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Abstract

We investigate the Laplacian ∆ on a smooth bounded open set Ω ⊂ Rn
with

Wentzell-Robin boundary condition βu + ∂u
∂ν
+ ∆u = 0 on the boundary Γ.

Under the assumption β ∈ C(Γ) with β ≥ 0 , we prove that ∆ generates a
differentiable positive contraction semigroup on C(Ω̄) and study some mono-
tonicity properties and the asymptotic behaviour.
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Introduction

The aim of this article is to show that the Laplacian ∆ with Wentzell-Robin
boundary condition

βu+
∂u

∂ν
+∆u = 0 on Γ (1)

generates a positive contraction semigroup T on C(Ω̄) . Here Ω is a bounded
open subset of Rn with smooth boundary Γ and 0 ≤ β ∈ C(Γ). Note that
(1) is a dynamic boundary condition. In fact, let f be an element of C(Ω̄) and
u(t) = T (t)f . Then u′(t) = ∆u(t). Introducing this in (1) we obtain

d

dt
u(t) = −βu(t)− ∂

∂ν
u(t) on Γ.

We also establish monotonicity properties of this semigroup with respect to β .
Also the asymptotic behaviour for t → ∞ is studied. The boundary condition
(1) was first studied in [9] in the space C([0, 1]) and then in [10] in the space

∗Work partially supported by GNAMPA-INdAM. The first author is most grateful for the
hospitality of the Universities of Bari and Lecce.
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Lp(Ω) ⊕ Lp(Γ) for 1 ≤ p < ∞ and in C(Ω̄) by a direct energy method and
the Lumer-Phillips theorem. The semigroup is shown to be holomorphic on
Lp(Ω) ⊕ Lp(Γ) for 1 < p < ∞ and also in H1(Ω), as has been shown in a
subsequent paper [11].

Here we follow another path: the semigroup is constructed on L2(Ω) ⊕
L2(Γ) by form methods and extended to Lp(Ω)⊕ Lp(Γ) by the Beurling-Deny
criterion. Finally, using Schauder estimates, it is shown that C(Ω̄) ⊕ C(Γ) is
an invariant subspace, and this leads to a Feller semigroup on C(Ω̄) , maybe the
most natural space for such boundary conditions. The semigroup in C(Ω̄) is
even more regular. In fact, K. J. Engel (see [7]) has proved very recently, using
a completely different approach, that it is analytic.

The idea to incorporate boundary conditions into a product space goes
back to Greiner [16] and has also been used by Amann-Escher [1] and in [2,
Chapter 6]. Robin boundary conditions

∂u

∂ν
+ βu = 0 on Γ (2)

have already been treated by form methods (see [3] and [5]), whereas for the
Wentzell-Robin conditions (1) this seems to be new. Concerning generation the-
orems for elliptic operators (possibly degenerate) with pure Wentzell boundary
conditions (i.e., ∆u|Γ = 0) in spaces of continous functions we refer to pio-
neer work of Feller [13] (in dimension one) and subsequent results by Clément-
Timmermans [4], Goldstein-Lin [15] and Taira, Favini and Romanelli [24] among
others. Concerning regularity properties and holomorphy of the generated semi-
group in the case of pure Wentzell conditions see Vespri [25], Favini and Ro-
manelli [12], Metafune [20], Engel-Nagel [8, Chapter VI, Section 4], and most
recently Warma [26] for Wentzell-Robin boundary conditions in C([0, 1]).

1. Beurling-Deny criteria and ultracontractivity

In this section we recall some results on positive forms which we will use in the
sequel refering essentially to Davies [6] for the proofs.

Let (H, ( | )H) be a real Hilbert space. By a positive form on H we
mean a bilinear mapping

Q: D(Q)×D(Q) → R

such that

Q(u, v) = Q(v, u) for all u, v ∈ D(Q),

Q(u, u) ≥ 0 for all u ∈ D(Q),

where D(Q) is a dense subspace of H , the domain of the form Q . We set

Q(u) = Q(u, u) for all u ∈ D(Q).
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The form Q is called closed if the space D(Q) is complete for the norm

‖u‖Q = (Q(u) + ‖u‖2
H)1/2.

