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Abstract

Let A be the generator of an analytic Cj-semigroup on a Banach space X. We
associate a closed operator .7 with A defined on Rad(X) and show that when X is
a UMD-space, the Cauchy problem associated with A has maximal regularity if and
only if the operator o7 generates an analytic Cy-semigroup on Rad(X). This allows
us to exploit known results on analytic Cjy-semigroups to study maximal regularity.
Our results show that £-boundedness is a local property for semigroups: an analytic
Cy-semigroup 1" of negative type is #-bounded if and only if it is #Z-bounded at
z = 0. As applications, we give a perturbation result for positive semigroups. Finally,
we show the following: when X is a UMD-space, 1" is an analytic Cy-semigroup of
negative type, then for every f € LP(R.; X), the mild solution of the corresponding
inhomogeneous Cauchy problem with initial value 0 belongs to W%?(R.; X) for every
0<6<I1.

1. Introduction

Let A be the generator of a Cy-semigroup 7" on a Banach space X andlet 0 < 7 <
oo. If f € L'([0,7); X) then u(t) = T * f(t) = fﬂt T;_sf(s)ds defines the unique mild
solution of the problem

{ u(t) = Au(t) + f(t), t€]0,7) 0

u(0) = 0.

We say that A or T satisfies property M R (for maximal regularity) if u € LP(|0,T);
D(A)NWP([0,7); X) whenever f € LP([0,7); X) for some (equivalently for all) 1 <
p < o0o. This property of maximal regularity is important for non-linear problems and
has been studied extensively in the last years, see [AB, CPSW, CL, DPG, Do, DoV,

1 This research is part of the DFG-project: ‘Regularitdt und Asymptotik fir elliptische und
parabolische Probleme’. The second author is supported by the Alexander-von-Humboldt Foun-
dation and the NSF of China.
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HP, KL, KW, LLM, LeM, W1, W2]. It is shown by Dore that property .# R implies
that T'is analytic [Do]. Moreover on Hilbert space, each analytic semigroup has #R
[DS|. However, by a remarkable recent result by [KL| this property characterizes
Hilbert spaces among a large class of Banach spaces. This result makes it desirable
to have a characterization of .# R for an individual operator A. And indeed, this
was done recently by [W2]: if X is a UMD-space (see [Bol]), then the operator A
has ./ R if and only if the set {sR(w +is, A): s € R} is Z-bounded for some w larger
than the growth bound w(A) of A. The notion of Z-boundedness for sets of operators
is due to [Bo2| and is stronger than boundedness in operator norm (unless X is a
Hilbert space [AB]).

In the present article we find a reformulation of the characterization given by
Weis. We associate two closed operators .o/, and .7, with A which are defined on a
Banach space Rad(X) (the closed space of all Rademacher functions in L'([0, 1]; X)).
Assuming that T" has negative growth bound, we show that A has .#R if and only
it o/; generates an analytic Cy-semigroup, where j may be 1 or 2. Both operators
&/ and ./, are useful to exploit known results on analytic semigroups to study
maximal regularity. For example, we obtain as an immediate corollary that A + B
has .# R if A has /#R and B is a small perturbation of A whenever X is a UMD-
space (a perturbation result due to |[W1]). For positive Cj-semigroups on X = LP(Q),
1 < p < co, we obtain the following new perturbation result using the operator .«7,:
if A generates a positive Cy-semigroup on X satisfying #R and if B: D(A) — X is
a positive operator such that A + B is resolvent positive, then A + B satisfies .#R.

We also find a sufficient condition for positive interpolating semigroups on LP(€Q)
to have .Z RR. Finally, we refind a result due to [HP] showing that Gaussian estimates
implies .# R. Gaussian estimates can be established for elliptic operators of second
order for diverse boundary conditions (see [AE]).

In view of Weis’ characterization and other results in this direction (e.g. |AB, CP])
it seems important to find criteria to verify Z-boundedness. Our result shows that
maximal regularity is a local property of the semigroup 1" if X is a UMD-space,
then the semigroup T has .# R if and only if the set {T, :|arg(z)] < 6, |z| < €} is
R-bounded for some 6 > 0 and some € > 0.

It is not easy to verify Z-boundedness in concrete cases. However, if A generates
an analytic Cy-semigroup of negative type, then we show that {|s|®R(is, A): s € R}
is Z-bounded for each 0 < 8 < 1. This is used to show that when X is a UMD-space,
the mild solution u of (1) is actually in W%P(R,; X) for all 0 < 6 < 1 whenever
felP(Ry; X), 1 <p<oo.

We will also consider the problem (1) on R.. We say that A or T satisfies # R, if
the mild solution u of (1) belongs to LP(R.; D(A)) NW'P(Ry; X) for f € LP(Ry; X).
It is known that A has # R if and only if A has .#R and w(A) < 0 [Do|, where
w(A) denotes the growth bound of A. This result is most useful in the study of .#R.
In fact, to study the property .#R for A, it suffices to study the property .# R, for
A — (3 for some 3 > 0 satisfying w(A — 3) < 0. Notice that for a Cy-semigroup 1" with
generator A, one has w(A) < Oifand only if T is exponentially stable (or equivalently,
of negative type), i.e. there exist M > 1 and € > 0 such that ||T;|| < Me " whenever
t > 0. When T is analytic, we have s(A) = w(A), where s(A) = sup{Re(z):z € o(A)}
is the spectral bound of A.

Let X,Y be Banach spaces, we will denote by B(X,Y) the space of all bounded
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linear operators from X to Y. When X =Y, we will denote B(X, X) simply by B(X).
For 0 < 8 <, 3, will be the sector {z € C:|arg(z)| < #}. For a closed operator A
on X, we denote by p(A) the resolvent set of A, and R(\, A) = (A—A)~! for A € p(4).

