < \theta$. It follows from Proposition 2.2 that $\Re\{T_z: z \in \Sigma_{\theta'}\} < \infty$.

Conversely, suppose that $\Re\{T_z: z \in \Sigma_{\theta}\} < \infty$ for some $0 < \theta < \pi/2$. Then the C_0 -semigroup

$$\mathscr{F}_z\left(\sum_{j=1}^{\infty}\gamma_j x_j\right) = \sum_{j=1}^{\infty}\gamma_j T_{qjz} x_j$$

is bounded analytic on Σ_{θ} .

Furthermore, \mathscr{T} is strongly continuous. Indeed, it is clear that for $\sum_{j=1}^{N} \gamma_j x_j \in$ $\operatorname{Rad}(X), \text{ we have } \lim_{z \to 0, z \in \sum_{\theta}} \mathscr{T}_z(\sum_{j=1}^N \gamma_j x_j) = \sum_{j=1}^N \gamma_j \lim_{z \to 0, z \in \sum_{\theta}} T_{qjz} x_j =$ $\sum_{j=1}^{N} \gamma_j x_j. \text{ It follows from the uniform boundedness of } \mathcal{T} \text{ and the density of } \{\sum_{j=1}^{n} \gamma_j x_j: x_j \in X, n \in \mathbb{N}\} \text{ in } \operatorname{Rad}(X) \text{ that for every } \sum_{j=1}^{\infty} \gamma_j x_j \in \operatorname{Rad}(X), \text{ we have } \lim_{z \to 0, z \in \sum_{\theta}} \mathcal{T}_z(\sum_{j=1}^{\infty} \gamma_j x_j) = \sum_{j=1}^{\infty} \gamma_j x_j.$ The generator of \mathcal{T} is given by \mathcal{A}_1 . Therefore \mathcal{A}_1 generates a bounded analytic

 C_0 -semigroup. It follows from Theorem 3.2 that A has $\mathcal{M}R_{\infty}$.

As an immediate consequence of Corollary 2.6 and Theorem 3.4, we obtain the following.

COROLLARY 3.5. Let T be an analytic C_0 -semigroup on X and let A be the generator of T. Assume that X is a UMD-space and $\omega(A) < 0$. Then T has $\mathcal{M}R_{\infty}$ if and only if there exist r > 0 and $\theta > 0$ such that $\Re\{T(z): |z| \leq r, z \in \Sigma_{\theta}\} < \infty$.

For $\mathcal{M}R$, it is more natural to work with analytic C_0 -semigroups which are not necessarily of negative type. In that case, the semigroup generated by \mathscr{A}_1 is not necessarily bounded and there is no analogous characterization involving the operator \mathscr{A}_2 . The following characterization of $\mathscr{M}R$ is analogous to the equivalence between (i) and (ii) in Theorem $3 \cdot 2$.

THEOREM 3.6. Let A be the generator of an analytic C_0 -semigroup on X. Assume that X is a UMD-space. Then A has $\mathcal{M}R$ if and only if \mathcal{A}_1 generates an analytic C_0 -semigroup on $\operatorname{Rad}(X)$.

Proof. First recall that A generates an analytic C_0 -semigroup if and only if there exists r > 0, such that $\{z: \operatorname{Re}(z) \ge r\} \subset \rho(A)$ and $\sup_{Re(z) \ge r} ||zR(z,A)|| < \infty$, see [N, A-II, theorem 1.14].

Assume now that A has $\mathcal{M}R$. Let T be the analytic C_0 -semigroup generated by A. There exists $\omega > 0$ such that $(e^{-\omega t}T_t)_{t \ge 0}$ is exponentially stable, so $A - \omega$ has $\mathcal{M}R_{\infty}$. We have by Theorem $2 \cdot 1$ and Corollary $2 \cdot 4$ that

> $\mathscr{R}{isR(is, A-\omega): s \in \mathbb{R}} < \infty$ $\mathscr{R}\{R(is, A - \omega): s \in \mathbb{R}\} < \infty.$

Thus

 $\mathscr{R}\{\lambda R(\lambda, A): \operatorname{Re}(\lambda) = \omega\} < \infty.$

By Proposition $2 \cdot 2$

 $\mathscr{R}\{\lambda R(\lambda, A) \colon \operatorname{Re}(z) \ge \omega\} < \infty.$

For $\lambda \in \mathbb{C}$, $\operatorname{Re}(\lambda) \ge w$, $\lambda = a + ib$, $a \ge \omega$,

$$\begin{split} \left\| \lambda R(\lambda, \mathscr{A}_{1}) \left(\sum_{j=1}^{\infty} \gamma_{j} x_{j} \right) \right\|_{\operatorname{Rad}(X)} &= \left\| \sum_{j=1}^{\infty} \gamma_{j} \left(\frac{a}{q_{j}} + i \frac{b}{q_{j}} \right) R \left(\frac{a}{q_{j}} + i \frac{b}{q_{j}}, A \right) x_{j} \right\|_{\operatorname{Rad}(X)} \\ &\leqslant \mathscr{R}\{\lambda R(\lambda, A) \colon Re(\lambda) \geqslant \omega\} \left\| \sum_{j=1}^{\infty} \gamma_{j} x_{j} \right\|_{\operatorname{Rad}(X)} \end{split}$$

as $a/q_j \ge a \ge \omega$. So $\sup_{Re(\lambda) \ge \omega} \|\lambda R(\lambda, \mathscr{A}_1)\| < \infty$, thus \mathscr{A}_1 generates an analytic C_0 -semigroup on $\operatorname{Rad}(X)$.

Conversely assume that \mathscr{A}_1 generates an analytic C_0 -semigroup on $\operatorname{Rad}(X)$, there exists r > 0 satisfying $\{\lambda: \operatorname{Re}(\lambda) \ge 0, |\lambda| \ge r\} \subset \rho(\mathscr{A}_1)$ and there exists C > 0 such that

$$\sup_{\operatorname{Re}(\lambda) \geqslant 0, |\lambda| \geqslant r} \|\lambda R(\lambda, \mathscr{A}_1)\| \leqslant C.$$

As A also generates an analytic C_0 -semigroup on X, we can suppose that $\{\lambda: \operatorname{Re}(\lambda) \ge 0, |\lambda| \ge r\} \subset \rho(A)$ and

$$\sup_{\operatorname{Re}(\lambda) \ge 0, |\lambda| \ge r} \|\lambda R(\lambda, A)\| \leqslant C.$$

