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Dirichlet and Neumann boundary conditions:
What is in between?

Wolfgang Arendt and Mahamadi Warma∗

Dédié à Philippe Bénilan

Abstract. Given an admissible measure µ on ∂� where � ⊂ R
n is an open set, we define a realization �µ of

the Laplacian in L2(�) with general Robin boundary conditions and we show that �µ generates a holomorphic
C0-semigroup on L2(�) which is sandwiched by the Dirichlet Laplacian and the Neumann Laplacian semigroups.
Moreover, under a locality and a regularity assumption, the generator of each sandwiched semigroup is of the
form �µ. We also show that if D(�µ) contains smooth functions, then µ is of the form dµ = βdσ (where σ is
the (n − 1)-dimensional Hausdorff measure and β a positive measurable bounded function on ∂�); i.e. we have
the classical Robin boundary conditions.

0. Introduction

Let � ⊂ R
n be an open set. Then it is standard to define selfadjoint realizations �D and

�N of the Laplacian on L2(�) with Dirichlet boundary conditions

u|∂�
= 0 on ∂� (1)

or Neumann boundary conditions

∂u

∂ν |∂�

= 0 on ∂�. (2)

The exterior normal derivative ∂u
∂ν

may only exist in a weak form and actually the boundary
of � may be so bad that no exterior normal can be defined.

Here we consider boundary conditions of the third kind

udµ + ∂u

∂ν
dσ = 0 on ∂� (3)

where µ is an (admissible) Borel measure on ∂� and σ is the surface measure if � is
Lipschitz, or more generally the (n − 1)-dimensional Hausdorff measure if � is arbitrary.
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If dµ = βdσ for some 0 ≤ β ∈ L∞(∂�, σ), then (3) reduces to the usual Robin boundary
conditions

βu + ∂u

∂ν
= 0 on ∂�. (4)

We show by the method of quadratic forms that a selfadjoint realization �µ of the Laplacian
on L2(�) can be associated to these kind of boundary conditions.

The semigroup (et�µ)t≥0 generated by �µ satisfies the following sandwich property

et�D ≤ et�µ ≤ et�N

(t ≥ 0). (5)

We show in this paper that conversely each symmetric semigroup T on L2(�) satisfying
et�D ≤ T (t) ≤ et�N

is of the form T (t) = et�µ provided a locality and a regularity
assumption are satisfied.

This paper is based on some properties of admissible measures and relative capacity
introduced in [AW]. But here we define the closed form directly with precise form domain.
This is most convenient in order to establish the desired domination properties. On the way
we prove a regularity result for such forms (Theorem 2.4) which is of independent interest.
We also show that the measure µ is of the form βdσ as soon as the domain of �µ contains
smooth functions.

Finally, we establish some asymptotic properties of the semigroup et�µ as t → ∞ which
are similar to those studied for Schrödinger semigroups in [ABB] and [Bat].

1. Preliminaries.

Let H be a Hilbert space over R. A positive form on H is a bilinear mapping
a : D(a) × D(a) → R such that a(u, v) = a(v, u) and a(u) := a(u, u) ≥ 0. Here
D(a) is a dense subspace of H , the domain of the form. The form a is called closed
if D(a) is complete for the norm ‖u‖a = (a(u) + ‖u‖2

H )1/2. In that case we define the
operator A on H associated with a by{

D(A) = {u ∈ D(a) : ∃ v ∈ H, a(u, ϕ) = (v, ϕ)H ∀ ϕ ∈ D(a)}
Au = v.

Then A is selfadjoint and −A generates a contraction C0-semigroup S = (S(t))t≥0 of
symmetric operators on H . We also write e−tA = S(t) and call S the semigroup associated
with a.

Now assume that H = L2(�) where (�, �, λ) is a σ -finite measure space. We let
L2(�)+ = {f ∈ L2(�) : f ≥ 0 a.e.} and F+ = L2(�)+ ∩ F if F is a subspace of
L2(�).
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Let S be the semigroup associated with a closed, positive form a on L2(�). The first
Beurling-Deny criterion [Dav, Theorem 1.3.2] asserts thatS is positive (i.e., S(t)L2(�)+ ⊂
L2(�)+ for all t ≥ 0) if and only if

u ∈ D(a) implies |u| ∈ D(a) and a(|u|) ≤ a(u). (6)

In that case, u, v ∈ D(a) implies that u ∧ v = inf{v, u}, u ∨ v = sup{v, u} ∈ D(a) and
the lattice operations are continuous in (D(a), ‖ · ‖a).

Assume that S is positive. Then the second Beurling-Deny criterion [Dav, Theorem
1.3.3] asserts that S is L∞-contractive (i.e., if f ∈ L2(�) satisfy 0 ≤ f ≤ 1 then
0 ≤ S(t)f ≤ 1 for all t ≥ 0) if and only if

0 ≤ u ∈ D(a) implies u ∧ 1 ∈ D(a) and a(u ∧ 1) ≤ a(u). (7)

In that case, the mapping u �→ u ∧ 1 is continuous from D(a)+ into D(a)+.
We say that a C0-semigroup T on L2(�) is submarkovian if it is positive and L∞-

contractive. For further information on this property we refer to [ArBe] and to [BC] in the
nonlinear case. Notice that several authors ([Dav], [BH], [FOT]) call a symmetric Markov
semigroup what we call a symmetric submarkovian semigroup on L2(�). A Dirichlet form
is a closed positive form satisfying the two Beurling-Deny criteria.

