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Abstract

We show that the operator-valued Marcinkiewicz and Mikhlin Fourier multiplier theorem are valid if and
only if the underlying Banach space is isomorphic to a Hilbert space.
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1. Introduction

Mikhlin’s multiplier theorem is of great importance in analysis. It says that a bounded
function m ∈ C1.R \ {0}/ such thattm′.t/ is bounded, defines anL p.R/-multiplier
for 1 < p < ∞. In the context of partial differential equations vector-valued spaces
L p.R; X/ occur in a natural way, whereX is a Banach space. Thus the functionm
should take its values inL .X/. Our aim is to show that Mikhlin’s multiplier theorem
does hold for such operator-valued functions if and only ifX is isomorphic to a Hilbert
space.

The phenomenon that operator-valued versions of certain classical multiplier the-
orems are only valid in Hilbert spaces was first observed by Pisier (unpublished) as
a consequence of Kwapien’s deep characterization of Hilbert spaces. More recently,
new versions of operator-valued multiplier theorems turned out to be most useful in
the theory of evolution equations (see the references and comments below) and it
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seems to us that it is important to elaborate in some detail why the classical result
merely holds on Hilbert spaces.

In another context, it helps to impose a Mikhlin’s condition of orderk

m ∈ Ck.R \ {0};L .X//; sup
t∈R\{0};0≤l≤k

‖t l m.l /.t/‖ < ∞:(1)

In fact, Amann [1] discovered that ifm satisfies (1) with k = 2, thenm is a multiplier
for Besov spaces and in particular for the spaceC� .R; X/, 0 < � < 1 (see also [2]
and [11]). We show here that imposing higher order Mikhlin’s conditions does not
help in the context of operator-valuedL p-multipliers.

We also consider the groupsT andZ instead ofR. In fact, the caseT corresponds to
Marcinkiewicz’s classical theorem and its operator-valued version is already treated
in [3] for the order-1-case.

Now we would like to comment on the new vector-valued multiplier theorems
which were found recently. It were Berkson-Gillespie [4] who introduced the notion
of R-boundedness (after implicit use of Bourgain [6]). They useR as an abbreviation
for Riesz, but in many subsequent papers people seem think rather of Rademacher
or ‘Randomized’ because the definition involves Rademacher functions. A multiplier
theorem of Marcinkiewicz type was established by Cl´ement-de Pagter-Sukochev-
Witvliet [8] for multipliers of the formm.t/I (I is the identity operator) clarify-
ing the role ofR-boundedness. Then Weis [18] established Mikhlin’s theorem for
operator-valued functions (without restriction) replacing boundedness by the stronger
condition of R-boundedness. Then in [3] the corresponding periodic theorem (that
is, Marcinkiewicz’s theorem) was proved on the basis of results in [8]. Štrkalj and
Weis [17] gave anR-version of the variational version of the Marcinkiewicz theorem.
Further important contributions were given by Cl´ement-Pr¨uss [9], Denk-Hieber-Pr¨uss
[10], and Girardi-Weis [11].

2. Periodic multipliers

Let us first recall some notions. LetX be a Banach space. Denote byr j the j -th
Rademacher function on[0;1]. For x ∈ X, we denote byr j ⊗ x the vector-valued
function t 7→ r j .t/x. Let Y be another Banach space. We denote byL .X;Y/ the
set of all bounded linear operators fromX to Y. If X = Y we will denoteL .X;Y/
simply byL .X/. A family T ⊂ L .X;Y/ is calledR-boundedif for someq ∈ [1;∞/

there exists a constantcq ≥ 0 such that∥∥∥∥∥
n∑

j =1

r j ⊗ Tj xj

∥∥∥∥∥
Lq.0;1;Y/

≤ cq

∥∥∥∥∥
n∑

j =1

r j ⊗ xj

∥∥∥∥∥
Lq.0;1;X/

(2)
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for all T1; : : : ;Tn ∈ T, x1; : : : ; xn ∈ X and n ∈ N. By Kahane’s inequality [14,
Theorem 1.e.13] if such constantcq exists for someq ∈ [1;∞/, then it also exists for
eachq ∈ [1;∞/.

