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Abstract. Using a capacity approach, we prove in this article that it is always possible to define a
realization �µ of the Laplacian on L2(�) with generalized Robin boundary conditions where � is
an arbitrary open subset of Rn and µ is a Borel measure on the boundary ∂� of �. This operator
�µ generates a sub-Markovian C0-semigroup on L2(�). If dµ = β dσ where β is a strictly positive
bounded Borel measurable function defined on the boundary ∂� and σ the (n−1)-dimensional Haus-
dorff measure on ∂�, we show that the semigroup generated by the Laplacian with Robin boundary
conditions �β has always Gaussian estimates with modified exponents. We also obtain that the spec-
trum of the Laplacian with Robin boundary conditions in Lp(�) is independent of p ∈ [1,∞). Our
approach constitutes an alternative way to Daners who considers the (n− 1)-dimensional Hausdorff
measure on the boundary. In particular, it allows us to construct a conterexample disproving Daners’
closability conjecture.
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0. Introduction

Let� ⊂ Rn be an open set. Selfadjoint realizations of the Laplacian can be defined
on L2(�) via forms incorporating various boundary conditions.

In particular, there is a natural way to define Dirichlet and Neumann boundary
conditions for arbitrary �. This is not so obvious for Robin boundary conditions

∂u

∂ν
+ βu = 0 on ∂�, (1)

where β is a positive bounded Borel measurable function defined on the bound-
ary ∂�. If� has Lipschitz boundary, in virtue of results on the trace, it can be easily
done. One obtains a sub-Markovian semigroup on L2(�) which allows Gaussian
estimates [6]. For the variational formulation one uses the surface measure σ in this
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case. If � is an arbitrary bounded open set, then Daners [12] replaced the surface
measure by the (n − 1)-dimensional Hausdorff measure Hn−1 and showed a way
how to define a selfadjoint realization of the Laplacian which satisfies in a weak
sense the boundary condition (1) on a Borel set S ⊂ ∂� and Dirichlet boundary
conditions on ∂� \ S. In a certain sense the set S can be chosen maximal. Daners
conjectured that S = ∂� if the boundary has finite (n− 1)-dimensional Hausdorff
measure. In this article we disprove Daners’ conjecture.

In fact, we develop another approach to define selfadjoint realizations of the
Laplacian with general Robin boundary conditions; i.e. boundary conditions de-
fined by arbitrary Borel measures on the boundary. For this we use as a systematic
tool, the notion of relative capacity (with respect to �̄), by which we mean the
capacity induced on �̄ by the usual Dirichlet form with domain H̃ 1(�); the com-
pletion of H 1(�) ∩ C(�̄). It is an efficient tool to study the boundary ∂� of �. If
� has Lipschitz boundary, polars for the usual and the relative capacity coincide.
But for non-regular boundary there exist relatively polar sets (i.e. sets of relative
capacity zero) which are not polar.

Given a measure µ on the boundary ∂� we show that there exists a set S ⊂ ∂�

such that ∂� \ S has relative capacity zero such that the Laplacian with general-
ized Robin boundary conditions defined by µ on S and with Dirichlet boundary
conditions on ∂� \ S is well-posed.

The Hausdorff measure Hn−1 of dimension n − 1 is of special interest. The
corresponding realization of the Laplacian has several interesting properties. In
particular, it generates a C0-semigroup allowing Gaussian estimates with modified
exponents. These Gaussian estimates do not have the strong consequences as the
classical ones (see, e.g., [1, 6]), but with the help of a recent result of Kunstmann
and Vogt [25] we obtain an interesting application. The spectrum of the Lapla-
cian with Robin boundary conditions in Lp(�) is independent of p ∈ [1,∞).
This question of spectral p-independence has a long history now, see [32, 20, 2]
and [23]. If � has finite measure, then the Laplacian with Robin boundary con-
ditions has a compact resolvent. This, as well as spectral p-independence, fail for
Neumann boundary conditions [24].

All these properties are valid if we consider the (n− 1)-dimensional Hausdorff
measure. If the Hausdorff dimension s of the boundary is bigger than n − 1, then
the s-dimensional Hausdorff measure is more natural to define Robin bound-
ary conditions. An interesting example of this kind is the snowflake of
von Koch.

1. Relative Capacity

The aim of this section is to investigate the notion of “relative capacity” with re-
spect to an open subset � of Rn. It will allow us to analyse phenomena occuring
on the boundary of �. Throughout this paper the underlying field is R.
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Given an arbitrary subset A of Rn the capacity Cap(A) of A is defined as

Cap(A) := inf
{‖u‖2

H 1(Rn)
: u ∈ H 1(Rn), ∃O ⊂ Rn open such that

A ⊂ O and u(x) � 1 a.e. on O
}
. (2)

Here, for an open non-empty subset � of Rn, we consider the Sobolev space

H 1(�) := {u ∈ L2(�) : Dju ∈ L2(�), j = 1, . . . , n}
with norm

‖u‖2
H 1(�)

:= ‖u‖2
L2(�)

+
n∑
j=1

‖Dju‖2
L2(�)

,

where Dju = ∂u/∂xj is the distributional derivative. Moreover, we let

H̃ 1(�) = H 1(�) ∩ C(�̄)H
1(�)

,

where C(�̄) denotes the space of all continuous real-valued functions on �̄.
For example, if � = (0, 1) ∪ (1, 2), then H 1(�) �= H̃ 1(�) = H 1(0, 2). For

conditions implying that H̃ 1(�) = H 1(�) see [27, Section 1.1.6, Theorem 2]
or [14, Chap. V, Theorem 4.7]. In paricular, if � has a Lipschitz boundary, then
H̃ 1(�) = H 1(�). But the point in the present paper is to consider arbitrary open
sets with possibly bad boundary.

Now we fix an open set � in Rn. The relative capacity Cap�̄(A) with respect to
� is defined for an arbitrary subset A of �̄ by

Cap�̄(A) := inf
{‖u‖2

H 1(�)
: u ∈ H̃ 1(�), ∃O ⊂ Rn open such that

A ⊂ O and u(x) � 1 a.e. on � ∩O}. (3)

Here and further on, the word “relative” means relative with respect to the fixed
open set �.

Our notion of relative capacity is a special case of the capacity associated with a
Dirichlet form. We consider the topological space X = �̄, the σ -algebra B(X) of
all Borel sets inX, and the measure m on B(X) given by m(A) = λ(A∩�) for all
A ∈ B(X) with λ the Lebesgue measure. Denoting by L2(�) the usual L2-space
with respect to the Lebesgue measure, we then have L2(�) = L2(X,B(X),m).
The introduction of m is needed to ensure this identity in the case where ∂�
has positive Lebesgue measure. Now we consider the Dirichlet form (E,D) on
L2(X,B(X),m) given by D = H̃ 1(�) and

E(u, v) =
∫
�

∇u∇v dx.

It satisfies the assumption (T ) of [9, p. 52] and (D) of [9, p. 54]. The relative capac-
ity of a subset A of �̄ is exactly the capacity ofA associated with the Dirichlet form
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(E,D) in the sense of [9, 8.1.1, p. 52]. Open subsets of X = �̄ are understood with
respect to the relative topology of �̄. Thus Cap�̄ (just as Cap) has the properties
of a capacity as described in [9, I.8] (or [17, Chapter 2]). In particular, Cap�̄ is an
outer measure; i.e.

