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Abstract

The objective of this note is to give an estimate for a positive perturbed semigroup in ter
the free one. Here we consider perturbation by a potential and the estimate is given by a po
Hölder inequality. As a consequence it is shown that ultracontractivity and Gaussian upper
are preserved by such perturbations.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Motivated by the Schrödinger equation, a by now classical subject is perturbat
semigroups by a potential, i.e., a multiplication operatorV . More precisely, we conside
a positiveC0-semigroup(etA)t�0 on a spaceLr(Ω) and consider an admissible positi
potentialV , i.e., we assume thatet(A+Vn) converges strongly to aC0-semigroup which we
denote symbolically by(et (A+V ))t�0 whereVn = inf{n,V }. Perturbations by admissib
potentials have been studied systematically by Voigt [11,12]. Here we prove the follo
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et(A+V )f �
(
et(A+pV )f

)1/p(
etAf

)1/p′
, (1)

where

1� p < ∞,
1

p
+ 1

p′ = 1, 0� f ∈ Lr(Ω).

If the semigroup is given by a stochastic process and the Feynman–Kac formula is
then this is just the classical Hölder’s inequality (see [10]). However, in the general ca
proof is more involved: we use Trotter’s formula and techniques from positive semigr
The Hölder’s inequality (1) has interesting consequences. Even though the sem
et(A+V ) is larger thanetA (in the sense of positive (by which we mean positivity prese
ing) operators), several properties are preserved. IfetA is ultracontractive, so iset(A+V )

and if etA admits Gaussian upper bounds so doeset(A+V ). The classical case is ifA is the
Laplacian andV is in the Kato class. But we may also replace the Laplacian by a ge
elliptic operator with measurable coefficients or even by an operator of the form

A = ∆ −
d∑

j=1

bjDj − V0 (2)

with unbounded drift (see [1]). In both cases Gaussian estimates hold. This implie
a positiveV in the Kato class is admissible also for these operators and the pert
semigroup admits upper Gaussian bounds. Note that Gaussian estimates have im
consequences concerning regularity and spectrum (see [2,8]).

We should explain the choice of the sign: ifA = ∆ is the Laplacian, we conside
potentialsV � 0 here. Then 0� et∆ � et(∆+V ) in the sense of positive (i.e., positivi
preserving) operators. Moreover,et(∆+V1) � et(∆+V2) if 0 � V1 � V2 andV2 is admissible.
This monotonicity property is used throughout.

2. Hölder’s inequality for potentials

Let E = Lr(Ω), 1� r < ∞, where(Ω,Σ,µ) is aσ -finite measure space. LetA be the
generator of a positiveC0-semigroup(etA)t�0 on E. Then forV ∈ L∞(Ω) the operator
A+V (given by(A+V )f = Af +Vf onD(A+V ) = D(A)) generates aC0-semigroup
(et (A+V ))t�0 given by Trotter’s formula

et(A+V )f = lim
n→∞

(
e

t
n
Ae

t
n
V
)n

f (3)

for all f ∈ E.
Now assume that 0� f ∈ E. Then the following Hölder’s inequality holds.

Proposition 2.1.Let 1� p < ∞. Then

et(A+V )f �
(
et(A+pV )f

)1/p(
etAf

)1/p′
(4)

for all 0� f ∈ E, t � 0 where 1 + 1′ = 1.

p p
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For the proof we use the following.

Lemma 2.2.LetS : (0,∞) → B(L∞(Ω)) be a function such that

S(t + s) = S(t)S(s) (t, s > 0)

andS(t) � 0 for all t � 0. LetV ∈ L∞(Ω), 1� p < ∞, 1
p

+ 1
p′ = 1. Then fort > 0, n ∈ N

(
S

(
t

n

)
e

t
n
V

)n

f �
((

S

(
t

n

)
e

t
n
pV

)n

f

)1/p

· (S(t)f
)1/p′

(5)

a.e. forf ∈ E+.

Note that (5) is an inequality between measurable functions onΩ . Here we denote
by E+ the cone of those functions inE = Lr(Ω) which are� 0 almost everywhere. W
do not assume any continuity of the semigroupS. This will be important in the proof o
Proposition 2.1.

Proof of Lemma 2.2. By the Gelfand–Naimark theorem [9, 11.18] there exists a com
spaceK and an algebra isomorphismJ :C(K) → L∞(Ω). In particular, forf ∈ C(K)

one hasf (x) � 0 for all x ∈ K if and only if (Jf )(y) � 0 µ-a.e. Thus, in order to prov
the lemma we may replaceL∞(Ω) by C(K).