It is known thatR-boundedness is strictly stronger than boundedness in operator
norm unless the underlying Banach space is isomorphic to a Hilbert space. More
precisely, each bounded subset inL .X;Y/ is R-bounded if and only ifX is of
cotype 2 andY is of type 2 (see [3, Proposition 1.13]). In particular, by a result of
Kwapien [14, pages 73–74], each bounded subset inL .X/ is R-bounded if and only
if X is isomorphic to a Hilbert space.

For 1 ≤ p < ∞, consider the Banach spaceL p.0;2³ ; X/ with norm ‖ f ‖p :=( ∫ 2³

0 ‖ f .t/‖p dt
)1=p

. For f ∈ L p.0;2³ ; X/ we denote by

f̂ .k/ := 1

2³

∫ 2³

0

e−i kt f .t/dt;

thek-thFourier coefficientof f , wherek ∈ Z. Fork ∈ Z, x ∈ X we letek.t/ = eikt and
.ek⊗x/.t/ = ek.t/x .t ∈ R/. A function f ∈ L p.0;2³ ; X/ is called atrigonometric
polynomialif f is given by f = ∑

k∈Z ek ⊗ xk, wherexk ∈ X is 0 for all but finitely
manyk ∈ Z.

Let M = .Mk/k∈Z ⊂ L .X;Y/ be a sequence and let 1≤ p;q < ∞. We say that
.Mk/k∈Z is aperiodic L p-Lq-Fourier multiplier if there exists a constantC > 0 such
that ∥∥∥∥∥

∑
k∈Z

ek ⊗ Mkxk

∥∥∥∥∥
Lq.0;2³ ;Y/

≤ C

∥∥∥∥∥
∑
k∈Z

ek ⊗ xk

∥∥∥∥∥
L p.0;2³ ;X/

for all X-valued trigonometric polynomials
∑

k∈Z ek ⊗ xk. In this case, there exists a
unique operatorM ∈ L .L p.0;2³ ; X/; Lq .0;2³ ; Y// such that.M f /̂ .k/ = Mk f̂ .k/
for k ∈ Z [3]. Whenp = q, we say simply that.Mk/k∈Z is aperiodicL p-Fourier multi-
plier. Fork ∈ Z, we let.11M/.k/ = Mk+1 − Mk and.1m M/.k/ = .11.1m−1M//.k/
for m ≥ 2. Notice that1mM is a discrete analogue of them-th derivative ofM .

The classical Marcinkiewicz Fourier multiplier theorem has been extended to the
operator-valued case in the following way: letX and Y be UMD spaces and let
.Mk/k∈Z ⊂ L .X;Y/; if both{Mk : k ∈ Z}and{k.Mk+1−Mk/ : k ∈ Z}areR-bounded,
then.Mk/k∈Z defines a periodicL p-Fourier multiplier foreach 1< p < ∞ [3]. Indeed,
.Mk/k∈Z is a periodicL p-Lq-Fourier multiplier whenever 1≤ q ≤ p < ∞.

We will need the following inequality of Pisier [15]. Let 1 ≤ p < ∞ and let
3 = {nk : k ∈ N} ⊂ Z be a Sidon subset [16, page 120]. Then there existsC > 0
such that for any Banach spaceX and for any finite sequence.yk/1≤k≤N of X, we have

C−1

∥∥∥∥∥
∑

k

rk ⊗ yk

∥∥∥∥∥
2

≤
∥∥∥∥∥
∑

k

enk
⊗ yk

∥∥∥∥∥
p

≤ C

∥∥∥∥∥
∑

k

rk ⊗ yk

∥∥∥∥∥
2

:(3)
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Note that if½ > 1, then any subset{nk : k ∈ N} satisfyingnk+1=nk ≥ ½ (k ∈ N) is a
Sidon subset ofZ [16, page 127].

The following result shows that one cannot replaceR-boundedness in the operator-
valued Marcinkiewicz theorem above by boundedness in operator norm unless the
underlying Banach space is isomorphic to a Hilbert space.

