Semigroup Forum OF1–OF15 © 2003 Springer-Verlag New York Inc. DOI: 10.1007/s00233-002-0010-8

RESEARCH ARTICLE

The Laplacian with Wentzell-Robin Boundary Conditions on Spaces of Continuous Functions*

W. Arendt, G. Metafune, D. Pallara, and S. Romanelli

Communicated by Rainer Nagel

Dedicated to Jerry Goldstein on the occasion of his 60^{th} birthday

Abstract

We investigate the Laplacian Δ on a smooth bounded open set $\Omega \subset \mathbf{R}^n$ with Wentzell-Robin boundary condition $\beta u + \frac{\partial u}{\partial \nu} + \Delta u = 0$ on the boundary Γ . Under the assumption $\beta \in C(\Gamma)$ with $\beta \geq 0$, we prove that Δ generates a differentiable positive contraction semigroup on $C(\overline{\Omega})$ and study some monotonicity properties and the asymptotic behaviour.

Key words: Wentzell-Robin boundary conditions, positive contraction semigroups

Mathematics subject classification (2000): 47D06, 35J20, 35J25

Introduction

The aim of this article is to show that the Laplacian Δ with Wentzell-Robin boundary condition

$$\beta u + \frac{\partial u}{\partial \nu} + \Delta u = 0 \text{ on } \Gamma \tag{1}$$

generates a positive contraction semigroup T on $C(\overline{\Omega})$. Here Ω is a bounded open subset of \mathbf{R}^n with smooth boundary Γ and $0 \leq \beta \in C(\Gamma)$. Note that (1) is a dynamic boundary condition. In fact, let f be an element of $C(\overline{\Omega})$ and u(t) = T(t)f. Then $u'(t) = \Delta u(t)$. Introducing this in (1) we obtain

$$\frac{d}{dt}u(t) = -\beta u(t) - \frac{\partial}{\partial \nu}u(t)$$
 on Γ .

We also establish monotonicity properties of this semigroup with respect to β . Also the asymptotic behaviour for $t \to \infty$ is studied. The boundary condition (1) was first studied in [9] in the space C([0, 1]) and then in [10] in the space

 $^{^{*}}$ Work partially supported by GNAMPA-INdAM. The first author is most grateful for the hospitality of the Universities of Bari and Lecce.

 $L^p(\Omega) \oplus L^p(\Gamma)$ for $1 \leq p < \infty$ and in $C(\overline{\Omega})$ by a direct energy method and the Lumer-Phillips theorem. The semigroup is shown to be holomorphic on $L^p(\Omega) \oplus L^p(\Gamma)$ for $1 and also in <math>H^1(\Omega)$, as has been shown in a subsequent paper [11].

Here we follow another path: the semigroup is constructed on $L^2(\Omega) \oplus L^2(\Gamma)$ by form methods and extended to $L^p(\Omega) \oplus L^p(\Gamma)$ by the Beurling-Deny criterion. Finally, using Schauder estimates, it is shown that $C(\bar{\Omega}) \oplus C(\Gamma)$ is an invariant subspace, and this leads to a Feller semigroup on $C(\bar{\Omega})$, maybe the most natural space for such boundary conditions. The semigroup in $C(\bar{\Omega})$ is even more regular. In fact, K. J. Engel (see [7]) has proved very recently, using a completely different approach, that it is analytic.

The idea to incorporate boundary conditions into a product space goes back to Greiner [16] and has also been used by Amann-Escher [1] and in [2, Chapter 6]. Robin boundary conditions

$$\frac{\partial u}{\partial \nu} + \beta u = 0 \quad \text{on } \Gamma \tag{2}$$

have already been treated by form methods (see [3] and [5]), whereas for the Wentzell-Robin conditions (1) this seems to be new. Concerning generation theorems for elliptic operators (possibly degenerate) with pure Wentzell boundary conditions (i.e., $\Delta u_{|_{\Gamma}} = 0$) in spaces of continous functions we refer to pioneer work of Feller [13] (in dimension one) and subsequent results by Clément-Timmermans [4], Goldstein-Lin [15] and Taira, Favini and Romanelli [24] among others. Concerning regularity properties and holomorphy of the generated semigroup in the case of pure Wentzell conditions see Vespri [25], Favini and Romanelli [12], Metafune [20], Engel-Nagel [8, Chapter VI, Section 4], and most recently Warma [26] for Wentzell-Robin boundary conditions in C([0,1]).

1. Beurling-Deny criteria and ultracontractivity

In this section we recall some results on positive forms which we will use in the sequel referring essentially to Davies [6] for the proofs.

Let $(H, (|)_H)$ be a real Hilbert space. By a **positive form** on H we mean a bilinear mapping

$$Q: D(Q) \times D(Q) \to \mathbf{R}$$

such that

$$Q(u,v) = Q(v,u) \text{ for all } u, v \in D(Q),$$

$$Q(u,u) \ge 0 \text{ for all } u \in D(Q),$$

where D(Q) is a dense subspace of H, the **domain** of the form Q. We set

$$Q(u) = Q(u, u)$$
 for all $u \in D(Q)$.

The form Q is called **closed** if the space D(Q) is complete for the norm

$$||u||_Q = (Q(u) + ||u||_H^2)^{1/2}$$

If Q is closed, then the operator A associated with Q is defined in the following way:

$$D(A) = \{ u \in D(Q) : \exists f \in H \text{ such that} \\ Q(u, \varphi) = (f \mid \varphi)_H \text{ for all } \varphi \in D(Q) \}, \\ Au = f.$$

The operator -A is selfadjoint and generates a C_0 -semigroup T on H satisfying $T(t) = T^*(t)$ and $||T(t)|| \le 1$ for all $t \ge 0$. We call T the semigroup associated with the form Q. Let us recall the following compactness criterion. The following are equivalent:

- (i) T(t) is compact for each t > 0;
- (ii) the injection of $(D(Q), || ||_Q)$ into H is compact;
- (iii) the operator $(I + A)^{-1} \in \mathcal{L}(H)$ is compact.