From $||irR(ir, \mathscr{A}_1)|| \leq C$, we get $\Re\{isR(is, A): s \geq r\} \leq C$ by Lemma 3.1. Similarly $\Re\{isR(is, A)(:) s \leq -r\} \leq C$. Define

$$\Lambda = \{\lambda \in \mathbb{C} : |\mathrm{Im}(\lambda)| = r, 0 \leqslant \mathrm{Re}(\lambda) \leqslant r\} \cup \{\lambda \in \mathbb{C} : \mathrm{Re}(\lambda) = r, |\mathrm{Im}(\lambda)| \leqslant r\}.$$

We have $\Lambda \subset \rho(A)$ and Λ is a compact subset. By Proposition 2.2, $\Re\{\lambda R(\lambda, A): \lambda \in \Lambda\} < \infty$, hence $\Re\{\lambda R(\lambda, A): \lambda \in \Lambda \text{ or } \lambda \in i\mathbb{R}, |\lambda| \ge r\} < \infty$. Again by Proposition 2.2

$$\mathscr{R}\{\lambda R(\lambda, A): \operatorname{Re}(\lambda) \ge r\} < \infty.$$

Without loss of generality, we can assume that the semigroup $(e^{-rt}T_t)_{t\geq 0}$ is exponentially stable. By Corollary 2.4 this implies that

$$\mathscr{R}\{R(is+r,A):s\in\mathbb{R}\}<\infty.$$

Therefore

$$\mathscr{R}\{isR(is+r,A):s\in\mathbb{R}\}<\infty.$$

By Theorem 2.1 this is equivalent to say that A - r has $\mathcal{M}R_{\infty}$ which implies that A has $\mathcal{M}R$.

We have also the following characterization of $\mathcal{M}R$ in term of \mathcal{R} -boundedness of the semigroup T.

PROPOSITION 3.7. Let A be the generator of an analytic C_0 -semigroup T. Assume that X is a UMD-space. Then A has $\mathcal{M}R$ if and only if for some r > 0 and $\theta > 0$, the set $\{T_z : z \in \Sigma_{\theta}, |z| \leq r\}$ is \mathcal{R} -bounded.

Proof. First assume that A has $\mathscr{M}R$, there exists $\epsilon > 0$ such that the analytic C_0 semigroup $(e^{-\epsilon z}T_z)_{z\in\Sigma_{\theta}}$ belongs to the class $\mathscr{E}(\theta, M, \omega)$ for some $\theta > 0$, $M \ge 1$ and $\omega > 0$. As $(e^{-\epsilon t}T_t)_{t\ge 0}$ is exponentially stable, $A - \epsilon$ has $\mathscr{M}R_{\infty}$ and by Theorem 3.4
the set $\{e^{-\epsilon z}T_z: z \in \Sigma_{\theta'}\}$ is \mathscr{R} -bounded for some $0 < \theta' < \theta$. On the other hand by

Corollary 2.6 there exists r > 0 such that the set $\{e^{-\epsilon z}T_z : z \in \Sigma_{\theta'}, |z| \ge r\}$ is \mathscr{R} -bounded, and so

$$\mathscr{R}\{e^{-\epsilon z}T_z: z \in \Sigma_{\theta'}, |z| \leq r\} < \infty,$$

by Kahane's contraction principle

$$\mathscr{R}\{T_z: z \in \Sigma_{\theta'}, |z| \leq r\} < \infty.$$

For the converse, assume that there exist r > 0 and $\theta > 0$ such that $\Re\{T_z: z \in \Sigma_{\theta}, |z| \leq r\} < \infty$. There exists $\epsilon > 0$ such that the C_0 -semigroup $(e^{-\epsilon t}T_t)_{t \geq 0}$ belongs to the class $\mathscr{E}(\theta', M, \omega)$ for some $0 < \theta' < \theta$, $M \geq 1$ and $\omega > 0$. We deduce from Corollary 2.6 that $\Re\{e^{-\epsilon z}T_z: z \in \Sigma_{\theta'}, |z| \geq r\} < \infty$. By hypothesis we have $\Re\{T_z: z \in \Sigma_{\theta'}, |z| \leq r\} < \infty$, so $\Re\{e^{-\epsilon z}T_z: z \in \Sigma_{\theta'}, |z| \leq r\} < \infty$ by Kahane's contraction principle. Finally we get $\Re\{e^{-\epsilon z}T_z: z \in \Sigma_{\theta'}\} < \infty$, this implies by Theorem 3.4 that $A - \epsilon$ has $\mathscr{M}R_{\infty}$; and so A has $\mathscr{M}R$. The claim is proved.

Let A be the generator of an analytic C_0 -semigroup T. Assume that $\omega(A) < 0$. By Lemma 2.5 the semigroup T belongs to the class $\mathscr{E}(\theta, M, \omega)$ for some $0 < \theta < \pi/2$, $M \ge 1$ and $\omega > 0$. By Proposition 2.2 and Corollary 2.6 there exists $0 < \theta_0 < \pi/2$ such that for all r > 0

$$\sup_{z\in\Sigma_{\theta_0}, |z|\geqslant r} \|\mathscr{S}_z\| < \infty.$$

One can easily check that when X is a UMD-space, A has $\mathscr{M}R_{\infty}$ if and only if the semigroup \mathscr{S}_z is strongly continuous at z = 0. One can also show that when X is a UMD-space, A has $\mathscr{M}R_{\infty}$ if and only if the semigroup \mathscr{S}_z is bounded on $\{z \in \Sigma_{\theta_0}, |z| \leq 1\}.$

In the following we study the behaviour of $\|\lambda R(\lambda, \mathscr{A}_2)\|$ when $|\lambda| \to \infty$, and the behaviour of $\|\mathscr{S}_z\|$ when $|z| \to 0$. We will need the following lemma.

LEMMA 3.8. Let A be the generator of an analytic C_0 -semigroup T. Assume that $\omega(A) < 0$. Then there exists $\pi/2 < \theta < \pi$ such that for each $0 < \alpha < 1$

$$\mathscr{R}\left\{|\lambda|^{lpha}R(\lambda,A):\lambda\in\Sigma_{ heta}
ight\}<\infty.$$

Proof. Under the assumption of the lemma, the semigroup T belongs to $\mathscr{E}(\theta, M, \omega)$ for some $\theta > 0$, $M \ge 1$ and $\omega > 0$ by Lemma 2.5. As for each $|\beta| < \theta$, $e^{i\beta}A$ also generates an analytic C_0 -semigroup on X in the class $\mathscr{E}(\theta - |\beta|, M, \omega)$, to show the lemma it suffices to show that for each $0 < \theta < \pi/2$, $0 < \alpha < 1$, we have

$$\mathscr{R}\{|\lambda|^{\alpha}R(\lambda,A):\lambda\in\Sigma_{\theta}\}<\infty.$$