THEOREM 1. Let X be a Banach space. Then the following assertions are equiva-
lent:

(i) X is isomorphic to a Hilbert space.
(ii) For some1 ≤ q < p < ∞, each sequence.Mk/k∈Z ⊂ L .X/ satisfying

(a) supk∈Z ‖Mk‖ < ∞,
(b) supk∈Z ‖kl .1l M/.k/‖ < ∞ for l ∈ N,
(c) Mk = 0 for k ≤ 0,

is a periodicL p-Lq-Fourier multiplier.
(iii) For all 1 < p < ∞, each sequence.Mk/k∈Z ⊂ L .X/ satisfying

(a) supk∈Z ‖Mk‖ < ∞,
(b) supk∈Z ‖k.11M/.k/‖ < ∞;

is a periodicL p-Fourier multiplier.

REMARK 2. For l = 1, the condition formulated in (iii) is the classical condition
considered by Marcinkiewicz in the scalar case. For arbitraryl ∈ N we therefore
speak of theMarcinkiewicz condition of orderl . For p = q andl = 1, Theorem1
has been proved in [3, Proposition 1.17.]. However, a more refined choice of test
functions is needed here for the general case. The motivation to considerl > 1 stems
from the results on Fourier multipliers for spaces of H¨older continuous functions
where, indeed, the Marcinkiewicz condition of order 2 suffices (see [2] and also the
Concluding Remarks at the end of this article). Theorem1 shows that this is not the
case in theL p-context even if we consider weaker multipliers by allowingq < p.
This has also been done by Kalton-Lancien in the context of maximal regularity for
Cauchy problems [13] (see also the Concluding Remarks5 (b) below).

PROOF. (i) ⇒ (iii). Assume thatX is isomorphic to a Hilbert space, then considering
an orthonormal basis one easily verifies that each bounded subset inL .X/ is actually
R-bounded, so the result follows from the operator-valued Marcinkiewicz Fourier
multiplier theorem in [3].

(iii) ⇒ (ii) is trivial.
(ii) ⇒ (i). Assume that for some 1≤ q < p < ∞, each sequence.Mk/k∈Z ⊂ L .X/

satisfying supk∈Z ‖Mk‖ < ∞, supk∈Z ‖kl .1l M/.k/‖ < ∞ for l ∈ N andMk = 0 for
k ≤ 0, is a periodicL p-Lq-Fourier multiplier. LetN = .Nk/k∈N ⊂ L .X/ be a
bounded sequence.
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LetS .R/ be the Schwartz space. Let�1 ∈ S .R/ be such that supp.�1/ ⊂ [2;4]
and �1.3/ = 1. For n ≥ 1, we let hn = 22n−2. Define�n = �1.·=hn/. Then
supp.�n/ ⊂ [2hn;4hn] and�n.3hn/ = 1. Let� : R → L .X/ be defined by

�.t/ =
{
�n.t/Nn if 2hn ≤ t ≤ 4hn for somen ≥ 1;

0 otherwise:

Let M = .�.k//k∈Z . We claim that

sup
k∈Z

‖�.k/‖ < ∞;(4)

sup
k∈Z

‖kl .1l M/.k/‖ < ∞;(5)

for l ∈ N. Indeed (4) is clearly true. We will only give the proof for (5) whenl = 2,
the proof for the general case is similar.

First notice that when 4hn ≤ k ≤ 8hn − 2 for somen ∈ N, or k ≤ 0, then
.12M/.k/ = 0. While when 2hn − 2< k < 4hn for somen ∈ N

.12M/.k/ = .�n.k + 2/ − 2�n.k + 1/+ �n.k//Nn

=
(
�1

(
k + 1

hn

+ 1

hn

)
− 2�1

(
k + 1

hn

)
+ �1

(
k + 1

hn

− 1

hn

))
Nn

= 1

2h2
n

.�′′
1.�1/+ �′′

1.�2//Nn

for some�1; �2 ∈ R. We deduce that

sup
k∈Z

‖k2.12M/.k/‖ ≤ sup
n∈N

16h2
n

4h2
n

‖Nn‖ sup
x∈R

|�′′
1.x/| ≤ 4 sup

n∈N
‖Nn‖ sup

x∈R
|�′′

1.x/|:

Thus M = .�.k//k∈Z is a periodicL p-Lq-Fourier multiplier by assumption. Hence
there existsC > 0 such that forn ∈ N andx1; x2; : : : ; xn ∈ X, we have∥∥∥∥∥

