Rank-1 perturbations of cosine functions and semigroups

Wolfgang Arendt a, Charles J.K. Batty b,*

a Abteilung Angewandte Analysis, Universität Ulm, 89069 Ulm, Germany
b St. John’s College, Oxford OX1 3JP, UK

Received 3 October 2005; accepted 7 February 2006
Available online 22 March 2006
Communicated by G. Pisier

Dedicated to Jerome A. Goldstein on the occasion of his 65th birthday

Abstract

Let \(A \) be the generator of a cosine function on a Banach space \(X \). In many cases, for example if \(X \) is a UMD-space, \(A + B \) generates a cosine function for each \(B \in \mathcal{L}(D((\omega - A)^{1/2}), X) \). If \(A \) is unbounded and \(1/2 < \gamma \leq 1 \), then we show that there exists a rank-1 operator \(B \in \mathcal{L}(D((\omega - A)\gamma), X) \) such that \(A + B \) does not generate a cosine function. The proof depends on a modification of a Baire argument due to Desch and Schappacher. It also allows us to prove the following. If \(A + B \) generates a distribution semigroup for each operator \(B \in \mathcal{L}(D(A), X) \) of rank-1, then \(A \) generates a holomorphic \(C_0 \)-semigroup. If \(A + B \) generates a \(C_0 \)-semigroup for each operator \(B \in \mathcal{L}(D((\omega - A)^{\gamma}), X) \) of rank-1 where \(0 < \gamma < 1 \), then the semigroup \(T \) generated by \(A \) is differentiable and \(\|T'(t)\| = O(t^{-\alpha}) \) as \(t \downarrow 0 \) for any \(\alpha > 1/\gamma \). This is an approximate converse of a perturbation theorem for this class of semigroups.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Perturbation; Rank-one; \(C_0 \)-semigroup; Distribution semigroup; Cosine function; Fractional power

0. Introduction

Let \(A \) be the generator of a cosine function. Then \(A \) also generates a holomorphic \(C_0 \)-semigroup. Let \(\omega_A \in \mathbb{R} \) such that \((\omega_A, \infty) \subset \varrho(A)\) and \(\sup_{\lambda \geq \omega_A} \|R(\lambda, A)\| < \infty \). Then for \(\gamma > 0 \) and \(\omega > \omega_A \), the operator \(A_\gamma = (\omega - A)^{\gamma} \in \mathcal{L}(X) \) exists and is invertible. The domain

* Corresponding author.
E-mail addresses: arendt@mathematik.uni-ulm.de (W. Arendt), charles.batty@sjc.ox.ac.uk (C.J.K. Batty).
$D(A_\gamma)$ is a Banach space for the graph norm, and this space does not depend on the choice of $\omega > \omega_\Lambda$ up to equivalent norms. Moreover,

$$D(A_\gamma) \hookrightarrow D(A_\beta)$$

for $0 \leq \beta \leq \gamma < \infty$. If X is a UMD-space, then $A_{1/2}$ generates a C_0-group on X and $A + B$ also generates a cosine function whenever B is a bounded linear operator from $D(A_{1/2})$ into X (where $D(A_{1/2})$ carries the graph norm) (see [2, Sections 3.14, 3.16]). This property is most important for applications to hyperbolic equations (see [2, Chapter 7]). The aim of this article is to show that $\gamma = \frac{1}{2}$ is best possible for this property. In fact, our main result says the following.

Assume that A is unbounded. Let $\frac{1}{2} < \gamma \leq 1$. Then there exists an operator $B \in \mathcal{L}(D(A_\gamma), X)$ of rank-1 such that $A + B$ does not generate a cosine function. Moreover, we can choose B of arbitrarily small norm and such that $A + B$ does not generate a k-times integrated cosine function for any $k \in \mathbb{N}$.

Our proof is based on a technique due to Desch and Schappacher [8] who proved that for each generator A of a C_0-semigroup T which is not holomorphic there exists a rank-1 perturbation $B : D(A) \to X$ such that $A + B$ does not generate a C_0-semigroup. We show in Section 3 that B can even be chosen such that $A + B$ does not generate a distribution semigroup. This is done with the help of a generalization and a simplification of the Baire argument of Desch and Schappacher which we establish in Section 1.

Our argument also sheds light on the reason for instability. Rank-1 perturbation may lead to an explosion of the resolvent: the resolvent of $A + B$ cannot have any prescribed growth outside any parabola oriented to the left (in the cosine case) and on any right half-plane in the semigroup case.

In Section 4 we consider (rank-1) perturbations $B : D(A_\gamma) \to X$ of the generator A of a C_0-semigroup T where $0 < \gamma < 1$. We exhibit a perturbation theorem for a class of differentiable semigroups first considered by Crandall and Pazy [6]. Conversely, if $A + B$ generates a C_0-semigroup for each such B, then we show that T belongs to that class of semigroups.

1. Rank-1 perturbations

Let A be a closed linear operator on a Banach space X. Then the domain $D(A)$ of A is a Banach space for the graph norm $\|x\|_A := \|x\| + \|Ax\|$. Let $C \in \mathcal{L}(D(A), X)$ be a bounded linear operator (where $D(A)$ carries the graph norm). Given $a \in X, b^* \in X^*$ we consider the perturbation $B \in \mathcal{L}(D(A), X)$ of A given by

$$Bx = b^*(Cx)a \quad (x \in D(A)).$$

We denote this operator B by ab^*C.