If Q is closed, then the operator A associated with Q is defined in the following
way:

D(A) = {u ∈ D(Q) : ∃f ∈ H such that

Q(u, ϕ) = (f | ϕ)H for all ϕ ∈ D(Q)},
Au = f.

The operator −A is selfadjoint and generates a C0 -semigroup T on H satis-
fying T (t) = T ∗(t) and ‖T (t)‖ ≤ 1 for all t ≥ 0. We call T the semigroup
associated with the form Q . Let us recall the following compactness crite-
rion. The following are equivalent:

(i) T (t) is compact for each t > 0;

(ii) the injection of (D(Q), ‖ ‖Q) into H is compact;

(iii) the operator (I +A)−1 ∈ L(H) is compact.

We now suppose that H = L2(Y ) where (Y,Σ, µ) is a σ -finite measure space.
One says that T = (T (t))t≥0 is a symmetric Markov semigroup if the
following conditions are satisfied:

T (t) = T (t)∗ for all t ≥ 0; (1.1)

T (t) ≥ 0 for all t ≥ 0 (1.2)

‖T (t)f‖∞ ≤ ‖f‖∞ for all f ∈ L2(Y ) ∩ L∞(Y ) and all t ≥ 0. (1.3)

A Dirichlet form on L2(Y ) is a closed positive form satisfying the following
two conditions of Beurling-Deny

u ∈ D(Q) implies |u| ∈ D(Q) and Q(|u|) ≤ Q(u) (1.4)

0 ≤ u ∈ D(Q) implies u ∧ 1 ∈ D(Q) and Q(u ∧ 1) ≤ Q(u). (1.5)

Theorem 1.1 ([6, Theorem 1.3.3]). Let A be an operator on L2(Y ) . The
following assertions are equivalent:

(i) −A generates a symmetric Markov semigroup;

(ii) A is associated with a Dirichlet form.

Next we recall a notion of ultracontractivity.

Theorem 1.2 ([6, Corollary 2.4.3]). Let Q be a Dirichlet form and T =
(T (t))t≥0 the associated semigroup. Let µ > 2 . The following assertions are
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equivalent:

(i) D(Q) ⊂ L2µ/(µ−2)(Y ) ;

(ii) there exists c > 0 such that

‖T (t)f‖∞ ≤ ct−µ/4‖f‖2 (0 < t < 1)

for all f ∈ L2(Y ) .

If a µ > 2 exists such that these equivalent conditions are satisfied, we
call the semigroup T ultracontractive.

2. The semigroup on L2(Ω)⊕ L2(Γ)

Let Ω be a bounded open subset of Rn with Lipschitz boundary Γ = ∂Ω. We
denote by

u �→ u|Γ

the trace function, which is a bounded operator from the Sobolev space H1(Ω)
into L2(Γ, σ), where σ is the surface measure on Γ. To simplify the notation,
we frequently write u instead of u|Γ . Denote by ∆max the Laplacian in L2(Ω)
with maximal domain, i.e.,

D(∆max) := {u ∈ H1(Ω) : ∆u ∈ L2(Ω)}
∆maxu := ∆u (in the sense of distributions),

and denote by ν(z) the exterior normal in z ∈ Γ. Let us introduce the notion
of weak normal derivative.

Definition 2.1. Let u ∈ D(∆max). We say that u has a weak normal
derivative if there exists a function b ∈ L2(Γ) such that∫

Ω

∇u∇ϕ dx +
∫

Ω

∆uϕ dx =

∫
Γ

bϕdσ (2.1)

for all ϕ ∈ H1(Ω). In that case the function b ∈ L2(Γ) verifying (2.1) is unique
and we denote it by ∂u

∂ν .