We now suppose that $H = L^2(Y)$ where (Y, Σ, μ) is a σ -finite measure space. One says that $T = (T(t))_{t\geq 0}$ is a **symmetric Markov semigroup** if the following conditions are satisfied:

$$T(t) = T(t)^* \quad \text{for all} \quad t \ge 0; \tag{1.1}$$

$$T(t) \ge 0 \quad \text{for all} \quad t \ge 0 \tag{1.2}$$

$$||T(t)f||_{\infty} \leq ||f||_{\infty}$$
 for all $f \in L^2(Y) \cap L^{\infty}(Y)$ and all $t \geq 0$. (1.3)

A Dirichlet form on $L^2(Y)$ is a closed positive form satisfying the following two conditions of Beurling-Deny

$$u \in D(Q)$$
 implies $|u| \in D(Q)$ and $Q(|u|) \le Q(u)$ (1.4)

$$0 \le u \in D(Q)$$
 implies $u \land 1 \in D(Q)$ and $Q(u \land 1) \le Q(u)$. (1.5)

Theorem 1.1 ([6, Theorem 1.3.3]). Let A be an operator on $L^2(Y)$. The following assertions are equivalent:

- (i) -A generates a symmetric Markov semigroup;
- (ii) A is associated with a Dirichlet form.

Next we recall a notion of ultracontractivity.

Theorem 1.2 ([6, Corollary 2.4.3]). Let Q be a Dirichlet form and $T = (T(t))_{t\geq 0}$ the associated semigroup. Let $\mu > 2$. The following assertions are

equivalent:

- (i) $D(Q) \subset L^{2\mu/(\mu-2)}(Y);$
- (ii) there exists c > 0 such that

$$||T(t)f||_{\infty} \le ct^{-\mu/4} ||f||_2 \qquad (0 < t < 1)$$

for all $f \in L^2(Y)$.

If a $\mu > 2$ exists such that these equivalent conditions are satisfied, we call the semigroup T ultracontractive.

2. The semigroup on $L^2(\Omega) \oplus L^2(\Gamma)$

Let Ω be a bounded open subset of \mathbf{R}^n with Lipschitz boundary $\Gamma = \partial \Omega$. We denote by

$$u \mapsto u_{|_{\Gamma}}$$

the **trace** function, which is a bounded operator from the Sobolev space $H^1(\Omega)$ into $L^2(\Gamma, \sigma)$, where σ is the surface measure on Γ . To simplify the notation, we frequently write u instead of $u_{|\Gamma}$. Denote by Δ_{\max} the Laplacian in $L^2(\Omega)$ with maximal domain, i.e.,

$$D(\Delta_{\max}) := \{ u \in H^1(\Omega) : \Delta u \in L^2(\Omega) \}$$

 $\Delta_{\max} u := \Delta u$ (in the sense of distributions),

and denote by $\nu(z)$ the exterior normal in $z \in \Gamma$. Let us introduce the notion of weak normal derivative.

Definition 2.1. Let $u \in D(\Delta_{\max})$. We say that u has a weak normal **derivative** if there exists a function $b \in L^2(\Gamma)$ such that

$$\int_{\Omega} \nabla u \nabla \varphi \, dx + \int_{\Omega} \Delta u \varphi \, dx = \int_{\Gamma} b \varphi d\sigma \tag{2.1}$$

for all $\varphi \in H^1(\Omega)$. In that case the function $b \in L^2(\Gamma)$ verifying (2.1) is unique and we denote it by $\frac{\partial u}{\partial \varphi}$.

We now consider the space $H = L^2(\Omega) \oplus L^2(\Gamma)$. Note that H can be identified with a space $L^2(Y)$ for a suitable finite measure space (Y, Σ, μ) such that $L^{\infty}(Y)$ can be identified with $L^{\infty}(\Omega) \oplus L^{\infty}(\Gamma)$ with the norm

$$|(u,b)||_{\infty} := \max\{||u||_{L^{\infty}(\Omega)}, ||b||_{L^{\infty}(\Gamma)}\}$$

for each $(u,b) \in L^{\infty}(\Omega) \oplus L^{\infty}(\Gamma)$. Let $\beta \in L^{\infty}(\Gamma)$ be such that $\beta(z) \geq 0$ for σ -a.a. $z \in \Gamma$ and define the operator A_{β} on H by

$$D(A_{\beta}) := \left\{ (u, u_{|_{\Gamma}}) : u \in D(\Delta_{\max}), \frac{\partial u}{\partial \nu} \text{ exists in } L^{2}(\Gamma) \right\},$$
$$A_{\beta}(u, u_{|_{\Gamma}}) := \left(\Delta u, -\beta u_{|_{\Gamma}} - \frac{\partial u}{\partial \nu} \right)$$

Remark 2.2. It is possible to characterise the domain $D(A_{\beta})$ in terms of fractional Sobolev spaces and traces. We have:

$$D(A_{\beta}) = \{ u \in H^{3/2}(\Omega) : \Delta u \in L^2(\Omega) \}.$$

In fact, for every $u \in H^{3/2}(\Omega)$ with $\Delta u \in L^2(\Omega)$ a weak normal derivative exists, so one inclusion follows. Conversely, if u belongs to $D(A_\beta)$, setting $f = \Delta u$ and $b = \frac{\partial u}{\partial \nu}$, u is a variational solution of the boundary value problem $\Delta u = f$ in Ω , $\frac{\partial u}{\partial \nu} = b$ on Γ . Moreover, there is a unique (up to constants) $v \in H^{3/2}(\Omega)$ solving the same problem, hence $u \in H^{3/2}(\Omega)$, as claimed.