Lemma 1.1. Let $a \in X, b^* \in X^*, \lambda \in \varrho(A)$. Then $\lambda \in \varrho(A + ab^*C)$ if and only if

$$b^*C R(\lambda, A)a \neq 1.$$

In that case

$$R(\lambda, A + ab^*C)x = R(\lambda, A)x + \frac{b^*C R(\lambda, A)x}{1 - b^*C R(\lambda, A)a} \cdot R(\lambda, A)a$$

(1.1)
for all \(x \in X \). In particular,
\[
R(\lambda, A + ab^*C)a \cdot (1 - b^*CR(\lambda, A)a) = R(\lambda, A)a.
\]

Proof. Let \(\lambda \in \varrho(A + ab^*C) \). Let \(x \in X \), \(y = R(\lambda, A + ab^*C)x \). Then \(x = (\lambda - A)y - ab^*Cy \). Hence \(y = R(\lambda, A)x + cR(\lambda, A)a \) where \(c = b^*Cy \). Consequently, \(x = (\lambda - A - ab^*C)y = x - (b^*CR(\lambda, A)x) \cdot a + c \cdot a = (cb^*CR(\lambda, A)a) \cdot a \). This implies that \(b^*CR(\lambda, A)a \neq 1 \) and
\[
c = \frac{b^*CR(\lambda, A)x}{1 - b^*CR(\lambda, A)a}.
\]
Thus one implication is proved. We omit the easy proof of the other one. \(\square \)

For \(\delta > 0, p \in X, q^* \in X^* \) we let
\[
B_\delta(p) := \{x \in X: \|x - p\| \leq \delta\},
\]
\[
B_\delta(p, q^*) := \{(a, b^*) \in X \times X^*: \|a - p\| \leq \delta, \|b^* - q^*\| \leq \delta\}
\]
be closed balls in \(X \) and \(X \times X^* \), respectively.

Lemma 1.2. Let \(\Omega \subset \varrho(A) \) be non-empty. Assume that
\[
\sup_{\lambda \in \Omega} \|CR(\lambda, A)x\| < \infty \quad (1.3)
\]
for all \(x \) in a dense subspace \(Y \) of \(X \), but
\[
\sup_{\lambda \in \Omega} \|CR(\lambda, A)\| = \infty. \quad (1.4)
\]
Let \(\delta > 0, p \in X, q^* \in X^* \). Then there exist \((a, b^*) \in B_\delta(p, q^*)\), \(\lambda \in \Omega \) such that
\[
b^*CR(\lambda, A)a = 1.
\]

Proof. By the Uniform Boundedness Principle, there exists \(b^* \in B_\delta(q^*) \) such that \(\sup_{\lambda \in \Omega} \|b^*CR(\lambda, A)\| = \infty \), and there exists \(a_2 \in X \) such that \(\sup_{\lambda \in \Omega} |b^*CR(\lambda, A)a_2| = \infty \). By (1.3) there exists \(a_1 \in B_{\delta/2}(p) \) such that \(\sup_{\lambda \in \Omega} \|CR(\lambda, A)a_1\| < \infty \). Let
\[
a_3 = \frac{1 - b^*CR(\lambda, A)a_1}{b^*CR(\lambda, A)a_2} \cdot a_2,
\]
where \(\lambda \in \Omega \) is chosen such that \(\|a_3\| \leq \delta/2 \). Then \(b^*CR(\lambda, A)a_3 = 1 - b^*CR(\lambda, A)a_1 \). Hence \(b^*CR(\lambda, A)a = 1 \) where \(a = a_1 + a_3 \in B_\delta(p) \). \(\square \)

In order to formulate the main result of this section we let \(\Omega_n \subset \mathbb{C} \) be arbitrary non-empty sets \((n \in \mathbb{N})\) and \(g_n: \Omega_n \to (0, \infty) \) be arbitrary functions (which measure the growth of resolvents).
Theorem 1.3. Let A be a closed operator on X, $C : D(A) \to X$ be a bounded operator, $\varepsilon > 0$. Assume that $\Omega_n \subset \varrho(A)$ and

$$\sup_{\lambda \in \Omega_n} \left\| CR(\lambda, A)x \right\| < \infty$$

for all x in a dense subspace Y_n of X and all $n \in \mathbb{N}$. Assume that for each $(a, b^*) \in B_\varepsilon(0, 0)$ there exists $n \in \mathbb{N}$ such that $\Omega_n \subset \varrho(A + ab^*C)$ and

$$\left\| R(\lambda, A + ab^*C) \right\| \leq g_n(\lambda) \quad (\lambda \in \Omega_n).$$

Then there exists $m \in \mathbb{N}$ such that

$$\sup_{\lambda \in \Omega_m} \left\| CR(\lambda, A) \right\| < \infty.$$ (1.6)

Proof. Let

$$F_n = \{(a, b^*) \in B_\varepsilon(0, 0) : \left\| R(\lambda, A)a \right\| \leq g_n(\lambda) \cdot \|a\| \cdot \|1 - b^*CR(\lambda, A)a\| \text{ for all } \lambda \in \Omega_n\}.$$