We now consider the space H = L2(Ω) ⊕ L2(Γ). Note that H can be
identified with a space L2(Y ) for a suitable finite measure space (Y,Σ, µ) such
that L∞(Y ) can be identified with L∞(Ω)⊕ L∞(Γ) with the norm

‖(u, b)‖∞ := max{‖u‖L∞(Ω), ‖b‖L∞(Γ)}

for each (u, b) ∈ L∞(Ω) ⊕ L∞(Γ). Let β ∈ L∞(Γ) be such that β(z) ≥ 0 for
σ -a.a. z ∈ Γ and define the operator Aβ on H by

D(Aβ) :=

{
(u, u|Γ) : u ∈ D(∆max),

∂u

∂ν
exists in L2(Γ)

}
,

Aβ(u, u|Γ) :=

(
∆u,−βu|Γ − ∂u

∂ν

)



Arendt et al. OF5

Remark 2.2. It is possible to characterise the domain D(Aβ) in terms of
fractional Sobolev spaces and traces. We have:

D(Aβ) = {u ∈ H3/2(Ω) : ∆u ∈ L2(Ω)}.

In fact, for every u ∈ H3/2(Ω) with ∆u ∈ L2(Ω) a weak normal derivative
exists, so one inclusion follows. Conversely, if u belongs to D(Aβ), setting
f = ∆u and b = ∂u

∂ν , u is a variational solution of the boundary value problem

∆u = f in Ω, ∂u
∂ν = b on Γ. Moreover, there is a unique (up to constants)

v ∈ H3/2(Ω) solving the same problem, hence u ∈ H3/2(Ω), as claimed.

If Γ is C∞ these results are classical (see e.g. [19, Theorem 7.3, 7.4
p. 186–7]), whereas if Γ is only Lipschitz continuous, the proof is much more
delicate, and we refer to [17], [18].

Theorem 2.3. The operator Aβ generates a symmetric Markov semigroup
on the space L2(Ω)⊕ L2(Γ) .

Proof. We define the positive form Q on H by

D(Q) := {(u, u|Γ) : u ∈ H1(Ω)}

Q((u, u|Γ), (v, v|Γ)) :=

∫
Ω

∇u∇v dx +
∫

Γ

uvβ dσ.

The proof is now given in several steps.

a) D(Q) is dense in H . Let b ∈ D(Rn) (i.e., b is a test function). Then
there exists a sequence (uk)k∈N in D(Rn) such that uk|Γ

= b and uk → 0 in

L2(Ω) as k → ∞ . Thus (0, b) ∈ D(Q). It follows that

{0} ⊕ L2(Γ) ⊂ D(Q).

Moreover,

(u, 0) = (u, u|Γ)− (0, u|Γ) ∈ D(Q)

for all u ∈ H1(Ω). Hence L2(Ω)⊕ {0} ⊂ D(Q).

b) The form Q is closed. Since the trace is a continuous operator from
H1(Ω) into L2(Γ), there exists a constant c > 0 such that

‖u|Γ‖L2(Γ) ≤ c‖u‖H1(Ω)

for all u ∈ H1(Ω). It follows that the form norm

‖(u, u|Γ)‖Q = (Q(u, u|Γ) + ‖(u, u|Γ)‖2
H)1/2
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is equivalent to the norm

‖(u, u|Γ)‖ := ‖u‖H1(Ω), u ∈ D(Q).

