
Journal of Functional Analysis 238 (2006) 340–352

www.elsevier.com/locate/jfa

Rank-1 perturbations of cosine functions
and semigroups

Wolfgang Arendt a, Charles J.K. Batty b,∗

a Abteilung Angewandte Analysis, Universität Ulm, 89069 Ulm, Germany
b St. John’s College, Oxford OX1 3JP, UK

Received 3 October 2005; accepted 7 February 2006

Available online 22 March 2006

Communicated by G. Pisier

Dedicated to Jerome A. Goldstein on the occasion of his 65th birthday

Abstract

Let A be the generator of a cosine function on a Banach space X. In many cases, for example if X is a
UMD-space, A+B generates a cosine function for each B ∈ L(D((ω −A)1/2),X). If A is unbounded and
1/2 < γ � 1, then we show that there exists a rank-1 operator B ∈ L(D((ω − A)γ ),X) such that A + B

does not generate a cosine function. The proof depends on a modification of a Baire argument due to Desch
and Schappacher. It also allows us to prove the following. If A + B generates a distribution semigroup
for each operator B ∈ L(D(A),X) of rank-1, then A generates a holomorphic C0-semigroup. If A + B

generates a C0-semigroup for each operator B ∈ L(D((ω − A)γ ),X) of rank-1 where 0 < γ < 1, then the
semigroup T generated by A is differentiable and ‖T ′(t)‖ = O(t−α) as t ↓ 0 for any α > 1/γ . This is an
approximate converse of a perturbation theorem for this class of semigroups.
© 2006 Elsevier Inc. All rights reserved.
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0. Introduction

Let A be the generator of a cosine function. Then A also generates a holomorphic C0-
semigroup. Let ωA ∈ R such that (ωA,∞) ⊂ �(A) and supλ�ωA

‖λR(λ,A)‖ < ∞. Then for
γ > 0 and ω > ωA, the operator Aγ = (ω − A)γ ∈ L(X) exists and is invertible. The domain
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D(Aγ ) is a Banach space for the graph norm, and this space does not depend on the choice of
ω > ωA up to equivalent norms. Moreover,

D(Aγ ) ↪→ D(Aβ)

for 0 � β � γ < ∞. If X is a UMD-space, then A1/2 generates a C0-group on X and A + B

also generates a cosine function whenever B is a bounded linear operator from D(A1/2) into
X (where D(A1/2) carries the graph norm) (see [2, Sections 3.14, 3.16]). This property is most
important for applications to hyperbolic equations (see [2, Chapter 7]). The aim of this article is
to show that γ = 1

2 is best possible for this property. In fact, our main result says the following.
Assume that A is unbounded. Let 1

2 < γ � 1. Then there exists an operator B ∈ L(D(Aγ ),X)

of rank-1 such that A + B does not generate a cosine function. Moreover, we can choose B of
arbitrarily small norm and such that A+B does not generate a k-times integrated cosine function
for any k ∈ N.

Our proof is based on a technique due to Desch and Schappacher [8] who proved that for each
generator A of a C0-semigroup T which is not holomorphic there exists a rank-1 perturbation
B :D(A) → X such that A + B does not generate a C0-semigroup. We show in Section 3 that B

can even be chosen such that A+B does not generate a distribution semigroup. This is done with
the help of a generalization and a simplification of the Baire argument of Desch and Schappacher
which we establish in Section 1.

Our argument also sheds light on the reason for instability. Rank-1 perturbation may lead to
an explosion of the resolvent: the resolvent of A + B cannot have any prescribed growth outside
any parabola oriented to the left (in the cosine case) and on any right half-plane in the semigroup
case.

In Section 4 we consider (rank-1) perturbations B :D(Aγ ) → X of the generator A of a
C0-semigroup T where 0 < γ < 1. We exhibit a perturbation theorem for a class of differen-
tiable semigroups first considered by Crandall and Pazy [6]. Conversely, if A + B generates
a C0-semigroup for each such B , then we show that T belongs to that class of semigroups.