2. R-boundedness

Let X,Y be Banach spaces. A set M C B(X;Y) is called Z-bounded if there exists
a constant C' > 0, such that for all T\, T5,...,T,, € M, x1,22,...,2, € X, n € N,

1 1 n
/ dt < C/ > vtz
0 o 5=t

X

where (7;);>1 is a fixed sequence of independent symmetric {—1, 1}-valued random
variables on [0, 1], e.g. the Rademacher functions ~;(¢) = sign(sin (2/7t)). We will
denote by (M) the smallest constant in (2). This concept was already used in [BG]
and [Bo2] in connection with multiplier theorems and more recently in [AB, CPSW,
KW, W1, W2]. Using Kahane’s inequality [LT, theorem 1-e-13], it is easy to see
that we can replace the L'-norm by any LP-norm in (2). We should also notice that
if we require (2) only for distinet T%,T5,...,T,, € M, we will obtain the same notion
of Z-boundedness with the same constant Z(M) [CPSW].

The notion of #Z-boundedness plays an important role in the study of .#ZR and
M Ro. For instance we recall the following characterization of .# R, in term of %-
boundedness due to [W2]. Its original statement is more general, but we will only
use the following more simple version.

dt, (2)
b'e

> T
j=1

THEOREM 2-1. Let A be the generator of an analytic Cy-semigroup T on X. Assume
that X is a UMD-space and w(A) < 0. Then the operator A has M Ry if and only if the
set {sR(is, A): s € R} is R-bounded.

The following proposition summarizes the most useful properties concerning %-
boundedness (see [CPSW, lemma 3-2] and [W2, 2.4, 2.6, 2-8]).

ProposiTioN 2-2. (i) Let Q be an open subset of C, and let T: Q — B(X) be an
analytic mapping. Then for every compact subset K C Q, #{T'(z): z € K} < 0.

(i) Let Q C C be a simply connected Jordan region such that C\Q has interior
points. Let T: Q — B(X) be a bounded, strongly measurable function, analytic in Q. If
R{T (z): z € OQ} < o0, then R{T(2): z € Q} < 0.

(iii) Let My, My, ..., M, be subsets of B(X), then

() < S
=1 =1

(iv) Let M be an R-bounded set, then R (co(M)) < 2R(M), where co(M) = {Z;nzl ;S
>‘j S C,Sj (S M?Z;‘Z1 |)\J| < l,m S N}
(v) Let T € B(X) be fixed, Q C C be a bounded subset. Then R{\T: X € Q} is
R-bounded and
R{NT: A € Q} < 2||T|| sup |A-

AEQ

The following lemma will be very useful in the study of #Z-boundedness.
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LemMA 2-3. Let S be a set, I be an interval of R, f: S x I — B(X). Assume that for
cach s € S, f(s,.) € L'(I, B(X)) and that there exists a measurable function g on I, such
that R{f(s,t): s € S} < g(t) for each t € 1. Then

%{/If(s,t)dt:seS} </Ig(t)dt.

Proof. Let si,82,...,8, €S, T1,Z2,...,2, € X. Then

1 n 1 n
/ > ) [ rniafao< [ | Sttt o
1|l »
</Ig(t>th ;vj(w)xj dw.

Thus

%{/If(s,t)dt:SES} g/Ig(t)dt.

COROLLARY 2-4. Let T be a Cy-semigroup on X with generator A. Assume that there
exist constants M > 1 and w > 0 such that ||T;|] < Me™“" for all t = 0. Then

R{R(z,A): Re(z) =2 0} < 2M/w.
Proof. This is a simple consequence of Lemma 2-3 and the equality

R(z,A) = / e *'T,dt, Re(z) > 0.

0
For0 <0 <7/2, M > 1andw > 0, we denote by &(, M, w) the class of all analytic
Cy-semigroups T' defined on ), satisfying

T || < Me Il 2 € 2.
We will use the following lemma.

LeEMMA 2-5. Let A be the generator of an analytic Cy-semigroup T on X. Assume that
w(A) < 0. Then there exist 0 < 0 < w/2, w > 0 and M > 1 such that T € (0, M,w).

Proof. As the semigroup T is analytic, we have s(A) = w(A) < 0 and there exist
w > 0and a > 0 such that {z € C:|arg(z —w)| < a+7/2} C p(A). This implies that
S2(A) C {z € C: Re(z) < s(A)}N{z € C:|(z —w)| = a+7/2}. From this we can find
B > 0 such that e*%¥ A generate analytic Cy-semigroup and w(e*# A) = s(eT¥ A) < 0.
In particular, the semigroup (Tj.=is)i=o generated by e*P A is exponentially stable.
There exist w > 0 and M > 1 satisfying

| Tyesin| < Me™*,  t>0.
[AMH, proposition 4-5] implies that
A < Mewlel? 2 e 3.
B
As Re(z) > |z|/cos B for z € g, the claim is proved.

Notice that when a Cy-semigroup T has .# R, then T' is analytic and has negative
growth bound [Do]. So by Lemma 2-5, T' € &(0, M,w) for some § > 0, M > 1 and
w > 0. Lemma 2-3 has the following useful corollary.
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COROLLARY 2:6. Let A be the generator of an analytic Cy-semigroup T. Assume that
w(A) < 0. Then for some 6 > 0 and each r > 0, we have R{T, : |z| = r,z € Lo} < 0.

Proof. By Lemma 2.5, there exist 6y >0, M >1 and w >0 such that
T € &0y, M,w). For each |a] <6, e'*A generates an analytic Cj-semigroup in
the class &(0y — |a], M,w). By Proposition 2-2, it suffices to show that Z{T(¢):
t > ty} < oo for each ty > 0.

Let ty > 0 be fixed. Denote by B(s,r) the closed ball centered on s with radius
7 in the complex plane. We have B(t,,tsin 6,/2) C Zq,. For z € B(ty, tosin 6,/4),
2 =ty +tysin Oyret®/2, 0 < r < 1/2, a € |0,27], since T is analytic in Xg,, we have

27
T, = / Tt',+tl. sin tgnem/zpr(a N ﬂ)%?
0
where
S L+72—2rcos 8

P.(B)

is the Poisson kernel. By Lemma 2-3,

27
_ . dg
P{T.: z € B(ty,tysin 0,/4)} < sup 2PT(CV)/ 1T +2 sin 00e® /2]l 5=
0<r<1/2,a€0,27] 0 2m

< 6 Mewhll=sin 60/2)
In particular
R{T;: t € [(1 —sin Oy/4)to, (1 +sin 6,/4)ty]} < 60 e—wtol1=sin 60/2)
Let a= (4 +sin 6y /4 —sin ), then [t), 00) C U, >0 (1—sin 6y /4)a"t,, (1+sin 0, /4)a"t]
and thus by Proposition 2-2
R{Ty:t >t} <O R{Ty: t € [(1 = sin Oy /4)a"ty, (1 + sin 0y /4)a"t ]}
n>0

< Z6Mefwt(.a"’(17sin 00/2) < 00

n=0

since a > 1. The claim is proved.

