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Abstract

We show that the operator-valued Marcinkiewicz and Mikhlin Fourier multiplier theorem are valid if and
only if the underlying Banach space is isomorphic to a Hilbert space.
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1. Introduction

Mikhlin's multiplier theorem is of greatimportance in analysis. It says that a bounded
functionm € C*(R \ {0}) such thatm'(t) is bounded, defines an®(R)-multiplier

for 1 < p < oco. Inthe context of partial differential equations vector-valued spaces
LP(R; X) occur in a natural way, wher¥ is a Banach space. Thus the function
should take its values i’ (X). Our aim is to show that Mikhlin’s multiplier theorem
does hold for such operator-valued functions if and only i§ isomorphic to a Hilbert
space.

The phenomenon that operator-valued versions of certain classical multiplier the-
orems are only valid in Hilbert spaces was first observed by Pisier (unpublished) as
a consequence of Kwapien'’s deep characterization of Hilbert spaces. More recently.
new versions of operator-valued multiplier theorems turned out to be most useful in
the theory of evolution equations (see the references and comments below) and i
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seems to us that it is important to elaborate in some detail why the classical result
merely holds on Hilbert spaces.
In another context, it helps to impose a Mikhlin’s condition of orkler

1) me CR\{0};£(X),  sup [I'm" )] < oo.
teR\{0},0<I<k
In fact, Amann [] discovered that im satisfies {) with k = 2, thenm is a multiplier
for Besov spaces and in particular for the sp@€éR; X), 0 < 6 < 1 (see alsod]
and [L1]). We show here that imposing higher order Mikhlin's conditions does not
help in the context of operator-valuéd-multipliers.

We also consider the groupsandZ instead ofR. Infact, the cas@ corresponds to
Marcinkiewicz’s classical theorem and its operator-valued version is already treated
in [3] for the order-1-case.

Now we would like to comment on the new vector-valued multiplier theorems
which were found recently. It were Berksoril&spie [4] who introduced the notion
of R-boundedness (after implicit use of Bourgafi)[ They useR as an abbreviation
for Riesz, but in many subsequent papers people seem think rather of Rademache
or ‘Randomized’ because the défion involves Rademacher functions. A multiplier
theorem of Marcinkiewicz type was established byri@éEnt-de Pagter-Sukochev-
Witvliet [8] for multipliers of the formm(t)l (I is the identity operator) clarify-
ing the role ofR-boundedness. Then Weis{] established Mikhlin’s theorem for
operator-valued functions (without restriction) replacing boundedness by the stronger
condition of R-boundedness. Then i8][the corresponding periodic theorem (that
is, Marcinkiewicz's theorem) was proved on the basis of results§]in $trkalj and
Weis [17] gave anR-version of the variational version of the Marcinkiewicz theorem.
Further important contributions were given bye@lént-Puss P], Denk-Hieber-Puss
[10], and Girardi-Weis 11].

2. Periodic multipliers

Let us first recall some notions. L&t be a Banach space. Denoterythe j-th
Rademacher function di9), 1]. Forx € X, we denote by; ® x the vector-valued
functiont — r;(t)x. LetY be another Banach space. We denote¢X, Y) the
set of all bounded linear operators frofto Y. If X = Y we will denoteZ (X, Y)
simply by.Z (X). Afamily T c .2 (X, Y) is calledR-boundedf for someq € [1, c0)
there exists a constagg > 0 such that

n
2 Do Tx,
j=1
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n
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L9(0,1;Y) L9(0,1;X)
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forall T,,..., T, € T, X4,..., X, € X andn € N. By Kahane’s inequality 14,
Theorem 1.e.13] if such constastexists for somej € [1, oo), then it also exists for
eachqg € [1, 00).

It is known thatR-boundedness is strictly stronger than boundedness in operator
norm unless the underlying Banach space is isomorphic to a Hilbert space. More
precisely, each bounded subset#(X, Y) is R-bounded if and only ifX is of
cotype 2 andy is of type 2 (seed, Proposition 1.13]). In particular, by a result of
Kwapien [L4, pages 73-74], each bounded subse¥i(X) is R-bounded if and only
if X is isomorphic to a Hilbert space.