∑
k

ek ⊗ �.k/xk

∥∥∥∥∥
q

≤ C

∥∥∥∥∥
∑

k

ek ⊗ xk

∥∥∥∥∥
p

;

and, in particular,∥∥∥∥∥
∑
n≥1

e3hn
⊗ Mkx3hn

∥∥∥∥∥
q

≤ C

∥∥∥∥∥
∑
n≥1

e3hn
⊗ x3hn

∥∥∥∥∥
p

:

By (3), this implies that the sequence.Mk/k≥1 is R-bounded. It is easy to check that
if each countable subset ofT is R-bounded then so isT . We deduce from this that
each bounded subset inL .X/ is actuallyR-bounded. By [3, Proposition 1.13], this
implies thatX is isomorphic to a Hilbert space.
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3. Multipliers on the line

Let X be a Banach space and consider the Banach spaceL p.R; X/ for 1< p < ∞.
We denote byD.R; X/ the space of allX-valuedC∞-functions with compact support.
S .R; X/ will be theX-valued Schwartz space and we letS ′.R; X/ := L .S .R/; X/,
whereS .R/ denotes theC-valued Schwartz space. LetY be another Banach space.
Then givenM ∈ L1

loc.R;L .X;Y//, we may define an operatorT : F−1D.R; X/ →
S ′.R; Y/ by means of

T� :=F−1MF� for all F� ∈ D.R; X/;

whereF denotes the Fourier transform. SinceF−1D.R; X/ is dense inL p.R; X/,
we see thatT is well defined on a dense subset ofL p.R; X/. We say thatM is an
L p-Fourier multiplieron L p.R; X/ if T can be extended to a bounded linear operator
from L p.R; X/ to L p.R; Y/.

The classical Mikhlin Fourier multiplier theorem has been extended to the operator-
valued case by Weis. LetX and Y be UMD spaces, 1< p < ∞ and let M ∈
C1.R\ {0};L .X;Y//. If both {M.x/ : x 6= 0} and{x M′.x/ : x 6= 0} areR-bounded,
thenM defines aL p-Fourier multiplier onL p.R; X/ [18].

The following result shows that one cannot replaceR-boundedness in the operator-
valued Mikhlin theorem above by boundedness in operator norm unless the underlying
Banach space is isomorphic to a Hilbert space.

THEOREM 3. Let X be a Banach space. Then the following assertions are equiva-
lent:

(i) X is isomorphic to a Hilbert space.
(ii) For some1 < p < ∞, each functionM ∈ C∞.R;L .X// satisfying

(a) M.x/ = 0 for x ≤ 0,
(b) supx∈R ‖M.x/‖ < ∞,
(c) supx∈R.1 + |x|/l‖M .l /.x/‖ < ∞ for l ∈ N,

defines anL p-Fourier multiplier onL p.R; X/.
(iii) For all 1 < p < ∞, each functionM ∈ C1.R \ {0};L .X// satisfying the

conditions

(a) supx 6=0 ‖M.x/‖ < ∞,
(b) supx 6=0 ‖x M′.x/‖ < ∞,

defines anL p-Fourier multiplier onL p.R; X/.

PROOF. (i) ⇒ (iii). Assume thatX is isomorphic to a Hilbert space. Then consid-
ering an orthonormal basis one easily verifies that each bounded subset inL .X/ is
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actually R-bounded, so the result follows from the operator-valued Mikhlin Fourier
multiplier theorem of Weis [18].

(iii) ⇒ (ii) is trivial.
(ii) ⇒ (i). Assume (ii) holds. Let.Mk/k≥0 ⊂ L .X/ be a bounded sequence and let

� ∈ D.R/ satisfying supp.�/ ⊂ [1;2]; supx∈R |�.x/| = 1 and�.3=2/ = 1. Define
M ∈ C∞.R;L .X// by

M.x/ =
{

0 if x ≤ 1;

�.2−kx/Mk if 2k ≤ x < 2k+1 for some k ≥ 0:

Then supx∈R ‖M.x/‖ = supk≥0 ‖Mk‖ < ∞ and forl ∈ N,

sup
x∈R
.1 + |x|/l‖M .l /.x/‖

≤ 2m

(
sup
x∈R

|xl�.l /.x/| sup
k≥0

‖Mk‖ + sup
x∈R

|�.l /.x/| sup
k≥0

2−lk‖Mk‖
)
< ∞:

So M is anL p-Fourier multiplier onL p.R; X/ by assumption. By [9, Proposition 1]
this implies that the set{M.x/ : x ∈ R} is R-bounded. In particular, the sequence
.Mk/k≥0 is R-bounded. We deduce from this that each bounded subset inL .X/ is
R-bounded, by [3, Proposition 1.13]X is isomorphic to a Hilbert space.