Then F_n is closed and it follows from (1.5) and Lemma 1.1 that $B_\varepsilon(0, 0) = \bigcup_{n \in \mathbb{N}} F_n$. By Baire’s theorem there exist $p \in X$, $q^* \in X^*$, $\delta > 0$ and $m \in \mathbb{N}$ such that $B_\delta(p, q^*) \subset F_m$. It follows that $b^*CR(\lambda, A)a \neq 1$ for all $\lambda \in \Omega_m$ and all $(a, b^*) \in B_\delta(p, q^*)$. Now Lemma 1.2 implies (1.6). □

2. Perturbation of cosine generators

Generators of cosine functions can conveniently be characterized by Laplace transforms (see [2, Section 3.14]). An operator A on a Banach space X generates a cosine function if there exist a strongly continuous function $\cos : \mathbb{R}_+ \to \mathcal{L}(X)$ and some $M \geq 0$, $\sigma \geq 1$, satisfying

$$\left\| \int_0^t \cos(s)x \, ds \right\| \leq Me^{(\sigma - 1)t}\|x\| \quad (t \geq 0, x \in X)$$ (2.1)

and

$$\lambda^2 \in \varrho(A) \quad \text{and} \quad \lambda R(\lambda^2, A)x = \int_0^\infty e^{-\lambda t} \cos(t)x \, dt \quad (x \in X)$$ (2.2)

whenever $\Re \lambda \geq \sigma$. In that case, the function \cos is unique and is called the cosine function generated by A. Note that condition (2.1) ensures that the integral in (2.2) converges in the improper sense. However, it follows that \cos is even exponentially bounded, i.e.,

$$\|\cos(t)\| \leq M'e^{\sigma't} \quad (t \geq 0)$$
for some $M' \geq 1$, $\sigma' \in \mathbb{R}$. If A generates a cosine function, then $D(A)$ is dense and for $x, y \in X$ the function $u(t) = \cos(t)x + \int_0^t \cos(s)y \, ds$ is a mild solution of the second order Cauchy problem

$$(P_2) \quad \begin{cases} u''(t) = Au(t) & (t \geq 0), \\ u(0) = x, & u'(0) = y \end{cases}$$

which is the motivation for studying cosine functions.

More generally, one defines the following concept [1]. Let $k \in \mathbb{N}_0$. We say that A generates a k-times integrated cosine function on X if there exists a strongly continuous function $S : \mathbb{R}_+ \to \mathcal{L}(X)$ and some $M \geq 0, \sigma \geq 1$ satisfying

$$\left\| \int_0^t S(s)x \, ds \right\| \leq Me^{(\sigma-1)t}\|x\| \quad (t \geq 0, x \in X) \quad (2.3)$$

and

$$\lambda^2 \in \varrho(A) \quad \text{and} \quad \lambda^{-k+1} R(\lambda^2, A)x = \int_0^\infty e^{-\lambda t} S(t)x \, dt \quad (x \in X) \quad (2.4)$$

whenever $\Re \lambda \geq \sigma$. Then S is called the k-times integrated cosine function generated by A. Thus cosine functions are the same as 0-times integrated cosine functions, and 1-times integrated cosine functions are sine functions (see [2, Section 3.15]). Moreover, if A generates a k-times integrated cosine function S_k, then it generates the $(k+1)$-times integrated cosine function S_{k+1} given by

$$S_{k+1}(t)x = \int_0^t S_k(s)x \, ds \quad (x \in X),$$

and S_{k+1} is exponentially bounded. We remark that the fact that A generates a k-times integrated cosine function can be reformulated in terms of well-posedness of (P_2) (see Keyantuo [14, Chapter 2, Section 4]); the smaller k is, the less regular the initial values x, y can be chosen in order to obtain a solution of (P_2).

Example 2.1. It is shown in [12,15] (see also [2, Theorem 7.3.1]) that the Laplacian Δ, with domain $W^{2,p}(\mathbb{R}^N)$, generates a k-times integrated cosine function on $L^p(\mathbb{R}^N)$, where $1 < p < \infty$, if and only if $k \geq (N-1)|\frac{1}{p} - \frac{1}{2}|$.

Now assume that A generates a k-times integrated cosine function S. Replacing k by $k+1$ if necessary, we may assume that S is exponentially bounded, i.e.

$$\left\| S(t) \right\| \leq Me^{(\sigma-1)t} \quad (t \geq 0),$$

where $M \geq 0, \sigma \geq 1$. Then by (2.4) we have for $\Re \lambda \geq \sigma$,

$$\| \lambda^{-k+1} R(\lambda^2, A) \| \leq M \int_0^\infty e^{(\sigma-1)t} e^{-\text{Re} \lambda t} \, dt \leq \frac{M}{\text{Re} \lambda - \sigma + 1}.$$

Thus

$$\| R(\lambda^2, A) \| \leq M |\lambda|^{k-1} \quad (\text{Re} \lambda \geq \sigma).$$

Consequently, the resolvent of A is polynomially bounded on

$$\Omega_\sigma := \{ \lambda^2 : \text{Re} \lambda \geq \sigma \} = \{ \xi + i\eta : \eta \in \mathbb{R}, \xi \geq \sigma^2 - \frac{\eta^2}{4\sigma^2} \}$$

which is the exterior of a horizontal parabola.