For 1 < p < oo, consider the Banach spaté(0, 27; X) with norm | |, :=
(JZ I f®Pdt)”". For f € LP(0, 27; X) we denote by

R 1 2r "
f(k) .= — Ik f
K 271/0 e " f(t)dt,

thek-th Fourier coefficientf f, wherek € Z. Fork € Z, x € X we lete (t) = €< and
(&®X)(1) = a()x (t € R). Afunctionf € LP(0, 2r; X) is called @rigonometric
polynomialif f is givenbyf = 3", _, & ® X, wherex, € X is 0 for all but finitely
manyk € Z.

LetM = (Mkez C Z(X,Y) be asequence and letd p, g < co. We say that
(My)kez is aperiodic LP-L-Fourier multiplier if there exists a consta@ > 0 such
that

> a® Mixe

kez

<C

> e ®x

kez

L9(0,27;Y) LP(0,27;X)

for all X-valued trigonometric polynomialy’,_, & ® . In this case, there exists a
unique operatoM € Z(LP(0, 2r; X), L4(0, 27;Y)) such thatMf (k) = M f (k)
fork € Z[3]. Whenp = g, we say simply thatM, ).z is aperiodicL P-Fourier multi-
plier. Fork € 7, we let(A*M) (k) = M,,; — My and(A™M) (k) = (AY(A™1M)) (k)
for m > 2. Notice thatA™M is a discrete analogue of theth derivative ofM.

The classical Marcinkiewicz Fourier multiplier theorem has been extended to the
operator-valued case in the following way: KtandY be UMD spaces and let
(M ez C Z(X,Y); ifboth{M, : k € Z} and{k(My.;—M,) : k € Z} areR-bounded,
then(M, ).z defines a periodit P-Fourier multiplier foreach 1< p < co[3]. Indeed,
(My)kez is a periodicL P-L9-Fourier multiplier whenever £ q < p < oo.

We will need the following inequality of Pisierlp]. Let1 < p < oo and let
A ={n, : k € N} C Z be a Sidon subsel§, page 120]. Then there exigts > 0
such that for any Banach spaXeand for any finite sequenc§),<k<n Of X, we have
3 CHD @y <[> en®y D ne® Y

k k k
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<C

2 2

p



178 Wolfgang Arendt and Shangquan Bu [4]

Note that ifA > 1, then any subséh, : k € N} satisfyingn,,.1/ng > 1 (k€ N)is a
Sidon subset of [16, page 127].

The following result shows that one cannot repl&boundedness in the operator-
valued Marcinkiewicz theorem above by boundedness in operator norm unless the
underlying Banach space is isomorphic to a Hilbert space.

THEOREM 1. Let X be a Banach space. Then the following assertions are equiva-
lent:

(i) X is isomorphic to a Hilbert space.

(i) Forsomel < q < p < oo, each sequenc@Vly)kez C -Z(X) satisfying
(@) SURe; IIMkl < oo,
(b) sup. IKA'M)K)|| < coforl € N,
(c) My=0fork <0,
is a periodicL P-L9-Fourier multiplier.

(i) Forall 1 < p < oo, each sequena@Vy).z C -2 (X) satisfying
(@) SURe; IIMkl < oo,
(b) supg Ik(ATM)(K)|| < oo,
is a periodicL P-Fourier multiplier.

REMARK 2. For| = 1, the condition formulated in (iii) is the classical condition
considered by Marcinkiewicz in the scalar case. For arbitrtagyN we therefore
speak of theMarcinkiewicz condition of ordelr. For p = q andl = 1, Theoreml
has been proved ir3[ Proposition 1.17.]. However, a more refined choice of test
functions is needed here for the general case. The motivation to cohsidestems
from the results on Fourier multipliers for &pes of Hblder continuous functions
where, indeed, the Marcinkiewicz condition of order 2 suffices (8garid also the
Concluding Remarks at the end of this article). Theofieshows that this is not the
case in theL P-context even if we consider weaker multipliers by allowig< p.
This has also been done by Kalton-Lancien in the context of maximal regularity for
Cauchy problemsl[3] (see also the Concluding Remarkéb) below).