4. Multipliers on Z

Let X;Y be Banach spaces and consider the Banach space`p.Z; X/ for 1 <

p < ∞. Let T = {eit : 0 ≤ t < 2³} be the torus. We consider the dense
subspaceP of `p.Z; X/ consisting of all elements having a finite support. Then for
f = . fn/n∈Z ∈ P, the Fourier transform off is a function on[−³;³] defined by
.F f /.t/ = ∑

n∈Z fneint. Let M ∈ L∞.−³;³ ;L .X;Y//. Then the functionMF f
is in L∞.−³;³ ; Y/, whereF−1 denotes the inverse Fourier transform. We deduce
that thatT f := F −1.MF f / ∈ c0.Z; Y/ makes sense. We say thatM is an L p-
Fourier multiplier on`p.Z; X/ if the mappingT can be extended to a bounded linear
operator from̀ p.Z; X/ to `p.Z; Y/.

The classical Mikhlin Fourier multiplier theorem oǹp.Z/ has been extended to
the operator-valued case by Blunck. Let 1< p < ∞, X be a UMD space, letM ∈
C1..−³;0/∪.0; ³/;L .X//be such that both{M.t/ : t ∈ .−³;0/∪.0; ³/} and{.eit −
1/.eit + 1/M ′.t/ : t ∈ .−³;0/ ∪ .0; ³/} are R-bounded. ThenM is anLp-Fourier
multiplier on `p.Z; X/ [5]. In particular, eachM ∈ C1.[−³;0/ ∪ .0; ³];L .X//
such that both{M.t/ : t 6= 0} and {t M ′.t/ : t 6= 0} are R-bounded, defines an
L p-Fourier multiplier oǹ p.Z; X/. Blunck has also established theR-boundedness of
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L p-Fourier multipliers oǹ p.Z; X/: whenM is anL p-Fourier multiplier oǹ p.Z; X/,
then{M.t/ : t is a Lebesgue point ofM} is R-bounded.

The following result shows that one cannot replace theR-boundedness in Blunck’s
result by the boundedness in operator norm unless the underlying Banach space is
isomorphic to a Hilbert space. As the proof is similar to that of Theorem 3, we omit it.

THEOREM 4. Let X be a Banach space. Then the following assertions are equiva-
lent:

(i) X is isomorphic to a Hilbert space.
(ii) For some1< p < ∞, each functionM ∈ C∞.[−³;³];L .X// satisfying

(a) supx∈[−³;³ ] ‖M.x/‖ < ∞,
(b) supx∈[−³;³ ] |x|l‖M .l /.x/‖ < ∞ for l ∈ N,
(c) M.x/ = 0 for x ≤ 0,

defines anL p-Fourier multiplier on`p.Z; X/.
(iii) For all 1 < p < ∞, each functionM ∈ C1.[−³;0/ ∪ .0; ³];L .X// satisfy-

ing

(a) supx 6=0 ‖M.x/‖ < ∞,
(b) supx 6=0 ‖x M′.x/‖ < ∞,

defines anL p-Fourier multiplier on`p.Z; X/.

5. Concluding remarks

(a) One can actually show by using [3, Theorem 1.3] and the same argument as in
the proof of Theorem1, that whenX andY are UMD-spaces, then the assertions (ii)
and (iii) in Theorem1 are still equivalent for sequences inL .X;Y/. Similarly, using
[18, Theorem 3.4] (respectively, [5, Theorem 1.3]) one can show that whenX andY are
UMD-spaces, the assertions (ii) and (iii) in Theorem3 (respectively, Theorem4) are
still equivalent for functions with values inL .X;Y/. Furthermore, these assertions
are equivalent toX having cotype 2 andY having type 2. This contains our Theorem1,
Theorem3 and Theorem4 by a result of Kwapien [14, pages 73–74], saying that a
Banach spaceX is isomorphic to a Hilbert space if and only ifX is of cotype 2 and of
type 2.
(b) A restricted version of our results follows from the recent work of Kalton and