Since H1(Ω) is complete, also D(Q) is complete.

c) The first Beurling-Deny condition (1.4) is satisfied. Let u ∈ H1(Ω).
Then |u| ∈ H1(Ω) and ∇|u| = (signu)∇u (see [14, § 7.6]). In particular,
|∇|u||2 = |∇u|2 . Moreover, the trace of |u| coincides with |u|Γ | . Hence

Q(|u|, |u||Γ) =
∫

Ω

|∇u|2 dx +
∫

Γ

|u|2βdσ = Q(u, u|Γ).

d) The second Beurling-Deny condition (1.5) holds. Let 0 ≤ u ∈ H1(Ω).
Then u ∧ 1 ∈ H1(Ω) and ∇(u ∧ 1) = 1{u<1}∇u (see [14, § 7.6]). Hence

(u, u|Γ) ∧ (1Ω, 1Γ) = (u ∧ 1Ω, (u ∧ 1Ω)|Γ) ∈ D(Q)

and

Q((u, u|Γ) ∧ (1Ω, 1Γ)) =

∫
Ω

|∇(u ∧ 1Ω)|2 dx +
∫

Γ

(u ∧ 1Γ)
2β dσ

≤
∫

Ω

|∇u|2 dx +
∫

Γ

|u|2β dσ

= Q(u, u|Γ).

Hence Q is a Dirichlet form.

e) −Aβ is the operator associated with Q . Denote by B the operator
associated with Q . Let (u, u|Γ) ∈ D(B), and let

B(u, u|Γ) = (f, b) ∈ L2(Ω)⊕ L2(Γ).

Then ∫
Ω

∇u∇ϕ dx +
∫

Γ

uϕβ dσ = Q((u, u|Γ), (ϕ,ϕ|Γ))

= ((f, b) | (ϕ,ϕ|Γ))H

=

∫
Ω

fϕ dx +

∫
Γ

bϕ dσ,

for all ϕ ∈ H1(Ω). Choosing ϕ ∈ D(Ω) we deduce that f = −∆u . Hence
∫

Ω

∇u∇ϕ dx +
∫

Ω

∆uϕ dx =

∫
Γ

(b− βu)ϕdσ

for all ϕ ∈ H1(Ω), i.e.,

∂u

∂ν
exists and

∂u

∂ν
= b− βu|Γ .
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Thus we have proved that

(u, u|Γ) ∈ D(Aβ) and Aβ(u, u|Γ) = −B(u, u|Γ).

In order to prove the converse, let (u, u|Γ) ∈ D(Aβ). Then

∫
Ω

∇u∇ϕ dx +
∫

Ω

∆uϕ dx =

∫
Γ

∂u

∂ν
ϕ dσ

=

∫
Γ

(b− βu|Γ)ϕdσ

where b = ∂u
∂ν + βu|Γ for all ϕ ∈ H1(Ω). Hence

Q((u, u|Γ), (ϕ,ϕ|Γ)) = −
∫

Ω

∆uϕ dx +

∫
Γ

bϕ dσ

for all ϕ ∈ H1(Ω). By the definition of the operator associated with the form
Q we deduce that (u, u|Γ) ∈ D(B) and

B(u, u|
Γ
) = (−∆u, b) = −Aβ(u, u|

Γ
).

Corollary 2.4. Let λ > 0 and let u ∈ D(∆max) such that
∂u
∂ν exists. Let

f = λu−∆u

b = λu|Γ + βu|Γ +
∂u

∂ν
.

Then

λ‖(u, u|Γ)‖L∞(Ω)⊕L∞(Γ) ≤ ‖(f, b)‖L∞(Ω)⊕L∞(Γ)

= max{‖f‖L∞(Ω), ‖b‖L∞(Γ)}.

Proof. It suffices to observe that

‖λ(λ−Aβ)
−1‖ ≤ 1

where the norm is considered in the space of all linear operators on L∞(Ω) ⊕
L∞(Γ).

Remark 2.5. The C0 -semigroup given by the previous theorem extends to
a positive contraction C0 -semigroup on Lp(Ω)⊕Lp(Γ) for 1 ≤ p < ∞ which is
holomorphic for 1 < p < ∞ . This follows directly from [5, Theorem 1.4.1 and
1.4.2] and can be also obtained as a special case of [10, Theorem 3.1].