Cap�̄(∅) = 0,

and

Cap�̄

( ∞⋃
n=1

An

)
�

∞∑
n=1

Cap�̄(An)

whenever An ⊂ �̄. Moreover, for A ⊂ B ⊂ �̄ one has

Cap�̄(A) � Cap�̄(B).

A subset A of Rn is called a polar set if Cap(A) = 0. Similarly, a subset A of �̄
is called a relatively polar set if Cap�̄(A) = 0.

This, as several subsequent notions are defined with respect to the fixed open
set �.

We say that a property holds on �̄ relatively quasi-everywhere (r.q.e.), if it holds
for all x ∈ (�̄ \N) where N ⊂ �̄ is relatively polar.

Our main point in this section is to compare polar and relatively polar sets. First
we note that

Cap�̄(A) � Cap(A) (4)

for all A ⊂ �̄. In fact, since C(Rn) ∩ H 1(Rn) is dense in H 1(Rn) one has u|� ∈
H̃ 1(�) for all u ∈ H 1(Rn). Now (4) follows from the definition.

It is clear from (4) that each polar subset of �̄ is also relatively polar. The
converse is true for subsets of �.

PROPOSITION 1.1. Let A ⊂ �. Then Cap�̄(A) = 0 if and only if Cap(A) = 0.
Proof. First case. There exists an open bounded set ω such that A ⊂ ω̄ ⊂ �.

Since Cap�̄(A) = 0 there exist open sets Ok ⊂ Rn, uk(x) � 1 on Ok ∩ � and
‖uk‖2

H 1(�)
� 1/k. Let ϕ ∈ D(Rn) such that supp[ϕ] ⊂ � and ϕ = 1 on ω. Let

vk = ϕuk on � and vk = 0 on Rn \�. Then vk ∈ H 1(Rn), vk = 1 on Ok ∩ ω and
‖vk‖H 1(Rn) → 0 (k→∞). Thus Cap(A) = 0.

Second case. Assume that A ⊂ � is arbitrary. Take open bounded sets ωk
such that ω̄k ⊂ ωk+1 ⊂ � and

⋃
k∈N

ωk = �. It follows from the first case
that Cap(A ∩ ωk) = 0. Hence Cap(A) = limk→∞ Cap(A ∩ ωk) = 0 by [9, I,
Proposition 8.1.3 c)]. ✷
Thus, by the preceding proposition, merely subsets of ∂� are of interest for our
question. And indeed, we will show below that there may exist relatively polar
sets in ∂� which are not polar. However, for this the boundary has to be irregular.
In fact, our next proposition shows that both notions of polar sets coincide if the
boundary is Lipschitz continuous.
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DEFINITION 1.2. We say that H̃ 1(�) (resp. H 1(�)) has the extension property
if there exists a bounded linear operator P from H̃ 1(�) (resp. H 1(�)) into H 1(Rn)

such that (Pu)|� = u for all u ∈ H̃ 1(�) (resp. u ∈ H 1(�)).
If P can be chosen such that Pu ∈ C(Rn) whenever u = ϕ|� for some ϕ ∈

D(Rn), then we say that H̃ 1(�) (resp. H 1(�)) has the special extension property.

If H 1(�) has the extension property, then H 1(�) = H̃ 1(�). However, consider
� = (0, 1) ∪ (1, 2) ⊂ R. Then H̃ 1(�) = H 1(0, 2) has the extension property, but
H 1(�) �= H̃ 1(�).

Since H 1(R) ⊂ C(R), in dimension 1, the extension property implies the
special extension property for H 1(�) and H̃ 1(�) for all open sets � ⊂ R.

PROPOSITION 1.3. Let � ⊂ Rn be a bounded open set with Lipschitz boundary.
Then H 1(�) = H̃ 1(�) has the special extension property.

Proof. There exist bounded linear operators Pp : W 1,p(�) → W 1,p(Rn) such
that Ppu = Pqu for all u ∈ W 1,p(�) ∩ W 1,q(�) and Ppu|� = u for all u ∈
W 1,p(�) and 1 � p � ∞. Since W 1,p(Rn) ⊂ C(Rn) for p > n, it follows that
P2u = Ppu ∈ C(Rn) whenever u = ϕ|� for some ϕ ∈ D(Rn). ✷
PROPOSITION 1.4. Assume that H̃ 1(�) has the special extension property. Then
there exists a constant c > 0 such that

Cap(A) � cCap�̄(A) for all A ⊂ �̄. (5)

In particular, Cap(A) = 0 if and only if Cap�̄(A) = 0 for all A ⊂ �̄.
Proof. Denote by P the extension operator from Definition 1.2. We show (5) for

c = ‖P ‖2.
(1) Let A ⊂ �̄ be a compact set. Let ε > 0. The space D := {u|� : u ∈ D(Rn)}

is a special core of H̃ 1(�) in the sense of [17, p. 6]. By [17, Lemma 2.2.7, p. 80]
there exists u ∈ D such that u(x) � 1 for all x ∈ A and ‖u‖2

H 1(�)
� Cap�̄(A)+ ε.

Let v = Pu. Then v ∈ H 1(Rn) ∩ C(Rn) and u = v on �. Hence u = v on �̄ by
continuity. Thus v(x) � 1 on A. Hence by [17, Theorem 2.1.5],

Cap(A) � ‖v‖2
H 1(Rn)

� ‖P ‖2‖u‖2
H 1(�)

� ‖P ‖2(Cap�̄(A)+ ε).
Letting ε ↓ 0 one obtains (5).

(2) Let A ⊂ �̄ be relatively open. There exists O ⊂ Rn open such that A =
O ∩ �̄. By Choquet’s theorem [17, Theorem A.1.1] and (1) we have

Cap(A) = sup{Cap(K) : K ⊂ O ∩ �̄ compact}
� ‖P ‖2 sup{Cap�̄(K) : K ⊂ O ∩ �̄ compact}
� ‖P ‖2 Cap�̄(O ∩ �̄).

(3) Let A ⊂ �̄ be arbitrary. Since by definition,

Cap(A) = inf{Cap(O) : A ⊂ O ⊂ Rn,O open},
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it follows from (2) that

Cap(A) = inf{Cap(O ∩ �̄) : A ⊂ O ⊂ Rn,O open}
� ‖P ‖2 inf{Cap�̄(O ∩ �̄) : A ⊂ O ⊂ Rn,O open}
= ‖P ‖2 inf{Cap�̄(U) : A ⊂ U ⊂ �̄, U relatively open}
= ‖P ‖2 Cap�̄(A). ✷

We first produce a one-dimensional example of a relatively polar set which is not
polar. Note that a subset A of R is polar if and only if it is empty.

EXAMPLE 1.5. Let 0 < an+1 < bn+1 < an < 1 (n ∈ N) such that limn→∞ an =
0, and � = (0, 1) \ ⋃n∈N

[an, bn]. Then 0 ∈ ∂� and Cap�̄({0}) = 0 whereas
Cap({0}) > 0. In fact, the characteristic function un = 1[0,an] of [0, an] is in H̃ 1(�)

and u′n = 0. Since un(x) � 1 on (0, an) one has

Cap�̄({0}) � ‖un‖2
H 1(�)

= ‖un‖2
L2(�)

= ‖un‖2
L2(0,an)

→ 0 (n→∞).
Next we modify Example 1.5 in order to produce a connected bounded open set �
in R2 and a closed subset of ∂� which is relatively polar but not polar. Note that if
A ⊂ R2 is a polar set then it is totally disconnected; that is, every component of A
is a singleton (see [8, Corollary 5.8.9, p. 155]).