1. Rank-1 perturbations

Let A be a closed linear operator on a Banach space X. Then the domain D(A) of A is a
Banach space for the graph norm ‖x‖A := ‖x‖ + ‖Ax‖. Let C ∈ L(D(A),X) be a bounded
linear operator (where D(A) carries the graph norm). Given a ∈ X, b∗ ∈ X∗ we consider the
perturbation B ∈ L(D(A),X) of A given by

Bx = b∗(Cx)a
(
x ∈ D(A)

)
.

We denote this operator B by ab∗C.

Lemma 1.1. Let a ∈ X, b∗ ∈ X∗, λ ∈ �(A). Then λ ∈ �(A + ab∗C) if and only if

b∗CR(λ,A)a 
= 1.

In that case

R(λ,A + ab∗C)x = R(λ,A)x + b∗CR(λ,A)x

∗ · R(λ,A)a (1.1)

1 − b CR(λ,A)a
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for all x ∈ X. In particular,

R(λ,A + ab∗C)a · (1 − b∗CR(λ,A)a
) = R(λ,A)a. (1.2)

Proof. Let λ ∈ �(A + ab∗C). Let x ∈ X, y = R(λ,A + ab∗C)x. Then x = (λ − A)y − ab∗Cy.
Hence y = R(λ,A)x + cR(λ,A)a where c = b∗Cy. Consequently, x = (λ − A − ab∗C)y =
x − (b∗CR(λ,A)x) · a + c · a − (cb∗CR(λ,A)a) · a. This implies that b∗CR(λ,A)a 
= 1 and

c = b∗CR(λ,A)x

1 − b∗CR(λ,A)a
.

Thus one implication is proved. We omit the easy proof of the other one. �
For δ > 0, p ∈ X, q∗ ∈ X∗ we let

Bδ(p) := {
x ∈ X: ‖x − p‖ � δ

}
,

Bδ(p, q∗) := {
(a, b∗) ∈ X × X∗: ‖a − p‖ � δ, ‖b∗ − q∗‖ � δ

}

be closed balls in X and X × X∗, respectively.

Lemma 1.2. Let Ω ⊂ �(A) be non-empty. Assume that

sup
λ∈Ω

∥∥CR(λ,A)x
∥∥ < ∞ (1.3)

for all x in a dense subspace Y of X, but

sup
λ∈Ω

∥∥CR(λ,A)
∥∥ = ∞. (1.4)

Let δ > 0, p ∈ X, q∗ ∈ X∗. Then there exist (a, b∗) ∈ Bδ(p,q∗), λ ∈ Ω such that

b∗CR(λ,A)a = 1.

Proof. By the Uniform Boundedness Principle, there exists b∗ ∈ Bδ(q
∗) such that

supλ∈Ω ‖b∗CR(λ,A)‖ = ∞, and there exists a2 ∈ X such that supλ∈Ω |b∗CR(λ,A)a2| = ∞.
By (1.3) there exists a1 ∈ Bδ/2(p) such that supλ∈Ω ‖CR(λ,A)a1‖ < ∞. Let

a3 = 1 − b∗CR(λ,A)a1

b∗CR(λ,A)a2
· a2,

where λ ∈ Ω is chosen such that ‖a3‖ � δ/2. Then b∗CR(λ,A)a3 = 1 − b∗CR(λ,A)a1. Hence
b∗CR(λ,A)a = 1 where a = a1 + a3 ∈ Bδ(p). �

In order to formulate the main result of this section we let Ωn ⊂ C be arbitrary non-empty sets
(n ∈ N) and gn :Ωn → (0,∞) be arbitrary functions (which measure the growth of resolvents).
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Theorem 1.3. Let A be a closed operator on X, C :D(A) → X be a bounded operator, ε > 0.
Assume that Ωn ⊂ �(A) and

sup
λ∈Ωn

∥∥CR(λ,A)x
∥∥ < ∞

for all x in a dense subspace Yn of X and all n ∈ N. Assume that for each (a, b∗) ∈ Bε(0,0)

there exists n ∈ N such that Ωn ⊂ �(A + ab∗C) and

∥∥R(λ,A + ab∗C)
∥∥ � gn(λ) (λ ∈ Ωn). (1.5)

Then there exists m ∈ N such that

sup
λ∈Ωm

∥∥CR(λ,A)
∥∥ < ∞. (1.6)

Proof. Let

Fn = {
(a, b∗) ∈ Bε(0,0):

∥∥R(λ,A)a
∥∥ � gn(λ) · ‖a‖ · ∣∣1 − b∗CR(λ,A)a

∣∣ for all λ ∈ Ωn

}
.