Next we show that the C0 -semigroup (Tβ(t))t≥0 generated by Aβ is
ultracontractive.
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Proposition 2.6. Let n ≥ 3 . Then there exists a constant c > 0 such that

‖Tβ(t)(f, b)‖∞ ≤ ct−
n−1

2 ‖(f, b)‖2 (0 < t < 1)

for all (f, b) ∈ L2(Ω)⊕ L2(Γ) . If n ≤ 2 , then for all µ > 1
2 there exists c > 0

such that

‖Tβ(t)(f, b)‖∞ ≤ ct−µ‖(f, b)‖2 (0 < t < 1)

for all (f, b) ∈ L2(Ω)⊕ L2(Γ) .

Proof. By the embedding theorem [22, Chapter 2, Theorem 4.2], the trace
operator u �→ u|Γ is continuous from H1(Ω) to Lq(Γ) where q = 2n−2

n−2 for
n > 2 and where 2 ≤ q < ∞ is arbitrary if n = 2. On the other hand, one has
the following inclusions:

H1(Ω) ⊂ L
2n

n−2 (Ω) if n > 2

and

H1(Ω) ⊂ Lq(Ω) for 2 ≤ q < ∞ arbitrary if n = 2.

Hence

D(Q) ⊂ Lq(Ω)⊕ Lq(Γ) for q =
2n− 2

n− 2
if n > 2.

Hence, letting µ = 2n − 2, one has q = 2µ
µ−2 and the claim follows from

Theorem 1.2 if n > 2. If n ≤ 2, then D(Q) ⊂ Lq(Ω)⊕Lq(Γ) for all 2 ≤ q < ∞ ,
and the claim follows from Theorem 1.2 again.

Corollary 2.7. For all t > 0 the operator Tβ(t) is compact and the resolvent
of Aβ is compact.

Proof. From Proposition 2.6 it follows that the operator Tβ(t) is Hilbert-
Schmidt for all t > 0.

Next we investigate how the semigroups depend on β . We denote by A∞
the operator on L2(Ω)⊕ L2(Γ) with domain D(A∞) given by

D(A∞) := {(u, 0) : u ∈ H1
0 (Ω),∆u ∈ L2(Ω)}

A∞(u, 0) := (∆u, 0).

Then A∞ generates a semigroup T∞ = (T∞(t))t≥0 on L2(Ω)⊕L2(Γ) given by

T∞(t)(f, b) = (et∆
D

f, b),

where ∆D is the Dirichlet Laplacian on L2(Ω).
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Proposition 2.8. Let β1, β2 ∈ L∞(Γ) such that 0 ≤ β1 ≤ β2 . Then

T∞(t) ≤ Tβ2
(t) ≤ Tβ1

(t) ≤ T0(t)

in the sense of positive semigroups, where T0 = (T0(t))t≥0 denotes the semigroup
Tβ for β = 0 .

Proof. Let Qβ be the form associated with 0 ≤ β ∈ L∞(Γ). Then D(Qβ)
is independent of β . Moreover,

Q0((u, u|Γ), (v, v|Γ)) ≤ Qβ1((u, u|Γ), (v, v|Γ)) ≤ Qβ2((u, u|Γ), (v, v|Γ))

if u, v ≥ 0. From this, the second and third inequality in the statement follow
from the domination criterion [23, Theorem 3.7] of Ouhabaz. Moreover, the
form domain D(Q0) = {(u, 0) : u ∈ H1

0 (Ω)} is an ideal in D(Qβ1
) and the two

forms Q0 and Qβ1
coincide on D(Q0). Hence also the first inequality follows

from Ouhabaz’ criterion.