Lancien on the maximal regularity problem [12]. In particular, the counterexample
constructed in [12] can be used to show that the equivalences in Theorem1 and The-
orem3 are true within the class of UMD Banach spaces which have an unconditional
basis.
(c) In contrast to theL p-spaces case, the situation for H¨older continuous function

spaces is quite different. It has been shown that the operator-valued Marcinkiewicz
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(respectively, Mikhlin) Fourier multiplier theorem holds true onCÞ
per.[0;2³]; X/ (re-

spectively,CÞ.R; X/) for every Banach spaceX and 0< Þ < 1 and for each sequence
M = .Mk/k∈Z ⊂ L .X/ satisfying a second order condition:

sup
k∈Z

‖Mk‖ + sup
k∈Z

‖k.11M/.k/‖ + sup
k∈Z

‖k2.12M/.k/‖ < ∞

(respectively, each functionM ∈ C2.R \ {0};L .X// satisfying a second order con-
dition: supx 6=0 ‖M.x/‖ + supx 6=0 ‖x M′.x/‖ + supx 6=0 ‖x2M ′′.x/‖ < ∞) (see Amann
[1] and [2]). HereCÞ

per.[0;2³]; X/ denotes the space of all functions inCÞ.R; X/
which are 2³-periodic. If the Banach space has a non-trivial type, then even the
Marcinkiewicz condition of order 1 suffices (see [2] and [11]).
(d) PeriodicL p-Fourier multipliers (respectively,L p-Fourier multipliers onL p.R;

X/) of the form M = .mk I /k∈Z, wheremk ∈ C for k ∈ Z (respectively,M = f I ,
where f ∈ C1.R \ {0}/) on L p.0;2³ ; X/ (respectively, onL p.R; X/) have been
studied by Zimmermann [19], whereI denotes the identity operator onX. Actually
Zimmermann’s results follow from the operator-valued Marcinkiewicz (respectively,
Mikhlin) Fourier multiplier theorem established in [3] (respectively, in [18]) as each
subsetM ⊂ L .X/ of the formM = {½I : ½ ∈ �} is R-bounded whenever� ⊂ C is
bounded. Zimmermann’s results together with a result of Burkholder [7] show that the
scalar-valued Marcinkiewicz (respectively, Mikhlin) Fourier multiplier theorem holds
true for L p.0;2³ ; X/ (respectively,L p.R; X/ ) for some 1< p < ∞ if and only if
X is a UMD space. A similar result characterizing UMD spaces via a scalar-valued
Fourier multiplier theorem oǹp.Z; X/ can be established based on results in [4].
(e) It is remarkable that in all three cases we consider here (Theorem1, Theo-

rem 3 and Theorem4), the sequence.Mk/k∈Z (or the functionM) satisfying the
Marcinkiewicz condition (of orderl ) without being a Fourier multiplier consists of
operators of rank 1 (see [3, Proposition 1.13.]).
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[9] Ph. Cĺement and J. Prüss, ‘An operator-valued transference principle and maximal regularity
on vector-valuedL p-spaces’, in:Evolution equations and their applications in physics and life
sciences(eds. Lumer and L. Weis), Lecture Notes in Pure and Appl. Math. 215 (Dekker, New
York, 2000) pp. 67–87.

[10] R. Denk, M. Hieber and J. Prüss, ‘R-boundedness, Fourier multipliers and problems of elliptic and
parabolic type’, Mem. Amer. Math. Soc. 166 (Amer. Math. Soc., Providence, 2003), p. 788.

[11] M. Girardi and L. Weis, ‘Operator-valued Fourier multiplier theorems on Besov spaces’,Math.
Nachr.251(2003), 34–51.

[12] N. J. Kalton and G. Lancien, ‘A solution of theL p-maximal regularity’,Math. Z. 235 (2000),
559–568.

[13] , ‘ L p-maximal regularity on Banach spaces with a Schauder basis’,Arch. Math. (Basel)78
(2002), 397–408.

[14] J. Lindenstrauss and L. Tzafriri,Classical Banach spaces II(Springer, Berlin, 1979).
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