PrOOF. (i) = (iii). Assume thaiX isisomorphic to a Hilbert space, then considering
an orthonormal basis one easily verifies that each bounded subge&inis actually
R-bounded, so the result follows from the operator-valued Marcinkiewicz Fourier
multiplier theorem in 8.

(iii) = (ii) is trivial.

(ii) = (i). Assumethatforsomei q < p < oo, eachsequend®y)y.z C Z(X)
satisfying sup., || Mgl < oo, SUR.; 1K' (A'M)(K)|| < oo forl € N andM, = O for
k < 0, is a periodicLP-L%Fourier multiplier. LetN = (N ken C Z(X) be a
bounded sequence.
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Let .#(R) be the Schwartz space. L¢t € .7 (R) be such that sugp,) C [2, 4]
and¢,(3) = 1. Forn > 1, we leth, = 222, Define¢, = ¢.(-/h,). Then
Ssupp¢,) C [2h,, 4h,] andg,(3h,) = 1. Let¢p : R — £ (X) be defined by

¢on(HN, if2h, <t < 4h, for somen > 1,

o) = .
0 otherwise

Let M = (¢ (K))kez. We claim that

(4) fulpllqﬁ(k)ll < 00,

5) sup|[k'(A'M)(K)|| < oo,

kez
forl € N. Indeed §) is clearly true. We will only give the proof fob] whenl = 2,
the proof for the general case is similar.

First notice that wheni, < k < 8h, — 2 for somen € N, or k < 0, then
(A2M)(k) = 0. While when &, — 2 < k < 4h, for somen € N

(AZM)(K) = (¢n(k +2) = 2¢n(k + 1) + dn(K))N,

k+1 1 k+1 k+1 1
:<¢1< e +h_n>_2¢l< e >+¢1< hn _h_n>>N”

1 /! /!
= o (91 (1) + &1 (n2))Nq
for somenq, n, € R. We deduce that
2 2 16hﬁ " "
supllk“(A"M)(K) || = sup—=2{[Nq || sup|y (X)| < 4 sup Nyl sup|¢;(X)].
kez neN 4hn xeR neN xeR

ThusM = (¢ (K))ez is a periodicL P-L9-Fourier multiplier by assumption. Hence
there existC > 0 such that fon € N andxy, X,, ..., X, € X, we have

’

p

Y a®elx| <C|> a®x
k k

and, in particular,

Z €3, @ MiXa, | <C Z €3n, @ Xan,

n>1 q n>1

p

By (3), this implies that the sequenc¢hkly)y-1 is R-bounded. It is easy to check that
if each countable subset df is R-bounded then so i§. We deduce from this that
each bounded subset.if (X) is actuallyR-bounded. By 3, Proposition 1.13], this
implies thatX is isomorphic to a Hilbert space. O
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3. Multipliers on the line

Let X be a Banach space and consider the Banach 4paée X) for1 < p < oo.
We denote by7(R; X) the space of alK-valuedC>-functions with compact support.
7 (R; X) will be the X-valued Schwartz space and we#t(R; X) := Z (¥ (R); X),
where.#(R) denotes th&-valued Schwartz space. L¥tbe another Banach space.
Then givenM € L} (R; Z(X,Y)), we may define an operatdr: .Z *Z(R; X) —

< (R;Y) by means of
Top:=F *MZ¢ foral F¢ e Z(R;X),

whereZ denotes the Fourier transform. Singe 2 (R; X) is dense inLP(R; X),

we see thal is well defined on a dense subsetldf(R; X). We say thatM is an

L P-Fourier multiplieron LP(R; X) if T can be extended to a bounded linear operator
from LP(R; X) to LP(R;Y).

The classical Mikhlin Fourier multiplier theorem has been extended to the operator-
valued case by Weis. Let andY be UMD spaces, < p < oo and letM ¢
CYR\ {0}, Z(X,Y)). Ifboth{M(x) : X # 0} and{x M'(X) : x # 0} areR-bounded,
thenM defines a_P-Fourier multiplier onLP(R; X) [18].

The following result shows that one cannot repl&boundedness in the operator-
valued Mikhlin theorem above by boundedness in operator norm unless the underlying
Banach space is isomorphic to a Hilbert space.