Now we wish to consider perturbations $B \in \mathcal{L}(D(A_\gamma), X)$ where $0 < \gamma \leq 1$, $\omega > \sigma^2$ and $A_\gamma := (\omega - A)^\gamma$ is a fractional power. If $k = 0$, then A generates a holomorphic C_0-semigroup and the definition of A_γ is standard (see [2, Section 3.8] for example). If $k > 0$ and A is densely defined, the fractional powers A_γ can be defined by [18, Definition 1.11] or [7, Section 5] since the resolvent of $\omega - A$ is polynomially bounded on a sector. However, we shall need certain properties of fractional powers (for example, that $D(A_\gamma) \subseteq D(A)$) which are standard for the case $k = 0$ but do not appear to be known for $k > 0$. Therefore we shall now assume either that $\gamma = 1$ or that A generates a cosine function, although we shall allow the possibility that $A + B$ generates an integrated cosine function. Then the operator A_γ is closed and $D(A_\gamma) = D((\omega_1 - A)^\gamma)$ whenever $\omega_1 > \sigma^2$. For $a \in X$, $b^* \in X^*$ we consider the rank-1 perturbation

$$Bx = b^*(A_\gamma x)a \quad (x \in D(A_\gamma))$$

which we denote by $B = ab^* A_\gamma$. Now we can formulate the main result of this section.

Theorem 2.2. Assume that either A is the generator of a cosine function and $1/2 < \gamma \leq 1$, or that A is the generator of a k-times integrated cosine function for some $k \in \mathbb{N}_0$ and $\gamma = 1$. Let $A_\gamma = (\omega - A)^\gamma$ where ω is large enough. Let $\varepsilon > 0$. Assume that for each $a \in X$, $b^* \in X^*$ satisfying $\|a\| \leq \varepsilon$, $\|b^*\| \leq \varepsilon$ there exists $\ell \in \mathbb{N}$ such that $A + ab^* A_\gamma$ generates an ℓ-times integrated cosine function. Then A is bounded.

We need the following two lemmas. We do not claim originality but we include proofs for the convenience of the reader.

Lemma 2.3. Let A be an operator such that the resolvent exists and is polynomially bounded outside a ball. Then A is bounded.

Proof. With the help of the spectral projection associated with the bounded spectrum we reduce the problem to the case where $\varphi(A) = \mathbb{C}$ and $R(\lambda, A)$ is polynomially bounded. By elementary complex function theory, $R(\lambda, A)$ is a polynomial. Then $(-1)^{n-1}(n-1)!R(\lambda, A)^n = (d/d\lambda)^{n-1} R(\lambda, A) = 0$ for some $n \in \mathbb{N}$. Since $R(\lambda, A)$ is injective we conclude that $X = \{0\}$. □
Lemma 2.4. (See [9, Theorem 2].) Let \(A^\gamma = (\omega - A)^\gamma \), where \(0 < \gamma < 1 \) and \(\omega > \omega_A \). Let \(\Omega \) be a subset of \(\varrho(A) \) whose closure does not contain \(0 \). The following are equivalent:

(i) \(\sup_{\lambda \in \Omega} \| \lambda^\gamma R(\lambda, A) \| < \infty \);
(ii) \(\sup_{\lambda \in \Omega} \| A^\gamma R(\lambda, A) \| < \infty \).

Proof. Let \(x \in X \). By the moment inequality [10, Theorem II.5.34],

\[
\| A^\gamma R(\lambda, A) x \| \leq \| (\omega - A) R(\lambda, A) x \|^{\gamma} \| R(\lambda, A) x \|^{1-\gamma}.
\]

Hence,

\[
\| A^\gamma R(\lambda, A) \| \leq \| (\omega - \lambda) R(\lambda, A) + I \|^{\gamma} \| R(\lambda, A) \|^{1-\gamma},
\]

and it follows that (i) implies (ii).

Also by the moment inequality,

\[
\| R(\lambda, A) x \| \leq \| A^\gamma R(\lambda, A) x \|^{1-\gamma} \| A^\gamma R(\omega, A) R(\lambda, A) x \|^{\gamma}.
\]

Hence

\[
\| R(\lambda, A) \| \leq \| A^\gamma R(\lambda, A) \|^{1-\gamma} \left(\frac{\| A^\gamma (R(\lambda, A) - R(\omega, A)) \|}{|\lambda - \omega|} \right)^{\gamma},
\]

and it follows that (ii) implies (i). \(\Box \)

Proof of Theorem 2.2. Let \(A \) be the generator of a \(k \)-times integrated cosine function. Then for suitable \(M, \sigma \geq 1 \), \(r \in \mathbb{N} \) one has \(\Omega_0 := \{ \lambda^2 : \text{Re} \lambda \geq \sigma \} \subset \varrho(A) \) and

\[
\| R(\mu, A) \| \leq M |\mu|^r \quad (\mu \in \Omega_0).
\]