Now let b be a second closed, positive form on L2(�) such that the associated semigroup
T is positive. We say that D(a) is an ideal of D(b) if

a) u ∈ D(a) implies |u| ∈ D(a) and,
b) 0 ≤ u ≤ v, v ∈ D(a), u ∈ D(b) implies u ∈ D(a).

Ouhabaz’s domination criterion [Ouh] says that

0 ≤ S(t) ≤ T (t) (t ≥ 0) (8)

if and only if D(a) is an ideal of D(b) and

a(u, v) ≥ b(u, v) for all u, v ∈ D(a)+. (9)

2. Relative capacity and Robin boundary conditions

Let � ⊂ R
n be an open set with boundary 
. Let H 1(�) := {u ∈ L2(�) : Dju ∈

L2(�), j = 1, . . . n} be the first order Sobolev space and let H̃ 1(�) be the closure of
H 1(�) ∩ Cc(�̄) in H 1(�). Here

Cc(�̄) = {f : �̄ → R continuous with compact support}.
If � has Lipschitz boundary, then H 1(�) = H̃ 1(�). But e.g., H̃ 1((0, 1) ∪ (1, 2)) =
H 1(0, 2) �= H 1((0, 1) ∪ (1, 2)).
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Using [GT, Lemma 7.6 p.152] one easily sees that u ∈ H̃ 1(�) implies that |u| ∈ H̃ 1(�)

and Dj |u| = (sign u)Dju (j = 1, . . . n). Hence ‖ |u| ‖H̃ 1(�) = ‖u‖H̃ 1(�). This implies

in particular that the mapping u �→ |u| is continuous on H̃ 1(�). Also for v ∈ H̃ 1(�), the
mappings u �→ v ∧ u and u �→ v ∨ u are continuous.

We define the relative capacity Cap�̄(A) of a subset A of �̄ by

Cap�̄(A) := inf {‖u‖2
H 1(�)

: u ∈ H̃ 1(�), ∃ O ⊂ R
n open such that

A ⊂ O and u(x) ≥ 1 a.e. on � ∩ O}. (10)

Here and elsewhere the word relative stands for relative with respect to �̄.
Then Cap�̄ is an outer measure on �̄. This notion of capacity is induced by the regular

Dirichlet form E on L2(�) given by

E(u, v) :=
∫

�

∇u∇v dx

with domain D(E) = H̃ 1(�), in the sense of [BH, I 8.1.1 p.52]. Here the underlying locally
compact space is X = �̄, with Borel σ -algebra B(�̄) and the measure m(A) = λ(A ∩ �)

(A ∈ B(�̄)) (to make sure that L2(X, B(�̄), m) = L2(�), the usual space with Lebesgue
measure).

But now we may consider functions in H̃ 1(�) as defined on �̄.
We say that A ⊂ �̄ is relatively polar if Cap�̄(A) = 0. A property is said to hold

relatively quasi-everywhere (r.q.e.) if it holds on �̄ \ N where N ⊂ �̄ is relatively polar.
A function u : �̄ → R is called relatively quasi-continuous, if for each ε > 0

there exists a relatively open set G ⊂ �̄ such that Cap�̄(G) < ε and u is continuous on
�̄ \ G. Then by [BH, I, Proposition 8.2.1] for each u ∈ H̃ 1(�) there exists a relatively
quasi-continuous function ũ : �̄ → R such that u = ũ a.e. The function ũ is relatively
quasi-everywhere unique and we call it the relatively quasi-continuous representative
of u. Moreover, ũ may be chosen Borel measurable.

Finally we recall the following result which we shall use frequently (see [FOT, Theorem
2.1.4 p.69] or [BH, I, Proposition 8.2.5]).

PROPOSITION 2.1. Let limm→∞ um = u in H̃ 1(�). Then there exists a subsequence
(ũmk

) such that limk→∞ ũmk
(x) = ũ(x) r.q.e.

REMARK 2.2. The notion of relative capacity was introduced in [AW]. It is clear that
polar subsets of �̄ are relatively polar. The converse is true for subsets of �, and it is also
true for subsets of �̄ if the boundary is Lipschitz. But if � is not regular, then there may
exist relatively polar sets in the boundary which are not polar.
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With the help of the relatively quasi-continuous representative the space

H 1
0 (�) := D(�)

H 1(�)
may now be described as follows [AW, Theorem 2.3]

H 1
0 (�) = {u ∈ H̃ 1(�) : ũ = 0 r.q.e. on 
}. (11)

Now we define the class of measures by which we define general Robin boundary conditions.

DEFINITION 2.3. An admissible measure is a measure µ : B(
µ) → [0, ∞) where

µ ⊂ 
 is relatively open, such that

a) µ(K) < ∞ for each compact set K ⊂ 
µ; and
b) Cap�̄(A) = 0 implies µ(A) = 0 for each Borel set A ⊂ 
µ.