EXAMPLE 1.6. Let 0 < an+1 < bn+1 < an < 1 (n ∈ N) such that limn→∞ an = 0.
Let

� =
{
(x, y) ∈ (0, 1)× (0, 1) \

⋃
n∈N

[an, bn] ×
[

1

2
, 1

]}
.

Then the segment S = {0} × [3/4, 1] has relative capacity Cap�̄(S) = 0 but
Cap(S) > 0.

Proof. Let ϕ ∈ C∞[0, 1] such that supp[ϕ] ⊂ [1/4, 1] and ϕ(y) � 1 for y ∈
[1/2, 1]. Let

un(x, y) :=
{
ϕ(y) if x < an,
0 if x � an.

Then un ∈ C∞(�̄) and un � 1 on � ∩ O where O = (−∞, an) × ( 1
2 ,∞).

Moreover,∫
�

|∇un|2 dx dy =
∫ an

0

∫ 1

0
|ϕ′(y)|2 dy dx

= an

∫ 1

0
|ϕ′(y)|2 dy → 0 (n→∞)
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and ∫
�

|un|2 dx dy → 0 (n→∞).

Since S ⊂ O, it follows that Cap�̄(S) = 0. ✷

2. H 1
0 (�) in Terms of Relative Capacity

In the preceding section we produced an example of an entire segment S contained
in the boundary ∂� of a bounded open connected set� ⊂ R2 with relative capacity
Cap�̄(S) = 0. We will show here that on the other hand Cap�̄(∂�) > 0 for all
bounded open sets � in Rn.

Let � ⊂ Rn be an open set. We start to describe the space

H 1
0 (�) := D(�)

H 1(�)

with the help of relative capacity. Here D(�) denotes the space of all infinitely
differentiable functions with compact support. We denote byCc(�̄) those functions
in C(�̄)which have a compact support in �̄. Thus Cc(�̄) = C(�̄) if� is bounded.

LEMMA 2.1. The space H̃ 1(�) ∩ Cc(�̄) is dense in H̃ 1(�).
Proof. Let ξ ∈ D(Rn) such that ξ(x) = 1 for |x| � 1. Let ξn(x) = ξ(x/n). If

u ∈ H 1(�)∩C(�̄), then ξnu ∈ H 1(�)∩Cc(�̄) and ξnu→ u (n→∞) inH 1(�).
Since H̃ 1(�) is the closure of H 1(�) ∩ C(�̄) the claim follows. ✷
Thus, the Dirichlet form (E,D) on L2(�̄,m) introduced in Section 1 is regular;
i.e., D ∩ Cc(�̄) is dense in (D, ‖ · ‖E ), and also in (Cc(�̄), ‖ · ‖∞) by the Stone–
Weierstrass theorem. Hence we can apply the usual results on quasi-continuity.

DEFINITION 2.2. A scalar function u on �̄ is called relatively quasi-continuous,
if for each ε > 0 there exists an open set G ⊂ Rn such that Cap�̄(G ∩ �̄) < ε

and u is continuous on �̄ \G.

Recall that a scalar function u defined on Rn is called quasi-continuous if for each
ε > 0 there exists an open set G ⊂ Rn such that Cap(G) < ε and u is continuous
on Rn \G. It follows from (4) that then u|�̄ is also relatively quasi-continuous.

Now, it follows from [9, I, Proposition 8.2.1] that for each u ∈ H̃ 1(�) there
exists a relatively quasi-continuous function ũ : �̄ → R such that ũ(x) = u(x)

m-a.e. This function is unique relatively quasi-everywhere. We call ũ the relatively
quasi-continuous representative of u. It can be seen from the proof of [9, I, Propo-
sition 8.2.1] that ũ can be chosen Borel measurable. Now we can describe H 1

0 (�)

as a subspace of H̃ 1(�) in the following way.
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THEOREM 2.3. One has

H 1
0 (�) = {u ∈ H̃ 1(�) : ũ(x) = 0 r.q.e. on ∂�}.

Proof. H 1
0 (�) is a closed ideal of H̃ 1(�) (see [7]). We apply a result of Stoll-

mann [33, Theorem 1.1]. There exists a Borel set M ⊂ �̄ such that

H 1
0 (�) = {u ∈ H̃ 1(�) : ũ(x) = 0 r.q.e. on M}. (6)

Since D(�) ⊂ H 1
0 (�) it follows that M ∩� is relatively polar. In fact, let Kn ⊂ �

be compact sets such that Kn ⊂ Kn+1 and � = ⋃
n∈N

Kn. For each n ∈ N there
exists ϕn ∈ D(�) such that ϕn(x) = 1 on Kn. Since ϕn ∈ H 1

0 (�) it follows that
ϕn(x) = 0 r.q.e. on M. Thus Kn ∩M is relatively polar. Hence Cap�̄(M ∩ �) =
limn→∞ Cap�̄(M ∩Kn) = 0.

Now let u ∈ H̃ 1(�) such that ũ(x) = 0 r.q.e. on ∂�. Then ũ(x) = 0 r.q.e. onM
and hence ũ ∈ H 1

0 (�). To prove the converse, observe that the set {u ∈ H̃ 1(�) :
ũ(x) = 0 r.q.e. on ∂�} is a closed ideal of H̃ 1(�) containing D(�). Hence it also
contains H 1

0 (�). ✷
One should compare Theorem 2.3 with the following known result (which will be
needed in the proof of Proposition 2.5). It allows one to identify H 1

0 (�) with a
subspace of H 1(Rn).

PROPOSITION 2.4. One has

H 1
0 (�) = {u|� : u ∈ H 1(Rn) : ũ(x) = 0 q.e. on Rn \�}.

Proof. See [7, Theorem 1.1] or [17, Example 3.2.2, p. 81] or [18, Theorem 3.1,
p. 241]. ✷
PROPOSITION 2.5. Let � ⊂ Rn be open. Then the following assertions are
equivalent.

(i) Cap�̄(∂�) = 0;
(ii) H̃ 1(�) = H 1

0 (�);
(iii) � = Rn \K where K ⊂ Rn is closed and Cap(K) = 0;
(iv) H 1

0 (�) = {u|� : u ∈ H 1(Rn)}.
Proof. (i) ⇔ (ii) This follows from Theorem 2.3.
(ii) ⇒ (iii) Assume that H̃ 1(�) = H 1

0 (�). For each n ∈ N there exists a
function ϕ ∈ D(Rn) such that ϕ(x) = 1 on Kn = {z ∈ ∂� : |z| � n}. Since
H̃ 1(�) = H 1

0 (�), it follows from Theorem 2.3 that ϕ(x) = 0 q.e. on Kn. Thus
Cap(∂�) = limn→∞ Cap(Kn) = 0. Now it follows from [3, Proposition 3.10] that
Rn \ ∂� is connected. Since Rn \ ∂� = � ∪ (Rn \ �̄) this implies that �̄ = Rn.
Taking K = ∂� we obtain (iii).