If Γ is C^{∞} these results are classical (see e.g. [19, Theorem 7.3, 7.4 p. 186–7]), whereas if Γ is only Lipschitz continuous, the proof is much more delicate, and we refer to [17], [18].

Theorem 2.3. The operator A_{β} generates a symmetric Markov semigroup on the space $L^2(\Omega) \oplus L^2(\Gamma)$.

Proof. We define the positive form Q on H by

$$D(Q) := \{(u, u_{|_{\Gamma}}) : u \in H^{1}(\Omega)\}$$
$$Q((u, u_{|_{\Gamma}}), (v, v_{|_{\Gamma}})) := \int_{\Omega} \nabla u \nabla v \, dx + \int_{\Gamma} uv\beta \, d\sigma.$$

The proof is now given in several steps.

a) D(Q) is dense in H. Let $b \in \mathcal{D}(\mathbf{R}^n)$ (i.e., b is a test function). Then there exists a sequence $(u_k)_{k\in\mathbf{N}}$ in $\mathcal{D}(\mathbf{R}^n)$ such that $u_{k|_{\Gamma}} = b$ and $u_k \to 0$ in $L^2(\Omega)$ as $k \to \infty$. Thus $(0, b) \in \overline{D(Q)}$. It follows that

$$\{0\} \oplus L^2(\Gamma) \subset \overline{D(Q)}.$$

Moreover,

$$(u,0) = (u,u_{|_{\Gamma}}) - (0,u_{|_{\Gamma}}) \in \overline{D(Q)}$$

for all $u \in H^1(\Omega)$. Hence $L^2(\Omega) \oplus \{0\} \subset \overline{D(Q)}$.

b) The form Q is closed. Since the trace is a continuous operator from $H^1(\Omega)$ into $L^2(\Gamma)$, there exists a constant c > 0 such that

$$||u|_{|\Gamma}||_{L^{2}(\Gamma)} \leq c ||u||_{H^{1}(\Omega)}$$

for all $u \in H^1(\Omega)$. It follows that the form norm

$$\|(u, u_{|_{\Gamma}})\|_{Q} = (Q(u, u_{|_{\Gamma}}) + \|(u, u_{|_{\Gamma}})\|_{H}^{2})^{1/2}$$

is equivalent to the norm

$$||(u, u_{|_{\Gamma}})|| := ||u||_{H^1(\Omega)}, u \in D(Q).$$

Since $H^1(\Omega)$ is complete, also D(Q) is complete.

c) The first Beurling-Deny condition (1.4) is satisfied. Let $u \in H^1(\Omega)$. Then $|u| \in H^1(\Omega)$ and $\nabla |u| = (\operatorname{sign} u) \nabla u$ (see [14, § 7.6]). In particular, $|\nabla |u||^2 = |\nabla u|^2$. Moreover, the trace of |u| coincides with $|u_{|_{\Gamma}}|$. Hence

$$Q(|u|,|u||_{\Gamma}) = \int_{\Omega} |\nabla u|^2 \, dx + \int_{\Gamma} |u|^2 \beta d\sigma = Q(u,u_{|\Gamma}).$$

d) The second Beurling-Deny condition (1.5) holds. Let $0 \le u \in H^1(\Omega)$. Then $u \land 1 \in H^1(\Omega)$ and $\nabla(u \land 1) = 1_{\{u \le 1\}} \nabla u$ (see [14, § 7.6]). Hence

$$(u, u_{|_{\Gamma}}) \land (1_{\Omega}, 1_{\Gamma}) = (u \land 1_{\Omega}, (u \land 1_{\Omega})_{|_{\Gamma}}) \in D(Q)$$

and

$$\begin{aligned} Q((u, u_{|_{\Gamma}}) \wedge (1_{\Omega}, 1_{\Gamma})) &= \int_{\Omega} |\nabla (u \wedge 1_{\Omega})|^2 \, dx + \int_{\Gamma} (u \wedge 1_{\Gamma})^2 \beta \, d\sigma \\ &\leq \int_{\Omega} |\nabla u|^2 \, dx + \int_{\Gamma} |u|^2 \beta \, d\sigma \\ &= Q(u, u_{|_{\Gamma}}). \end{aligned}$$

Hence Q is a Dirichlet form.

e) $-A_{\beta}$ is the operator associated with Q. Denote by B the operator associated with Q. Let $(u, u_{|_{\Gamma}}) \in D(B)$, and let

$$B(u, u_{|\Gamma}) = (f, b) \in L^2(\Omega) \oplus L^2(\Gamma).$$

Then

$$\begin{split} \int_{\Omega} \nabla u \nabla \varphi \, dx + \int_{\Gamma} u \varphi \beta \, d\sigma &= Q((u, u_{|_{\Gamma}}), (\varphi, \varphi_{|_{\Gamma}})) \\ &= ((f, b) \mid (\varphi, \varphi_{|_{\Gamma}}))_{H} \\ &= \int_{\Omega} f \varphi \, dx + \int_{\Gamma} b \varphi \, d\sigma, \end{split}$$

for all $\varphi \in H^1(\Omega)$. Choosing $\varphi \in \mathcal{D}(\Omega)$ we deduce that $f = -\Delta u$. Hence

$$\int_{\Omega} \nabla u \nabla \varphi \, dx + \int_{\Omega} \Delta u \varphi \, dx = \int_{\Gamma} (b - \beta u) \varphi \, d\sigma$$

for all $\varphi \in H^1(\Omega)$, i.e.,

$$\frac{\partial u}{\partial \nu}$$
 exists and $\frac{\partial u}{\partial \nu} = b - \beta u_{|_{\Gamma}}.$