The set 
µ is called the domain of µ. Here B(
µ) denotes the Borel σ -algebra of 
µ.

Let µ be an admissible measure with domain 
µ. Let L2(
µ) =
L2(
µ, B(
µ), µ). We define a form aµ on L2(�) by

D(aµ) =
{

u ∈ H̃ 1(�) : ũ = 0 r.q.e. on 
 \ 
µ,

∫

µ

|ũ|2 dµ < ∞
}

,

aµ(u, v) =
∫

�

∇u∇v dx +
∫


µ

ũṽ dµ.

Here ũ is the relatively quasi-continuous representative of u which we always choose Borel
measurable. Since µ is admissible, aµ is well-defined. In fact, let u, u1, v, v1 ∈ D(aµ) such
that u = u1, v = v1 a.e. on �. Then it follows from [BH, I, Proposition 8.1.6] that ũ = ũ1

and ṽ = ṽ1 r.q.e. on �̄. Since µ is admissible, it follows that ũ = ũ1 and ṽ = ṽ1 µ-a.e. on

µ and thus aµ(u, v) = aµ(u1, v1).

THEOREM 2.4. Let µ be an admissible measure. Then aµ is a Dirichlet form on
L2(�). The space H 1(�) ∩ Cc(� ∪ 
µ) is a form core of aµ.

Proof. a) The mapping D(aµ) → H̃ 1(�)⊕L2(
µ), u �→ (u, ũ|
µ
) is isometric. In order

to show that aµ is closed, it suffices to show that the image of the mapping is closed.
Let um ∈ D(aµ) such that um → u in H̃ 1(�) and ũm → f in L2(
µ). Taking a
subsequence, we can assume that ũm → ũ r.q.e. and ũm → f µ-a.e. on 
µ. Since
µ is admissible it follows that f = ũ in L2(
µ).

b) Since |u|̃ = |ũ| and (u∧1)̃ = ũ∧1 it follows that the two criteria of Beurling-Deny
are satisfied.

c) In order to show that H 1(�) ∩ Cc(� ∪ 
µ) is a form core, let u ∈ D(aµ). We can
assume that u ≥ 0 a.e.



124 wolfgang arendt and mahamadi warma J.evol.equ.

FIRST CASE. We assume that u is bounded; u ≤ c, say. There exists a sequence (um)m∈N

in H 1(�) ∩ Cc(� ∪ 
µ) such that um → u in H̃ 1(�). We may assume that um → ũ r.q.e.
Let vm = 0 ∨ (um ∧ ũ). Then vm → u in H̃ 1(�) and, by the Dominated Convergence
Theorem, vm|
µ

→ ũ|
µ
in L2(
µ, µ). Fix m ∈ N. Let O ⊂ 
µ be relatively open such

that Ō is compact, Ō ⊂ 
µ and supp[vm] ⊂ O ∪ �. Since vm is bounded and µ(O) < ∞,
it follows that vm ∈ D(aµ). By [FOT, Corollary 2.3.1] there exists a sequence (wk)k∈N in
H 1(�)∩Cc(�∪
µ) such thatwk → vm (k → ∞) in H̃ 1(�) and r.q.e. Letfk = (0∨wk)∧c.
Then fk ∈ H 1(�) ∩ Cc(� ∪ 
µ) and fk → vm in H̃ 1(�) and fk|
µ

→ vm|
µ
in L2(
µ)

as k → ∞. Hence u is in the closure of H 1(�) ∩ Cc(� ∪ 
µ) in D(aµ).
SECOND CASE. The function u is not bounded. By the first case u ∧ k can be approx-

imated by functions in H 1(�) ∩ Cc(� ∪ 
µ). But uk → u in H̃ 1(�) and uk|
µ
→ u|
µ

in

L2(
µ) as k → ∞. This proves the claim of the theorem. �

3. Monotonicity properties

Let µ be an admissible measure. We denote by Aµ the operator associated with aµ. Then

Aµu = −�u in D(�)′ (12)

for all u ∈ D(Aµ). In fact, let Aµu = v. Then it follows from the definition of the associated
operator that∫

�

∇u∇ϕ dx = aµ(u, ϕ) =
∫

�

vϕ dx

for all ϕ ∈ D(�). This implies (12). We let �µ := −Aµ. Thus �µ is a symmetric realization
of the Laplacian in L2(�).

If 
µ = ∅, then D(aµ) = H 1
0 (�) and −Aµ is just the Dirichlet Laplacian �D given

by {
D(�D) = {u ∈ H 1

0 (�) : �u ∈ L2(�)}
�Du = �u (in D(�)′).

If 
µ = 
 and µ = 0, then −Aµ is the Neumann Laplacian �N whose domain consists
of all u ∈ H̃ 1(�) such that �u ∈ L2(�) and∫

�

�uϕ dx = −
∫

�

∇u∇ϕ dx (13)

for all ϕ ∈ H̃ 1(�). In view of Green’s formula, (13) may be seen as a weak formulation of
Neumann boundary conditions

∂u

∂ν |

= 0 on 
.