We have

$$|\lambda|^{\alpha}R(\lambda,A) = \int_0^\infty |\lambda|^{\alpha} e^{-\lambda t} T_t \, dt.$$

By Lemma 2.3

Under the hypothesis of the previous lemma, there exists $\pi/2 < \theta < \pi$ such that for all $0 < \alpha < 1$, the subset $\{|\lambda|^{\alpha}R(\lambda, A): \lambda \in \Sigma_{\theta}\}$ is \mathscr{R} -bounded. For $\lambda \in \Sigma_{\theta}$

$$|\lambda|^{\alpha} R(\lambda, \mathscr{A}_2) \left(\sum_{j=1}^{\infty} \gamma_j x_j \right) = \sum_{j=1}^{\infty} \gamma_j \frac{|\lambda|^{\alpha}}{p_j} R\left(\frac{\lambda}{p_j}, A\right) x_j$$

as $|\lambda|^{\alpha}/p_j \leq |\lambda|^{\alpha}/p_j^{\alpha}$ for $p_j \geq 1$ and $0 < \alpha < 1$, by Kahane's contraction principle $\||\lambda|^{\alpha}R(\lambda, \mathscr{A}_2)\| \leq C_{\alpha,\theta}$, where $C_{\alpha,\theta}$ is a constant depending only on $0 < \alpha < 1$ and θ . So

$$\sup_{\lambda \in \Sigma_{\theta}} \left\| |\lambda|^{\alpha} R(\lambda, \mathscr{A}_2) \right\| \leqslant C_{\alpha, \theta}.$$

It is clear by Remark 3.3 that the semigroup \mathscr{S}_z is well defined and

$$\mathscr{S}_z\left(\sum_{j=1}^{\infty}\gamma_j x_j\right) = \sum_{j=1}^{\infty}\gamma_j T_{p_j z} x_j.$$

One can represent S_z in term of $R(\lambda, \mathscr{A}_2)$ in a standard way:

$$\mathscr{S}_t = \int_{\Gamma} e^{\lambda t} R(\lambda, \mathscr{A}_2) \, d\lambda,$$

where for t > 0, the path Γ is composed by Γ_1 , Γ_2 and Γ_3 , where $\Gamma_1 = \{re^{-i\theta'} : t^{-1} \le r < \infty\}$, $\Gamma_2 = \{t^{-1}e^{i\phi} : -\theta' \le \phi \le \theta'\}$ and $\Gamma_3 = \{re^{i\theta'} : t^{-1} \le r < \infty\}$ for a fixed $\pi/2 < \theta' < \theta$. Γ is orientated in such a way that $\operatorname{Im}(z)$ increases. Using the known estimate of $R(\lambda, \mathscr{A}_2)$ when $|\lambda|$ is big, we easily obtain that

$$\|\mathscr{S}_t\| \leqslant C_\alpha/t^\alpha \qquad 0 < t \leqslant 1$$

for some constant C_{α} depending only on $0 < \alpha < 1$. So there exists $0 < \beta < \pi/2$ and a constant $C_{\alpha,\beta}$ depending only on $0 < \alpha < 1$ and β , such that

$$\|\mathscr{S}_z\| \leqslant C_{\alpha,\beta}/|z|^c$$

for all $z \in \Sigma_{\beta}, 0 < |z| \leq 1$. So we have shown the following.

PROPOSITION 3.9. Let A be the generator of an analytic C_0 -semigroup T. Assume that $\omega(A) < 0$. Then there exists $0 < \beta < \pi/2$ such that for each $0 < \alpha < 1$, there exists $C_{\alpha,\beta} < \infty$ depending only on α and β such that

$$\sup_{\lambda \in \Sigma_{\beta + \pi/2}} \||\lambda|^{\alpha} R(\lambda, \mathscr{A}_2)\| \leqslant C_{\alpha, \beta}$$
$$\sup_{z \in \Sigma_{\beta}} \||z|^{1-\alpha} S_z\| \leqslant C_{\alpha, \beta}.$$

Remark 3.10. By the counterexample of Kalton and Lancien, when X is a Banach space with an unconditional basis and if X is not isomorphic to l^2 , there exists an analytic C_0 -semigroup T with generator A satisfying $\omega(A) < 0$ such that the corresponding Cauchy problem does not have $\mathcal{M}R_{\infty}$. This implies that $\mathcal{R}\{sR(is, A): s \in \mathbb{R}\} = \infty$, or equivalently $\sup_{\lambda \in \Sigma_{\beta+\pi/2}} |||\lambda|R(\lambda, \mathscr{A}_2)|| = \infty$ for some $0 < \beta < \pi/2$. This means that we cannot expect to extend the conclusion of Lemma 3.8 or Proposition 3.9 to the case $\alpha = 1$.

Tools for maximal regularity

4. Applications

Let (Ω, Σ, μ) be a σ -finite measure space. Let $1 \leq p_0 < p_1 < \infty$ and let $T_p, p_0 \leq p \leq p_1$ be a family of interpolating C_0 -semigroups on $L^p(\Omega)$ (i.e., $T_p(t)f = T_q(t)f$ for all $f \in L^p(\Omega) \cap L^q(\Omega)$ whenever $t \geq 0, p_0 \leq p, q \leq p_1$). If each T_p is bounded (on \mathbb{R}_+) and if T_2 is bounded analytic in a sector Σ_{θ} for some $0 < \theta < \pi/2$, then by Stein's interpolation theorem (see [**RS**, theorem IX·21]), each T_p is bounded analytic on some sector (depending on p), $p_0 .$

Next we suppose that $p_1 = 2$, and let T_p is exponentially stable, $p_0 \leq p \leq 2$. By Corollary 2.6 the semigroup

$$\mathscr{S}_p(t)\left(\sum_{j=1}^{\infty}\gamma_j f_j\right) = \sum_{j=1}^{\infty}\gamma_j T_p(tp_j)f_j$$

is well defined on $\operatorname{Rad}(L^p(\Omega))$ and in general it is not a C_0 -semigroup. As T_2 is bounded analytic and exponentially stable and $L^2(\Omega)$ is a Hilbert space, T_2 has $\mathscr{M}R_{\infty}$ [**DS**]. By Theorem 3.2 this implies that the C_0 -semigroup \mathscr{S}_2 is bounded analytic. Again by Theorem 3.2 T_p has $\mathscr{M}R_{\infty}$ if and only if \mathscr{S}_p is bounded analytic on $\operatorname{Rad}(L^p(\Omega))$.