3. Associated semigroups on Rad(X)

Let X be a Banach space and let A be the generator of an analytic Cy-semigroup
T on X. Let (7;)i>1 be the sequence of Rademacher functions on [0, 1]. Define

R(X) = {ij: z; € X,n € N}

J=1

and Rad(X) the closure of Z(X) in L'([0, 1]; X). We obtain the same space Rad(X)
if we replace the L'-norm by any other LP-norm by Kahane’s inequality, see [LT,
theorem 1-e-13]. Notice that

Rad(X) = {Z'yjmj: the series Z’ijj converges in L' (|0, 1];X)} .

j=1 j=1
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In fact, the subset in the right hand side is closed in L'([0, 1]; X). Indeed, let f,, =
Z;’il vjxgn) € L'([0,1]; X) and let f = lim,,_, fy in L'([0,1]; X). For j € N, let 7
be the o-algebra of Borel subsets of [0, 1| generated by the functions v, 7s,...,7;.
Then the g-algebra generated by U2,.7 ; is exactly the o-algebra of all Borel subsets
of [0, 1]. Therefore if g; = E(f|# ;). then (g;);>1 is a martingale with respect to
the filtration #; and lim;_..g; = f in L'([0,1]; X), where E(f|#;) denotes the
expectation of f with respect to # ;. Each g; is of the form

J

95 = D (V- Ve 1) ks

k=1
where hy, is a function defined on {—1,1}¢~! with values in X. It is easy to see that
for m,n,j € N

||$§n) - x§”+m)|lx < an - fn+m||L'([1),lJ;X)~

)

This implies that lim .o a:(]n ‘= x; exists in X. On the other hand, for j,n € N

||hj<'717 cee 7%‘—1) - 5[7;'”)HL1(|0,1|:X) < Hf - anL'(|o,1|;X)-

Let n tend to oo, we obtain that h; is a constant function and h; = ;. We deduce
from this that the series Z;Zl v;x; converges in L'([0,1]; X) to f.

Let (g;)j>1 be a fixed dense sequence in (0,1) and let (p;);>( be a fixed dense
sequence in (1,00). We introduce two operators .o/ and 25 on Rad(X) in the fol-
lowing way:

D(st1) = {57, 725 € Rad(X):w; € D(A), 7, 47547, € Rad(X) }

p o (3)
= (Zizl%%‘) =0 4V AT.

D(stz) = {57, 725 € Rad(X):w; € D(A), 7, py;Az; € Rad(X) }
E2 <Z;Zl ’ijj> = Z;Z1pj7jA$j'

It is easy to verify that .o/, and o7, are densely defined closed operators. We will use
the following lemma.

(4)

Levya 31, Let X € C, X = re® then X € p(,) if and only if R{se’ R(se?, A): s >
r} < oo and X € p(<f>) if and only if R{se’’ R(se??, A): 0 < s < r} < oo. In that case
we have

[AR(N, o7 )|| = R#{se? R(se?, A): s > r}
AR, .of5)|| = #{se? R(se?, A): 0 < s < 7}
Proof. We will only give the proof for o/, the proof for .o/, is similar. First
assume that A = re®® € p(o7), let sy, 8s, ..., s,y be distinct such that s; > 7. We have

0 <r/s; <1, so there exists ¢;, subsequence of g, satisfying lim,, o gin = 7/5;.
We may assume furthermore that for n > 1, gy n,q2n,...,qm,n are distinct. For
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Ti,X2,...,T, € X, we have
1 m
/ Z%(t)sje“gR(sjew,A)xj dt
o 5= <
. i LR’ "6
= lim Z’yj(t)—e R —e"", A|x;|| dt
n—oo J, = qjn qjn X
1 m
= lim/ Zvj(t)remR(rew,qj’nA)xj dt
=00 Jo —
Jj=1 X
<R, ) (Y v
J=t Rad(X)

Thus we deduce that
R{seR(se’ A) : s > 1} = R{se"R(se”, A) : s > r} < |IAR(N, 4]

Conversely let 3277 v;x; € Rad(X). Then

AR(A, o) <Z %‘%‘)
j=1

Z ’)/J)\R(/\, q_jA)Ij

Rad(X) J=1

A (A
=[Sk (24
= Y 4;

Rad(X)

Rad(X)
S
E V%
J=1

Thus [[AR\, <Z,)|| < #{se?R(se'®, A): s = r}. The claim is proved.

< @{semR(sew, A):s>r}

Rad(X)

The following is the main result of this section.

THEOREM 3-2. Let A be the generator of an analytic Cy-semigroup on X. Assume that
X is a UMD-space and w(A) < 0. Then the following are equivalent:
(i) 4 has M R.
(i) o generates a bounded analytic Cy-semigroup on Rad(X).
(i) o/ generates a bounded analytic Cy-semigroup on Rad(X).

Proof. First notice that there exist 8§ >0, M > 1 and w > 0 such that T' €
&0, M,w) by Lemma 2-5. Assume that A has .#R.. Then by Theorem 2-1 the
set {AR(A, A): X € iR} is #Z-bounded. By an argument used in [CP], there ex-
ists /2 < 0" < 7, such that the set {\R(\, A): X € Zp U {0}} is Z-bounded. By
Lemma 3-1 we have Xy C p(o/1) N p(.o/5) and

sup |[ARA, oZ1)|| < Z{ARMN, A): A€ Xy} <0

AEZQ/

sup |[AR(A, o2)|| < Z{AR(\, A): A € 2y} < 0.
)‘EZQ/
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So ./, and &/, generate bounded analytic Cj-semigroups on Rad(X) (see
[N, theorem 4-6]). This shows the implications (i) = (ii) and (i) = (iii).

If o/, generates a bounded analytic Cy-semigroup on Rad(X), we have {is: s €
R,s %0} C p(«/;) and

sup |isR(is, o y)|| < oo.
SER, 540

By Lemma 3-1 for each r > 0

R{itR(it,A): t = r} < sup |isR(is, ).