Remark 2.9 (Semigroup on H1(Ω)). The operator Bβ on H1(Ω) given by
D(Bβ) = {u ∈ H1(Ω) : ∆u ∈ H1(Ω), ∂u∂ν exists in L2(Γ), (∆u)|Γ + βu|Γ + ∂u

∂ν =
0}, Bβu = ∆u generates a holomorphic C0 -semigroup on H1(Ω). This follows

directly from the proof of Theorem 2.3. In fact, the part B̃β of Aβ in D(Q)
generates a holomorphic C0 -semigroup. This is just a property of forms which
can easily be seen from the spectral theorem (cf. [2, § 7.1]). Now the mapping
u ∈ H1(Ω) �→ (u, u|Γ) ∈ D(Q) is an isomorphism. With this identification,

the operator B̃β induces the operator Bβ on H1(Ω). This result is valid on
bounded open sets with Lipschitz boundary. For another approach on smooth
domains allowing also degenerate elliptic operators we refer to [11].

3. The semigroup in the space C(Ω̄)

In order to use Schauder estimates, we suppose in the sequel that Ω is a bounded
open set in Rn of class C2,α where 0 < α < 1.

We first consider the space C(Ω̄)⊕ C(Γ) endowed with the norm

‖(f, b)‖∞ := max{‖f‖L∞(Ω), ‖b‖L∞(Γ)}.

Define the operator B1 on the space C(Ω̄)⊕ C(Γ) by

B1(u, u|Γ) :=

(
∆u,−u|Γ − ∂u

∂ν

)

D(B1) :=

{
(u, u|Γ) : u ∈ C(Ω̄) ∩H1(Ω),∆u ∈ C(Ω̄),

∂u

∂ν
exists in C(Γ)

}

Proposition 3.1. The operator B1 is m-dissipative and resolvent positive.
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Proof. At first we recall that the operator A1 (i.e., Aβ with β ≡ 1) is
defined on L2(Ω)⊕ L2(Γ) by

A1(u, u|Γ) =

(
∆u,−u|Γ − ∂u

∂ν

)

with domain

D(A1) =

{
(u, u|Γ) : u ∈ D(∆max) such that

∂u

∂ν
exists

}
.

Observe that B1 is the part of A1 in C(Ω̄)⊕ C(Γ), i.e.,

D(B1) = {w ∈ D(A1) ∩ (C(Ω̄)⊕ C(Γ)) : A1w ∈ C(Ω̄)⊕ C(Γ)}

and
B1w = A1w,w ∈ D(B1).

Hence B1 is dissipative by Corollary 2.4. Since A1 is closed in L2(Ω)⊕L2(Γ),
also B1 is closed in C(Ω̄) ⊕ C(Γ). Let f ∈ Cα(Ω̄) and b ∈ C1,α(Γ). By [14,
Theorem 6.31] there exists u ∈ C2,α(Ω̄) such that

∆u = f and − u|Γ − ∂u

∂ν
= b.

Hence (u, u|Γ) ∈ D(B1) and B1(u, u|Γ) = (f, b). By the Stone-Weierstrass
Theorem, the space Cα(Ω̄) ⊕ C1,α(Γ) is dense in C(Ω̄) ⊕ C(Γ), and then B1

is m -dissipative. Since B1 is the part of A1 in the space C(Ω̄) ⊕ C(Γ), the
resolvent R(λ,B1) of B1 in λ > 0 is the restriction of R(λ,A1) to C(Ω̄)⊕C(Γ).
Since the latter operator is positive, the same is true for R(λ,B1).

Now we consider a perturbation of B1 . Let 0 ≤ β ∈ C(Γ) and let Bβ be
the operator on the space C(Ω̄)⊕ C(Γ) defined in the following way:

Bβ(u, u|Γ) :=

(
∆u,−∂u

∂ν
− βu

)

D(Bβ) = D(B1).

Recall that B is called a Hille-Yosida operator if there exist ω ∈ R,M ≥ 0 such
that (ω,∞) ⊂ )(B) and

‖(λ− ω)n+1R(λ,B)n‖ ≤ M

for all λ > ω, n ∈ N, n ≥ 1 (see [2, § 3.5.]). We now show the following.