Next, we show the following domination property.
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THEOREM 3.1. For each admissible measure µ, the semigroup (et�µ)t≥0 satisfies

et�D ≤ et�µ ≤ et�N

(14)

for all t ≥ 0 in the sense of positive operators.

Proof. 1) We show that et�D ≤ et�µ . By Ouhabaz’s domination criterion, it suffices to
prove that H 1

0 (�) is an ideal of D(aµ) and aµ(u, v) ≤ ∫
�

∇u∇v dx for all u, v ∈ H 1
0 (�)+.

We may assume that functions in H̃ 1(�) are r.q.c.

a) We claim that H 1
0 (�) is an ideal of D(aµ). In fact, let u ∈ H 1

0 (�) and v ∈ D(aµ)

such that 0 ≤ v ≤ u. Since �̄ is relatively open, it follows from [FOT, Lemma 2.1.4]
that 0 ≤ v ≤ u r.q.e. on �̄. Using the characterization of H 1

0 (�) given by (11), we
have that u = 0 r.q.e. on 
 and thus v = 0 r.q.e. on 
. Therefore v ∈ H 1

0 (�) which
proves the claim.

b) Let u, v ∈ H 1
0 (�)+. By the characterization of H 1

0 (�), we have that u = v = 0
r.q.e. on 
. Since µ is admissible, it follows that u = v = 0 µ a.e. on 
µ. We finally
obtain that

aµ(u, v) :=
∫

�

∇u∇v dx +
∫


µ

uv dµ

=
∫

�

∇u∇v dx

and the proof of this part is complete.

2) The proof of the inequality et�µ ≤ et�N is a simple modification of the first part. �

We will see in the next section that (14) characterizes the semigroups (et�µ)t≥0. Before
that we prove a monotonicity and uniqueness result.

THEOREM 3.2. Let µ, ν be two admissible measures. The following assertions are
equivalent.

(i) et�µ ≤ et�ν (t ≥ 0).
(ii) (a) Cap�̄(
µ \ 
ν) = 0 and

(b) µ(A) ≥ ν(A) for each Borel set A ⊂ 
µ ∩ 
ν .

Proof. (i) ⇒ (ii). (a) Let Km ⊂ 
µ be compact sets such that Km ⊂ Km+1 and
∪m∈NKm = 
µ. Let O ⊂ R

n be open such that 
µ = O ∩ 
. Let u ∈ D(Rn) such that
0 ≤ u ≤ 1, u = 1 on Km and supp[u] ⊂ O. Then u|�̄ ∈ D(aµ). Since D(aµ) ⊂ D(aν)

by the domination criterion, it follows that u(z) = 0 r.q.e. on 
 \
ν . In particular,
Cap�̄(Km\
ν) = 0. Thus Cap�̄(
µ\
ν) = limn→∞ Cap�̄(Km \ 
ν) = 0.
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(b) Let A ⊂ 
µ ∩ 
ν be a Borel set. Since by [Rud, 2.18 p.48] µ and ν are regular, it
suffices to show that ν(K) ≤ µ(O) where K ⊂ A is a compact set and O is a relatively
open subset in 
µ ∩ 
ν containing A. Let V ⊂ R

n be open such that V ∩ 
 = ∅. Let
u ∈ D(Rn) such that supp[u] ⊂ V , 0 ≤ u ≤ 1 and u = 1 on K . Then u|�̄ ∈ D(aµ). Hence∫

�

|∇u|2 dx +
∫


µ

|u|2 dµ

= aµ(u) ≥ aν(u)

=
∫

�

|∇u|2 dx +
∫


ν

|u|2 dν

by the domination criterion. Consequently,

ν(K) ≤
∫


ν

|u|2 dν ≤
∫


µ

|u|2 dµ ≤ µ(O).

(ii) ⇒ (i). Let u ∈ D(aµ). Then (a) implies that ũ = 0 r.q.e. on 
 \ 
ν . Since µ is
admissible, µ(
µ \ 
ν) = 0. Hence∫


ν

|ũ|2 dν =
∫


µ∩
ν

|ũ|2 dν

=
∫ ∞

0
ν({z ∈ 
µ ∩ 
ν : |ũ(z)|2 > t}) dt

≤
∫ ∞

0
µ({z ∈ 
µ ∩ 
ν : |ũ(z)|2 > t}) dt

=
∫


µ

|ũ(z)|2 dµ(z) < ∞.

Thus u ∈ D(aν). We have shown that D(aµ) ⊂ D(aν). Since D(aµ) is an ideal of H̃ 1(�),
it is also an ideal of D(aν). Let u, v ∈ D(aν)+. One proves similarly as in Theorem 3.1.
that aµ(u, v) ≥ aν(u, v). Now the domination criterion implies (i). �

As corollary we note the following uniqueness theorem.

COROLLARY 3.3. Let µ and ν be two admissible measures. The following assertions
are equivalent.