Thus we have proved that

$$(u, u_{|_{\Gamma}}) \in D(A_{\beta}) \text{ and } A_{\beta}(u, u_{|_{\Gamma}}) = -B(u, u_{|_{\Gamma}}).$$

In order to prove the converse, let $(u, u_{|_{\Gamma}}) \in D(A_{\beta})$. Then

$$\int_{\Omega} \nabla u \nabla \varphi \, dx + \int_{\Omega} \Delta u \varphi \, dx = \int_{\Gamma} \frac{\partial u}{\partial \nu} \varphi \, d\sigma$$
$$= \int_{\Gamma} (b - \beta u_{|\Gamma}) \varphi \, d\sigma$$

where $b = \frac{\partial u}{\partial \nu} + \beta u_{|_{\Gamma}}$ for all $\varphi \in H^1(\Omega)$. Hence

$$Q((u, u_{|_{\Gamma}}), (\varphi, \varphi_{|_{\Gamma}})) = -\int_{\Omega} \Delta u \varphi \, dx + \int_{\Gamma} b \varphi \, d\sigma$$

for all $\varphi \in H^1(\Omega)$. By the definition of the operator associated with the form Q we deduce that $(u, u_{|_{\Gamma}}) \in D(B)$ and

$$B(u, u_{|_{\Gamma}}) = (-\Delta u, b) = -A_{\beta}(u, u_{|_{\Gamma}}).$$

Corollary 2.4. Let $\lambda > 0$ and let $u \in D(\Delta_{\max})$ such that $\frac{\partial u}{\partial \nu}$ exists. Let

$$f = \lambda u - \Delta u$$
$$b = \lambda u_{|\Gamma} + \beta u_{|\Gamma} + \frac{\partial u}{\partial \nu}$$

Then

$$\begin{split} \lambda \| (u, u_{|_{\Gamma}}) \|_{L^{\infty}(\Omega) \oplus L^{\infty}(\Gamma)} &\leq \| (f, b) \|_{L^{\infty}(\Omega) \oplus L^{\infty}(\Gamma)} \\ &= \max \{ \| f \|_{L^{\infty}(\Omega)}, \| b \|_{L^{\infty}(\Gamma)} \}. \end{split}$$

Proof. It suffices to observe that

$$\|\lambda(\lambda - A_{\beta})^{-1}\| \le 1$$

where the norm is considered in the space of all linear operators on $L^{\infty}(\Omega) \oplus L^{\infty}(\Gamma)$.

Remark 2.5. The C_0 -semigroup given by the previous theorem extends to a positive contraction C_0 -semigroup on $L^p(\Omega) \oplus L^p(\Gamma)$ for $1 \le p < \infty$ which is holomorphic for 1 . This follows directly from [5, Theorem 1.4.1 and1.4.2] and can be also obtained as a special case of [10, Theorem 3.1].

Next we show that the C_0 -semigroup $(T_\beta(t))_{t\geq 0}$ generated by A_β is ultracontractive.

Proposition 2.6. Let $n \ge 3$. Then there exists a constant c > 0 such that

$$||T_{\beta}(t)(f,b)||_{\infty} \le ct^{-\frac{n-1}{2}} ||(f,b)||_{2} \quad (0 < t < 1)$$

for all $(f,b) \in L^2(\Omega) \oplus L^2(\Gamma)$. If $n \leq 2$, then for all $\mu > \frac{1}{2}$ there exists c > 0 such that

$$||T_{\beta}(t)(f,b)||_{\infty} \le ct^{-\mu} ||(f,b)||_2 \qquad (0 < t < 1)$$

for all $(f, b) \in L^2(\Omega) \oplus L^2(\Gamma)$.

Proof. By the embedding theorem [22, Chapter 2, Theorem 4.2], the trace operator $u \mapsto u_{|_{\Gamma}}$ is continuous from $H^1(\Omega)$ to $L^q(\Gamma)$ where $q = \frac{2n-2}{n-2}$ for n > 2 and where $2 \le q < \infty$ is arbitrary if n = 2. On the other hand, one has the following inclusions:

$$H^1(\Omega) \subset L^{\frac{2n}{n-2}}(\Omega) \quad \text{if } n > 2$$

and

$$H^1(\Omega) \subset L^q(\Omega)$$
 for $2 \le q < \infty$ arbitrary if $n = 2$.

Hence

$$D(Q) \subset L^q(\Omega) \oplus L^q(\Gamma)$$
 for $q = \frac{2n-2}{n-2}$ if $n > 2$.

Hence, letting $\mu = 2n - 2$, one has $q = \frac{2\mu}{\mu - 2}$ and the claim follows from Theorem 1.2 if n > 2. If $n \le 2$, then $D(Q) \subset L^q(\Omega) \oplus L^q(\Gamma)$ for all $2 \le q < \infty$, and the claim follows from Theorem 1.2 again.

Corollary 2.7. For all t > 0 the operator $T_{\beta}(t)$ is compact and the resolvent of A_{β} is compact.

Proof. From Proposition 2.6 it follows that the operator $T_{\beta}(t)$ is Hilbert-Schmidt for all t > 0.