Then Fn is closed and it follows from (1.5) and Lemma 1.1 that Bε(0,0) = ⋃
n∈N

Fn. By Baire’s
theorem there exist p ∈ X, q∗ ∈ X∗, δ > 0 and m ∈ N such that Bδ(p,q∗) ⊂ Fm. It follows that
b∗CR(λ,A)a 
= 1 for all λ ∈ Ωm and all (a, b∗) ∈ Bδ(p,q∗). Now Lemma 1.2 implies (1.6). �
2. Perturbation of cosine generators

Generators of cosine functions can conveniently be characterized by Laplace transforms (see
[2, Section 3.14]). An operator A on a Banach space X generates a cosine function if there exist
a strongly continuous function cos : R+ → L(X) and some M � 0, σ � 1, satisfying

∥∥∥∥∥
t∫

0

cos(s)x ds

∥∥∥∥∥ � Me(σ−1)t‖x‖ (t � 0, x ∈ X) (2.1)

and

λ2 ∈ �(A) and λR
(
λ2,A

)
x =

∞∫
0

e−λt cos(t)x dt (x ∈ X) (2.2)

whenever Reλ � σ . In that case, the function cos is unique and is called the cosine function
generated by A. Note that condition (2.1) ensures that the integral in (2.2) converges in the
improper sense. However, it follows that cos is even exponentially bounded, i.e.,

∥∥cos(t)
∥∥ � M ′eσ ′t (t � 0)
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for some M ′ � 1, σ ′ ∈ R. If A generates a cosine function, then D(A) is dense and for x, y ∈
X the function u(t) = cos(t)x + ∫ t

0 cos(s)y ds is a mild solution of the second order Cauchy
problem

(P2)

{
u′′(t) = Au(t) (t � 0),

u(0) = x, u′(0) = y

which is the motivation for studying cosine functions.
More generally, one defines the following concept [1]. Let k ∈ N0. We say that A generates a

k-times integrated cosine function on X if there exists a strongly continuous function S : R+ →
L(X) and some M � 0, σ � 1 satisfying

∥∥∥∥∥
t∫

0

S(s)x ds

∥∥∥∥∥ � Me(σ−1)t‖x‖ (t � 0, x ∈ X) (2.3)

and

λ2 ∈ �(A) and λ−k+1R
(
λ2,A

)
x =

∞∫
0

e−λtS(t)x dt (x ∈ X) (2.4)

whenever Reλ � σ . Then S is called the k-times integrated cosine function generated by A.
Thus cosine functions are the same as 0-times integrated cosine functions, and 1-times integrated
cosine functions are sine functions (see [2, Section 3.15]). Moreover, if A generates a k-times
integrated cosine function Sk , then it generates the (k + 1)-times integrated cosine function Sk+1
given by

Sk+1(t)x =
t∫

0

Sk(s)x ds (x ∈ X),

and Sk+1 is exponentially bounded. We remark that the fact that A generates a k-times integrated
cosine function can be reformulated in terms of well-posedness of (P2) (see Keyantuo [14, Chap-
ter 2, Section 4]); the smaller k is, the less regular the initial values x, y can be chosen in order
to obtain a solution of (P2).

Example 2.1. It is shown in [12,15] (see also [2, Theorem 7.3.1]) that the Laplacian , with do-
main W 2,p(RN), generates a k-times integrated cosine function on Lp(RN), where 1 < p < ∞,
if and only if k � (N − 1)| 1

p
− 1

2 |.

Now assume that A generates a k-times integrated cosine function S. Replacing k by k + 1 if
necessary, we may assume that S is exponentially bounded, i.e.