Recall the well-known Khintchine's inequality: for $1 < q < \infty$, there exists $C_q > 0$ such that for $f_j \in L^q(\Omega)$

$$\frac{1}{C_q} \left\| \left(\sum_{j=1}^{\infty} |f_j|^2 \right)^{\frac{1}{2}} \right\|_{L^q(\Omega)} \leqslant \left\| \sum_{j=1}^{\infty} \gamma_j f_j \right\|_{\operatorname{Rad}(L^q(\Omega))} \leqslant C_q \left\| \left(\sum_{j=1}^{\infty} |f_j|^2 \right)^{\frac{1}{2}} \right\|_{L^q(\Omega)}.$$

This shows that $\operatorname{Rad}(L^q(\Omega))$ is isomorphic to the space $L^q(\Omega; l^2)$. In order to show that \mathscr{S}_p is bounded analytic, it suffices to show that the semigroup

$$\overline{\mathscr{G}}_p(t)(f_1, f_2, \ldots) = (T_p(p_1t)f_1, T_p(p_2t)f_2, \ldots)$$

is bounded analytic on $L^p(\Omega, l^2)$. It is easy to verify that for $p_0 \leq p, q \leq 2$

$$\overline{\mathscr{G}}_p(t)(f_1, f_2, \ldots) = \overline{\mathscr{G}}_q(t)(f_1, f_2, \ldots)$$

for $(f_1, f_2, \ldots) \in L^p(\Omega; l^2) \cap L^q(\Omega; l^2)$ and t > 0. So $\overline{\mathscr{F}}_p$ are again 'vector-valued' interpolating semigroups, $p_0 \leq p \leq 2$. Now we are in the position to state a result which gives a sufficient condition for an interpolating C_0 -semigroup of negative type to have $\mathscr{M}R_{\infty}$.

THEOREM 4.1. Let (Ω, Σ, μ) be a σ -finite measure space and let T_p be interpolating C_0 semigroups on $L^p(\Omega)$, $p_0 \leq p \leq 2$. Assume that for all $p_0 \leq p \leq 2$, T_p is exponentially stable, that T_2 is analytic and $\Re\{T_{p_0}(t): t > 0\} < \infty$. Then T_p has $\mathcal{M}R_{\infty}$ for all $p_0 .$

This theorem is an immediate consequence of the above discussion and the following vector-valued Stein's interpolation theorem. Its proof is similar to the scalar case and can be omitted (see [**RS**, theorem IX·21] for the scalar case).

THEOREM 4.2. Let (Ω, Σ, μ) be a σ -finite measure space, X be a Banach space, $1 < p_1$, $p_2 < \infty$, $0 < \theta < \pi/2$. Let $z \to T(z)$ be an application defined on $\overline{\Sigma}_{\theta}$ with values in $B(L^{p_2}(\Omega; X))$ which is bounded continuous on $\overline{\Sigma}_{\theta}$ and analytic on Σ_{θ} . Assume that there exist $M_1, M_2 < \infty$ such that

$$\sup_{r>0} \|T(re^{\pm i\theta})\|_{L_{p_2}\to L_{p_2}} \leqslant M_2$$

and

330

$$||T(r)f||_{L_{p_1}} \leq M_1 ||f||_{L_{p_1}}$$

for all r > 0, $f \in L^{p_1}(\Omega; X) \cap L^{p_2}(\Omega; X)$. Then for all $0 < \alpha < 1$,

$$||T(re^{i\alpha\theta})f||_{L^p} \leqslant M_1^{1-\alpha}M_2^{\alpha}||f||_{L^p}$$

for all $f \in L^p(\Omega; X) \cap L^{p_2}(\Omega; X)$, where

$$\frac{1}{p} = \frac{\alpha}{p_2} + \frac{1-\alpha}{p_1}.$$

Now we can prove the following interpolation result for maximal regularity.

THEOREM 4.3. Let (Ω, Σ, μ) be a σ -finite measure space, $1 < p_0 < 2$. For $p_0 ,$ $let <math>T_p$ be a C_0 -semigroups on $L^p(\Omega)$ verifying $T_p(t)f = T_q(t)f$ for $f \in L^p(\Omega) \cap L^q(\Omega)$ and t > 0. Assume that T_2 is analytic and there exists $\delta > 0$ such that $\Re\{T_{p_0}(t): 0 < t < \delta\} < \infty$. Then T_p has $\mathcal{M}R$ for all $p_0 .$

Proof. Define for $\epsilon > 0$

$$W_p(t) = e^{-\epsilon t} T_p(t).$$

Fix one $\epsilon > 0$ big enough to ensure that each W_p is exponentially stable. In this case W_2 is bounded analytic and by Corollary 2.6, $\mathscr{R}\{W_{p_0}(t): t \ge \delta\} < \infty$. As $\mathscr{R}\{T_{p_0}(t): 0 < t \le \delta\} < \infty$, we deduce that $\mathscr{R}\{W_{p_0}(t): t > 0\} < \infty$. By Theorem 4.2 W_p has $\mathscr{M}R_{\infty}$ for $p_0 , and so <math>T_p$ has $\mathscr{M}R$.

Remark 4.4. Of course, if we have $2 < p_0 < \infty$, we can give similar results for $2 \leq p < p_0$ as in Theorem 4.1 and Theorem 4.3.

As a direct application of Theorem $4 \cdot 3$, we deduce the following result due to [**HP**] (see also [**CP**] and [**W1**]).

COROLLARY 4.5. Let $\Omega \subset \mathbb{R}^n$ be a measurable subset. For $1 , let <math>T_p$ be a C_0 semigroup on $L^p(\Omega)$ such that for t > 0, $f \in L^p(\Omega) \cap L^q(\Omega)$, we have $T_p(t)f = T_q(t)f$. Assume that T_2 is analytic and has Gaussian estimates. Then T_p has $\mathcal{M}R$ for 1 .

Proof. As T_2 has Gaussian estimates, there exist constants C > 0 and a > 0 such that for $f \in L^2(\Omega)$, one has $|T_2(t)f|(\omega) \leq C[G_2(at)|f|](\omega)$ for almost all $\omega \in \Omega$, and all $0 < t \leq 1$, where G_p denotes the Gaussian semigroup on $L^p(\mathbb{R}^n)$. We have $\mathscr{R}\{G_p(t): 0 < t \leq 1\} < \infty$ by [**St**, theorem 1, p. 51]. This implies that $\mathscr{R}\{T_p(t): 0 < t \leq 1\} < \infty$ by Khintchine's inequality. The result follows from Theorem 4.3.