THEOREM 3. Let X be a Banach space. Then the following assertions are equiva-
lent

(i) X is isomorphic to a Hilbert space.

(i) Forsomel < p < oo, each functiorM € C*(R; ¢ (X)) satisfying
(@ M(x)=0forx <0,
(b) suR M)l < oo,
(€) supp(L+ IXD'IMP(x)] < oo forl € N,
defines arlP-Fourier multiplier onLP(R; X).

(i) Forall 1 < p < oo, each functionM € CY(R \ {0}; £ (X)) satisfying the
conditions
(@) SURL M)l < oo,
(b) sup IXM'(X)| < oo,
defines arlP-Fourier multiplier onLP(R; X).

PrOOF. (i) = (ii)). Assume thatX is isomorphic to a Hilbert space. Then consid-
ering an orthonormal basis one easily verifies that each bounded subgéXinis
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actually R-bounded, so the result follows from the operator-valued Mikhlin Fourier
multiplier theorem of Weisg).

(iii) = (i) is trivial.

(i) = (i). Assume (i) holds. LetMy)k=0 C -Z(X) be a bounded sequence and let
¢ € Z(R) satisfying suppp) C [1, 2], supg l¢(X)| = 1 and¢(3/2) = 1. Define
M e C*(R;.Z (X)) by

0 if x <1;
d(2*)M, if 2K <x < 2 for somek > 0.

M(X):{

Then sup g IM(X) || = SUR-, [IMi]l < oo and forl € N,

supl+ X' IMO x|

xeR

<2" (SUDIX'¢(')(X)I sup|| Myl + supl¢® (x)| sup2~|| Mk”) < oo.
xeR k>0 xeR k>0

So M is anLP-Fourier multiplier onLP(R; X) by assumption. Byq, Proposition 1]

this implies that the sgtM (x) : x € R} is R-bounded. In particular, the sequence

(M k=0 is R-bounded. We deduce from this that each bounded subs#(X) is

R-bounded, by 3, Proposition 1.13K is isomorphic to a Hilbert space. O

4. Multiplierson Z

Let X,Y be Banach spaces and consider the Banach spg@e X) for 1 <
p <oo LetT ={€ :0 <t < 27} be the torus. We consider the dense
subspace® of £P(Z; X) consisting of all elements having a finite support. Then for
f = (fonez € P, the Fourier transform of is a function on[—mx, 7] defined by
(ZH)t) =), fn€™ LetM € L™(—x, ;£ (X, Y)). Then the functiorM.Z f
is in L>*(—m, 7;Y), where.Z~! denotes the inverse Fourier transform. We deduce
that thatTf := Z-X(MZ f) € c(Z;Y) makes sense. We say tht is an LP-
Fourier multiplier on £P(Z; X) if the mappingT can be extended to a bounded linear
operator fron?P(Z; X) to £°(Z;Y).

The classical Mikhlin Fourier multiplier theorem @f(Z) has been extended to
the operator-valued case by Blunck. Leklp < oo, X be a UMD space, leM ¢
CY((—m, 0)U(0, ); .Z (X)) be such thatbotfM (t) : t € (—r, 0)U(0, )} and{(e! —
DE+ M) : t € (—m, 0) U (0, )} areR-bounded. TherM is anLP-Fourier
multiplier on £°(Z; X) [5]. In particular, eachM € C([—m, 0) U (0, 7 ];.Z (X))
such that bothM(t) : t # 0} and{tM'(t) : t # 0} are R-bounded, defines an
L P-Fourier multiplier on¢P(Z; X). Blunck has also established tReboundedness of
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L P-Fourier multipliers or?(Z; X): whenM is anLP-Fourier multiplier on¢?(Z; X),
then{M(t) : t is a Lebesgue point d¥1} is R-bounded.

The following result shows that one cannot replaceRreoundedness in Blunck’s
result by the boundedness in operator norm unless the underlying Banach space i
isomorphic to a Hilbert space. As the proofisidar to that of Theorem 3, we omit it.

THEOREMA4. Let X be a Banach space. Then the following assertions are equiva-
lent

(i) X is isomorphic to a Hilbert space.