∥∥S(t)
∥∥ � Me(σ−1)t (t � 0),

where M � 0, σ � 1. Then by (2.4) we have for Reλ � σ ,
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∥∥λ−k+1R
(
λ2,A

)∥∥ � M

∞∫
0

e(σ−1)t e−Reλt dt � M

Reλ − σ + 1
.

Thus

∥∥R
(
λ2,A

)∥∥ � M|λ|k−1 (Reλ � σ).

Consequently, the resolvent of A is polynomially bounded on

Ωσ := {
λ2: Reλ � σ

} =
{
ξ + iη: η ∈ R, ξ � σ 2 − η2

4σ 2

}

which is the exterior of a horizontal parabola.
Now we wish to consider perturbations B ∈ L(D(Aγ ),X) where 0 < γ � 1, ω > σ 2 and

Aγ := (ω − A)γ is a fractional power. If k = 0, then A generates a holomorphic C0-semigroup
and the definition of Aγ is standard (see [2, Section 3.8] for example). If k > 0 and A is densely
defined, the fractional powers Aγ can be defined by [18, Definition 1.11] or [7, Section 5] since
the resolvent of ω − A is polynomially bounded on a sector. However, we shall need certain
properties of fractional powers (for example, that D(Aγ ) ⊂ D(A)) which are standard for the
case k = 0 but do not appear to be known for k > 0. Therefore we shall now assume either
that γ = 1 or that A generates a cosine function, although we shall allow the possibility that
A + B generates an integrated cosine function. Then the operator Aγ is closed and D(Aγ ) =
D((ω1 − A)γ ) whenever ω1 > σ 2. For a ∈ X, b∗ ∈ X∗ we consider the rank-1 perturbation
B :D(Aγ ) → X given by

Bx = b∗(Aγ x)a
(
x ∈ D(Aγ )

)

which we denote by B = ab∗Aγ . Now we can formulate the main result of this section.

Theorem 2.2. Assume that either A is the generator of a cosine function and 1/2 < γ � 1,
or that A is the generator of a k-times integrated cosine function for some k ∈ N0 and γ = 1.
Let Aγ = (ω − A)γ where ω is large enough. Let ε > 0. Assume that for each a ∈ X, b∗ ∈ X∗
satisfying ‖a‖ � ε, ‖b∗‖ � ε there exists � ∈ N such that A + ab∗Aγ generates an �-times
integrated cosine function. Then A is bounded.

We need the following two lemmas. We do not claim originality but we include proofs for the
convenience of the reader.

Lemma 2.3. Let A be an operator such that the resolvent exists and is polynomially bounded
outside a ball. Then A is bounded.

Proof. With the help of the spectral projection associated with the bounded spectrum we re-
duce the problem to the case where �(A) = C and R(λ,A) is polynomially bounded. By ele-
mentary complex function theory, R(λ,A) is a polynomial. Then (−1)n−1(n − 1)!R(λ,A)n =
(d/dλ)n−1R(λ,A) = 0 for some n ∈ N. Since R(λ,A) is injective we conclude that X = {0}. �
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Lemma 2.4. (See [9, Theorem 2].) Let Aγ = (ω − A)γ , where 0 < γ < 1 and ω > ωA. Let Ω be
a subset of �(A) whose closure does not contain 0. The following are equivalent:

(i) supλ∈Ω ‖λγ R(λ,A)‖ < ∞;
(ii) supλ∈Ω ‖Aγ R(λ,A)‖ < ∞.

Proof. Let x ∈ X. By the moment inequality [10, Theorem II.5.34],

∥∥Aγ R(λ,A)x
∥∥ �

∥∥(ω − A)R(λ,A)x
∥∥γ ∥∥R(λ,A)x

∥∥1−γ
.

Hence,

∥∥Aγ R(λ,A)
∥∥ �

∥∥(ω − λ)R(λ,A) + I
∥∥γ ∥∥R(λ,A)

∥∥1−γ
, (2.5)

and it follows that (i) implies (ii).
Also by the moment inequality,

∥∥R(λ,A)x
∥∥ �

∥∥Aγ R(λ,A)x
∥∥1−γ ∥∥Aγ R(ω,A)R(λ,A)x

∥∥γ
.