Remark 4.6. Let (Ω, \sum, μ) be a σ -finite measure space, $1 , and let <math>T_p$ be interpolating C_0 -semigroups on $L^p(\Omega; X)$, i.e. for all $1 < p, q < \infty$ and $f \in L^p(\Omega; X) \cap L^q(\Omega; X)$, we have $T_p(t)f = T_q(t)f$ for all t > 0. Using Kahane's inequality it is easy

to see that the linear mapping

$$\operatorname{Rad}(L^{p}(\Omega; X)) \to L^{p}(\Omega; \operatorname{Rad}(X))$$
$$\sum_{j=1}^{\infty} \gamma_{j} f_{j} \to \left\{ \omega \to \sum_{j=1}^{\infty} \gamma_{j} f_{j}(\omega) \right\}$$

is an isomorphism between Banach spaces. So we can use Theorem $4 \cdot 2$ to obtain a vector-valued version of Theorem $4 \cdot 1$, Theorem $4 \cdot 3$ and Corollary $4 \cdot 5$ (for this we have to introduce the notion of vector-valued Gaussian estimates). Since the adaptation is standard, we omit the detail.

For $1 , if <math>T_p$ are positive interpolating C_0 -semigroups on $L^p(\Omega)$, we can establish the following result which gives a sufficient condition for $\mathcal{M}R$. Notice that by Proposition 2·2 and Lemma 2·3, the hypothesis here is weaker than that of Theorem 4·3.

THEOREM 4.7. Let (Ω, \sum, μ) be a σ -finite measure space and let $1 < p_0 < 2$. For $p_0 \leq p \leq 2$, let T_p be a positive C_0 -semigroup on $L^p(\Omega)$ with generator A_p . Assume that T_2 is analytic and for $p_0 \leq p$, $q \leq 2$ and t > 0, we have $T_p(t)f = T_q(t)f$ whenever $f \in L^p(\Omega) \cap L^q(\Omega)$. Assume that $\Re\{tR(t + \omega, A_{p_0}): t \geq 0\} < \infty$ for some $\omega > \omega(A_{p_0})$. Then T_p satisfies $\mathcal{M}R$ for $p_0 .$

Proof. First notice that it suffices to show the same conclusion for the semigroups $(e^{-\epsilon t}T_p(t))_{t\geq 0}$ for some $\epsilon > 0$. So without loss of generality, we can assume that each T_p is exponentially stable and $\mathscr{R}\{tR(t, A_{p0}): t \geq 0\} < \infty$. $L^2(\Omega)$ is a Hilbert space, T_2 is analytic and exponentially stable, so T_2 has $\mathscr{M}R_{\infty}$ [**DS**]. By Theorem 2.1 and an argument used in [**CP**], there exist $\alpha > 0$ such that $\mathscr{R}\{\lambda R(\lambda, A_2): \lambda \in \Sigma_{\pi/2+\alpha}\} < \infty$.

Let $0 < \theta < \pi/2$ be fixed. For $\lambda \in \Sigma_{\theta}$ and $f \in L^{p_0}(\Omega)$, one has

$$egin{aligned} &|\lambda R(\lambda,A_{p_0})f|\leqslant |\lambda|\int_0^\infty e^{-\operatorname{Re}(\lambda)t}T_{p_0}(t)|f|\,dt = |\lambda|R(\operatorname{Re}(\lambda),A_{p_0})|f| \ &\leqslant rac{1}{\cos heta}\operatorname{Re}(\lambda)R(\operatorname{Re}(\lambda),A_{p_0})|f|. \end{aligned}$$

By Khintchine's inequality this implies that $\Re\{\lambda R(\lambda, A_{p_0}) : \lambda \in \Sigma_{\theta}\} < \infty$.

Notice that $0 < \theta < \pi/2$ is arbitrary, so a similar argument as in [La, section II] shows that for each $p_0 , the set <math>\{sR(is, A_p): s \in \mathbb{R}\}$ is \mathscr{R} -bounded. By Theorem 2.1, T_p has $\mathscr{M}R$.

Using Theorem 3.6, we can also give an easy new proof of the following perturbation result due to [W1].

THEOREM 4.8. Let A be the generator of an analytic C_0 -semigroup on a UMD-space X, B a closed operator in X such that $D(A) \subset D(B)$. Assume that for each a > 0 there exists b > 0 satisfying

$$||Bx|| \leq a ||Ax|| + b ||x||, \quad x \in D(A).$$

Then if A has $\mathcal{M}R$, A + B also has $\mathcal{M}R$.

Proof. Let \mathscr{A}_1 and \mathscr{B}_1 be the corresponding closed operators associated to A and B respectively, defined by (3.1). We have for $x_j \in D(A)$

$$\left\| \mathscr{B}_1\left(\sum_{j=1}^{\infty} \gamma_j x_j\right) \right\|_{\operatorname{Rad}(X)} \leqslant a \left\| \mathscr{A}_1\left(\sum_{j=1}^{\infty} \gamma_j x_j\right) \right\|_{\operatorname{Rad}(X)} + b \left\| \sum_{j=1}^{\infty} \gamma_j x_j \right\|_{\operatorname{Rad}(X)}.$$

This follows from Kahane's contraction principle and the estimate

$$\left\| \sum_{j=1}^{\infty} \gamma_j B x_j \right\|_{\operatorname{Rad}(X)} \leqslant a \left\| \sum_{j=1}^{\infty} \gamma_j A x_j \right\|_{\operatorname{Rad}(X)} + b \left\| \sum_{j=1}^{\infty} \gamma_j x_j \right\|_{\operatorname{Rad}(X)}$$

The semigroup generated by \mathscr{A}_1 is strongly continuous and analytic since A has $\mathscr{M}R$. By [**ABHN**, theorem $3 \cdot 7 \cdot 23$], $\mathscr{A}_1 + \mathscr{B}_1$ generates an analytic C_0 -semigroup. This implies that A + B has $\mathscr{M}R$ by Theorem $3 \cdot 6$.

Theorem 3.2 combined with [**AR**, theorem 1.1] gives the following perturbation result for positive C_0 -semigroups. Recall that an operator A on $L^p(\Omega)$ is called *re*solvent positive if, for some $\lambda_0 \in \mathbb{R}$ one has $[\lambda_0, \infty) \subset \rho(A)$ and $R(\lambda, A) \ge 0$ for all $\lambda \ge \lambda_0$.

THEOREM 4.9. Let A be the generator of a positive C_0 -semigroup on $L^p(\Omega)$ for some measure space (Ω, Σ, μ) and $1 . Let <math>B : D(A) \to L^p(\Omega)$ be linear and positive. Assume that A + B is resolvent positive and that A has $\mathcal{M}R$. Then A + C has $\mathcal{M}R$ whenever $C: D(A) \to L^p(\Omega)$ is a linear mapping satisfying $|Cu| \leq Bu$ for all $u \in D(A)_+$.