(iii) ⇒ (iv) This follows from Proposition 2.4 since Cap�̄(∂�) = Cap�̄(K) �
Cap(K) = 0.
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(iv) ⇒ (i) Assume that Cap�̄(∂�) > 0. Then there exists n0 ∈ N such that
Cap�̄({x ∈ ∂� : |x| � n0}) > 0. Choose u ∈ D(Rn) such that u(x) = 1 if
|x| � n0. Then u �∈ H 1

0 (�) by Theorem 2.3. Thus (iv) does not hold. ✷
COROLLARY 2.6. Let � ⊂ Rn be a bounded open set. Then Cap�̄(∂�) > 0.

3. Robin Boundary Condition for Arbitrary Measures

In this section we define boundary conditions by Borel measures on the boundary
of an open set. We will use the theory of quadratic forms (see [13, Chapter 1]
and [29]).

Let H be a real Hilbert space. A positive form on H is a bilinear mapping
a : D(a) × D(a) → R such that a(u, v) = a(v, u) and a(u, u) � 0 for all
u, v ∈ D(a) where D(a) (the domain of the form) is a dense subspace of H . The
form is closed ifD(a) is complete for the norm ‖u‖a = (a(u, u)+‖u‖2

H )
1/2. Then

the operator A on H associated with a is defined by{
D(A) := {u ∈ D(a) : ∃v ∈ H a(u, ϕ) = (v, ϕ)H ∀ ϕ ∈ D(a)},
Au = v.

(7)

The operator A is selfadjoint and −A generates a contraction semigroup (e−tA)t�0

of symmetric operators on H (and each symmetric contraction semigroup occurs
in this way).

More generally, the form a is called closable if for each Cauchy sequence
(un)n∈N in (D(a), ‖ · ‖a)

lim
n→∞ un = 0 in H implies lim

n→∞ a(un, un) = 0. (8)

In that case the closure ā is the unique positive closed form extending a such that
D(a) is dense inD(ā). We will give several examples of non-closable forms below.

Given two positive forms a and b we write here a � b if D(b) ⊂ D(a) and
a(u) � b(u) for all u ∈ D(b) where a(u) = a(u, u). Thus if a is closable, then
ā � a.

Given a positive form a there always exists a closable positive form ar � a

such that b � ar whenever b is a closable positive form such that b � a. Thus ar is
the largest closable form smaller or equal than a (see [29, Theorem S15, p. 373]).
Clearly, a is closable if and only if a = ar .

Note that these properties imply that, given an arbitrary positive form, one
always has

D(ar) = D(a). (9)

In fact, D(a) ⊂ D(ar) by definition. Let b be the restriction of ar to D(a) ×
D(a). Then b is closable and b(u) = ar(u) � a(u) for all u ∈ D(b). Thus b � a.
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Hence b � ar and in particular, D(ar) ⊂ D(b). However, it can happen though
that ar(u) < a(u) whenever u �= 0.

Let� ⊂ Rn be an open set with boundary 7 = ∂�. We consider positive forms
on L2(�) (formed with respect to Lebesgue measure). Denote by B(7) the Borel
σ -algebra on 7 and let µ : B(7)→ [0,∞] be a measure. We consider the positive
form aµ on L2(�) given by

aµ(u, v) =
∫
�

∇u∇v dx +
∫
7

uv dµ (10)

with domain

D(aµ) =
{
u ∈ H 1(�) ∩ Cc(�̄) :

∫
7

|u|2 dµ <∞
}
.

If X is a locally compact space, Cc(X) denotes the space of all continuous real-
valued functions on X with compact support.

We want to determine (aµ)r and in particular characterize when aµ is closable.
Let

7µ := {z ∈ 7 : ∃ r > 0 such that µ(7 ∩ B(z, r)) <∞}
be the part of 7 on whichµ is locally finite. Then u = 0 on 7\7µ for all u ∈ D(aµ).

We consider two special cases.

EXAMPLE 3.1 (Dirichlet Laplacian). Assume that 7µ = ∅. Then u = 0 on 7 for
all u ∈ D(aµ). It follows from [10, Théorème IX.17, p. 171] that D(aµ) ⊂ H 1

0 (�)

and aµ(u, v) =
∫
�
∇u∇v dx. Since D(�) is dense in H 1

0 (�) by definition, aµ is
closable and D(aµ) = H 1

0 (�), aµ(u, v) =
∫
�
∇u∇v dx. Let A be the operator as-

sociated with aµ. It is easy to see that D(A) = {u ∈ H 1
0 (�) : �u ∈ L2(�)}, Au =

−�u. We call �D := −A the Dirichlet Laplacian.

EXAMPLE 3.2 (Neumann Laplacian). Let µ = 0. Then a0 := aµ is closable,
D(a0) = H̃ 1(�), a0(u, u) =

∫
�
∇u∇v dx. Let A0 be the operator associated

with a0. We call �N := −A0 the Neumann Laplacian (cf. [13, Theorem 1.2.10]).

In the following we consider the case where 7µ �= ∅. Then 7µ is relatively open
in 7. Thus 7µ is a locally compact space and µ is a regular Borel measure on 7µ
(by [30, 2.18, p. 48]). We let L2(7µ) = L2(7µ,B(7µ), µ).

We say that the measure µ is admissible if for each Borel set A ⊂ 7µ one has

Cap�̄(A) = 0 �⇒ µ(A) = 0. (11)

Then the following holds.

THEOREM 3.3. The form aµ is closable if and only if µ is admissible.
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The proof of Theorem 3.3 will be given later. In order to determine the closable
part (aµ)r , it will be natural to restrict µ to subsets of 7µ. For each Borel set S in
7µ we define the form aS on L2(�) with domain D(aS) = D(aµ) by

aS(u, v) =
∫
�

∇u∇v dx +
∫
S

uv dµ. (12)

First we establish a uniqueness result.

PROPOSITION 3.4. Let S1, S2 ⊂ 7µ be two Borel sets. Then aS1 = aS2 if and
only if µ(S1 S2) = 0.

Proof. Assume that aS1 = aS2 . Then
∫
S1 S2

|u|2 dµ = 0 for all u ∈ D(aµ).
Assume that µ(S1 S2) > 0. Then there exists a compact set K ⊂ S1 S2 such
that µ(K) > 0. Let O ⊂ Rn such that 7µ = 7 ∩ O. Take u ∈ D(Rn) such that
supp[u] ⊂ O and u = 1 on K. Then u|� ∈ D(aµ) and µ(K) �

∫
S1 S2

|u|2 dµ = 0,
a contradiction. We have shown that µ(S1 S2) = 0. The other implication is
obvious. ✷
A set S ⊂ 7µ is called µ-admissible if S is a Borel set and

Cap�̄(A) = 0 implies µ(A ∩ S) = 0 (13)

for each Borel set A ⊂ 7µ. Thus µ is admissible if and only if 7µ is µ-admissible.
Note that the countable union of admissible sets is admissible. Moreover, if S1

and S2 are Borel sets and µ(S1 S2) = 0, then S1 is admissible if and only if S2 is
admissible. The following assertion gives one implication of Theorem 3.3.

PROPOSITION 3.5. If S ⊂ 7µ is µ-admissible, then aS is closable.
Proof. Let (uk) be a Cauchy sequence in D(aµ) such that uk → 0 (k → ∞)

in L2(�). Then limk→∞ uk = 0 in H 1(�) (since a0 is closable). Taking a sub-
sequence if necessary we can assume that uk converges to 0 r.q.e. The assumption
implies that (ukχS) converges to a function f inL2(S, µ). Hence f = 0 r.q.e. Since
S is admissible, this implies that f = 0 µ-a.e. This shows that limk→∞ uk = 0 in
D(aµ). ✷
The following proposition is similar to the Hahn decomposition theorem and sim-
ilar to a result of Stollmann and Voigt [34, Proposition 1.1]. In Section 5 it will be
used to describe the closable part of the surface measure for some special open set.