Next we investigate how the semigroups depend on β . We denote by A_{∞} the operator on $L^2(\Omega) \oplus L^2(\Gamma)$ with domain $D(A_{\infty})$ given by

$$D(A_{\infty}) := \{(u,0) : u \in H_0^1(\Omega), \Delta u \in L^2(\Omega)\}$$

$$A_{\infty}(u,0) := (\Delta u, 0).$$

Then A_{∞} generates a semigroup $T_{\infty} = (T_{\infty}(t))_{t \geq 0}$ on $L^{2}(\Omega) \oplus L^{2}(\Gamma)$ given by

$$T_{\infty}(t)(f,b) = (e^{t\Delta^D} f, b),$$

where Δ^D is the Dirichlet Laplacian on $L^2(\Omega)$.

Proposition 2.8. Let $\beta_1, \beta_2 \in L^{\infty}(\Gamma)$ such that $0 \leq \beta_1 \leq \beta_2$. Then

$$T_{\infty}(t) \le T_{\beta_2}(t) \le T_{\beta_1}(t) \le T_0(t)$$

in the sense of positive semigroups, where $T_0 = (T_0(t))_{t \ge 0}$ denotes the semigroup T_β for $\beta = 0$.

Proof. Let Q_{β} be the form associated with $0 \leq \beta \in L^{\infty}(\Gamma)$. Then $D(Q_{\beta})$ is independent of β . Moreover,

$$Q_0((u, u_{|_{\Gamma}}), (v, v_{|_{\Gamma}})) \le Q_{\beta_1}((u, u_{|_{\Gamma}}), (v, v_{|_{\Gamma}})) \le Q_{\beta_2}((u, u_{|_{\Gamma}}), (v, v_{|_{\Gamma}}))$$

if $u, v \ge 0$. From this, the second and third inequality in the statement follow from the domination criterion [23, Theorem 3.7] of Ouhabaz. Moreover, the form domain $D(Q_0) = \{(u, 0) : u \in H_0^1(\Omega)\}$ is an ideal in $D(Q_{\beta_1})$ and the two forms Q_0 and Q_{β_1} coincide on $D(Q_0)$. Hence also the first inequality follows from Ouhabaz' criterion.

Remark 2.9 (Semigroup on $H^1(\Omega)$). The operator B_β on $H^1(\Omega)$ given by $D(B_\beta) = \{u \in H^1(\Omega) : \Delta u \in H^1(\Omega), \frac{\partial u}{\partial \nu} \text{ exists in } L^2(\Gamma), (\Delta u)_{|\Gamma} + \beta u_{|\Gamma} + \frac{\partial u}{\partial \nu} = 0\}, B_\beta u = \Delta u$ generates a holomorphic C_0 -semigroup on $H^1(\Omega)$. This follows directly from the proof of Theorem 2.3. In fact, the part \tilde{B}_β of A_β in D(Q) generates a holomorphic C_0 -semigroup. This is just a property of forms which can easily be seen from the spectral theorem (cf. [2, § 7.1]). Now the mapping $u \in H^1(\Omega) \mapsto (u, u_{|\Gamma}) \in D(Q)$ is an isomorphism. With this identification, the operator \tilde{B}_β induces the operator B_β on $H^1(\Omega)$. This result is valid on bounded open sets with Lipschitz boundary. For another approach on smooth domains allowing also degenerate elliptic operators we refer to [11].

3. The semigroup in the space $C(\overline{\Omega})$

In order to use Schauder estimates, we suppose in the sequel that Ω is a bounded open set in \mathbf{R}^n of class $C^{2,\alpha}$ where $0 < \alpha < 1$.

We first consider the space $C(\overline{\Omega}) \oplus C(\Gamma)$ endowed with the norm

$$\|(f,b)\|_{\infty} := \max\{\|f\|_{L^{\infty}(\Omega)}, \|b\|_{L^{\infty}(\Gamma)}\}.$$

Define the operator B_1 on the space $C(\overline{\Omega}) \oplus C(\Gamma)$ by

$$B_{1}(u, u_{|_{\Gamma}}) := \left(\Delta u, -u_{|_{\Gamma}} - \frac{\partial u}{\partial \nu}\right)$$
$$D(B_{1}) := \left\{ (u, u_{|_{\Gamma}}) : u \in C(\bar{\Omega}) \cap H^{1}(\Omega), \Delta u \in C(\bar{\Omega}), \frac{\partial u}{\partial \nu} \text{ exists in } C(\Gamma) \right\}$$

Proposition 3.1. The operator B_1 is *m*-dissipative and resolvent positive.

Proof. At first we recall that the operator A_1 (i.e., A_β with $\beta \equiv 1$) is defined on $L^2(\Omega) \oplus L^2(\Gamma)$ by

$$A_1(u, u_{|_{\Gamma}}) = \left(\Delta u, -u_{|_{\Gamma}} - \frac{\partial u}{\partial \nu}\right)$$

with domain

$$D(A_1) = \left\{ (u, u_{|_{\Gamma}}) : u \in D(\Delta_{\max}) \text{ such that } \frac{\partial u}{\partial \nu} \text{ exists} \right\}.$$

Observe that B_1 is the part of A_1 in $C(\overline{\Omega}) \oplus C(\Gamma)$, i.e.,

$$D(B_1) = \{ w \in D(A_1) \cap (C(\bar{\Omega}) \oplus C(\Gamma)) : A_1 w \in C(\bar{\Omega}) \oplus C(\Gamma) \}$$

and

$$B_1w = A_1w, w \in D(B_1)$$

Hence B_1 is dissipative by Corollary 2.4. Since A_1 is closed in $L^2(\Omega) \oplus L^2(\Gamma)$, also B_1 is closed in $C(\overline{\Omega}) \oplus C(\Gamma)$. Let $f \in C^{\alpha}(\overline{\Omega})$ and $b \in C^{1,\alpha}(\Gamma)$. By [14, Theorem 6.31] there exists $u \in C^{2,\alpha}(\overline{\Omega})$ such that

$$\Delta u = f \text{ and } -u_{|_{\Gamma}} - \frac{\partial u}{\partial \nu} = b.$$