Take \(\omega > \sigma^2 \). Then \(\omega - A \) is invertible and \((\omega - A)^\alpha \) is a bounded operator whenever \(\alpha \leq 0 \). Let

\[
\Omega_n := \{ \lambda^2 : \text{Re} \lambda \geq \sigma + n \}, \quad g_n(\lambda) = n(1 + |\lambda|)^n \quad (\lambda \in \Omega_n)
\]

for \(n \in \mathbb{N} \). Under the assumptions of the theorem, for all \((a, b^*) \in B_e(0, 0)\) there exists \(n \in \mathbb{N} \) such that \(\Omega_n \subset \varrho(A + ab^* A^\gamma) \) and \(\| R(\lambda, A + ab^* A^\gamma) \| \leq g_n(\lambda) \quad (\lambda \in \Omega_n) \). For \(x \in D(A^r) \),

\[
R(\lambda, A) x = \lambda^{-r} R(\lambda, A) A^r x + \sum_{m=0}^{r-1} \lambda^{-(m+1)} A^m x,
\]

so \(R(\lambda, A) x \) is bounded on \(\Omega_0 \). Hence \(A^\gamma R(\lambda, A) x = (\omega - A)^{-1} R(\lambda, A) (\omega - A) x \) is bounded on \(\Omega_0 \) for all \(x \in D(A^{r+1}) \) which is dense in \(X \). By Theorem 1.3 there exists \(m \in \mathbb{N} \) such that \(\sup_{\lambda \in \Omega_m} \| A^\gamma R(\lambda, A) \| < \infty \). By Lemma 2.4,

\[
c := \sup_{\lambda \in \Omega_m} \| \lambda^{\gamma} R(\lambda, A) \| < \infty.
\]
Now let $\lambda \in \partial \Omega_m$, i.e., $\lambda = \xi + i \eta$, where $\eta \in \mathbb{R}$ and $\xi = (\sigma + m)^2 - \frac{\eta^2}{4(\sigma + m)^2}$. Let $\mu = \xi + i \eta_1$ where $|\eta_1| \leq |\eta|$. Write $\mu - A = (I - (\lambda - \mu)R(\lambda, A))(\lambda - A)$. Then,

$$\| (\lambda - \mu)R(\lambda, A) \| \leq |\eta| \| R(\lambda, A) \| \leq c \frac{|\eta|}{|\lambda|^\gamma}$$

$$= c|\eta|\left[\left((\sigma + m)^2 - \frac{\eta^2}{4(\sigma + m)^2} \right)^2 + \eta^2 \right]^{\gamma/2}$$

$$\leq 1/2$$

if $|\eta|$ is sufficiently large. Here we use that $\gamma > \frac{1}{2}$. Thus there exists $\xi_0 > 0$ such that, for $\lambda = \xi + i \eta \in \partial \Omega_m$ with $\xi \leq -\xi_0$, one has $\mu = \xi + i \eta_1 \in \sigma(\lambda)$ and $\| R(\mu, A) \| \leq 2 \| R(\lambda, A) \|$ whenever $|\eta_1| \leq |\eta|$.

Since $|\lambda| \leq \alpha|\xi| \leq \alpha|\mu|$ for some constant α independent of λ we conclude that $R(\mu, A)$ is polynomially bounded in the region $\{ \mu \in \mathbb{C}: \text{Re} \mu \leq -\xi_0 \} \setminus \Omega_m$. Since $R(\mu, A)$ is polynomially bounded on Ω_m we deduce from Lemma 2.3 that A is bounded. \qed

Remark 2.5. In the proof of Theorem 2.2, it was not important that the functions g_n were polynomially bounded, although it was important that $R(\lambda, A)$ is polynomially bounded. The proof shows the following. Suppose that A is unbounded, and $\omega - A$ is sectorial and $R(\lambda, A)$ exists and is polynomially bounded outside a parabola $\Omega_m := \{ \lambda^2: \text{Re} \lambda \geq m \}$. Let $g_n: \Omega_m \rightarrow (0, \infty)$ be any functions and let $\gamma > 1/2$. Then there exist $a \in X$, $b^* \in X^*$ and $\lambda_n \in \Omega_n (n \in \mathbb{N})$ such that either $\lambda_n \in \sigma(A + ab^*A_{\gamma})$ or $\| R(\lambda_n, A + ab^*A_{\gamma}) \| \geq g_n(\lambda)$. Similar remarks apply to Theorems 3.1 and 4.3.

3. Perturbation of distribution semigroups

The property of generating a holomorphic C_0-semigroup is stable under small perturbations. In fact, if A generates a holomorphic C_0-semigroup then so does $A + B$ for each compact $B: D(A) \rightarrow X$, see [2, Theorem 3.7.25] or [8]. Desch and Schappacher [8] showed that the property of generating a C_0-semigroup is not stable under small perturbations unless the given semigroup is already holomorphic. Our general perturbation result of Section 1 allows us to generalize the Desch–Schappacher result to a much larger class, characterizing generators of holomorphic C_0-semigroups among the class of all generators of distribution semigroups.