PROPOSITION 3.6. There exists a µ-admissible set S ⊂ 7µ such that
Cap�̄(7µ \ S) = 0.

Proof. (a) Let K ⊂ 7µ be a compact set. Then there exists a µ-admissible set
S ⊂ K such that Cap�̄(K \ S) = 0. In fact, let

α := sup{µ(A) : A ⊂ K Borel set Cap�̄(A) = 0}.
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Then α � µ(K) < ∞. Let Am ⊂ K be Borel sets such that Cap�̄(Am) = 0 and
µ(Am)→ α (m→∞). Let N = ⋃

m∈N
Am. Then Cap�̄(N) = 0 and µ(N) = α.

We show that µ(B \ N) = 0 if B ⊂ K is a Borel set such that Cap�̄(B) = 0.
Assume that µ(B \ N) > 0. Let A = B ∪ N . Then Cap�̄(A) = 0 but µ(A) =
µ(B \N)+µ(N) > α contradicting the definition of α. Now let S = K \N . Then
S is µ-admissible and Cap�̄(K \ S) = 0.

(b) LetKn ⊂ 7µ be compact sets such thatKn ⊂ Kn+1 and
⋃
n∈N

Kn = 7µ (one
may take Kn = {z ∈ 7 : |z| � n} if 7 = 7µ and Kn = {z ∈ 7µ : dist(z, 7 \ 7µ) �
1/n, |z| � n} if 7 �= 7µ). By (a) there exist µ-admissible sets Sn ⊂ Kn such that
Cap�̄(Kn \ Sn) = 0. Then S := ⋃

n∈N
Sn is µ-admissible and

Cap�̄(7µ \ S) = lim
n→∞Cap�̄(Kn \ S) � lim sup

n→∞
Cap�̄(Kn \ Sn) = 0. ✷

We now show that the µ-admissible set S of Proposition 3.6 yields the closable
part of aµ. This is similar to Stollmann and Voigt [34, Proposition 1.1]. The proof
we give here will also be needed in Section 5.

THEOREM 3.7. Let S ⊂ 7µ be µ-admissible such that Cap�̄(7µ \ S) = 0. Then
(aµ)r = aS .

Proof. By Proposition 3.5, aS is closable. Since aS � aµ, it follows that aS �
(aµ)r . We have to prove the converse inequality.

By inner regularity we find compact sets Kn ⊂ Kn+1 ⊂ 7µ \ S such that
µ
(
(7µ \ S) \⋃n∈N

Kn

) = 0. Since Cap�̄(Kn) = 0, by [17, Lemma 2.2.7, p. 80],
there exist ψn ∈ H 1(�) ∩ Cc(�̄) such that 0 � ψn � 1, ψn = 1 on Kn and
ψn → 0 in H 1(�). Taking a subsequence we may also assume that ψn → 0 r.q.e.
on �̄ and a.e. on �. In order to show that (aµ)r � aS , let u ∈ D(aµ) = D(aS). Let
ϕn = (1−ψn)u. Then ϕn ∈ D(aµ), |ϕn| � |u| and ϕn → 0 µ-a.e. on 7µ \ S. Since
ψn → 0 r.q.e. on �̄ and since S is µ-admissible, it follows that ϕn → u · 1S µ-a.e.
on 7µ. It follows from the Dominated Convergence Theorem that ϕn → u · 1S in
L2(7µ). Since∫

�

|ϕ − u|2 dx =
∫
�

|uψn|2 dx � ‖u‖2
∞

∫
�

|ψn|2 dx → 0 (n→∞)

one has ϕn → u in L2(�). Moreover, Djϕn = (1 − ψn)Dju − (Djψn)u→ Dju

(n → ∞) in L2(�) since ψn → 0 a.e. in � and Djψn → 0 in L2(�). We have
shown that ϕn → u in H 1(�) and that (ϕn|7µ) converges to u · 1S in L2(7µ). Thus
ϕn → u in D(aµ). Since (aµ)r is continuous on D(aµ) ×D(aµ) and ϕn|7µ\S → 0

in L2(7µ \ S), we conclude that

(aµ)r(u) = lim
n→∞(aµ)r(ϕn) � lim inf

n→∞ aµ(ϕn)

= lim inf
n→∞

(
aS(ϕn)+

∫
7µ\S

|ϕn|2 dµ

)
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= lim
n→∞ aS(ϕn)

= aS(u). ✷
Proof of Theorem 3.3. If aµ is closable, then aµ = aS . By Proposition 3.4 it

follows that µ(7µ \ S) = 0. Since S is admissible, it follows that 7µ is admissible;
i.e. µ is admissible. The converse follows from Proposition 3.5. ✷
Next we show a uniqueness result.

PROPOSITION 3.8. Let S ⊂ 7µ be a µ-admissible set such that Cap�̄(7µ \
S) = 0 (cf. Proposition 3.6). Let S1 ⊂ 7µ be a Borel set. The following assertions
are equivalent.

(i) aS1 = (aµ)r ;
(ii) µ(S1 S) = 0;

(iii) S1 is µ-admissible and µ(S1 \ S2) = 0 for each µ-admissible set S2 ⊂ 7µ;
i.e. S1 is maximal µ-admissible.

Proof. (i) ⇔ (ii) follows from Theorem 3.7 and Proposition 3.4.
(ii) ⇒ (iii) Since µ(S1 S) = 0, the set S1 is µ-admissible and since S is so.

Let S2 ⊂ 7µ be µ-admissible. Since Cap�̄(7µ \S) = 0, it follows that µ(S1 \S) =
µ(S2 ∩ (7µ \ S)) = 0. Hence also µ(S2 \ S1) = 0.

(iii) ⇒ (ii) Since S is µ-admissible, it follows that µ(S \ S1) = 0. Since
Cap�̄(7µ \ S) = 0 and S1 is µ-admissible, it follows that µ(S1 \ S) = µ(S1 ∩
(7µ \ S)) = 0. Thus µ(S1 S) = 0. ✷
Let S be the set of Proposition 3.6. Then the trace

u !→ uS : D(aµ)→ L2(S, µ) (14)

has a continuous extension to D((aµ)r). In Section 5 we will determine the set S
for the surface measure of an irregular boundary. There we will see that µ(S) > 0
(Proposition 5.5). In the next example, the set S is empty (or rather µ-equivalent to
the empty set).

EXAMPLE 3.9. Let � be an arbitrary bounded open set in R2 and let N := {zn :
n ∈ N} be dense in 7 = ∂�. Let µ =∑∞

n=1 2−nδzn . Then

aµ(u) =
∫
�

|∇u|2 dx +
∞∑
n=1

2−n|u(zn)|2

for all u ∈ D(aµ) = H 1(�) ∩ C(�̄). Let S = 7 \ N . Since Cap�̄({zn}) �
Cap({zn}) = 0 one has Cap�̄(7 \ S) = Cap�̄(N) = 0. Since µ(S) = 0, the set S
is µ-admissible. Hence

(aµ)r(u) =
∫
�

|∇u|2 dx

for all u ∈ D(aµ).
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Next we show some properties of the semigroup induced on L2(�). Let µ be
an admissible Borel measure on 7. Denote by −�µ the operator associated with
aµ. Then it follows from the definiton (7) that �µ is a realization of the Laplacian
in L2(�); i.e.