SER, 50
So
R{itR(it, A): t > 0} < sup |isR(is,./1)|.
SER, 540
Therefore

R{itR(it,A): t e R} < 2 sup |isR(is, )| < 0.
SER, %0
It follows that A has .# R., by Theorem 2-1. This shows the implication (ii) = (i).
The implication (iii) = (i) is similar.

Remark 3-3. (i) When A has # R, the bounded analytic Cj-semigroups gener-
ated by o/ and .o/, are given by

T - (Z %‘%‘) = Ty
j=1 j=1

L = <Z Wj) = % Tpjs
j=1 j=1

respectively.

(ii) Let A be the generator of an analytic Cy-semigroup T'. Assume that w(A) < 0.
The semigroup 7 does not exist in general since {T;: 0 < ¢ < 1} is not necessarily
A-bounded. However by Corollary 2-6, . is well defined and % defines a semigroup
on Rad(X), but it is not always strongly continuous (or equivalently, . is not always
bounded on Xy N B(0, 1) for 6 > 0).

As application of Theorem 3-2, we deduce the following result due to [W1].

THEOREM 3-4. Let T be an analytic Cy-semigroup with generator A. Assume that X
is @ UMD-space and w(A) < 0. Then A has MRo if and only if {T.: z € Zg} is
R-bounded for some 0 < 0 < 7/2.

Proof. When A has # R, by Theorem 3-2 .o/, generates a bounded analytic C-
semigroup J on Xy for some 0 < 6 < w/2. By Remark 3-3 the semigroup generated
by ./ is given by

7. (Z %’%’) =Y 7iTue;
j=1 =1
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for z € Zy. A similar argument as in the proof of Lemma 3-1 shows that
R{T o025 2 0} < 00
for all 0 < ' < 6. It follows from Proposition 2-2 that Z2{T.: z € Xy } < c0.

Conversely, suppose that Z{T.: z € Xy} < oo for some 0 < 6 < 7/2. Then the
Cy-semigroup

7. (Z %‘%’) =Y 7iTue;
j=1 =1

is bounded analytic on 2.

Furthermore, 7 is strongly continuous. Indeed, it is clear that for Zjvzl VT €

. N N .

Rad(X), we have lim. o.ex, 70 ;0 %%;) = Do Vi lim.o.ex, Toj.7;
Z;V:l v;jx;. It follows from the uniform boundedness of J and the density of
{3 5 vy xj € Xc;on € N} in Rce}od(X) that for every 3°°° v;j2; € Rad(X), we have
lim.ozess, 720302 %5%5) = 2o V%5

The generator ot J is given by 2/ . Therefore o/, generates a bounded analytic
Cy-semigroup. It follows from Theorem 3.2 that A has # R.

As an immediate consequence of Corollary 2-6 and Theorem 3-4, we obtain the
following.
CoRrOLLARY 3:5. Let T be an analytic Cy-semigroup on X and let A be the generator

of T. Assume that X is a UMD-space and w(A) < 0. Then T has M R if and only if
there exist v > 0 and 0 > 0 such that R{T(z): |z| <1,z € Ly} < .

For .4 R, it is more natural to work with analytic Cy-semigroups which are not
necessarily of negative type. In that case, the semigroup generated by .2/, is not nec-
essarily bounded and there is no analogous characterization involving the operator
o/ 5. The following characterization of .#Z R is analogous to the equivalence between
(i) and (ii) in Theorem 3-2.

THEOREM 3-6. Let A be the generator of an analytic Cy-semigroup on X. Assume
that X is a UMD-space. Then A has MR if and only if </ generates an analytic
Co-semigroup on Rad(X).

Proof. First recall that A generates an analytic Cj-semigroup if and only if there
exists 7 > 0, such that {z: Re(z) > 7} C p(A) and sup g5, [2R(z, 4)|| < oo, see
[N, A-II, theorem 1-14].

Assume now that A has .# R. Let T be the analytic Cy-semigroup generated by A.
There exists w > 0 such that (e7“'T});> is exponentially stable, so A —w has # R.
We have by Theorem 2-1 and Corollary 2-4 that

R{isR(is, A —w): s € R} < o0
R{R(is, A —w): s € R} < o0.

Thus
R{AR(X, A): Re()\) = w} < o0.

By Proposition 2-2
R{AR(\, A): Re(z) > w} < 0.
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ForAeC, Re(AN) 2w, A =a+1ib,a>w,

AR\, .Z,) (ZWJ> Z% <+1>R(a+ib_,A> x;

4q; d;

Rad(X) Rad(X)

< Z{AR(\, A): Re(

Z Vs

as a/q; 2 a 2 w. So supp, s, [AR(A, )| < oo, thus o/, generates an analytic
Cy-semigroup on Rad(X).

Conversely assume that o7 generates an analytic Cy-semigroup on Rad(X), there
exists r > 0 satisfying {\: Re(A) > 0, |A\| > r} C p(oZ,) and there exists C' > 0 such
that

Rad(X)

sup IAR(N, o/ 4)]] < C.

Re(A)=0,| A >7
As A also generates an analytic Cy-semigroup on X, we can suppose that {A: Re()\) >
0,|\ = r} C p(A) and
sup AR\, A)|| < C.

Re(A\)=0,| X[ >r
From |jirR(ir, o/,)|| < C, we get #{isR(is, A): s > r} < C by Lemma 3-1. Similarly
R{isR(is, A)(:) s < —r} < C. Define
A={AeC:[ImN)]=70<Re\) <r}U{reC:Rel)=rImN]|<r}

We have A C p(A) and A is a compact subset. By Proposition 2:2, Z{\R(\, A): X €
A} < 00, hence Z{AR(\, A): X € Aor X € iR, |A\| = r} < co. Again by Proposition 2-2
R{AR(\, A): Re(\) = 1} < 0.

Without loss of generality, we can assume that the semigroup (e "T});>¢ is expo-

nentially stable. By Corollary 2-4 this implies that
R{R(is+r, A): s € R} < o0.
Therefore
R{isR(is +r, A): s € R} < 0.
By Theorem 2-1 this is equivalent to say that A —r has .# R, which implies that A
has .ZR.