Hence $(u, u_{|_{\Gamma}}) \in D(B_1)$ and $B_1(u, u_{|_{\Gamma}}) = (f, b)$. By the Stone-Weierstrass Theorem, the space $C^{\alpha}(\bar{\Omega}) \oplus C^{1,\alpha}(\Gamma)$ is dense in $C(\bar{\Omega}) \oplus C(\Gamma)$, and then B_1 is *m*-dissipative. Since B_1 is the part of A_1 in the space $C(\bar{\Omega}) \oplus C(\Gamma)$, the resolvent $R(\lambda, B_1)$ of B_1 in $\lambda > 0$ is the restriction of $R(\lambda, A_1)$ to $C(\bar{\Omega}) \oplus C(\Gamma)$. Since the latter operator is positive, the same is true for $R(\lambda, B_1)$.

Now we consider a perturbation of B_1 . Let $0 \leq \beta \in C(\Gamma)$ and let B_β be the operator on the space $C(\overline{\Omega}) \oplus C(\Gamma)$ defined in the following way:

$$B_{\beta}(u, u_{|_{\Gamma}}) := \left(\Delta u, -\frac{\partial u}{\partial \nu} - \beta u\right)$$
$$D(B_{\beta}) = D(B_{1}).$$

Recall that B is called a Hille-Yosida operator if there exist $\omega \in \mathbf{R}, M \ge 0$ such that $(\omega, \infty) \subset \varrho(B)$ and

$$\|(\lambda - \omega)^{n+1} R(\lambda, B)^n\| \le M$$

for all $\lambda > \omega, n \in \mathbf{N}, n \ge 1$ (see [2, § 3.5.]). We now show the following.

Proposition 3.2. The operator B_{β} is a Hille-Yosida operator on $C(\overline{\Omega}) \oplus C(\Gamma)$ which is resolvent positive.

Proof. Consider the bounded operator C on $L^2(\Omega) \oplus L^2(\Gamma)$ given by $C(f, b) = (0, (-\beta + 1)b)$ and its restriction C_0 to $C(\bar{\Omega}) \oplus C(\Gamma)$. Then from [2, Theorem 3.5.5] it follows that $A_1 + C$ and $B_1 + C_0$ are both Hille-Yosida operators. The semigroup $(e^{tC})_{t\geq 0}$ generated by C on $L^2(\Omega) \oplus L^2(\Gamma)$ is positive (in fact, $e^{tC}(f, b) = (f, e^{t(-\beta+1)}b)$). Hence $A_1 + C$ is resolvent positive. Consequently, also its part $B_1 + C_0$ in $C(\bar{\Omega}) \oplus C(\Gamma)$ is resolvent positive.

Note that the operator B_{β} is not the generator of a C_0 -semigroup since its domain is not dense. But its part in the closure of its domain generates a C_0 -semigroup. This observation will finally lead to the principal result of the article.

Let $0 \leq \beta \in C(\Gamma)$. Define the Laplacian with Wentzell-Robin boundary conditions on $C(\overline{\Omega})$ as the operator G_{β} given by

$$G_{\beta}u := \Delta u$$

$$D(G_{\beta}) := \left\{ u \in C(\bar{\Omega}) \cap H^{1}(\Omega) : \Delta u \in C(\bar{\Omega}), \\ \frac{\partial u}{\partial \nu} \text{ exists in } C(\Gamma) \text{ and} \\ (\Delta u)_{|\Gamma} + \frac{\partial u}{\partial \nu} + \beta u_{|\Gamma} = 0 \right\}.$$

Theorem 3.3. The operator G_{β} generates a compact, positive C_0 -semigroup S_{β} on $C(\bar{\Omega})$.

Proof. Consider the closed subspace F of $C(\overline{\Omega}) \oplus C(\Gamma)$ given by

$$F := \{ (u, u_{|_{\Gamma}}) : u \in C(\overline{\Omega}) \},\$$

which we will identify with $C(\Omega)$ in the sequel. Observe the following properties:

a) F is the closure of $D(B_{\beta})$ in $C(\overline{\Omega}) \oplus C(\Gamma)$.

In fact, the domain $D(B_{\beta})$ is contained in F and contains the set $\{(u, u_{|_{\Gamma}}) : u \in C^{\infty}(\overline{\Omega})\}$, which is dense in F by the Stone-Weierstrass theorem.

b) By [2, Lemma 3.3.12] the part \tilde{G}_{β} of B_{β} in F generates a C_0 semigroup \tilde{S}_{β} . This semigroup is positive since B_{β} is resolvent positive. Identifying F and $C(\bar{\Omega})$ the operator \tilde{G}_{β} becomes G_{β} . Thus G_{β} generates the C_0 -semigroup S_{β} which can be identified with \tilde{S}_{β} .

c) The semigroup S_{β} is compact.