(i) et�µ = et�ν (t ≥ 0).
(ii) Cap�̄(
µ�
ν) = 0 and µ(A) = ν(A) for each Borel set A ⊂ 
µ ∩ 
ν .

4. Sandwiched semigroups.

In this section we show that the sandwich property (14) characterizes the semigroups
(et�µ)t≥0 under suitable conditions. Let � be an open subset of R

n with boundary 
.
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THEOREM 4.1. Let T be a symmetric C0-semigroup on L2(�) associated with a
positive closed form (a, D(a)). Then the following assertions are equivalent.

(i) There exists an admissible measure µ such that a = aµ.

(ii) (a) One has et�D ≤ T (t) ≤ et�N
(t ≥ 0);

(b) supp[u] ∩ supp[v] = ∅ implies a(u, v) = 0 for all u, v ∈ D(a) ∩ Cc(�̄).
(c) D(a) ∩ Cc(�̄) is dense in (D(a), ‖ · ‖a).

Proof. We know that the conditions in (ii) are necessary. In order to prove the converse
assume that (ii) is satisfied. Then by the domination criterion, D(a) is an ideal of H̃ 1(�)

containing H 1
0 (�), and

b(u, v) := a(u, v) −
∫

�

∇u∇v dx (15)

is positive whenever 0 ≤ u, v ∈ D(a). Let 
0 := {z ∈ 
 : ∃ u ∈ D(a) ∩ Cc(�̄),
u(z) �= 0} and let Y = � ∪ 
0. Notice that Y is a locally compact space. Since D(a) is an
ideal of H̃ 1(�) one has

H̃ 1(�) ∩ Cc(Y ) = D(a) ∩ Cc(Y ) =: Ec. (16)

The space Ec is a subalgebra of Cc(Y ) by [BH, I, Corollary 3.3.2] (or [FOT, Theorem 1.4.2
(ii)]). It follows from the Stone-Weierstrass Theorem that Ec is uniformly dense in Cc(Y ).
From this follows that Ec is also dense in Cc(Y ) for the inductive topology. In fact, we
observe first that a is a Dirichlet form since T (t) ≤ et�N

and (et�N
)t≥0 is submarkovian.

Let 0 ≤ u ∈ Cc(Y ) and ε > 0. There exists 0 ≤ v ∈ Ec such that ‖u − v‖∞ ≤ ε. Then
(v − ε)+ ∈ Ec, supp[(v − ε)+] ⊂ supp[u] and

‖u − (v − ε)+‖∞ ≤ ‖u − v‖∞ + ‖v − (v − ε)+‖∞ ≤ 2ε.

This shows that u can be approximated in the inductive topology by functions in Ec.
Now b is a positve bilinear form on Ec (i.e., b(u, v) ≥ 0 whenever 0 ≤ u, v ∈ Ec).

Thus b is continuous for the inductive topology. Hence there exists a unique positive bilinear
form b̃ on Cc(Y ) extending b. Consequently, there exists a unique positive functional �

on Cc(Y × Y ) such that �(u ⊗ v) = b̃(u, v) for all u, v ∈ Cc(Y ) (cf. [Bou, Chap. III.,
Section 4] or [Sch, p.297] and the proof of [FOT, Lemma 1.4.1]). Hence there exists a
unique regular Borel measure ν on Y × Y such that

b(u, v) =
∫

Y×Y

u(x)v(y) dν

for all u, v ∈ Ec. Observe that
∫
Y×Y

u(x)v(y) dν = 0 for u, v ∈ Cc(Y ) such that supp[u] ∩
supp[v] = ∅. In fact, if u, v ∈ Ec this follows from the assumption. But in general, by
[FOT, Lemma 1.4.2 (ii)] there exist un, vn ∈ Ec with supp[un] ⊂ {y ∈ Y : u(y) �= 0}
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and supp[vn] ⊂ {y ∈ Y : v(y) �= 0} such that un, vn converge uniformly to u and
v, respectively. Hence

∫
Y×Y

u(x)v(y) dν = limn→∞
∫
Y×Y

un(x)vn(y) dν = 0. Thus
supp[ν] ⊂ {(y, y) : y ∈ Y } ⊂ Y × Y . Hence there exists a regular Borel measure µ on Y

such that

b(u, v) =
∫

Y

u(x)v(x) dµ

for all u, v ∈ Ec.
By the domination property (9), one has b = 0 on H 1

0 (�)×H 1
0 (�). Thus it follows that

supp[µ] ⊂ 
0. We have shown that

a(u, v) =
∫

�

∇u∇v dx +
∫


0

uv dµ (17)

for all u ∈ Ec. Next we show that

D(a) ∩ Cc(�̄) =
{
u ∈ H 1(�) ∩ Cc(�̄) : u|
\
0

= 0,

∫

0

|u|2 dµ < ∞
}

=: Fµ (18)

and that (17) remains true for all u, v ∈ Fµ.
In order to prove (18) it suffices to consider positive functions. Let 0 ≤ u ∈ Fµ. Then

(u − ε)+ ∈ H 1(�) ∩ Cc(� ∪ 
0) = Ec (by (16)) for all ε > 0. Moreover, (u − ε)+ → u

in H 1(�) and (u − ε)+|
0
→ u|
0

in L2(
0) as ε ↓ 0. Hence (u − ε)+ is a Cauchy net in

D(a). Thus u ∈ D(a) and

a(u) = lim
ε↓0

a((u − ε)+) = lim
ε↓0

(∫
�

|∇(u − ε)+|2 dx +
∫


0

((u − ε)+)2 dµ

)
=

∫
�

|∇u|2 dx +
∫


0

|u|2 dµ.