Hence

∥∥R(λ,A)
∥∥ �

∥∥Aγ R(λ,A)
∥∥1−γ

(‖Aγ (R(λ,A) − R(ω,A))‖
|λ − ω|

)γ

,

and it follows that (ii) implies (i). �
Proof of Theorem 2.2. Let A be the generator of a k-times integrated cosine function. Then for
suitable M,σ � 1, r ∈ N one has Ω0 := {λ2: Reλ � σ } ⊂ �(A) and

∥∥R(μ,A)
∥∥ � M|μ|r (μ ∈ Ω0).

Take ω > σ 2. Then ω − A is invertible and (ω − A)α is a bounded operator whenever α � 0. Let

Ωn := {
λ2: Reλ � σ + n

}
, gn(λ) = n

(
1 + |λ|)n

(λ ∈ Ωn)

for n ∈ N. Under the assumptions of the theorem, for all (a, b∗) ∈ Bε(0,0) there exists n ∈ N

such that Ωn ⊂ �(A + ab∗Aγ ) and ‖R(λ,A + ab∗Aγ )‖ � gn(λ) (λ ∈ Ωn). For x ∈ D(Ar),

R(λ,A)x = λ−rR(λ,A)Arx +
r−1∑
m=0

λ−(m+1)Amx,

so R(λ,A)x is bounded on Ω0. Hence Aγ R(λ,A)x = (ω − A)γ−1R(λ,A)(ω − A)x is bounded
on Ω0 for all x ∈ D(Ar+1) which is dense in X. By Theorem 1.3 there exists m ∈ N such that
supλ∈Ωm

‖Aγ R(λ,A)‖ < ∞. By Lemma 2.4,

c := sup
∥∥λγ R(λ,A)

∥∥ < ∞.

λ∈Ωm
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Now let λ ∈ ∂Ωm, i.e., λ = ξ + iη, where η ∈ R and ξ = (σ +m)2 − η2

4(σ+m)2 . Let μ = ξ + iη1

where |η1| � |η|. Write μ − A = (I − (λ − μ)R(λ,A))(λ − A). Then,

∥∥(λ − μ)R(λ,A)
∥∥ � |η|∥∥R(λ,A)

∥∥ � c
|η|
|λ|γ

= c|η|
[(

(σ + m)2 − η2

4(σ + m)2

)2

+ η2
]−γ /2

� 1/2

if |η| is sufficiently large. Here we use that γ > 1
2 . Thus there exists ξ0 > 0 such that, for λ = ξ +

iη ∈ ∂Ωm with ξ � −ξ0, one has μ = ξ + iη1 ∈ �(A) and ‖R(μ,A)‖ � 2‖R(λ,A)‖ whenever
|η1| � |η|.

Since |λ| � α|ξ | � α|μ| for some constant α independent of λ we conclude that R(μ,A) is
polynomially bounded in the region {μ ∈ C: Reμ � −ξ0} \ Ωm. Since R(μ,A) is polynomially
bounded on Ωm we deduce from Lemma 2.3 that A is bounded. �
Remark 2.5. In the proof of Theorem 2.2, it was not important that the functions gn were poly-
nomially bounded, although it was important that R(λ,A) is polynomially bounded. The proof
shows the following. Suppose that A is unbounded, and ω − A is sectorial and R(λ,A) exists
and is polynomially bounded outside a parabola Ωm := {λ2: Reλ � m}. Let gn :Ωn → (0,∞)

be any functions and let γ > 1/2. Then there exist a ∈ X, b∗ ∈ X∗ and λn ∈ Ωn (n ∈ N) such
that either λn ∈ σ(A + ab∗Aγ ) or ‖R(λn,A + ab∗Aγ )‖ � gn(λ).

Similar remarks apply to Theorems 3.1 and 4.3.

3. Perturbation of distribution semigroups

The property of generating a holomorphic C0-semigroup is stable under small perturbations.
In fact, if A generates a holomorphic C0-semigroup then so does A + B for each compact
B :D(A) → X, see [2, Theorem 3.7.25] or [8]. Desch and Schappacher [8] showed that the
property of generating a C0-semigroup is not stable under small perturbations unless the given
semigroup is already holomorphic. Our general perturbation result of Section 1 allows us to
generalize the Desch–Schappacher result to a much larger class, characterizing generators of
holomorphic C0-semigroups among the class of all generators of distribution semigroups.