Proof. By [**AR**, theorem 1·1], A + B and A + C generate analytic C_0 -semigroups. Since A + B is resolvent positive, there exist $\lambda > \omega(A)$ and $k \in \mathbb{N}$ satisfying $||(BR(\lambda, A))^k|| < 1$, see [**V**, theorem 1·1]. Without loss of generality we can assume that $\omega(A) < 0$, $\omega(A + B) < 0$, $\omega(A + C) < 0$ and $\lambda = 0$. Let \mathscr{A}_2 , \mathscr{B}_2 and \mathscr{C}_2 be the corresponding closed operators associated with A, B and C respectively, defined by (3·2). By Khintchine's inequality, there exists a constant C > 0 such that for $f_j \in L^p(\Omega)$

$$\frac{1}{C} \left\| \left(\sum_{j=1}^{\infty} |f_j|^2 \right)^{1/2} \right\|_{L^p(\Omega)} \leqslant \left\| \sum_{j=1}^{\infty} \gamma_j f_j \right\|_{\operatorname{Rad}(L^p(\Omega))} \leqslant C \left\| \left(\sum_{j=1}^{\infty} |f_j|^2 \right)^{1/2} \right\|_{L^p(\Omega)} \right\|_{L^p(\Omega)}$$

So the application J

$$\operatorname{Rad}(L^p(\Omega)) \longrightarrow L^p(\Omega; l^2)$$
$$\sum_{j=1}^{\infty} \gamma_j f_j \longrightarrow \{\omega \longrightarrow (f_j(\omega))_{j \ge 1}\}$$

is an isomorphism between Banach spaces. We will consider $L^p(\Omega; l^2)$ as a Banach lattice in the natural way. Let $\mathscr{A} = J\mathscr{A}_2 J^{-1}$, $\mathscr{B} = J\mathscr{B}_2 J^{-1}$ and $\mathscr{C} = J\mathscr{C}_2 J^{-1}$ be the corresponding operators on $L^p(\Omega; l^2)$.

The operator $\mathscr{B}: \mathscr{D}(\mathscr{A}) \to L^p(\Omega; l^2)$ is well defined and positive. Indeed, for $(f_j)_{j\geq 1} \in \mathscr{D}(\mathscr{A})$, we have $(p_j A f_j)_{j\geq 1} \in L^p(\Omega; l^2)$. As BA^{-1} is bounded, we deduce that $(p_j B f_j)_{j\geq 1} \in L^p(\Omega; l^2)$ and so $\mathscr{D}(\mathscr{A}) \subset \mathscr{D}(\mathscr{B})$. It is also clear that $\mathscr{C}: \mathscr{D}(\mathscr{A}) \to L^p(\Omega; l^2)$ is well defined and satisfies $|\mathscr{C}u| \leq \mathscr{B}u$ for each $u \in \mathscr{D}(\mathscr{A})_+$ and \mathscr{A} generates an analytic C_0 -semigroup by Theorem 3.2.

Notice that A is injective with dense range since \mathscr{A} is injective with dense range. Furthermore for $(f_j)_{j\geq 1} \in L^p(\Omega; l^2)$, one has $\|\mathscr{A}^{-1}((f_j)_{j\geq 1})\| \leq \|(\frac{1}{p_j}A^{-1}f_j)_{j\geq 1}\| \leq \|A^{-1}\|\|((f_j)_{j\geq 1})\|$ since $p_j \geq 1$. This means that $0 \in \rho(\mathscr{A})$. Next for $(f_j)_{j\geq 1} \in L^p(\Omega; l^2)$ and $n \in \mathbb{N}$, one has

$$\begin{split} \| (\mathscr{B}R(0,\mathscr{A}))^{nk} (f_j)_{j \ge 1} \|_{L^p(\Omega; l^2)} &= \| ((BR(0,A))^{nk} f_j)_{j \ge 1} \|_{L^p(\Omega, l^2)} \\ &\leqslant C \left\| \sum_{j=1}^{\infty} \gamma_j (BR(0,A))^{nk} f_j \right\|_{\operatorname{Rad}(L^p(\Omega))} \\ &\leqslant C \| (BR(0,A))^k \|^n \left\| \sum_{j=1}^{\infty} \gamma_j f_j \right\|_{\operatorname{Rad}(L^p(\Omega))} \\ &\leqslant C^2 \| (BR(0,A))^k \|^n \| (f_j)_{j \ge 1} \|_{L^p(\Omega; l^2)}. \end{split}$$

We deduce that $\|(\mathscr{B}R(0,\mathscr{A}))^{nk}\| \leq C^2 \|B(R(0,A))^k\|^n$ and so $\|(\mathscr{B}R(0,\mathscr{A}))^{nk}\| < 1$ for large $n \in \mathbb{N}$. This implies by [**V**, theorem 1·1] that $\mathscr{A} + \mathscr{B}$ is resolvent positive. By [**AR**, theorem 1·1], $\mathscr{A} + \mathscr{C}$ generates an analytic C_0 -semigroup on $L^p(\Omega; l^2)$. We will show that $\omega(\mathscr{A} + \mathscr{C}) < 0$, this will finish the proof by Theorem 3·2 and Lemma 2·5.

We have $\mathscr{A} + \mathscr{B} = \mathscr{A}(I - R(0, \mathscr{A})\mathscr{B})$, so $(\mathscr{A} + \mathscr{B})^{-1} = (I - \mathscr{B}R(0, \mathscr{A}))^{-1}\mathscr{A}^{-1} = \sum_{j=0}^{\infty} (\mathscr{B}R(0, \mathscr{A}))^{j}\mathscr{A}^{-1}$. As $\mathscr{B}R(0, \mathscr{A})$ and $R(0, \mathscr{A})$ are positive, we deduce that $R(0, \mathscr{A} + \mathscr{B})$ is positive. This implies that $s(\mathscr{A} + \mathscr{B}) = \omega(\mathscr{A} + \mathscr{B}) < 0$, see [**ABHN**, proposition $3 \cdot 11 \cdot 2$]. By [**AR**, theorem $1 \cdot 2$], the semigroup generated by $\mathscr{A} + \mathscr{C}$ is exponentially stable and so $\omega(\mathscr{A} + \mathscr{C}) < 0$. The claim is proved.

When T is a positive contractive analytic C_0 -semigroup on $L^p(\Omega)(1 , T has <math>\mathcal{M}R$ [W1]. The following corollary is an immediate consequence of the previous theorem, and enlarges the class of semigroups to which Weis' theorem is applicable.