The concept of a *distribution semigroup* was introduced by Lions [16]. It is equivalent to the notion of *local k-times integrated semigroup* introduced in [3] which can be formulated precisely in terms of the well-posedness of the Cauchy problem defined by A. Here we use the following characterization in terms of the resolvent. A densely defined operator A generates a distribution semigroup if and only if there exists $k \in \mathbb{N}$ such that A generates a local k-times integrated semigroup, or equivalently if and only if there exists an *exponential region*

$$E(\alpha, \beta) := \{ \lambda \in \mathbb{C}: \text{Re} \lambda \geq \beta, |\text{Im} \lambda| \leq e^{\alpha \text{Re} \lambda} \}$$

where $\beta \in \mathbb{R}, \alpha \geq 0$,

such that $E(\alpha, \beta) \subset \sigma(A)$ and $R(\lambda, A)$ is polynomially bounded on $E(\alpha, \beta)$.

With the help of this characterization we can prove the following.
Theorem 3.1. Let A be a densely defined operator on a Banach space X and let $\varepsilon > 0$. Assume that for each $a \in X$, $b^* \in X^*$ satisfying $\|a\| \leq \varepsilon$, $\|b^*\| \leq \varepsilon$, the operator $A + ab^*A$ generates a distribution semigroup. Then A generates a holomorphic C_0-semigroup.

Proof. Since A generates a distribution semigroup there exist $\alpha > 0$, $\beta \in \mathbb{R}$, $c \geq 0$ and $\ell \in \mathbb{N}$ such that $E(\alpha, \beta) \subset \varrho(A)$ and $\|R(\lambda, A)\| \leq c(1 + |\lambda|)^\ell$ for all $\lambda \in E(\alpha, \beta)$. Let

$$\Omega_n = E(\alpha + n, \beta + n) = \{\lambda \in \mathbb{C}: \text{Re} \lambda \geq \beta + n, |\text{Im} \lambda| \leq e^{(\alpha + n) \text{Re} \lambda}\}$$

and let $g_n(\lambda) = (c + n)(1 + |\lambda|)^{\ell+n}$ where $n \in \mathbb{N}$. The assumption implies that for each $(a, b^*) \in B_\varepsilon(0, 0)$ there exists $n \in \mathbb{N}$ such that $\Omega_n \subset \varrho(A + ab^*A)$ and $\|R(\lambda, A + ab^*A)\| \leq g_n(\lambda)$ ($\lambda \in \Omega_n$). For $x \in D(\mathcal{A}^\ell)$,

$$R(\lambda, A)x = \lambda^{-\ell} R(\lambda, A)A^\ell x + \sum_{m=0}^{\ell-1} \lambda^{-(m+1)} A^m x,$$

so $R(\lambda, A)x$ is bounded on $E(\alpha, \beta)$. Thus $AR(\lambda, A)x$ is bounded on $E(\alpha, \beta)$ for all $x \in D(\mathcal{A}^{\ell+1})$ which is a dense subspace. By Theorem 1.3 there exists $m \in \mathbb{N}$ such that

$$M := \sup_{\lambda \in \Omega_m} \|\lambda R(\lambda, A)\| < \infty.$$

By the von Neumann expansion we obtain $\theta \in (0, \pi/2)$, $M' \geq 0$ such that the following holds: if a half-line $L = \{re^{i\gamma}: r \geq r_0\}$ is in $\varrho(A)$ and $\|\lambda R(\lambda, A)\| \leq M$ on L, then also $L_\theta := \{re^{i\psi}: r \geq r_0, |\psi - \gamma| \leq \theta\} \subset \varrho(A)$ and $\|\lambda R(\lambda, A)\| \leq M'$ on L_θ. Since the boundary of Ω_m becomes arbitrarily steep, we find $\omega \geq \alpha$ such that

$$\Omega := \left\{\omega + re^{i\psi}: r \geq 0, |\psi| \leq \frac{\pi}{2} + \frac{\theta}{2}\right\} \subset \varrho(A)$$

and

$$M'' := \sup_{\lambda \in \Omega} \|\lambda R(\lambda, A)\| < \infty.$$

Consequently, A generates a holomorphic C_0-semigroup. \hfill \Box

4. Fractional perturbation of semigroup generators

In this section, we combine techniques from the previous sections to show that if there exists $\gamma > 0$ such that $A + ab^*A_\gamma$ generates a C_0-semigroup for every $a \in X$, $b^* \in X^*$, then the semigroup T generated by A belongs to a class considered by Crandall and Pazy [6]. That is, T is immediately differentiable and its derivative $AT(t)$ satisfies

$$\|AT(t)\| = O(t^{-\alpha}) \quad \text{as } t \downarrow 0$$

for some $\alpha > 0$. It was shown in [6,9] that this is equivalent to the property that

$$\|R(\omega + is, A)\| = O(|s|^{-\beta}) \quad \text{as } |s| \to \infty$$

(4.2)
for some $\beta > 0$ and $\omega > \omega_0(T)$, the exponential growth bound of T. Indeed, (4.1) implies (4.2) for $\beta = 1/\alpha$ and any $\omega > \omega_0(T)$. On the other hand, (4.2) implies (4.1) for any $\alpha > 1/\beta$. By a standard Neumann series argument, (4.2) for one value of ω implies that, for any $\omega' \in \mathbb{R}$, $R(\omega' + is, A)$ exists for all real s with $|s|$ sufficiently large and $\|R(\omega' + is, A)\| = O(|s|^{-\beta})$ as $|s| \to \infty$. Moreover, Lemma 2.4 shows that (4.2) is equivalent to the property that

$$\sup_{s \in \mathbb{R}} \left\| A^{\beta} R(\omega + is, A) \right\| < \infty. \quad (4.3)$$