It is sufficient to prove that $\tilde{S}_{\beta}(t)$ is compact for t > 0. Recall that $\tilde{S}_{\beta}(t)$ is the restriction of $T_{\beta}(t)$ to F. This follows from the exponential formula $\tilde{S}_{\beta}(t) = \lim_{n \to \infty} (I - \frac{t}{n} \tilde{G}_{\beta})^{-n}$ strongly. Recall that the operator $T_{\beta}(t)$ is compact. Since the semigroup T_{β} is ultracontractive, one has

$$T_{\beta}(t)(L^2(\Omega) \oplus L^2(\Gamma)) \subset L^{\infty}(\Omega) \oplus L^{\infty}(\Gamma).$$

Factorising $T_{\beta}(2t)_{|_{L^{\infty}(\Omega)\oplus L^{\infty}(\Gamma)}}$ as

$$L^{\infty}(\Omega) \oplus L^{\infty}(\Gamma) \hookrightarrow L^{2}(\Omega) \oplus L^{2}(\Gamma) \xrightarrow{T_{\beta}(t)} L^{2}(\Omega) \oplus L^{2}(\Gamma) \xrightarrow{T_{\beta}(t)} L^{\infty}(\Omega) \oplus L^{\infty}(\Gamma)$$

we deduce that $T_{\beta}(2t)|_{L^{\infty}(\Omega)\oplus L^{\infty}(\Gamma)}$ is compact. Hence also the restriction $S_{\beta}(2t)$ to F is compact.

As a consequence of the previous results, we show that the semigroup is differentiable in $C(\bar{\Omega})$.

Corollary 3.4. The semigroup $(S_{\beta}(t))_{t>0}$ is differentiable on $C(\overline{\Omega})$.

Proof. Let us show that for every t > 0 the operator $G_{\beta}S_{\beta}(t)$ is bounded on $C(\bar{\Omega})$. First, recall that $(S_{\beta}(t))_{t\geq 0}$ concides in $C(\bar{\Omega})$ with the semigroup $(T_{\beta}(t))_{t\geq 0}$ acting on $L^{2}(\Omega) \oplus L^{2}(\Gamma)$, which is holomorphic and ultracontractive. Therefore, we may write

$$G_{\beta}S_{\beta}(t) = G_{\beta}S_{\beta}(t/2)S_{\beta}(t/2) = S_{\beta}(t/2)G_{\beta}S_{\beta}(t/2) = T_{\beta}(t/2)A_{\beta}T_{\beta}(t/2).$$

But $A_{\beta}T_{\beta}(t/2)$ is a bounded operator from $L^2(\Omega) \oplus L^2(\Gamma)$ (hence, from $C(\overline{\Omega})$) in $L^2(\Omega) \oplus L^2(\Gamma)$ and $T_{\beta}(t/2)$ is continuous from $L^2(\Omega) \oplus L^2(\Gamma)$ in $C(\overline{\Omega})$ and the thesis follows.

We next treat a monotonicity property. Denote by G_{∞} the Dirichlet Laplacian on $C(\bar{\Omega})$, i.e.,

$$D(G_{\infty}) := \{ u \in C(\bar{\Omega}) : u_{|_{\Gamma}} = 0, \Delta u \in C(\bar{\Omega}) \}$$

$$G_{\infty}u := \Delta u.$$

Then G_{∞} generates a positive holomorphic semigroup S_{∞} on $C(\overline{\Omega})$ such that $||S_{\infty}(t)|| \leq 1$ for t > 0, which is **not** strongly continuous in 0 (see [2, Example 3.7.8, p. 156]).

Theorem 3.5. Let $\beta_1, \beta_2 \in C(\Gamma)$ such that $0 \leq \beta_1 \leq \beta_2$. Then

$$S_{\infty}(t) \le S_{\beta_2}(t) \le S_{\beta_1}(t) \le S_0(t) \quad (t \ge 0).$$

Proof. We identify $C(\overline{\Omega})$ with the subspace $\{(u, u_{|_{\Gamma}}) : u \in C(\overline{\Omega})\}$ of $L^2(\Omega) \oplus L^2(\Gamma)$, so that the semigroups $S_{\infty}, S_{\beta_2}, S_{\beta_1}, S_0$ are restrictions of the semigroups $T_{\infty}, T_{\beta_2}, T_{\beta_1}$ and T_0 considered in Proposition 2.8. Thus the corresponding generators are obtained as parts of the corresponding generators on $L^2(\Omega) \oplus L^2(\Gamma)$ and the theorem is a consequence of Proposition 2.8.

Finally, we consider the asymptotic behaviour of $(S_{\beta}(t))_{t\geq 0}$ as $t \to \infty$. If $\beta \geq 0$, then the operator G_{β} is dissipative and hence $||S_{\beta}(t)|| \leq 1$ for $t \geq 0$.

If $\beta \equiv 0$, then $1_{\overline{\Omega}} \in D(G_0)$ and $G_0 1_{\overline{\Omega}} = 0$. Hence $S_{\beta}(t) 1_{\overline{\Omega}} = 1_{\overline{\Omega}}$ for all $t \geq 0$ and the norm $\|S_{\beta}(t)\|$ does not converge to 0 as $t \to \infty$. But this case

is exceptional. In fact, the following result holds:

Theorem 3.6. Suppose that Ω is connected and $0 \leq \beta \in C(\Gamma), \beta \not\equiv 0$. Then there exist $\varepsilon > 0, M \geq 0$ such that

$$||S_{\beta}(t)|| \le M e^{-\varepsilon t} \quad (t \ge 0).$$

Proof. It suffices to consider the C_0 -semigroup \tilde{S}_β on $F := \{(u, u_{|_{\Gamma}}) : u \in C(\bar{\Omega})\} \subset C(\bar{\Omega}) \oplus C(\Gamma)$, with generator \tilde{G}_β (as in the proof of Theorem 3.3). Since $\tilde{S}_\beta(t)$ is compact, the resolvent of \tilde{G}_β is compact (see [21, A-II Theorem 1.25]). We show that \tilde{G}_β is injective. In order to do so, recall that \tilde{G}_β is the part of A_β defined on $L^2(\Omega) \oplus L^2(\Gamma)$. Let $(u, u_{|_{\Gamma}}) \in D(A_\beta)$ such that $A_\beta u = 0$, then

$$0 = Q(u, u_{|_{\Gamma}}) = \int_{\Omega} |\nabla u|^2 \, dx + \int_{\Gamma} \beta |u|^2 \, d\sigma.$$