�µu = �u

in the sense of distributions for all u ∈ D(�µ).

PROPOSITION 3.10. The operator �µ generates a symmetric sub-Markovian
semigroup on L2(�); i.e. et�µ � 0 for all t � 0 and

‖et�µf ‖∞ � ‖f ‖∞ (t � 0)

for all f ∈ L2(�) ∩ L∞(�).
Proof. Let u ∈ D(aµ). Then it is clear that |u| ∈ D(aµ) and aµ(|u|) = aµ(u).

Since D(aµ) is dense in D(aµ), we obtain that if u ∈ D(aµ) then |u| ∈ D(aµ) and
aµ(|u|) = aµ(u) for all u ∈ D(aµ). Now it follows from the first Beurling–Deny
criterion [13, Theorem 1.3.2] that et�µ � 0 for all t � 0.

Let 0 � u ∈ D(aµ), then u ∧ 1 ∈ D(aµ). Moreover,

aµ(u ∧ 1) :=
∫
�

|∇(u ∧ 1)|2 dx +
∫
7µ

(u ∧ 1)2 dµ

=
∫
�

|∇u|21{u�1} +
∫
7µ

(u ∧ 1)2 dµ

� aµ(u).

By density of D(aµ) of D(aµ) we also obtain that if 0 � u ∈ D(aµ), then u ∧ 1 ∈
D(aµ) and aµ(u ∧ 1) � aµ(u) for all 0 � u ∈ D(aµ). It follows from the second
Beurling–Deny criterion [13, Theorem 1.3.3] that ‖et�µf ‖∞ � ‖f ‖∞ (t � 0)
for all f ∈ L2(�) ∩ L∞(�) which completes the proof. ✷
Notice that Davies [13] calls a symmetric Markov semigroup what we call a sym-
metric sub-Markovian semigroup on L2(�).

Finally we describe Daners’ approach [12] (given for the Hausdorff measure),
making some modifications, and we compare it with ours. Letµ be a Borel measure
on 7. Consider the space

F := {w ∈ L2(7µ) : ∃un ∈ D(aµ), un → 0 in H 1(�) and

un → w in L2(7µ)}.
It is clear that ϕ|7µw ∈ F for each ϕ ∈ C(�̄), w ∈ F . By the Stone–Weierstrass
theorem it follows that C0(7µ)F ⊂ F . Now Daners uses a clever argument involv-
ing Lusin’s theorem to show that L∞(7µ)F ⊂ F . Thus F is a closed lattice ideal
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in L2(7µ). Since 7µ is σ -finite, by [31, Example 2, pp. 157–158] there exists a
Borel set S ⊂ 7µ such that

F = {w ∈ L2(7µ) : w = 0 µ-a.e. on S}.
Consider D(aµ) as a subspace of H̃ 1(�) ⊕ L2(7µ). The closure Ṽ in this space
is isomorphic to the completion of D(aµ) with respect to the norm ‖ · ‖aµ . The
imbedding of D(aµ) into L2(�) has the unique continuous extension j : Ṽ →
L2(�) given by j (u,w) = u. Thus aµ is closable if and only if ker j = 0. If aµ is
not closable, then by the proof of [29, Theorem S15, p. 373], the domain D((aµ)r)
of the closure of (aµ)r can be identified with V = (ker j)⊥. By the argument above
we have ker j = 0 ⊕ F . Thus V = {(u,w) ∈ Ṽ : w ∈ L2(S, µ)} where we
identified L2(S, µ) with a subspace of L2(7µ) by extending functions by 0. Given
u ∈ H̃ 1(�) there is at most one w ∈ L2(S, µ) such that (u,w) ∈ Ṽ . Thus we may
identify D((aµ)r) with the space of all u ∈ H̃ 1(�) such that there exists a function
u|S ∈ L2(S, µ) such that (u, u|S ) ∈ Ṽ and

(aµ)r(u) =
∫
�

|∇u|2 dx +
∫
S

|u|S |2 dµ.

The notation u|S is purely symbolic here. Proposition 3.8 now shows that the set S
is µ-equivalent to the set S constructed by the capacity approach.

4. Admissibility of Hausdorff Measures

Let� be an open set in Rn with boundary 7. Let σ be the restriction of the (n−1)-
dimensional Hausdorff measure Hn−1 to 7 (see [15, Chapter 2] for the definition).
If � is a Lipschitz domain, then σ is just the surface measure. The measure σ
follows the geometry of 7. If n = 2 and S ⊂ 7 is a segment, then σ (S) is just the
length of the segment. If n = 3 and S is a rectangle, then σ (S) is just the surface of
the rectangle. In any case, without any restriction on �, σ is a Borel measure on 7.
However, it may happen that σ is locally infinite, i.e., 7σ = ∅.

The question we want to answer here is whether aσ is closable; i.e., whether σ
is admissible. It is known that

Cap(A) = 0 implies σ (A) = 0, (15)

for each Borel set A ⊂ 7 (see [15, Theorem 4, p. 156]). Thus, if H̃ 1(�) has the
special extension propety, then σ is admissible by Proposition 1.4. In particular,
we can state the following.

PROPOSITION 4.1. If � is bounded with Lispschitz boundary, then σ is admissi-
ble.

On the other hand, Example 1.6 shows that there exists a bounded, open, connected
set � ⊂ R2 such that a segment S is in the boundary 7 of � and Cap�̄(S) = 0.
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Since σ (S) is the length of S and thus positive, (11) is not satisfied. Still this
example is not suitable for our purposes since σ (7∩B(z, r)) = ∞ for each z ∈ S,
r > 0; i.e., σ is locally infinite on S. A closer look at the example shows that σ is
in fact admissible since (11) is only needed for subsets of 7σ .

We will construct a more complicated bounded, connected, open set � in R3

such that σ (7) <∞ but σ is not admissible. First we give an example in R2 which
has the disadvantage of not being connected. The three-dimensional example will
be a modification of the two-dimensional one. In the following two examples σ1

denotes the one-dimensional and σ2 the two-dimensional Hausdorff measure.

EXAMPLE 4.2. Let Q∩ (0, 1) = {q1, q2, . . .} where Q denotes the set of rational
numbers. Consider the following Figure 1.

Let � := ⋃∞
n=1 �n where �n = ⋃n

i=1 �n,i is as in the Figure 1. We assume
that the breadth of each rectangle �n,i is 2−2n. Then � is an open bounded subset
of R2, but it is not connected. Since Q ∩ (0, 1) is dense in [0, 1], we have E :=
{0} × [0, 1] ⊂ ∂� and

∂� ⊂
∞⋃
n=1

∂�n ∪ E.

Thus σ1(∂�) � 1+∑∞
n=1 σ1(∂�n). Since the one-dimensional Hausdorff measure

of a segment is its length, we have

σ1(∂�n) � n(2−(n−1) + 2−(2n−1)).

Figure 1.
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Hence

σ1(∂�) � 1+
∞∑
n=1

n(2−(n−1) + 2−(2n−1)) <∞.

Let ρ ∈ C∞[0,∞) such that{ 0 � ρ(x) � 1,
ρ(x) = 1 if 0 � x � 1/2,
ρ(x) = 0 if x > 3/4.