We have also the following characterization of # R in term of Z-boundedness of
the semigroup 7.

ProrosiTioN 3-7. Let A be the generator of an analytic Cy-semigroup T'. Assume that
X is a UMD-space. Then A has MR if and only if for some r > 0 and 8 > 0, the set
{T,: z € g, |z| < 1} is R-bounded.

Proof. First assume that A has .# R, there exists € > 0 such that the analytic Cj-
semigroup (e~*T}).cx, belongs to the class &(6, M,w) for some 8 > 0, M > 1 and
w > 0. As (e”“T});>0 is exponentially stable, A — € has # R and by Theorem 3-4
the set {e “*T}: z € Zy'} is Z-bounded for some 0 < " < 6. On the other hand by



Tools for maximal regularity 327

Corollary 2-6 there exists r > 0 such that the set {e *T,: z € Z¢g/, |2z| Z 1} is X-
bounded, and so
R{e T,: z € g, |2| < r} < o0,

by Kahane’s contraction principle
R{T,: z € Zor, |2| <1} < 00.

For the converse, assume that there exist 7 > 0 and 6 > 0 such that 2{T,: z €
2g,]2] < r} < oo. There exists € > 0 such that the Cy-semigroup (e~ T});>0
belongs to the class (0, M,w) for some 0 < @ <6, M > 1 and w > 0. We deduce
from Corollary 2-6 that Z{e"“*T,: z € Zy/,|2| > r} < co. By hypothesis we have
R{T.: z € Zg, |z| <1} < 00,80 B{e T,z € Zy,|2| <1} < 0o by Kahane’s con-
traction principle. Finally we get Z{e~“*T,: z € £y} < 00, this implies by Theo-
rem 3-4 that A — € has #/R; and so A has # R. The claim is proved.

Let A be the generator of an analytic Cy-semigroup 7. Assume that w(A) < 0. By
Lemma 25 the semigroup T belongs to the class &(0, M,w) for some 0 < 6 < 7/2,
M > 1 and w > 0. By Proposition 2-2 and Corollary 2-6 there exists 0 < 6y < 7/2
such that for all 7 > 0

sup  [|Z,|| < oc.
2€Xg,,|z|2T
One can easily check that when X is a UMD-space, A has # R, if and only if
the semigroup ., is strongly continuous at z = 0. One can also show that when
X is a UMD-space, A has .# R, if and only if the semigroup ¢, is bounded on
{z €Zy, |2 < 1}.

In the following we study the behaviour of ||AR(A, .o75)|| when |A\| — oo, and the

behaviour of ||, || when |z| — 0. We will need the following lemma.

LeMMA 3-8. Let A be the generator of an analytic Cy-semigroup T. Assume that
w(A) < 0. Then there exists w/2 < 0 < m such that for each 0 < o < 1

RN RN, A): X € Zy} < 0.

Proof. Under the assumption of the lemma, the semigroup 1" belongs to &(8, M, w)
for some 6 >0, M > 1 and w > 0 by Lemma 2-5. As for each |8] < 6, e/PA also
generates an analytic Cy-semigroup on X in the class (0 — |5|, M,w), to show the
lemma it suffices to show that for each 0 < 6 < 7/2, 0 < a < 1, we have

R{N“R(N, A): X € Zy} < 0.
We have -
|)\|"R()\,A):/ I\ e T, dt.

0

By Lemma 2-3
R{N“R(\, A): X € Zp} g/ 2T sup |A|%e BN gt
0 AEZ,

2M < B
< - e “'sup \%e A dt
cos*0 J, A>0

2Ma” /°° pdt
= € — < 0.
0

ecos®f to
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Under the hypothesis of the previous lemma, there exists 7/2 < § < 7 such that
for all 0 < av < 1, the subset {|A\|[*R(A, A): X € £y} is Z-bounded. For A € Zy

RO, ) (S ) = o2 (A) z;
=1 = P Pj
as [A|%/p; < [A|*/p§ for p; = 1 and 0 < a < 1, by Kahane’s contraction principle
IA*R(A, oZ3)|| < Co 9. where Cy g is a constant depending only on 0 < a < 1 and
0. So
sup [[[A|*R(A, Z2)|| < Cap.

AEXy

It is clear by Remark 3-3 that the semigroup &, is well defined and

S <Z ’Yj%‘) = Z’Yijjzxj‘
j=1 j=1

One can represent S, in term of R(\, .o75) in a standard way:
Py = / eMR(N, oA 5) d,
r

where for ¢t > 0, the path I' is composed by I', I's and I';, where I'y = {re_w, g
r < oo}, To={t71e?: -0 <o <O} and Ty = {re?:t7! < r < oo} for a fixed
/2 < @ < 6. T is orientated in such a way that Im(z) increases. Using the known
estimate of R(\,./5) when |)| is big, we easily obtain that

17 < Ca/t®  0<t<1

for some constant C,, depending only on 0 < a < 1. So there exists 0 < 8 < 7/2 and
a constant C, g depending only on 0 < o < 1 and 3, such that

1Z:1l < Ca,p/12]
for all z € 5,0 < |z| < 1. So we have shown the following.

ProposiTioxN 3-9. Let A be the generator of an analytic Cy-semigroup T'. Assume that
w(A) < 0. Then there exists 0 < 3 < w/2 such that for each 0 < o < 1, there exists
Cu.p < 00 depending only on o and (3 such that

Sllp |H)‘|aR(/\7'Q{2>|| g Coc,ﬁ
)\EZQ+W/2

sup [[2]' 7S] < Cap.
zEXg

Remark 3-10. By the counterexample of Kalton and Lancien, when X is a Banach
space with an unconditional basis and if X is not isomorphic to [?, there exists an ana-
lytic Cy-semigroup T with generator A satistying w(A) < 0 such that the correspond-
ing Cauchy problem does not have .# R,. This implies that Z{sR(is, A): s € R} = oo,
NS s HIA|R(A, <Z2)]| = 0o for some 0 < 8 < w/2. This means
that we cannot expect to extend the conclusion of Lemma 3-8 or Proposition 3-9 to
the case o = 1.