The concept of a distribution semigroup was introduced by Lions [16]. It is equivalent to the
notion of local k-times integrated semigroup introduced in [3] which can be formulated precisely
in terms of the well-posedness of the Cauchy problem defined by A. Here we use the following
characterization in terms of the resolvent. A densely defined operator A generates a distribution
semigroup if and only if there exists k ∈ N such that A generates a local k-times integrated
semigroup, or equivalently if and only if there exists an exponential region

E(α,β) := {
λ ∈ C: Reλ � β, |Imλ| � eα Reλ

}
where β ∈ R, α � 0,

such that E(α,β) ⊂ �(A) and R(λ,A) is polynomially bounded on E(α,β).
With the help of this characterization we can prove the following.
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Theorem 3.1. Let A be a densely defined operator on a Banach space X and let ε > 0. Assume
that for each a ∈ X, b∗ ∈ X∗ satisfying ‖a‖ � ε, ‖b∗‖ � ε, the operator A + ab∗A generates a
distribution semigroup. Then A generates a holomorphic C0-semigroup.

Proof. Since A generates a distribution semigroup there exist α > 0, β ∈ R, c � 0 and � ∈ N

such that E(α,β) ⊂ �(A) and ‖R(λ,A)‖ � c(1 + |λ|)� for all λ ∈ E(α,β). Let

Ωn = E(α + n,β + n) = {
λ ∈ C: Reλ � β + n, |Imλ| � e(α+n)Reλ

}

and let gn(λ) = (c +n)(1 + |λ|)�+n where n ∈ N. The assumption implies that for each (a, b∗) ∈
Bε(0,0) there exists n ∈ N such that Ωn ⊂ �(A + ab∗A) and ‖R(λ,A + ab∗A)‖ � gn(λ)

(λ ∈ Ωn). For x ∈ D(A�),

R(λ,A)x = λ−�R(λ,A)A�x +
�−1∑
m=0

λ−(m+1)Amx,

so R(λ,A)x is bounded on E(α,β). Thus AR(λ,A)x is bounded on E(α,β) for all x ∈ D(A�+1)

which is a dense subspace. By Theorem 1.3 there exists m ∈ N such that

M := sup
λ∈Ωm

∥∥λR(λ,A)
∥∥ < ∞.

By the von Neumann expansion we obtain θ ∈ (0,π/2), M ′ � 0 such that the following holds:
if a half-line L = {reiγ : r � r0} is in �(A) and ‖λR(λ,A)‖ � M on L, then also Lθ := {reiψ :
r � r0, |ψ − γ | � θ} ⊂ �(A) and ‖λR(λ,A)‖ � M ′ on Lθ . Since the boundary of Ωm becomes
arbitrarily steep, we find ω � α such that

Ω :=
{
ω + reiψ : r � 0, |ψ | � π

2
+ θ

2

}
⊂ �(A)

and

M ′′ := sup
λ∈Ω

∥∥λR(λ,A)
∥∥ < ∞.

Consequently, A generates a holomorphic C0-semigroup. �
4. Fractional perturbation of semigroup generators

In this section, we combine techniques from the previous sections to show that if there exists
γ > 0 such that A + ab∗Aγ generates a C0-semigroup for every a ∈ X, b∗ ∈ X∗, then the semi-
group T generated by A belongs to a class considered by Crandall and Pazy [6]. That is, T is
immediately differentiable and its derivative AT (t) satisfies

∥∥AT (t)
∥∥ = O

(
t−α

)
as t ↓ 0 (4.1)

for some α > 0. It was shown in [6,9] that this is equivalent to the property that
∥∥R(ω + is,A)