We define the sequence of functions un on � by letting un(x, y) := ρ(2nx). Then
un ∈ H 1(�) ∩ C(�̄) and 0 � un(x, y) � 1. Since un(x, y) = 1 for 0 � x �
2−(n+1), one has that un = 1 on a relative neighborhood of E. Moreover,

lim
n→∞ un(x, y) = lim

n→∞ ρ(2
nx) = 0.

Since |un(x, y)| = |ρ(2nx)| � 1, the Dominated Convergence Theorem implies
that the sequence un converges to 0 inL2(�). Furthermore, supp[∇un] ⊂ {2−n−1 �
x � 2−n} and∫

�

|∇un|2 dx dy = 22n
∫
�

|ρ ′(2nx)|2 dx dy

� 22n(n+ 1)2−2(n+1)
∫ 2−n

2−(n+1)
|ρ ′(2nx)|2 dx

= (n+ 1)2−(n+2)
∫ 1

1/2
|ρ ′(r)|2 dr

−→ 0 as n→∞. (16)

By definition of the relative capacity, this implies that Cap�̄(E) = 0, but clearly,
σ1(E) = 1. Thus σ1 is not admissible.

We now add one dimension, interpreting the lines in � as walls. In order to make
� connected we join the walls by tiny tubes.

EXAMPLE 4.3. LetD = �× (0, 1)∪⋃∞
n=1 Pn where � is the set of Example 4.2

and Pn is a tube of radius rn = 2−2n connecting the walls (2−(n+1), 2−n) × {0} ×
(0, 1) and (2−(n+1), 2−n) × {1} × (0, 1). Thus D is an open, connected, bounded
subset of R3. Since the two-dimensional Hausdorff measure of a rectangle in R3 is
its surface, we have

σ2(∂D) � σ2(∂�× [0, 1]) +
∞∑
n=1

σ2(∂Pn)

� σ1(∂�)+
∞∑
n=1

2π2−2n <∞.
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Let un(x, y, z) = ρ(2nx). Then un converges to 0 in L2(�) as n→∞. Moreover,
since supp[∇un] ⊂ {2−n−1 � x � 2−n}, by (16) we have,∫

�̃

|∇un|2 dx dy dz � c1(n+ 1)2−(n+2) + 22n
∫
Pn+1

|ρ ′(2nx)|2 dx dy dz

� c1(n+ 1)2−(n+2) + ‖ρ ′‖2
∞22nπr2

n

−→ 0 as n→∞.
Thus limn→∞ un = 0 in H 1(D). Since un = 1 on a relative neighborhood of
Ẽ := {0} × [0, 1] × [0, 1] ⊂ ∂D, it follows that Ẽ has relative capacity 0 but
σ2(Ẽ) = 1. Thus σ2 is not admissible.

The point in the above examples is that the (n−1)-dimensional Hausdorff measure
of 7 is finite. If the boundary of � is irregular, then Hn−1 may be locally infinite
on the boundary. A more natural measure in that case would be H s where s is the
Hausdorff dimension of the boundary. We give an example.

EXAMPLE 4.4 (von Koch curve). Let � ⊂ R2 be the interior of the von Koch
curve 7 [16, p. XV]. Then � is bounded and connected with boundary 7 = ∂�.
The Hausdorff dimension of 7 is log 4/log 3 ∈ (1, 2), see [16, Example 2.7].
Moreover, H s is a finite Borel measure on 7. We claim that H s is admissible.

Proof. By [27, Section 1.5.1, Example 1], the boundary 7 is a quasicircle and
then by [21, Theorem B and Theorem 4], there exist compatible extension operators
Pp : W 1,p(�)→ W 1,p(Rn), 1 � p � ∞. Hence H 1(�) = H̃ 1(�), and it follows
as in the proof of Proposition 1.3 that H 1(�) has the special extension property. It
follows from Proposition 1.4 that each relatively polar subset of 7 is polar. On the
other hand, by [15, Theorem 4, p. 156], one has H s(A) = 0 whenever A ⊂ 7 is a
polar Borel set. Thus H s is admissible. ✷

5. Robin Boundary Condition for the Hausdorff Measure

In this section we investigate properties of the semigroup generated by the Lapla-
cian with Robin boundary conditions in the restricted sense; i.e. with respect to a
measure which is absolutely continuous with respect to the Hausdorff measure of
dimension n− 1. But our point is to allow arbitrary open sets.

Let � ⊂ Rn be an arbitrary open set with boundary 7. Consider the
(n − 1)-dimensional Hausdorff measure σ on 7. As before, 7σ = {z ∈ 7 :
∃ r > 0 such that σ (7 ∩ B(z, r)) < ∞} and we assume that 7σ �= ∅. Denote by
S ⊂ 7 the maximal σ -admissible set; i.e., S is σ -admissible and Cap�̄(7σ \S) = 0.

Let 0 � β ∈ L∞(S, σ ). Define the form aβ on L2(�) by

aβ(u, v) =
∫
�

∇u∇v dx +
∫
S

uvβ dσ, (17)
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where D(aβ) = {u ∈ H 1(�) ∩ Cc(�̄) :
∫
S
|u|2β dσ < ∞}. Since β dσ is ad-

missible, the form aβ is closable. Denote by −�β the operator associated with aβ .
Then �β is selfadjoint and by Proposition 3.10 it generates a sub-Markovian C0-
semigroup (et�β )t�0 on L2(�). If β = 0, then �0 = �N .

It is well-known that the Neumann Laplace operator may have all kind of strange
properties if � is not regular (see, e.g., [19]). For instance, it is easy to see that the
injection H̃ 1(�) ↪→ L2(�) is not compact if� is the set of Example 1.6. Thus et�

N

is not compact in that case. It is surprising that et�β has much better behaviour
if infS β > 0. This phenomenon has been discovered by Daners [12] and is a
consequence of a remarkable inequality due to Maz’ya. Whereas Daners studies
bounded open sets we consider here arbitrary open sets. Moreover, we use our
different approach based on capacity and now know by the examples in Section 4
that a restriction to an admissible subset of 7 is needed.

We assume that the dimension n is larger than 1. Maz’ya’s result [27, Theo-
rem 3.6.3] says that there exists a constant (merely depending on the dimension
and not on the set �) such that

‖u‖Ln/(n−1)(�) � c

(∫
�

|∇u| dx +
∫
7

|u| dσ
)

(18)

for all u ∈ W 1,1(�) ∩ Cc(�̄). From this we deduce that

‖u‖2
L2n/(n−1)(�)

� c

(
‖u‖2

H 1(�)
+
∫
7

|u|2 dσ

)
(19)

for all u ∈ H 1(�) ∩ Cc(�̄).