Proposition 3.2. The operator Bβ is a Hille-Yosida operator on C(Ω̄) ⊕
C(Γ) which is resolvent positive.
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Proof. Consider the bounded operator C on L2(Ω)⊕L2(Γ) given by C(f, b)
= (0, (−β + 1)b) and its restriction C0 to C(Ω̄) ⊕ C(Γ). Then from [2, Theo-
rem 3.5.5] it follows that A1 +C and B1 +C0 are both Hille-Yosida operators.
The semigroup (etC)t≥0 generated by C on L2(Ω)⊕L2(Γ) is positive (in fact,
etC(f, b) = (f, et(−β+1)b)). Hence A1 + C is resolvent positive. Consequently,
also its part B1 + C0 in C(Ω̄)⊕ C(Γ) is resolvent positive.

Note that the operator Bβ is not the generator of a C0 -semigroup since
its domain is not dense. But its part in the closure of its domain generates a
C0 -semigroup. This observation will finally lead to the principal result of the
article.

Let 0 ≤ β ∈ C(Γ). Define the Laplacian with Wentzell-Robin boundary
conditions on C(Ω̄) as the operator Gβ given by

Gβu := ∆u

D(Gβ) :=

{
u ∈ C(Ω̄) ∩H1(Ω) : ∆u ∈ C(Ω̄),

∂u

∂ν
exists in C(Γ) and

(∆u)|Γ +
∂u

∂ν
+ βu|Γ = 0

}
.

Theorem 3.3. The operator Gβ generates a compact, positive C0 -semi-
group Sβ on C(Ω̄) .

Proof. Consider the closed subspace F of C(Ω̄)⊕ C(Γ) given by

F := {(u, u|Γ) : u ∈ C(Ω̄)},

which we will identify with C(Ω̄) in the sequel. Observe the following properties:

a) F is the closure of D(Bβ) in C(Ω̄)⊕ C(Γ).

In fact, the domain D(Bβ) is contained in F and contains the set
{(u, u|Γ) : u ∈ C∞(Ω̄)} , which is dense in F by the Stone-Weierstrass theo-
rem.

b) By [2, Lemma 3.3.12] the part G̃β of Bβ in F generates a C0 -

semigroup S̃β . This semigroup is positive since Bβ is resolvent positive. Iden-

tifying F and C(Ω̄) the operator G̃β becomes Gβ . Thus Gβ generates the

C0 -semigroup Sβ which can be identified with S̃β .

c) The semigroup Sβ is compact.

It is sufficient to prove that S̃β(t) is compact for t > 0. Recall that

S̃β(t) is the restriction of Tβ(t) to F . This follows from the exponential

formula S̃β(t) = limn→∞(I − t
n G̃β)

−n strongly. Recall that the operator Tβ(t)
is compact. Since the semigroup Tβ is ultracontractive, one has

Tβ(t)(L
2(Ω)⊕ L2(Γ)) ⊂ L∞(Ω)⊕ L∞(Γ).
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Factorising Tβ(2t)|L∞(Ω)⊕L∞(Γ)
as

L∞(Ω)⊕ L∞(Γ) ↪→ L2(Ω)⊕ L2(Γ)
Tβ(t)−→ L2(Ω)⊕ L2(Γ)

Tβ(t)−→ L∞(Ω)⊕ L∞(Γ)

we deduce that Tβ(2t)|L∞(Ω)⊕L∞(Γ)
is compact. Hence also the restriction Sβ(2t)

to F is compact.

As a consequence of the previous results, we show that the semigroup is
differentiable in C(Ω̄) .

Corollary 3.4. The semigroup (Sβ(t))t≥0 is differentiable on C(Ω̄) .

Proof. Let us show that for every t > 0 the operator GβSβ(t) is bounded
on C(Ω̄) . First, recall that (Sβ(t))t≥0 concides in C(Ω̄) with the semigroup
(Tβ(t))t≥0 acting on L2(Ω)⊕L2(Γ), which is holomorphic and ultracontractive.
Therefore, we may write

GβSβ(t) = GβSβ(t/2)Sβ(t/2) = Sβ(t/2)GβSβ(t/2) = Tβ(t/2)AβTβ(t/2).