∥∥ = O
(|s|−β

)
as |s| → ∞ (4.2)
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for some β > 0 and ω > ω0(T ), the exponential growth bound of T . Indeed, (4.1) implies (4.2)
for β = 1/α and any ω > ω0(T ). On the other hand, (4.2) implies (4.1) for any α > 1/β . By
a standard Neumann series argument, (4.2) for one value of ω implies that, for any ω′ ∈ R,
R(ω′ + is,A) exists for all real s with |s| sufficiently large and ‖R(ω′ + is,A)‖ = O(|s|−β) as
|s| → ∞. Moreover, Lemma 2.4 shows that (4.2) is equivalent to the property that

sup
s∈R

∥∥AβR(ω + is,A)
∥∥ < ∞. (4.3)

This class of semigroups arises naturally when considering differentiability of solutions of
inhomogeneous Cauchy problems [6] and of delay differential equations [4,5]. Note that the case
when α = 1 in (4.1) and the case when β = 1 in (4.2) each correspond to T being a holomor-
phic semigroup [2, Corollary 3.7.18, Theorem 3.7.19], [10, Theorem II.4.6], so we are really
interested in the case when α > 1 and 0 < β < 1.

We will first show that this class of generators is invariant under suitable fractionally bounded
perturbations. This result fits naturally between the standard results for bounded perturbations
of C0-semigroups and relatively bounded perturbations of holomorphic semigroups (see [10,
Corollary III.2.14]). We are very grateful to Markus Haase for enabling us to complete the proof
of this result.

Proposition 4.1. Let A be the generator of a C0-semigroup T and suppose that A satisfies (4.2)
for some β > 0. Let B ∈ L(D(Aγ ),X) where 0 < γ < β . Then A+B generates a C0-semigroup.
Moreover, ‖R(ω + is,A + B)‖ = O(|s|−β) as |s| → ∞.

Proof. In this proof, c will denote a constant which may vary from place to place.
Choose α ∈ (β−1, γ −1). Then (4.1) holds, so

∥∥AT (t)
∥∥ � ct−α (0 < t � 1).

Let x ∈ X. By the moment inequality [10, Theorem II.5.34],

∥∥Aγ T (t)x
∥∥ �

∥∥(ω − A)T (t)x
∥∥γ ∥∥T (t)x

∥∥1−γ � ct−αγ ‖x‖.
Hence,

1∫
0

∥∥BT (t)
∥∥dt < ∞.

It follows from [13, Corollary 1, p. 400] (see also [10, Theorem III.3.14]) that A + B generates
a C0-semigroup S.

Let λ = ω + is. By (2.5) and (4.2),
∥∥BR(λ,A)

∥∥ � c
∥∥Aγ R(λ,A)

∥∥ � c|λ|γ−β.

Hence ‖BR(λ,A)‖ � 1/2 whenever |s| is sufficiently large. For such s, it follows from the
identity λ − (A + B) = (I − BR(λ,A))(λ − A) that λ ∈ �(A + B) and

∥∥R(λ,A + B)
∥∥ = ∥∥R(λ,A)

(
I − BR(λ,A)

)−1∥∥ � 2
∥∥R(λ,A)

∥∥ � c|s|−β . �
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If A generates a holomorphic semigroup and B :D(A) → X is compact, then A + B also
generates a holomorphic semigroup [8, Theorem 1], [2, Theorem 3.7.25]. One might expect that
if A generates a semigroup and satisfies (4.2) and B :D(Aβ) → X is compact, then A+B should
also be a generator. We do not know whether this is the case, but we have the following partial
results when B is of rank-1.

Proposition 4.2. Let A be the generator of a C0-semigroup on a Banach space X, and suppose
that A satisfies (4.2) for some β > 0. Let B = ab∗Aβ , where a ∈ X and b∗ ∈ X∗.

(1) There exists r � 0 such that {λ ∈ C: Reλ � ω, |λ| � r} ⊂ �(A + B) and ‖R(ω + is,

A + B)‖ = O(|s|−β) as |s| → ∞.
(2) If X is a Hilbert space then A + B generates a C0-semigroup.

Proof. (1) By (4.2), an estimate

∥∥R(λ,A)
∥∥ � c

|λ|β (4.4)

holds when Reλ = ω. By a standard Neumann series estimate and changing the value of c, we
can arrange that (4.4) holds when ω � Reλ � ω + c−1|Imλ|β .