Conversely, let 0 ≤ u ∈ D(a) ∩ Cc(�̄). Since a is a Dirichlet form (u − ε)+ converges to
u in D(a) as ε ↓ 0. Moreover, (u − ε)+ ∈ Fµ. Hence

a(u) = lim
ε↓0

a((u − ε)+) =
∫

�

|∇u|2 dx +
∫


0

|u|2 dµ.

We have proved (18) and (17) for u = v. The polarization identity shows that (17) holds
for all u, v ∈ Fµ. Since a is closed it follows from [AW, Theorem 2.3] that µ is admissible.
Let 
µ = 
0. Now Theorem 2.4 implies that a = aµ. �

Next we characterize those sandwiched semigroups which come from a bounded
measure.
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COROLLARY 4.2. Let � be bounded. Let T be a symmetric C0-semigroup on L2(�)

associated with a positive closed form (a, D(a)). Then the following assertions are
equivalent.

(i) There exists a bounded admissible measure µ on 
 such that a = aµ.

(ii) (a) One has et�D ≤ T (t) ≤ et�N
(t ≥ 0);

(b) supp[u] ∩ supp[v] = ∅ implies a(u, v) = 0 for all u, v ∈ D(a) ∩ C(�̄).
(c) 1 ∈ D(a).

Proof. Assume that (ii) holds. We keep the notations of the proof of Theorem 4.1. Since
1 ∈ D(a), it follows from (18) that 
µ = 
0 = 
, that µ is a bounded admissible measure
and that D(aµ) ⊂ D(a) and a(u, v) = aµ(u, v) for all u, v ∈ D(aµ). Let 0 ≤ u ∈ D(a).
Then for k ∈ N, u ∧ k ∈ D(aµ) and by (7),

aµ(u ∧ k) = a(u ∧ k) = k2a
(u

k
∧ 1

)
≤ k2a

(u

k

)
= a(u).

Thus (u∧k) is bounded in (D(aµ), ‖·‖aµ) and converges to u in L2(�). It follows that (u∧k)

converges weakly to u in D(a). Thus u ∈ D(aµ). We have shown that D(a) = D(aµ).
This proves (i). The other implication is clear. �

We give several comments concerning Theorem 4.1 and Corollary 4.2. First of all, it is
remarkable that in the situation of Corollary 4.2; i.e. assuming that D(a) contains a stricty
positive continuous function, the form a is automatically regular (i.e., D(a)∩C(�̄) is dense
in D(a)). In general, the situation is more complicated. Choosing 
µ open in Definition
2.3 we could prove in Theorem 2.4 that the form aµ is regular. This shows in particular
that condition (c) in Theorem 4.1 is satisfied for a = aµ. But we might consider the more
general case where 
µ is merely a Borel set. In the following we do this for the special case
where the measure µ is 0.

Let � ⊂ R
n be an open set with boundary 
.

EXAMPLE 4.3. (Dirichlet-Neumann boundary conditions) Let 
0 ⊂ 
 be a Borel set.
We define

J (
0) := {u ∈ H̃ 1(�) : ũ = 0 r.q.e. on 
\
0}.
Then J (
0) is a closed ideal of H̃ 1(�). Let D(a) = J (
0), a(u, v) = ∫

�
∇u∇v dx. Then

a is a Dirichlet form on L2(�) and the associated semigroup T satisfies

et�D ≤ T (t) ≤ et�N

(t ≥ 0). (19)

This follows from the domination criterion (9).
Now we describe under which conditions 
0 may be chosen relatively open in 
. If


0 ⊂ 
 is relatively open, then it follows from [FOT, Corollary 2.3.1] that the space
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H 1(�) ∩ Cc(� ∪ 
0) is dense in J (
0). Conversely, assume that J is a closed ideal of
H̃ 1(�) containing H 1

0 (�). Assume that J ∩ Cc(�̄) is a dense subspace of J . Let 
0 =
{z ∈ 
 : ∃ u ∈ J ∩ Cc(�̄) such that u(z) �= 0}. Then J = J (
0). In fact, since J is an
ideal, and H 1

0 (�) ⊂ J it follows that H 1(�) ∩ Cc(� ∪ 
0) ⊂ J ⊂ J (
0). Now the claim
follows from the preceding.

REMARK 4.4. By a result of Stollmann [Sto] each closed ideal J of H̃ 1(�) containing
H 1

0 (�) is of the form J = J (
0) for some Borel set 
0 ⊂ 
.

Next we comment on the locality condition. It cannot be omitted as the following simple
example shows.