or equivalently sup
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4. Applications
Let (Q,%, 1) be a o-finite measure space. Let 1 < py < p; < oo and let T}, py <
p < py be a family of interpolating Cyy-semigroups on LP(Q) (i.e., T,,(t)f = T,(t) f for
all f € LP(Q) N LYQ) whenever t = 0, py < p, ¢ < p1). If each T}, is bounded (on R.)
and if T3 is bounded analytic in a sector Xy for some 0 < 6 < 7/2, then by Stein’s
interpolation theorem (see |RS, theorem IX-21]), each T}, is bounded analytic on
some sector (depending on p), py < p < py.
Next we suppose that p; = 2, and let T}, is exponentially stable, py < p < 2. By
Corollary 2-6 the semigroup

t) (Z%’fj) Z% (tp;) f

is well defined on Rad(LP(Q)) and in general it is not a Cy-semigroup. As 15 is bounded
analytic and exponentially stable and L*(Q) is a Hilbert space, Ty has .# R, [DS].
By Theorem 3-2 this implies that the Cjy-semigroup %5 is bounded analytic. Again
by Theorem 3-2 T}, has .4 R, if and only if &}, is bounded analytic on Rad(L”(Q)).

Recall the well-known Khintchine’s inequality: for 1 < ¢ < oo, there exists C; > 0
such that for f; € LY(Q)

1 ) oo oo %
o (ZW) < i <, (Zlij)
o \5=5 Logy 197 Rad (L1 (@) 3=t

This shows that Rad(L4(Q)) is isomorphic to the space LI(Q;1?). In order to show
that &), is bounded analytic, it suffices to show that the semigroup

?pu)(flvfzw" pl fl, (pzt)fz,...)

is bounded analytic on LP(Q,[?). Tt is easy to verify that for p, < p, ¢ < 2

?p(t)(flvfza . ) = ?q(tﬂflaf%" )

for (fi, fa,...) € LP(Q; 1*) N LY(Q; %) and t > 0. So &, are again ‘vector-valued inter-
polating semigroups, py < p < 2. Now we are in the position to state a result which
gives a sufficient condition for an interpolating Cj-semigroup of negative type to
have # R

La(Q)

THEOREM 4-1. Let (Q,%, 1) be a o-finite measure space and let T), be interpolating Cy-
semigroups on LP(Q), po < p < 2. Ao sume that for all py < p < 2, T, is exponentially
stable, that Ty is analytic and R{T,,(t): t > 0} < oo. Then T,, has MR, for all p, <
p <2

This theorem is an immediate consequence of the above discussion and the fol-
lowing vector-valued Stein’s interpolation theorem. Its proof is similar to the scalar
case and can be omitted (see [RS, theorem IX-21] for the scalar case).

THEOREM 4-2. Let (Q, X, pi) be a o-finite measure space, X be a Banach space, 1 < py,
pe <00, 0 <0< m/2 Let z— T(z) be an application defined on Lo with values in
B(LP(Q; X)) which is bounded continuous on Xy and analytic on Zy. Assume that there
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exist My, My < oo such that
sup [|[T(re™")]

|L,,—L,, < M>
r>0

and
IT(r)fllz,, <Ml fllz,
Jorallr >0, f € LP/(Q; X) N LP2(Q; X). Then for all 0 < o < 1,
1T (e ") fllee < M{™*M|| flr
forall f € LP(Q: X) N LP*(Q: X)., where

1 a 11—«
= +

P P2 D

Now we can prove the following interpolation result for maximal regularity.

THEOREM 4-3. Let (Q,Z, 1) be a o-finite measure space, 1 < py < 2. For py < p < 2,
let T, be a Cy-semigroups on LP(Q) verifying T,(t) f = T,(t)f for f € LP(Q) N LY(Q) and
t > 0. Assume that Ty is analytic and there exists 6 > 0 such that R{T,,(t): 0 < t <
0} < oo. Then T, has MR for all py < p < 2.

Proof. Define for € > 0
W,(t) = e~ T, ().

Fix one € > 0 big enough to ensure that each W), is exponentially stable. In this case
W is bounded analytic and by Corollary 2-6, Z{W,, (t): t > 6} < co. As #{T},(t): 0 <
t < 6} < oo, we deduce that Z{W,,(t): t > 0} < co. By Theorem 4-2 W), has .# R
for py < p < 2, and so T}, has #R.

Remark 4-4. Of course, if we have 2 < p, < 0o, we can give similar results for
2 < p < pp as in Theorem 4-1 and Theorem 4-3.

As a direct application of Theorem 4-3. we deduce the following result due to [HP]

(see also [CP] and [W1]).

CorOLLARY 4-5. Let Q C R" be a measurable subsel. For 1 < p < oo, let T), be a Cy-
semigroup on LP(Q) such that for t >0, f € LP(Q) N LYQ), we have T,(t)f = T,(t)f.
Assume that T5 is analytic and has Gaussian estimates. Then T, has M R for 1 < p < oo.

Proof. As T, has (Gaussian estimates, there exist constants C' > 0 and a > 0 such
that for f € L*(Q), one has |Ty() f|(w) < C[Gz(at)|f]](w) for almost all w € Q, and all
0 <t <1, where G, denotes the Gaussian semigroup on LP(R™). We have Z2{G,(t) :
0 <t <1} < ooby [St, theorem 1, p. 51|. This implies that Z2{T,(t) : 0 <t < 1} < 00
by Khintchine’s inequality. The result follows from Theorem 4-3.

Remark 4-6. Let (Q,)", 1) be a o-finite measure space, 1 < p < oo, and let T}, be
interpolating Cyy-semigroups on LP(Q; X), i.e. forall 1 < p, ¢ < oo and f € LP(Q; X)N
L4Q: X)), we have T),(t) f = Ty (t)f for all t > 0. Using Kahane’s inequality it is easy
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to see that the linear mapping

Rad(LP(Q: X)) — LP(Q: Rad(X))

Y oviti— {w — Z%‘fg‘(w)}
= j=1

is an isomorphism between Banach spaces. So we can use Theorem 4-2 to obtain a
vector-valued version of Theorem 4-1, Theorem 4-3 and Corollary 4-5 (for this we have
to introduce the notion of vector-valued Gaussian estimates). Since the adaptation
is standard, we omit the detail.

For 1 < p < oo, if T, are positive interpolating Cj-semigroups on LP(Q), we can
establish the following result which gives a sufficient condition for .# R. Notice that
by Proposition 2-2 and Lemma 2-3, the hypothesis here is weaker than that of
Theorem 4-3.