This class of semigroups arises naturally when considering differentiability of solutions of inhomogeneous Cauchy problems [6] and of delay differential equations [4,5]. Note that the case when $\alpha = 1$ in (4.1) and the case when $\beta = 1$ in (4.2) each correspond to T being a holomorphic semigroup [2, Corollary 3.7.18, Theorem 3.7.19], [10, Theorem II.4.6], so we are really interested in the case when $\alpha > 1$ and $0 < \beta < 1$.

We will first show that this class of generators is invariant under suitable fractionally bounded perturbations. This result fits naturally between the standard results for bounded perturbations of C_0-semigroups and relatively bounded perturbations of holomorphic semigroups (see [10, Corollary III.2.14]). We are very grateful to Markus Haase for enabling us to complete the proof of this result.

Proposition 4.1. Let A be the generator of a C_0-semigroup T and suppose that A satisfies (4.2) for some $\beta > 0$. Let $B \in \mathcal{L}(D(A^{\gamma}), X)$ where $0 < \gamma < \beta$. Then $A + B$ generates a C_0-semigroup. Moreover, $\|R(\omega + is, A + B)\| = O(|s|^{-\beta})$ as $|s| \to \infty$.

Proof. In this proof, c will denote a constant which may vary from place to place.

Choose $\alpha \in (\beta^{-1}, \gamma^{-1})$. Then (4.1) holds, so

$$\left\| AT(t) \right\| \leq c t^{-\alpha} \quad (0 < t \leq 1).$$

Let $x \in X$. By the moment inequality [10, Theorem II.5.34],

$$\left\| A^{\gamma} T(t) x \right\| \leq \| \omega - A \| T(t) x \| T(t) x \|^{1-\gamma} \leq c t^{-\alpha \gamma} \| x \|.$$

Hence,

$$\int_0^1 \left\| B T(t) \right\| dt < \infty.$$

It follows from [13, Corollary 1, p. 400] (see also [10, Theorem III.3.14]) that $A + B$ generates a C_0-semigroup S.

Let $\lambda = \omega + is$. By (2.5) and (4.2),

$$\left\| B R(\lambda, A) \right\| \leq c \left\| A^{\gamma} R(\lambda, A) \right\| \leq c |\lambda|^{\gamma-\beta}.$$

Hence $\|BR(\lambda, A)\| \leq 1/2$ whenever $|s|$ is sufficiently large. For such s, it follows from the identity $\lambda - (A + B) = (I - BR(\lambda, A))(\lambda - A)$ that $\lambda \in \rho(A + B)$ and

$$\left\| R(\lambda, A + B) \right\| = \left\| R(\lambda, A) \left(I - BR(\lambda, A) \right)^{-1} \right\| \leq 2 \left\| R(\lambda, A) \right\| \leq c |s|^{-\beta}. \quad \square$$
If \(A \) generates a holomorphic semigroup and \(B : D(A) \to X \) is compact, then \(A + B \) also generates a holomorphic semigroup [8, Theorem 1], [2, Theorem 3.7.25]. One might expect that if \(A \) generates a semigroup and satisfies (4.2) and \(B : D(A_\beta) \to X \) is compact, then \(A + B \) should also be a generator. We do not know whether this is the case, but we have the following partial results when \(B \) is of rank-1.

Proposition 4.2. Let \(A \) be the generator of a \(C_0 \)-semigroup on a Banach space \(X \), and suppose that \(A \) satisfies (4.2) for some \(\beta > 0 \). Let \(B = ab^*A_\beta \), where \(a \in X \) and \(b^* \in X^* \).

1. There exists \(r \geq 0 \) such that \(\{ \lambda \in \mathbb{C} : \text{Re}\lambda \geq \omega, |\lambda| \geq r \} \subset \mathcal{Q}(A + B) \) and \(\|R(\omega + is, A + B)\| = O(|s|^{-\beta}) \) as \(|s| \to \infty \).
2. If \(X \) is a Hilbert space then \(A + B \) generates a \(C_0 \)-semigroup.

Proof. (1) By (4.2), an estimate

\[
\left\| R(\lambda, A) \right\| \leq \frac{c}{|\lambda|^\beta}
\]

holds when \(\text{Re}\lambda = \omega \). By a standard Neumann series estimate and changing the value of \(c \), we can arrange that (4.4) holds when \(\omega \leq \text{Re}\lambda \leq \omega + c^{-1}|\text{Im}\lambda|^\beta \).

Choose \(\omega' \) so that \(\omega_0(T) < \omega' < \omega \). Then \(\|R(\lambda, A)\| \leq c'/(|\text{Re}\lambda - \omega'|) \) when \(\text{Re}\lambda > \omega \). If \(\text{Re}\lambda > \omega + c^{-1}|\text{Im}\lambda|^\beta \), then

\[
|\lambda|^\beta \leq 2^{\beta/2} \max(\text{Re}\lambda, |\text{Im}\lambda|)^\beta \leq c''(\text{Re}\lambda - \omega').
\]

Changing the value of \(c \) again if necessary, we obtain that (4.4) holds whenever \(\text{Re}\lambda \geq \omega \).