COROLLARY 4.10. Let A be the generator of a positive contractive analytic C_0 semigroup on $L^p(\Omega)$ for some measure space (Ω, Σ, μ) and 1 . Let B: $<math>D(A) \to L^p(\Omega)$ be linear and positive. Assume that $\mathscr{A} + \mathscr{B}$ is resolvent positive. Then $\mathscr{A} + \mathscr{C}$ has $\mathscr{M}\mathscr{R}$ whenever $C: D(A) \to L^p(\Omega)$ is a linear mapping satisfying $|\mathscr{C}u| \leq Bu$ for all $u \in D(A)_+$.

We give a concrete example of a Schrödinger operator.

Example 4.11. Let $X = L^{p}(\mathbb{R}^{n})$, $1 , <math>Af \coloneqq \Delta f$, $D(A) = W^{2,p}(\mathbb{R}^{n})$. Let $0 \leq V \in L^{r}(\mathbb{R}^{n})$, where $r \geq \max\{p, n/2\}$ if $p \neq n/2$ and r > n/2 if p = n/2. Then A + V with domain D(A + V) = D(A) generates an analytic C_{0} -semigroup on $L^{p}(\mathbb{R}^{n})$ which satisfies $\mathcal{M}R$. We refer to [**AR**, section 3] for more details and further examples.

Finally we prove that the mild solutions of the inhomogeneous Cauchy problem are always in some fractional Sobolev space without any assumption of \mathscr{R} -boundedness. Let X be a Banach space, $1 , let <math>\mathscr{S}(\mathbb{R}; X)$ be the space of all rapidly decreasing smooth X-valued functions and denote by $\mathscr{S}'(\mathbb{R}; X) := B(\mathscr{S}(\mathbb{R}); X)$ the X-valued Schwartz space. As usual, we identify $L^p(\mathbb{R}; X)$ with a subspace of $\mathscr{S}'(\mathbb{R}; X)$. For

Wolfgang Arendt and Shangquan Bu

 $f \in \mathscr{S}(\mathbb{R}; X)$, the Fourier transform of f is defined by

$$(\mathscr{F}f)(y) = \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-ixy} f(x) \, dx, \quad y \in \mathbb{R}.$$

It is known that for $f \in S(\mathbb{R}; X)$, $\mathscr{F}f \in \mathscr{S}(\mathbb{R}; X)$. So for $T \in \mathscr{S}'(\mathbb{R}; X)$, we can define $\mathscr{F}T \in \mathscr{S}'(\mathbb{R}; X)$ in a natural way: $\langle \mathscr{F}T, \phi \rangle = -\langle T, \mathscr{F}\phi \rangle$ for $\phi \in \mathscr{S}(\mathbb{R}; \mathbb{C})$. It is known that \mathscr{F} is an isomorphism from $\mathscr{S}(\mathbb{R}; X)$ onto $\mathscr{S}(\mathbb{R}; X)$, and it is also an isomorphism from $\mathscr{S}'(\mathbb{R}; X)$.

For $\beta > 0$, we can define the *fractional Sobolev space* $W^{\beta,p}(\mathbb{R}; X)$ by

$$W^{\beta,p}(\mathbb{R};X) = \left\{ f \in \mathscr{S}'(\mathbb{R};X) : \mathscr{F}^{-1}((1+y^2)^{\beta/2}(\mathscr{F}f)(y)) \in L^p(\mathbb{R};X) \right\}$$

where \mathscr{F}^{-1} denotes the inverse Fourier transform on $\mathscr{S}'(\mathbb{R}; X)$. Define $W^{\beta, p}(\mathbb{R}_+; X) = \{f \in W^{\beta, p}(\mathbb{R}; X): f(x) = 0 \text{ for } x < 0\}.$

Let *T* be an analytic C_0 -semigroup with generator *A*. Assume that $\omega(A) < 0$. When *X* is a UMD-space and $\{isR(is, A): s \in \mathbb{R}\}$ is \mathscr{R} -bounded, then the Cauchy problem (1) has maximal regularity in $W^{\beta,p}(\mathbb{R}_+; X)$ for $1 and <math>0 < \beta < 1$: for each $f \in W^{\beta,p}(\mathbb{R}_+; X)$, there exists a unique *u*, solution of (1) such that $Au \in W^{\beta,p}(\mathbb{R}_+; X)$. This follows easily from the operator-valued Fourier multiplier theorem due to [**W2**].

Using Lemma 3.8 and the same operator-valued Fourier multiplier theorem, we can establish the following result.

THEOREM 4.12. Let A be the generator of an analytic C_0 -semigroup T on a UMDspace X and let A be the generator of an analytic C_0 -semigroup on X satisfying $\omega(A) < 0$. Then the following holds.

- (i) For all f ∈ W^{β,p}(ℝ₊, X), 0 < β < 1, there exists a unique solution u of the problem (1) such that Au ∈ W^{β',p}(ℝ₊; X) for all 0 < β' < β.
- (ii) For all $f \in L^p(\mathbb{R}_+, X)$, the mild solution u of the problem (1) belongs to $W^{\beta, p}(\mathbb{R}_+, X)$ for every $0 < \beta < 1$.

Proof. First we give the proof for the second conclusion. For $f \in L^p(\mathbb{R}_+; X)$, the mild solution of the problem (1) is given by $u(t) = T * f(t) = \int_0^t T_{t-s} f(s) \, ds$. Since T is exponentially stable, one has $u \in L^p(\mathbb{R}^n; X)$ and the Fourier transform of u is given by $\hat{u}(y) = R(iy, A)\hat{f}(y), y \in \mathbb{R}$. Let $0 < \beta < 1$ be fixed, by Lemma 3.8, the set $\{|y|^{\beta}R(iy, A): y \in \mathbb{R}\}$ is \mathscr{R} -bounded. In order to show that $u \in W^{\beta,p}(\mathbb{R}_+, X)$, it suffices to show that $M_{\beta}: y \to (1 + y^2)^{\beta/2}R(iy, A)$ is a Fourier multiplier, see $[\mathbf{W2}]$ for a definition. By the operator-valued Fourier multiplier theorem of $[\mathbf{W2}]$, it will suffice to show that both $\{M_{\beta}(y): y \in \mathbb{R}\}$ and $\{yM'_{\beta}(y): y \in \mathbb{R}\}$ are \mathscr{R} -bounded. Notice that $yM'_{\beta}(y) = \beta y^2(1 + y^2)^{\beta/2-1}R(iy, A) - iy(1 + y^2)^{\beta/2}R(iy, A)^2$. So the \mathscr{R} -boundedness of $\{M_{\beta}(y): y \in \mathbb{R}\}$ and $\{yM'_{\beta}(y): y \in \mathbb{R}\}$ follows from Kahane's contraction principle, the \mathscr{R} -boundedness of $\{|y|^{\beta}R(iy, A): y \in \mathbb{R}\}$ and Proposition 2.2.