EXAMPLE 4.5. (Non-local boundary conditions) Let � = (0, 1). Define the form a by
D(a) = H 1(0, 1),

a(u, v) =
∫ 1

0
u′v′ dx + u(0)v(0) + u(1)v(0) + u(0)v(1) + u(1)v(1).

Then a is a closed positive form which is not local. Let T be the associated semigroup
on L2(0, 1). Then condition (a) of Corollary 4.2 is satisfied by the domination criterion.
However condition (b) is not satisfied.

For further properties of local forms we refer to [BH], [FOT] and [MR]. For locality
properties of the Laplacian we refer to Bénilan-Pierre [BP].

5. The surface measure

Let � ⊂ R
n be a bounded open set with Lipschitz boundary 
. By σ = Hn−1 we

denote the surface measure on 
. Then σ is admissible [AW, Proposition 4.1]. Recall that
H 1(�) ∩ C(�̄) is dense in H 1(�) (i.e. H̃ 1(�) = H 1(�)) and the trace u �→ u|
 defined
for u ∈ H 1(�)∩C(�̄) has a continuous extension from H 1(�) into L2(
). In order words,
one has ũ ∈ L2(
) for all u ∈ H 1(�).

Let u ∈ C2(�̄). Then∫
�

�uϕ dx = −
∫

�

∇u∇ϕ dx +
∫




∂u

∂ν
ϕ dσ (20)

for all ϕ ∈ H 1(�), where ∂u
∂ν

= 〈∇u, ν〉 ∈ L∞(�), ν(z) being the exterior normal at z ∈ 
.
We want to define the weak normal derivative ∂u

∂ν
of u. Let

D(�max) := {u ∈ H 1(�) : �u ∈ L2(�)}.
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For u ∈ D(�max) we say that ∂u
∂ν

exists weakly, if there exists a function b ∈ L2(
) such
that∫

�

�uϕ dx = −
∫

�

∇u∇ϕ dx +
∫




bϕ dσ (21)

for all ϕ ∈ H 1(�). In that case b ∈ L2(
) is unique and we write ∂u
∂ν

:= b.
Now let 0 ≤ β ∈ L∞(
) := L∞(
, σ ). Then the measure µ given by dµ = βdσ is

admissible [AW]. The form aβ := aµ is given by D(aβ) = H 1(�),

aβ(u, v) =
∫

�

∇u∇v dx +
∫




ũṽβ dσ.

Denote by −�β the operator associated with aβ . We now can describe �β as follows.

PROPOSITION 5.1. One has{
D(�β) = {u ∈ D(�max) : ∂u

∂ν
exists weakly in L2(
) and ∂u

∂ν
+ βu|
 = 0},

�βu = �u in D(�)′.
(22)

Proof. Denote by A the operator associated with aβ . Let u ∈ D(A) and Au = v. Then∫
�

vϕ dx = aβ(u, ϕ) =
∫

�

∇u∇ϕ dx +
∫




uϕβ dσ

for all ϕ ∈ H 1(�). Choosing ϕ ∈ D(�) this implies that v = −�u. This shows that D(�β)

is included in the right-hand-side of (22).
Conversely, let u ∈ D(�max) such that ∂u

∂ν
exists weakly and ∂u

∂ν
+ βu|
 = 0. Then one

has for all ϕ ∈ H 1(�),

−
∫

�

�uϕ dx =
∫

�

∇u∇ϕ dx +
∫




uϕβ dσ

= aβ(u, ϕ).

Hence u ∈ D(A) and Au = −�u. �

In particular, in this case of classical Robin boundary conditions one has {u ∈ C2(�̄) :
∂u
∂ν

+ βu|
 = 0} ⊂ D(�β).
Next we show that an admissible measure µ is necessarily of the form βdσ whenever

D(�µ) contains smooth functions. More generally, we have the following.
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PROPOSITION 5.2. Let � ⊂ R
n be a bounded open set of class C1 with boundary


. Let T be a symmetric C0-semigroup associated with a closed form a. Denote by A the
generator of T . Assume that

a) et�D ≤ T (t) ≤ et�N
(t ≥ 0), that

b) a is local; i.e. a(u, v) = 0 whenever u, v ∈ D(a) ∩ C(�̄) have disjoint support, and
that

c) there exists u ∈ D(A) ∩ C2(�̄) such that u(z) > 0 for all z ∈ 
.

Then there exists a function β ∈ C(
)+ such that A = −�β .

Proof. It follows from Theorem 4.1 that there exists an admissible measure µ on 
 such
that a = aµ and A = −�µ. One considers the function u in c). Then for all ϕ ∈ C1(�̄)

one has∫
�

∇u∇ϕ dx +
∫




uϕ dµ = a(u, ϕ)

= −
∫

�

�uϕ dx

=
∫

�

∇u∇ϕ dx −
∫




∂u

∂ν
ϕ dσ.

It follows from the Stone-Weierstrass Theorem that∫



uϕ dµ +
∫




∂u

∂ν
ϕ dσ = 0

for all ϕ ∈ C(
). This implies that dµ = − 1
u

∂u
∂ν

dσ . Thus the claim is proved with
β = − 1

u
∂u
∂ν

. �

Also a converse version of Proposition 5.2 holds.