Proof. Let u ∈ H 1(�) ∩ Cc(�̄). Applying (18) to u2 gives

‖u‖2
L2n/(n−1)(�)

= ‖u2‖Ln/(n−1)(�)

� c

(∫
�

|∇u2| dx +
∫
7

|u|2 dσ

)
= c

(∫
�

2|u∇u| dx +
∫
7

|u|2 dσ

)
� c

(
2

(∫
�

|u|2 dx

)1/2

·
(∫

�

|∇u|2 dx

)1/2

+
∫
7

|u|2 dσ

)
� c

(∫
�

|u|2 dx +
∫
�

|∇u|2 dx +
∫
7

|u|2 dσ

)
. ✷

We now show that we can replace 7 by S in (19):

‖u‖2
L2n/(n−1)(�)

� c

(
‖u‖2

H 1(�)
+
∫
S

|u|2 dσ

)
(20)

for all u ∈ H 1(�) ∩ Cc(�̄).
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Proof. Let u ∈ H 1(�) ∩ Cc(�̄) such that
∫
7
|u|2 dσ < ∞. The proof of The-

orem 3.7 yields a sequence ϕn ∈ H 1(�) ∩ Cc(�̄) such that
∫
7
|ϕn|2 dσ < ∞,

ϕn → u1S in L2(7, σ ), and ϕn → u in H 1(�) and a.e. and such that |ϕn| � |u|.
Applying (19) to ϕn instead of u and passing to the limit as n→∞ gives (20). ✷
Now assume that β(z) � δ > 0 for all z ∈ S. Then by (20), D(aβ) ⊂ L2n/(n−1)(�)

and

‖u‖2
L2n/(n−1)(�)

� cmax(1, 1/δ)
(
aβ(u)+ ‖u‖2

L2(�)

)
(21)

for all u ∈ D(aβ). It follows that also D(aβ) ⊂ L2n/(n−1)(�) and that (21) remains
true for all u ∈ D(aβ).

Inequality (21) implies ultracontractivity of the semigroup et�β .

THEOREM 5.1 Let β ∈ L∞(S, σ ) such that β(z) � δ > 0 for all z ∈ S. Then
there exists a constant c2 > 0 such that

‖et�βf ‖L∞(�) � c2t
−net‖f ‖L1(�) (22)

for all f ∈ L1(�) ∩ L2(�).
Proof. This follows from [13, Theorem 2.4.2] applied to (e−tet�β )t�0. ✷

COROLLARY 5.2 Assume that � has finite measure. Then et�β is compact for all
t > 0.

Proof. Since et�βL2(�) ⊂ L∞(�), it follows that et�β is a Hilbert–Schmidt
operator. ✷
By the Dunford–Pettis criterion (see, e.g., [5, 6]), it follows that there exists a kernel
Kt ∈ L∞(� × �) such that 0 � Kt(x, y) � c2t

−net a.e. on � × � for all t > 0
and

(et�βf )(x) =
∫
�

Kt(x, y)f (y) dy.

Now one can also prove Gaussian estimates following the lines of the proof of
[6, Theorem 4.4] (see also [12]).

THEOREM 5.3 Let β(z) � δ > 0 for all z ∈ S. There exist constants c3,

ω � 0, b > 0 such that

0 � Kt(x, y) � c3t
−ne−

|x−y|2
bt eωt . (23)

The estimate (23) is not a usual Gaussian estimate. If � is Lipschitz, we know
that we may replace t−n by the natural factor t−n/2 (see [6]). Thus several of the
interesting consequences of Gaussian estimates (holomorphy on L1, H∞-calculus
in Lp, see, e.g., [6, 1]) cannot be deduced from (23). However, it is remarkable
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that we can deduce p-independence of the spectrum in virtue of recent results of
Kunstmann and Vogt [25] and Karrmann [22].

Note that (et�β )t�0 is a symmetric sub-Markovian semigroup on L2(�) (see
Proposition 3.10). In particular, there exist consistent positive contraction semi-
groups (et�βp)t�0 on Lp(�), 1 � p < ∞, such that �β2 = �β ([13, Theo-
rem 1.4.1]).

THEOREM 5.4 Let β ∈ L∞(S, σ ) such that β(z) � δ > 0 for all z ∈ S. Then

σ (�βp) = σ (�β)

for all p ∈ [1,∞).
Proof. Consider B = �β − ω (where ω is given by Theorem 5.3). Let Bp =

�βp − ω. It follows from [25, Proposition 5] that the spectrum of R(λ,Bp)k is
p-indepedent for λ large and k � 1 + n/2. By [22, Lemma 6.3] we obtain that
σ (Bp) = σ (B2). ✷
We remark that Theorem 5.4 is not true if β = 0; i.e. for the Neumann Laplace
operator. A counterexample of an unbounded domain with finite measure is given
by Kunstmann [24]. In fact, let

� := {(x, y) ∈ R2 : x > 0, |y| < e−x}.
Then � has finite measure and H̃ 1(�) = H 1(�) by [14, Chap. V, Theorem 4.7].
Kunstmann [24] shows that the spectrum σ (�p,β) for β = 0 (i.e., the spectrum of
the Neumann Laplacian in Lp(�)) does depend on p ∈ [1,∞].

Finally, we consider the case where � has finite Lebesgue measure. Then
L2n/(n−1)(�) ↪→ L2(�); i.e., ‖u‖2

L2(�)
� c2‖u‖2

L2n/(n−1)(�)
for all u ∈ L2n/(n−1)(�).

Now by the proof of (19) and Young’s inequality 2ab � εa2+b2/ε for all a, b � 0
and for every ε > 0 we obtain

‖u‖2
L2n/(n−1)(�)

� c

(
ε‖u‖2

L2(�)
+ 1

ε

∫
�

|∇u|2 dx +
∫
7

|u|2 dσ

)
� c

(
c2ε‖u‖2

L2n/(n−1)(�)
+ 1

ε

∫
�

|∇u|2 dx +
∫
7

|u|2 dσ

)
.

Hence

‖u‖2
L2n/(n−1)(�)

� c3

(∫
�

|∇u|2 dx +
∫
7

|u|2 dσ

)
. (24)

Reasoning as for (20) we deduce that

‖u‖2
L2n/(n−1)(�)

� c3

(∫
�

|∇u|2 dx +
∫
S

|u|2 dσ

)
(25)

for all u ∈ H 1(�) ∩ Cc(�̄).
This inequality has several interesting consequences.
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PROPOSITION 5.5 Assume that � is bounded and σ (7) <∞. Then σ (S) > 0.
Proof. If σ (S) = 0, then applying (25) to the constant 1 function we obtain a

contradiction. ✷
The next consequence concerns the asymptotic behaviour.

PROPOSITION 5.6 Assume that � has finite Lebesgue measure. Assume that
β(z) � δ > 0 for all z ∈ S. Let 1 � p < ∞. Then et�βp ∈ L(Lp(�)) is
compact for all t > 0. Moreover, the semigroup (et�βp)t�0 is exponentially stable.

Proof. Let 1 � p � 2. By ultracontractivity we may factorize et�βp = j ◦
et/2�βpet/2�βp : Lp(�) → L2(�) → L2(�) ↪→ Lp(�). Since et/2�β2 is compact
also et�βp is compact if t > 0. Since (et�βp)∗ = et�βp∗ where 1/p + 1/p∗ = 1,
the first claim is proved. Instead of Theorem 5.4 we can here use the simpler [13,
Corollary 1.6.2] to show that the spectrum of �βp is p-independent.

Inequality (25) implies that D(aβ) ⊂ L2n/(n−1)(�) and ‖u‖L2n/(n−1)(�) �
c3 max(1, 1/δ)aβ(u) for all u ∈ D(aβ). Since �β has compact resolvent, this im-
plies that the first eigenvalue λ1 of −�β is strictly positive. Thus ‖et�β‖L(L2(�)) �
e−tλ1 (t � 0). Since σ (�βp) ⊂ (−∞,−λ1), it follows from [4, Proposition 5.3.7]
that (et�β1)t�0 is exponentially bounded. Now the same is valid for the semigroup
on Lp(�) by the Riesz–Thorin theorem (or by [4, Theorem 5.3.6]). ✷
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