THEOREM 4-7. Let (Q, >, ) be a o-finite measure space and let 1 < py < 2. For py <
p < 2, let T, be a positive Cy-semigroup on LP(Q) with generator A,. Assume that
T5 is analytic and for py < p, ¢ < 2 and t > 0, we have T,(t)f = T,(t)f whenever
feLr(Q)NLYUQ). Assume that R{tR(t +w, Ap,): t = 0} < 00 for some w > w(A,,).
Then T, satisfies MR for py < p < 2.

Proof. First notice that it suffices to show the same conclusion for the semigroups
(€= T, (t))e=0 for some € > 0. So without loss of generality, we can assume that each
T, is exponentially stable and Z2{tR(t, Ay): t = 0} < co. L*(Q) is a Hilbert space, Tb
is analytic and exponentially stable, so T, has .# R, [DS]. By Theorem 2-1 and an
argument used in [CP], there exist o > 0 such that Z{AR(\, Az): A € Xy 510} < 00.

Let 0 < 6 < /2 be fixed. For A € £y and f € LP(Q), one has

IAR(A, Ap,) f| < | / e NI ()] fldt = [A|R(Re(X), Ap,)| £
0

1
cos 0

< Re()\>R(R‘e()‘)7APU>‘f|

By Khintchine’s inequality this implies that Z{\R(X\, 4,,) : A € Zy} < 0.

Notice that 0 < # < 7/2 is arbitrary, so a similar argument as in [La, section
I1] shows that for each p, < p < 2, the set {sR(is, A,): s € R} is #-bounded. By
Theorem 2-1, T}, has .#R.

Using Theorem 3-6, we can also give an easy new proof of the following perturba-
tion result due to [W1].

THEOREM 4-8. Let A be the generator of an analytic Cy-semigroup on a UMD-space
X, B a closed operator in X such that D(A) C D(B). Assume that for each a > 0 there
exists b > 0 satisfying

[Bz|| < al| Az + bljzll, 2 € D(A).
Then if A has MR, A+ B also has M R.
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Proof. Let o/, and %, be the corresponding closed operators associated to A and
B respectively, defined by (3-1). We have for z; € D(A)

o0 o0 (o)
& (Z %‘%’) =4 (Z Wi) PIRTES
j=1 j=1 j=1
This follows from Kahane’s contraction principle and the estimate
> B, > Az > v
j=1 j=t j=1
The semigroup generated by .o/ is strongly continuous and analytic since A has

A R. By [ABHN, theorem 3-7-23], .o/, + %, generates an analytic Cy-semigroup.
This implies that A + B has .# R by Theorem 3-6.

<a +b

Rad(X) Rad(X) Rad(X)

<a +b

Rad(X) Rad(X) Rad(X)

Theorem 3-2 combined with [AR, theorem 1-1] gives the following perturbation
result for positive Cj-semigroups. Recall that an operator A on LP(Q) is called re-
solvent positive if, for some Ay € R one has [\, 00) C p(A) and R(X\, A) > 0 for all
A=A

THEOREM 4-9. Let A be the generator of a positive Cy-semigroup on LP(Q) for some
measure space (Q, 2, u) and 1 < p < 0o. Let B : D(A) — LP(Q) be linear and positive.
Assume that A+ B is resolvent positive and that A has M R. Then A + C has 4 R when-
ever C: D(A) — LP(Q) is a linear mapping satisfying |Cu| < Bu for all uw € D(A),.

Proof. By [AR, theorem 1-1], A+ B and A + C generate analytic Cy-semigroups.
Since A + B is resolvent positive, there exist A > w(A) and k € N satistying
[(BR(X\, A))¥|| < 1, see [V, theorem 1-1]. Without loss of generality we can assume
that w(A) <0, w(A+B) <0, w(A+C)<0and A =0. Let /5, %5 and %5 be the
corresponding closed operators associated with A, B and C respectively, defined
by (3-2). By Khintchine’s inequality, there exists a constant C' > 0 such that for
f; € L@

. - 1/2
= Z |fj|2> <
¢ (j—l

Lr(Q)

2

0o 1/
<C <Z |fj|2>

Z%‘fj
j=1

Rad(L?(Q)) Lr(Q)

So the application J
Rad(LF(Q)) — LP(Q: %)

D it — {w — (F(W)jz}
=1

is an isomorphism between Banach spaces. We will consider LP(Q;[?) as a Banach
lattice in the natural way. Let .o/ = J.o/,J ™', B = JA,J " and € = J€»J " be the
corresponding operators on LP(Q; [?).

The operator #: Z(<o/) — LP(Q;1?) is well defined and positive. Indeed, for
(fi)i=1 € 2(<Z), we have (pjAf;)j=1 € LP(Q:1?). As BA™! is bounded, we deduce that
(p;jBf;)j=1 € LP(Q;1?) and so Z(/) C Z(#). It is also clear that €: Z(/) — LP(Q;1*)
is well defined and satisfies |Fu| < Zu for each u € Z(.o/), and o/ generates an ana-
lytic Cy-semigroup by Theorem 3-2.



Tools for maximal regularity 333

Notice that A is injective with dense range since .o/ is injective with dense range.

Furthermore for (f;);>1 € LP(Q;1?), one has ||/~ "((f;)j=1)] < ||(pijA’1fj)j>1|| <

lA7M((f5)j=1)| since p; = 1. This means that 0 € p(.). Next for (f;);j>1 € LP(Q; %)
and n € N, one has

(BRO, )™ (f)istllLre = [((BRO, A)™ f3) sl e@e)

> i(BR(0, A)™ f;

J=1

<C

Rad(LP(Q))

Z%‘fg‘

J=1

< CI(BR(0O, A)¥|"

Rad(L?(Q))
< C*(BRO, A 1™1(f5)551 | Le@u)-

We deduce that |[(ZR(0,.o7))"*|| < C?||B(R(0, A))*||" and so ||[(BR(0, /)" < 1 for
large n € N. This implies by [V, theorem 1-1] that .o/ + £ is resolvent positive. By
[AR, theorem 1-1], o/ + % generates an analytic Cy-semigroup on LP(Q;[?). We will
show that w(.«/ + @) < 0, this will finish the proof by Theorem 3-2 and Lemma 2-5.