By Lemma 2.4, \(\|A_\beta R(\lambda, A)\| \) is uniformly bounded for \(\text{Re}\lambda \geq \omega \). As \(|\lambda| \to \infty \), \(\|A_\beta R(\lambda, A)x\| \to 0 \) first for \(x \in D(A_\beta) \) and then by density for \(x \in X \), and in particular for \(x = a \). Now Lemma 1.1 shows that, for \(|\lambda| \) sufficiently large, \(\lambda \in \mathcal{Q}(A + B) \) and

\[
R(\lambda, A + B) = R(\lambda, A) + Q(\lambda),
\]

where \(Q(\lambda) \) is a bounded (rank-1) operator and \(\|Q(\lambda)\| \leq c\|R(\lambda, A)a\| \) for some constant \(c \). In particular, this shows that

\[
\left\| R(\lambda, A + B) \right\| \leq (1 + c\|a\|)\left\| R(\lambda, A) \right\| = O(|\lambda|^{-\beta})
\]

as \(|\lambda| \to \infty \).

(2) Now suppose that \(X \) is a Hilbert space. Replacing \(A \) by \(A - \omega \), we may assume that \(T \) is bounded (by \(K \), say). For any \(x \in X \) and \(\sigma > 0 \), Plancherel’s theorem gives

\[
\int_{-\infty}^{\infty} \left\| R(\sigma + is, A)x \right\|^2 \, ds = 2\pi \int_{0}^{\infty} e^{-2\sigma t} \left\| T(t)x \right\|^2 \, dt \leq \frac{\pi K^2}{\sigma} \|x\|^2.
\]
Moreover, for σ sufficiently large,
\[\int_{-\infty}^{\infty} \| Q(\sigma + is)x \|^2 ds \leq \int_{-\infty}^{\infty} c^2 \| R(\sigma + is, A)a \|^2 \| x \|^2 ds \leq \frac{\pi c^2 \| a \|^2 K^2}{\sigma} \| x \|^2. \]

Hence,
\[\int_{-\infty}^{\infty} \| R(\sigma + is, A + B)x \|^2 ds \leq \frac{\pi (1 + c \| a \|) K^2}{\sigma} \| x \|^2. \]

Similarly,
\[\int_{-\infty}^{\infty} \| R(\sigma + is, A)^*x \|^2 ds = 2\pi \int_{0}^{\infty} e^{-2\sigma t} \| T(t)^*x \|^2 dt \leq \frac{\pi K^2}{\sigma} \| x \|^2, \]
\[\int_{-\infty}^{\infty} \| Q(\sigma + is)^*x \|^2 ds \leq \int_{-\infty}^{\infty} c^2 \| R(\sigma + is, A)a \|^2 \| x \|^2 ds \leq \frac{\pi c^2 \| a \|^2 K^2}{\sigma} \| x \|^2, \]
\[\int_{-\infty}^{\infty} \| R(\sigma + is, A + B)^*x \|^2 ds \leq \frac{\pi (1 + c \| a \|) K^2}{\sigma} \| x \|^2. \]

Now the result follows from [11, Theorem 2] or [17, Theorems 1.1, 4.1].

The next result is the converse of Proposition 4.1.

Theorem 4.3. Let A generate a C_0-semigroup T. Let $0 < \gamma \leq 1$, $A^\gamma = (\omega - A)^\gamma$ where ω is large enough. Let $\varepsilon > 0$. Assume that for each $a \in X$, $b^* \in X^*$ satisfying $\| a \| \leq \varepsilon$, $\| b^* \| \leq \varepsilon$, the perturbed operator $A + ab^* A^\gamma$ generates a C_0-semigroup. Then (4.2) holds for $\beta = \gamma$. In particular, T is immediately differentiable and $\| AT(t) \| = O(t^{-\alpha})$ as $t \downarrow 0$, for any $\alpha > 1/\gamma$.

Proof. There exists ω such that $\Omega_0 := \{ \lambda : \text{Re} \lambda \geq \omega \} \subset \sigma(A)$ and $R(\lambda, A)$ is bounded on Ω_0. For $x \in D(A)$, $A^\gamma R(\lambda, A)x$ is bounded on Ω_0. For $n \in \mathbb{N}$, let $\Omega_n = \{ \lambda \in \mathbb{C} : \text{Re} \lambda \geq n + \omega \}$, $g_n(\lambda) = n \ (\lambda \in \Omega_n)$. The assumptions of the present theorem imply those of Theorem 1.3 with $C = A^\gamma$, so it follows that there exists $m \in \mathbb{N}$ such that $\sup_{\lambda \in \Omega_m} \| A^\gamma R(\lambda, A) \| < \infty$. Thus, we have established (4.3) and hence (4.2).

Acknowledgment

We are grateful to Markus Haase for a very helpful discussion which enabled us to improve some of the results and proofs in this paper.
References