Hence, since $\nabla u = 0$ and since Ω is connected, u is constant on Ω , and since $\beta \neq 0$, it follows that $u \equiv 0$. Thus \tilde{G}_{β} is injective and hence invertible. Observing that \tilde{S}_{β} is bounded, it follows that

$$\sigma(\tilde{G}_{\beta}) \cap i\mathbf{R} \subset \{0\}.$$

Moreover, the spectrum of \tilde{G}_{β} is either finite or a sequence going to infinity. Thus, since \tilde{S}_{β} is norm continuous, we deduce that the set

$$\{\lambda \in \sigma(\tilde{G}_{\beta}) : \operatorname{Re} \lambda \ge -1\}$$

is bounded (see [21, A-II Theorem 1.20]). This implies that the spectral bound $s(\tilde{G}_{\beta})$ is negative. Applying [8, Theorem 1.10. p. 302] the result follows.

References

- Amann, H. and J. Escher, Strongly continuous dual semigroups, Ann. Mat. Pura Appl. IV CLXXI (1996), 44–62.
- [2] Arendt, W., C. Batty, M. Hieber, and F. Neubrander, "Vector-valued Laplace Transforms and Cauchy Problems", Birkhäuser-Verlag, Basel, 2001.
- [3] Arendt, W. and A. F. M. Ter Elst, Gaussian estimates for second order elliptic operators with boundary conditions, J. Operator Theory 38 (1997), 87–130.
- [4] Clément, P. and C. A. Timmermans, On C₀-semigroups generated by differential operators satisfying Ventcel's boundary conditions, Indag. Math. 89 (1986), 379–387.

ARENDT ET AL.

- [5] Daners, D., Robin boundary value problems on arbitrary domains, Trans. Am. Math. Soc. 352 (2000), 4207–4236.
- [6] Davies, E. B., "Heat Kernels and Spectral Theory", Cambridge University Press, Cambridge, 1989.
- [7] Engel, K. J., The Laplacian on $C(\overline{\Omega})$ with Wentzell boundary conditions, Arch. Math. (to appear).
- [8] Engel, K. J. and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations", Springer, Berlin, 2000.
- [9] Favini, A., G. Ruiz Goldstein, J. A. Goldstein, and S. Romanelli, C₀semigroups generated by second order differential operators with general Wentzell boundary conditions, Proc. Amer. Math. Soc. **128** (2000), 1981– 1989.
- [10] Favini, A., G. Ruiz Goldstein, J. A. Goldstein, and S. Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evol. Eq. 2 (2002), 1–19.
- [11] Favini, A., G. Ruiz Goldstein, J. A. Goldstein, E. Obrecht, and S. Romanelli, *The Laplacian with generalized Wentzell boundary condition* (submitted).
- [12] Favini, A. and S. Romanelli, Analytic semigroups on C[0,1] generated by some classes of second order differential operators, Semigroup Forum 56 (1998), 362–372.
- [13] Feller, W., The parabolic equations and the associated semi-groups of transformations, Ann. Math. 55 (1952), 468–519.
- [14] Gilbarg, D. and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order", Springer, Berlin, 1983.
- [15] Goldstein, J. A. and C.-Y. Lin, *Highly degenerate parabolic boundary value problems*, Diff. Int. Eqns. 2 (1989), 216–227.
- [16] Greiner, G., Perturbing the boundary conditions of a generator, Houston J. Math. 13 (1987), 213–229.
- [17] Jerison, D. S. and C. E. Kenig, The Neumann problem on Lipschitz domains, Bull. Amer. Math Soc. 4 (1981), 203–207.
- [18] Jerison, D. S. and C. E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), 161–219.
- [19] Lions, J. L. and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications", vol. I, Springer-Verlag, Berlin, Heidelberg, 1972.

- [20] Metafune, G., Analyticity for some degenerate one-dimensional evolution equations, Studia Math. 127 (1998), 251–276.
- [21] Nagel, R. (ed.), One-parameter semigroups of positive operators, Springer Lect. Notes in Math. 1184, Berlin, Heidelberg, New York, 1986.
- [22] Nečas, J., "Les Méthodes Directes en Théorie des Équations Ellipltiques", Masson, 1967.
- [23] Ouhabaz, E., Invariance of closed convex sets and domination criteria for semigroups, Potential Analysis 5 (1996), 611–625.
- [24] Taira, K., A. Favini, and S. Romanelli, *Feller semigroups generated by degenerate elliptic operators*, Semigroup Forum **60** (2000), 296–309.
- [25] Vespri, V., Analytic semigroups, degenerate elliptic operators and applications to nonlinear Cauchy problems, Ann. Math. Pura Appl. 155(4) (1989), 353–388.
- [26] Warma, M., Wentzell-Robin boundary conditions on C[0, 1], Semigroup Forum 65 (2002), 1–9.

Abteilung Angewandte Analysis Universität Ulm D - 89069 Ulm, Germany arendt@mathematik.uni-ulm.de Dipartimento di Matematica "E. De Giorgi" Università degli Studi di Lecce Via Provinciale Lecce-Arnesano I - 73100 Lecce, Italy metafune@le.infn.it

Dipartimento di Matematica "E. De Giorgi" Università degli Studi di Lecce Via Provinciale Lecce-Arnesano I - 73100 Lecce, Italy pallara@le.infn.it Dipartimento Interuniversitario di Matematica Università degli Studi di Bari - Campus Via E. orabona 4 I - 70125 Bari, Italy romans@dm.uniba.it

Received December 9, 2002 and in final form February 10, 2003 Online publication May 7, 2003