Choose ω′ so that ω0(T ) < ω′ < ω. Then ‖R(λ,A)‖ � c′/(Reλ − ω′) when Reλ > ω.
If Reλ > ω + c−1|Imλ|β , then

|λ|β � 2β/2 max
(
Reλ, |Imλ|)β � c′′(Reλ − ω′).

Changing the value of c again if necessary, we obtain that (4.4) holds whenever Reλ � ω.
By Lemma 2.4, ‖AβR(λ,A)‖ is uniformly bounded for Reλ � ω. As |λ| → ∞,

‖AβR(λ,A)x‖ → 0 first for x ∈ D(Aβ) and then by density for x ∈ X, and in particular for
x = a. Now Lemma 1.1 shows that, for |λ| sufficiently large, λ ∈ �(A + B) and

R(λ,A + B) = R(λ,A) + Q(λ),

where Q(λ) is a bounded (rank-1) operator and ‖Q(λ)‖ � c‖R(λ,A)a‖ for some constant c.
In particular, this shows that

∥∥R(λ,A + B)
∥∥ �

(
1 + c‖a‖)∥∥R(λ,A)

∥∥ = O
(|λ|−β

)

as |λ| → ∞.
(2) Now suppose that X is a Hilbert space. Replacing A by A − ω, we may assume that T is

bounded (by K , say). For any x ∈ X and σ > 0, Plancherel’s theorem gives

∞∫ ∥∥R(σ + is,A)x
∥∥2

ds = 2π

∞∫
e−2σ t

∥∥T (t)x
∥∥2

dt � πK2

σ
‖x‖2.
−∞ 0
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Moreover, for σ sufficiently large,

∞∫
−∞

∥∥Q(σ + is)x
∥∥2

ds �
∞∫

−∞
c2

∥∥R(σ + is,A)a
∥∥2‖x‖2 ds � πc2‖a‖2K2

σ
‖x‖2.

Hence,

∞∫
−∞

∥∥R(σ + is,A + B)x
∥∥2

ds � π(1 + c‖a‖)2K2

σ
‖x‖2.

Similarly,

∞∫
−∞

∥∥R(σ + is,A)∗x
∥∥2

ds = 2π

∞∫
0

e−2σ t
∥∥T (t)∗x

∥∥2
dt � πK2

σ
‖x‖2,

∞∫
−∞

∥∥Q(σ + is)∗x
∥∥2

ds �
∞∫

−∞
c2

∥∥R(σ + is,A)a
∥∥2‖x‖2 ds � πc2‖a‖2K2

σ
‖x‖2,

∞∫
−∞

∥∥R(σ + is,A + B)∗x
∥∥2

ds � π(1 + c‖a‖)2K2

σ
‖x‖2.

Now the result follows from [11, Theorem 2] or [17, Theorems 1.1, 4.1]. �
The next result is the converse of Proposition 4.1.

Theorem 4.3. Let A generate a C0-semigroup T . Let 0 < γ � 1, Aγ = (ω − A)γ where ω is
large enough. Let ε > 0. Assume that for each a ∈ X, b∗ ∈ X∗ satisfying ‖a‖ � ε, ‖b∗‖ � ε,
the perturbed operator A + ab∗Aγ generates a C0-semigroup. Then (4.2) holds for β = γ . In
particular, T is immediately differentiable and ‖AT (t)‖ = O(t−α) as t ↓ 0, for any α > 1/γ .

Proof. There exists ω such that Ω0 := {λ: Reλ � ω} ⊂ �(A) and R(λ,A) is bounded on Ω0.
For x ∈ D(A), Aγ R(λ,A)x is bounded on Ω0. For n ∈ N, let Ωn = {λ ∈ C: Reλ � n + ω},
gn(λ) = n (λ ∈ Ωn). The assumptions of the present theorem imply those of Theorem 1.3 with
C = Aγ , so it follows that there exists m ∈ N such that supλ∈Ωm

‖Aγ R(λ,A)‖ < ∞. Thus, we
have established (4.3) and hence (4.2). �
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