(i) Forsomel < p < oo, each functiorM € C*([—mx, n]; £ (X)) satisfying
(@) SUR . IMX)] < 00,
(b) suR¢_rn IXI'IMPX)|| < oo forl e N,
(c) M(x) =0forx <0,
defines arlP-Fourier multiplier on¢P(Z; X).

(i) Forall 1 < p < oo, each functiorM € CY([—m, 0) U (0, r]; £ (X)) satisfy-
ing
(@) sup M) < oo,
(b) supo IXM'(X)| < oo,
defines arlP-Fourier multiplier on¢P(Z; X).

5. Concluding remarks

(@) One can actually show by using, [Theorem 1.3] and the same argument as in
the proof of Theoren, that whenX andY are UMD-spaces, then the assertions (i)
and (iii) in Theoreml are still equivalent for sequences¥i(X, Y). Similarly, using
[18, Theorem 3.4] (respectivelfp[ Theorem 1.3]) one can show thatwhéandY are
UMD-spaces, the assertions (ii) aniil) (n Theorem3 (respectively, Theorer) are
still equivalent for functions with values i (X, Y). Furthermore, these assertions
are equivalenttX having cotype 2 and having type 2. This contains our Theorém
Theorem3 and Theorend by a result of Kwapien4, pages 73—74], saying that a
Banach spac¥ is isomorphic to a Hilbert space if and onlyXfis of cotype 2 and of
type 2.

(b) A restricted version of our results follows from the recent work of Kalton and
Lancien on the maximal regularity problerhiZ]. In particular, the counterexample
constructed in12] can be used to show that the equivalences in Thedrand The-
orem3 are true within the class of UMD Banach spaces which have an uitzovad
basis.

(c) In contrast to the_P-spaces case, the situation fooldér continuous function
spaces is quite different. It has been shown that the operator-valued Marcinkiewicz



[9] Operator-valued multiplier theorems characterizing Hilbert spaces 183

(respectively, Mikhlin) Fourier multiplier theorem holds true ©f, ([0, 2 ]; X) (re-
spectivelyC*(R; X)) for every Banach spac¢ and O< « < 1 and for each sequence
M = (M ez C Z(X) satisfying a second order condition:

fUZIOII Ml + fulpllk(AlM)(k)ll + EUZDIIKZ(AZM)(k)II <0

(respectively, each functiokl € C2(R \ {0};.Z (X)) satisfying a second order con-
dition: Sup_.o M) || + SUR.o IXM'(X)[| + SURo [X2M”(X)|| < oo) (see Amann
[1] and [2]). HereCp ([0, 2 ]; X) denotes the space of all functions@i(R, X)
which are Z-periodic. If the Banach space has a non-trivial type, then even the
Marcinkiewicz condition of order 1 suffices (se& and [11]).

(d) PeriodicLP-Fourier multipliers (respectively, P-Fourier multipliers onLP(R;

X)) of the formM = (mgl )z, wheremy, € C for k € Z (respectivelyM = flI,
where f € CY(R \ {0})) on LP(0, 2r; X) (respectively, onLP(R; X)) have been
studied by Zimmermanrlp], wherel denotes the identity operator ofi Actually
Zimmermann’s results follow from the operator-valued Marcinkiewicz (respectively,
Mikhlin) Fourier multiplier theorem established if][(respectively, in 18]) as each
subsetM c Z(X) of the formM = {1l : A € Q} is R-bounded wheneve® C Cis
bounded. Zimmermann’s results together with a result of Burkholdehjpw that the
scalar-valued Marcinkiewicz (respectively, Mikhlin) Fourier multiplier theorem holds
true forLP(0, 2; X) (respectivelyLP(R; X) ) for some 1< p < oo if and only if
X is a UMD space. Aisilar result characterizing UMD gees via a scalar-valued
Fourier multiplier theorem 0AP(Z; X) can be established based on resultsgi]n [

(e) It is remarkable that in all three cases we consider here (Thebydrheo-
rem 3 and Theoremy), the sequencéMy)c.z (or the functionM) satisfying the
Marcinkiewicz condition (of ordel) without being a Fourier multiplier consists of
operators of rank 1 (se&,[Proposition 1.13.]).
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