We have of + B = /(I — R(0,.4)B), so (o + B)"" = (I — BR(0, ) '/ =
E;’Z(,(%’R((), )/ As BR(0,/) and R(0,.o/) are positive, we deduce that
R(0, .o/ + A) is positive. This implies that s(.of + #) = w( + #) < 0, see [ABHN,
proposition 3-11-2]. By [AR, theorem 1-2], the semigroup generated by./ + € is
exponentially stable and so w(&/ + %) < 0. The claim is proved.

When T is a positive contractive analytic Cy-semigroup on LP(Q)(1 < p < 00), T
has .# R [W1]. The following corollary is an immediate consequence of the previous
theorem, and enlarges the class of semigroups to which Weis” theorem is applicable.

COROLLARY 4-10. Let A be the generator of a positive contractive analytic Cy-
semagroup on LP(Q) for some measure space (Q,Z,p) and 1 <p<oo. Let B:
D(A) — LP(Q) be linear and positive. Assume that of + B is resolvent positive. Then
o +C has MR whenever C: D(A) — LP(Q) is a linear mapping satisfying |u| < Bu
Sfor all uw € D(A),.

We give a concrete example of a Schrodinger operator.

Example 4-11. Let X = LP(R"), 1 < p < oo, Af = Af, D(A) = W»P(R"). Let
0 <V e L"(R™), where r > max{p,n/2} if p + n/2 and r > n/2 if p = n/2.
Then A+ V with domain D(A + V) = D(A) generates an analytic Cy-semigroup on
LP(R™) which satisfies .# R. We refer to [AR, section 3] for more details and further
examples.

Finally we prove that the mild solutions of the inhomogeneous Cauchy problem are
always in some fractional Sobolev space without any assumption of Z-boundedness.
Let X be a Banach space, 1 < p < oo, let #(R; X) be the space of all rapidly decreas-
ing smooth X -valued functions and denote by &' (R; X) = B(¥(R); X) the X-valued
Schwartz space. As usual, we identify LP(R; X)) with a subspace of ¥'(R; X). For
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f € L (R; X), the Fourier transform of f is defined by

oo

(F Hly) = e " f(x)yde, yeR.

1
V21 Jo
Tt is known that for f € S(R; X), # f € S (R; X). So for T € ' (R; X), we can define
FT € "(R; X) in a natural way: (F T, ¢) = —(T,F ¢) for ¢ € ¥ (R;C). Tt is known
that # is an isomorphism from % (R; X) onto & (R; X), and it is also an isomorphism
from ' (R; X) onto &'(R; X).

For 3 > 0, we can define the fractional Sobolev space WPP(R; X) by

WOPR: X) = {f € ' (R; X): (1 + )X F f)ly) € LP(R; X)}

where Z ~! denotes the inverse Fourier transform on .%/(R; X). Define W#?(R,; X) =
{f e WAPR; X): f(x) =0 for z < 0}.

Let T be an analytic Cy-semigroup with generator A. Assume that w(A4) < 0. When
X is a UMD-space and {isR(is, A): s € R} is Z-bounded, then the Cauchy problem
(1) has maximal regularity in W5P(R,; X) for 1 < p < oo and 0 < 3 < 1: for each
f € WPP(R,; X), there exists a unique u, solution of (1) such that Au € WPP(R,; X).
This follows easily from the operator-valued Fourier multiplier theorem due to [W2].

Using Lemma 3-8 and the same operator-valued Fourier multiplier theorem, we
can establish the following result.

THEOREM 4-12. Let A be the generator of an analytic Cy-semigroup T on a UMD-
space X and let A be the generator of an analytic Cy-semigroup on X satisfying w(A) < 0.
Then the following holds.

(i) For all f € WPPR,, X), 0 < <1, there exists a unique solution u of the
problem (1) such that Au € W7 P(R,; X) for all 0 < §' < f5.

(ii) For all f € LP(R., X). the mild solution u of the problem (1) belongs to W5P

(R, X) for every 0 < B < 1.

Proof. First we give the proof for the second conclusion. For f € LP(R,; X), the
mild solution of the problem (1) is given by w(t) = T  f(t) = f(f T;—sf(s)ds. Since
T is exponentially stable, one has v € LP(R"; X)) and the Fourier transform of u is
given by a(y) = R(iy, A)f(y). y € R. Let 0 < # < 1 be fixed, by Lemma 3-8, the
set {|y|°R(iy, A): y € R} is Z-bounded. In order to show that u € WFP(R,, X), it
suffices to show that Mgs: y — (1 + 3?)?/*R(iy, A) is a Fourier multiplier, see [W2] for
a definition. By the operator-valued Fourier multiplier theorem of [W2], it will suffice
to show that both {Mp(y): y € R} and {yMj(y): y € R} are Z-bounded. Notice that
yM(y) = By*(1 + 4?2~ Riy, A) — iy(1 + y*)?/2R(iy, A)*. So the Z-boundedness of
{Mps(y): y € R} and {yMj(y): y € R} follows from Kahane’s contraction principle,
the Z-boundedness of {|y|°R(iy, A): y € R} and Proposition 2-2.

Now let f € WPP([R,, X), 0 < 8 < 1 and let u be the mild solution of the
problem (1). We have to show that 7 ~!((1 +y*)? 2 A(Fu)(y)) = F (1 + y*)? *AR
(iy, A)(F f)(y)) € LP(R: X). Since Z ~'((1 + y*)/*(F f)(y)) € LP(R: X), it suffices to
show that

y — (1 + %) 5 AR(iy, A)

is a Fourier multiplier. This follows from Kahane’s contraction principle, the -
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boundedness of {|y|*R(iy, A): y € R} for 0 < a < 1 and Proposition 2-2. The claim
is proved.

Remark 4-13. By [KL], for each Banach space X with an unconditional basis, if X
is not isomorphic to [?, there exists an analytic Cy-semigroup T on X of negative type,
such that the corresponding Cauchy problem does not have .# R,. This implies that
we cannot expect to extend the first conclusion of Theorem 4-12 to the case 5’ = (3,
or the second conclusion of Theorem 4-12 to the case § = 1.
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