PROPOSITION 5.3. Assume that � is a bounded open set of class C2,α where 0 <

α < 1. Let β ∈ C1,α(
) with 0 < β(z) (z ∈ 
). Then there exists u ∈ D(�β) ∩ C2,α(�̄)

such that infx∈�̄ u(x) > 0.

Proof. By [GT, Theorem 6.31] there exists u ∈ C2,α(�̄) such that −�u = 1 on �̄ and
βu + ∂u

∂ν
= 0 on 
. Then u ∈ D(�β) and �βu = 1. By Proposition 6.3 below, one has

0 ∈ ρ(�β). Thus, u = R(0, �β)1. It follows from the domination property (Theorem 3.2)
that u = R(0, �β)1 ≥ R(0, �D)1. Now it follows from the maximum principle (see e.g.
[Are, Theorem 1.5]) that u(x) > 0 for all x ∈ �. Assume that there exists z0 ∈ 
 such
that u(z0) = 0. Then by [RR, Lemma 4.7], it follows that ∂u

∂ν
(z0) < 0 which is impossible

since u satisfies the boundary condition. Thus u(x) > 0 for all x ∈ �̄. �
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6. Asymptotics

Let � ⊂ R
n be open and let µ be an admissible measure on 
 with domain 
µ. The

semigroup (et�µ)t≥0 on L2(�) is submarkovian. Thus there exist consistent C0-semigroups
(et�µ,p )t≥0 on Lp(�), 1 ≤ p < ∞, such that �µ,2 = �µ (cf. [Dav, Theorem 1.4.1]).

PROPOSITION 6.1. Assume that � is connected. Assume that 
µ �= ∅ and µ �= 0.
Then

lim
t→∞ ‖et�µ,pf ‖Lp(�) = 0 (23)

for all f ∈ Lp(�) and 1 < p < ∞.

Proof. a) We show that aµ(u) = 0 implies that u = 0 for all u ∈ D(aµ).
In fact, if aµ(u) = 0, then ∇u = 0, hence u is a constant c since � is connected. It
follows that 0 = aµ(u) = ∫


µ
|u|2 dµ = µ(
µ)c2. Thus c = 0.

b) Property (23) is true for p = 2. This follows from the spectral theorem. In fact the
semigroup (et�µ)t≥0 is unitarily equivalent to a semigroup T on H = L2(Y, ν) given
by T (t)f = etmf where m : Y → [0, ∞) is measurable and (Y, ν) is a σ -finite
measure space. Via the unitary equivalence the form aµ becomes the form a on H

given by a(u) = ∫
Y

|u|2m dν with D(a) = {u ∈ H :
∫
Y

|u|2m dν < ∞}, see e.g.
[ABHN, Section 7.1]. By a) we have a(u) = 0 only if u = 0. Thus m(y) > 0 ν-a.e.
Now it follows from the Dominated Convergence Theorem that limt→∞ T (t)f = 0
in H = L2(Y, ν).

c) Now the claim (23) follows from the interpolation inequality for arbitrary 1 < p <

∞ as in [ABB, Proposition 3.1].

�

COROLLARY 6.2. Let � ⊂ R
n be open, and connected of finite Lebesgue measure.

Assume that 
µ �= ∅ and µ �= 0. Then

lim
t→∞ ‖et�µ,1f ‖L1(�) = 0 (24)

for all f ∈ L1(�).

Proof. Since L2(�) ↪→ L1(�), (24) follows from (23) if f ∈ L2(�). Since the semi-
group (et�µ,1)t≥0 is contractive on L1(�) the claim follows from a density argument. �

If � is a bounded, regular open set, then we obtain even exponential stability.

PROPOSITION 6.3. Let � be a bounded open set in R
n with Lipschitz boundary. Let

µ be an admissible measure on 
. Then �µ,p has compact resolvent for 1 ≤ p < ∞ and
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the spectrum σ(�µ,p) is independent of p ∈ [1, ∞). Moreover, there exist c > 0, ω > 0
such that

‖et�µ,p‖L(Lp(�) ≤ ce−ωt (t ≥ 0)

for all 1 ≤ p < ∞.

Proof. Since � has Lipschitz boundary, one has H 1(�) ↪→ L2n/(n−2)(�) if n > 2 and
H 1(�) ↪→ Lp(�) for all 1 ≤ p < ∞ if n = 1, 2. It follows from [Dav, Section 2.4] that
et�µ,1L1(�) ⊂ L∞(�) and

‖et�µ,1f ‖∞ ≤ ct−n/2‖f ‖1

for all 0 < t ≤ 1, f ∈ L1(�). In particular, et�µ,2 is a Hilbert-Schmidt operator and
hence compact. Writing et�µ,1 = et/2�µet/2�µ one sees that et�µ,1 is a compact operator
on L1(�) for t > 0. Now spectral p-independence follows from [Dav, Theorem 1.6.4].
It follows from [ArBa, Theorem 1.3] that 0 �∈ σ(�µ,p). Thus �µ,p has negative spectral
bound, which coincides with the growth bound of the semigroup. �
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