Now let $f \in W^{\beta,p}(\mathbb{R}_+, X)$, $0 < \beta < 1$ and let u be the mild solution of the problem (1). We have to show that $\mathscr{F}^{-1}((1+y^2)^{\beta'/2}A(\mathscr{F}u)(y)) = \mathscr{F}^{-1}((1+y^2)^{\beta'/2}AR(y,A)(\mathscr{F}f)(y)) \in L^p(\mathbb{R};X)$. Since $\mathscr{F}^{-1}((1+y^2)^{\beta/2}(\mathscr{F}f)(y)) \in L^p(\mathbb{R};X)$, it suffices to show that

$$y \longrightarrow (1+y^2)^{\frac{\beta'-\beta}{2}} AR(iy,A)$$

is a Fourier multiplier. This follows from Kahane's contraction principle, the \mathcal{R} -

boundedness of $\{|y|^{\alpha}R(iy, A): y \in \mathbb{R}\}$ for $0 < \alpha < 1$ and Proposition 2.2. The claim is proved.

Remark 4.13. By [**KL**], for each Banach space X with an unconditional basis, if X is not isomorphic to l^2 , there exists an analytic C_0 -semigroup T on X of negative type, such that the corresponding Cauchy problem does not have $\mathcal{M}R_{\infty}$. This implies that we cannot expect to extend the first conclusion of Theorem 4.12 to the case $\beta' = \beta$, or the second conclusion of Theorem 4.12 to the case $\beta = 1$.

REFERENCES

- [ABHN] W. ARENDT, C. BATTY, M. HIEBER and F. NEUBRANDER. Vector-valued Laplace transforms and Cauchy problems (Birkhäuser, 2000).
 - [AB] W. ARENDT and S. BU. The operator-valued Marcinkiewics multiplier theorem and maximal regularity. Math. Z. 240 (2002), 311–343.
- [AMH] W. ARENDT, EL. MENNAOUI and M. HIEBER. Boundary values of holomorphic semigroups. Proc. A.M.S. 125 (1997), 635–647.
 - [AE] W. ARENDT and A. F. M. ELST. Gaussian estimates for second order elliptic operators with boundary conditions. J. Operator Theory 38 (1997), 87–130.
 - [AR] W. ARENDT and A. RHANDI. Perturbation of positive semigroups. Arch. Math. 56 (1991), 107–119.
 - [BG] E. BERKSON and T. A. GILLESPIE. Spectral decompositions and harmonic analysis on UMD-spaces. *Studia Math.* 112 (1994), 13–49.
 - [B01] J. BOURGAIN. Some remarks about Banach spaces in which martingale differences are unconditional. Ark. Mat. 22 (1983), 163–168.
 - **[B02]** J. BOURGAIN. Vector valued singular integrals and the H¹-BMO duality. In Probability Theory and harmonic analysis (ed. X. Burkholder) (Marcel Dekker, 1986), pp. 1–19.
- [CPSW] PH. CLEMENT, B. DE PAGTER, F. SUKOCHEV and H. WITVLIET. Schauder decomposition and multiplier theorems. *Studia Math.* 138 (2000) 135–163.
 - **[CP]** PH. CLÉMENT and J. PRÜSS. An operator-valued transference principle and maximal regularity on vector-valued L_p -spaces. Proc. of the 6th International Conference on Evolution Equations, (eds. G. Lumer and L. Weis) (Marcel Dekker, 2000).
 - [CL] T. COULHON and D. LAMBERTON. Régularité L^p pour les équations d'évolution. Séminaire d'Analyse fonctionnelle Paris VI-VII 1984–1985, 155–165.
 - [DPG] G. DA PRATO and P. GRIAVARD. Sommes d'opérateurs linéaires et équations différentielles opérationnelles. J. Math. Pures Appl. 54 (1975), 305–387.
 - [DS] L. DE SIMON. Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineare astratte del primo ordine. *Rend. Sem. Mat. Univ. Padova* (1964), 205–223.
 - [**Do**] G. DORE. Maximal regularity in L^p spaces for abstract Cauchy problem. In *Functional analysis and related topics*, (ed. H. Komatsu). Lect. Notes in Math. 1540 (Springer 1993).
 - [DoV] G. DORE and A. VENNI. On the closedness of the sum of two closed operators. Math. Z. 196 (1987), 189–201.
 - [HP] M. HIEBER and J. PRUSS. Heat kernels and maximal L^p-L^q estimates for parabolic evolution equations. Comm. Partial Diff. Equa. 22 (1997), 1647–1669.
 - [KL] N. J. KALTON and G. LANCIEN. A solution to the problem of L^p -maximal regularity. Math. Z., to appear.
 - [KW] N. J. KALTON and L. WEIS. The H^{∞} calculus and sums of closed operators. *Math. Ann.* **321** (2001), 319–345.
 - [La] D. LAMBERTON. Equations d'évolutions linéaires associées à des semigroupes de contractions dans les espaces L^p. J. Funct. Anal. 72 (1987), 252–262.
- [LLM] F. LANCIEN, G. LANCIEN and C. LE MERDY. A joint functional calculus for sectorial operators with commuting resolvent. Proc. London Math. Soc. 77 (1998), 387–414.
- [LeM] C. LE MERDY. Counterexamples on L^p-maximal regularity. Math. Z. 230 (1999), 47–62.
 [LT] J. LINDENSTRAUSS and L. TZAFRIRI. Classical Banach Spaces I and II (Springer-Verlag, 1977).
- [N] R. NAGEL. One-parameter semigroups of positive operators. LNM 1184 (Springer, 1986).
- [**RS**] M. REED and B. SIMON. Methods of modern mathematical physics II: Fourier analysis, self-adjointness (Academic Press, 1975).

WOLFGANG ARENDT AND SHANGQUAN BU

- [St] E. M. STEIN. Harmonic Analysis (Princeton University Press, 1993).
 [V] J. VOIGT. On resolvent positive operators and positive C₀-semigroups on AL-spaces. Semigroup Forum 38 (1989), 263–266.
 [W1] L. WEIS. A new approach to maximal L^p-regularity. G. Lumer and L. Weis, editors. Proc. of the 6th International Conference on Evolution Equations (Marcel Dekker, 2000).
 [W2] L. WEIS. Operator-valued Fourier multiplier theorems and maximal L_p-regularity. Math. App. 210 (2001) 725 756.
- Ann. 319 (2001) 735–758.