But AβTβ(t/2) is a bounded operator from L2(Ω)⊕L2(Γ) (hence, from C(Ω̄))
in L2(Ω)⊕L2(Γ) and Tβ(t/2) is continuous from L2(Ω)⊕L2(Γ) in C(Ω̄) and
the thesis follows.

We next treat a monotonicity property. Denote by G∞ the Dirichlet
Laplacian on C(Ω̄) , i.e.,

D(G∞) := {u ∈ C(Ω̄) : u|Γ = 0,∆u ∈ C(Ω̄)}
G∞u := ∆u.

Then G∞ generates a positive holomorphic semigroup S∞ on C(Ω̄) such that
‖S∞(t)‖ ≤ 1 for t > 0, which is not strongly continuous in 0 (see [2, Exam-
ple 3.7.8, p. 156]).

Theorem 3.5. Let β1, β2 ∈ C(Γ) such that 0 ≤ β1 ≤ β2 . Then

S∞(t) ≤ Sβ2(t) ≤ Sβ1(t) ≤ S0(t) (t ≥ 0).

Proof. We identify C(Ω̄) with the subspace {(u, u|Γ) : u ∈ C(Ω̄)} of L2(Ω)⊕
L2(Γ), so that the semigroups S∞, Sβ2

, Sβ1
, S0 are restrictions of the semigroups

T∞, Tβ2 , Tβ1 and T0 considered in Proposition 2.8. Thus the corresponding
generators are obtained as parts of the corresponding generators on L2(Ω) ⊕
L2(Γ) and the theorem is a consequence of Proposition 2.8.

Finally, we consider the asymptotic behaviour of (Sβ(t))t≥0 as t → ∞ .
If β ≥ 0, then the operator Gβ is dissipative and hence ‖Sβ(t)‖ ≤ 1 for t ≥ 0.

If β ≡ 0, then 1Ω̄ ∈ D(G0) and G01Ω̄ = 0. Hence Sβ(t)1Ω̄ = 1Ω̄ for all
t ≥ 0 and the norm ‖Sβ(t)‖ does not converge to 0 as t → ∞ . But this case
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is exceptional. In fact, the following result holds:

Theorem 3.6. Suppose that Ω is connected and 0 ≤ β ∈ C(Γ), β �≡ 0 . Then
there exist ε > 0,M ≥ 0 such that

‖Sβ(t)‖ ≤ Me−εt (t ≥ 0).

Proof. It suffices to consider the C0 -semigroup S̃β on F := {(u, u|Γ) : u ∈
C(Ω̄)} ⊂ C(Ω̄) ⊕ C(Γ), with generator G̃β (as in the proof of Theorem 3.3).

Since S̃β(t) is compact, the resolvent of G̃β is compact (see [21, A-II Theo-

rem 1.25]). We show that G̃β is injective. In order to do so, recall that G̃β

is the part of Aβ defined on L2(Ω) ⊕ L2(Γ). Let (u, u|Γ) ∈ D(Aβ) such that
Aβu = 0, then

0 = Q(u, u|Γ) =

∫
Ω

|∇u|2 dx +
∫

Γ

β|u|2 dσ.

Hence, since ∇u = 0 and since Ω is connected, u is constant on Ω, and since
β �≡ 0, it follows that u ≡ 0. Thus G̃β is injective and hence invertible.

Observing that S̃β is bounded, it follows that

σ(G̃β) ∩ iR ⊂ {0}.

Moreover, the spectrum of G̃β is either finite or a sequence going to infinity.

Thus, since S̃β is norm continuous, we deduce that the set

{λ ∈ σ(G̃β) : Reλ ≥ −1}

is bounded (see [21, A-II Theorem 1.20]). This implies that the spectral bound
s(G̃β) is negative. Applying [8, Theorem 1.10. p. 302] the result follows.
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