Let x ∈ K , t > 0. Thenµt,x := S(t)′δx defines a positive Radon measure onK , where
S(t)′ denotes the adjoint ofS(t). Let 0� f ∈ C(K). Then((

S(t/n)e
t
n
V
)n

f
)
(x)

=
∫
K

e
t
n
V (yn)

∫
K

e
t
n
V (yn−1) · · ·

×
∫
K

e
t
n
V (y1)f (y1) dµ t

n
,y2

(y1) · · ·dµ t
n
,yn

(yn−1) dµ t
n
,x(yn)

=
∫
K

· · ·
∫
K

e
t
n
(V (yn)+···+V (y1))f (y1) dµ t

n
,y2

(y1) · · ·dµ t
n
,x(yn)

�
[∫

K

· · ·
∫
K

e
t
n
p(V (yn)+···+V (y1))f (y1) dµ t

n
,y2

(y1) · · ·dµ t
n
,x(yn)

]1/p′

·
[∫

K

· · ·
∫
K

1p′
f (y1) dµ t

n
,y2

(y1) · · ·dµ t
n
,x(yn)

]1/p

=
{[(

S

(
t

n

)
e

t
n
pV

)n

f

]
(x)

}1/p

· {(S(t)f
)
(x)

}1/p′
. �

Proof of Proposition 2.1. Let D(A)+ = E+ ∩ D(A). Since limλ→∞ λR(λ,A)f = f

(with R(λ,A) = (λ − A)−1) in E for all f ∈ E, it follows thatD(A)+ is dense inE+.
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Thus it suffices to prove (2.2) for allf ∈ D(A)+. Let f ∈ D(A)+. Let λ > ω(A) (the type
of the semigroup(etA)t�0). There existsv ∈ E such thatf = R(λ,A)v. Let w ∈ E such
that |v| � w andw(x) > 0 a.e. Thenu := R(λ,A)w > 0 a.e. In fact, if not there exist
0� f ∈ E′, the dual space ofE,f �= 0 such that〈u,f 〉 = 0.

Then〈Au,f 〉 = limt→0
〈T (t)u,f 〉

t
� 0.

Thus 0< 〈w,f 〉 = 〈λu,f 〉 − 〈Au,f 〉 = −〈Au,f 〉 � 0, a contradiction.
Note that

etAu = etA

∞∫
0

e−λsesAw ds =
∞∫

0

e−λse(t+s)Aw ds = eλt

∞∫
t

e−λrerAw dr

� eλtR(λ,A)w = eλtu.

Thus the space

Eu := {
h ∈ E: |h| � m · u for somem ∈ N

}
is invariant underetA for all t � 0. The mappingφ :L∞(Ω) → Eu, g → gu is an isomor-
phism.

Moreover,etV φ = φetV (t � 0).
Let S(t)g = 1

u
etA(ug) for g ∈ L∞(Ω). Then S(t)S(s) = S(t + s) for s, t > 0 and

(S( t
n
)e

t
n
V )ng = 1

u
(e

t
n
Ae

t
n
V )n(ug) for g ∈ L∞(Ω), t > 0, n ∈ N. Thus, by Lemma 2.2

for g = f
u

,(
e

t
n
Ae

t
n
V
)n

f = u
(
S(t/n)e

t
n
V
)n

g

� u
((

S(t/n)e
t
n
pV

)n
g
)1/p · (S(t)g

)1/p′

= u

(
1

u

(
e

t
n
Ae

t
n
pV

)n
ug

)1/p(
1

u
etA(ug)

)1/p′

= uu−1/p
((

e
t
n
Ae

t
n
pV

)n
f

)1/p
u−1/p′(

etAf
)1/p′

= ((
e

t
n
Ae

t
n
pV

)n
f

)1/p(
etAf

)1/p′

which proves the claim. �
Definition 2.3. A measurable functionV :Ω → [0,∞] is calledadmissible(with respect
to A) if for t � 0, f ∈ E,

lim
n→∞ et(A+Vn)f =: S(t)f

exists inE and defines aC0-semigroupsS on E. HereVn(x) = inf{V (x),n}. In that case
we denote byA + V the generator ofS and writeet(A+V ) := S(t), t � 0.

Admissible potentials were studied systematically by Voigt [11,12]. Below we will c
sider some concrete examples.

Now we can formulate the general version of Hölder’s inequality for admissible po
functions, which follows immediately from Proposition 2.1.
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Theorem 2.4 (The potential Hölder’s inequality). Let E = Lr(Ω), 1 � r < ∞, with a
σ -finite measure space(Ω,Σ,µ).

Let V :Ω → [0,∞] be a measurable1 < p < ∞, 1
p

+ 1
p′ = 1. Assume thatpV is

admissible. Letf ∈ E+. Then

et(A+V )f �
(
et(A+pV )f

)1/p(
etAf

)1/p′
(6)

µ-a.e.

We note a consequence in terms of norms instead of pointwise inequalities.

Corollary 2.5. Let V :Ω → [0,∞] be measurable,1 < p < ∞, 1
p

+ 1
p′ = 1. Assume tha

pV is admissible. Then∥∥et(A+V )f
∥∥

r
�

∥∥et(A+pV )f
∥∥1/p

r
· ∥∥etAf

∥∥1/p′
r

for all 0� f ∈ Lr(Ω). Consequently,∥∥et(A+V )
∥∥

L(Lr )
�

∥∥et(A+pV )
∥∥1/p

L(Lr )
· ∥∥etA

∥∥1/p′
L(Lr )

.

Proof. Let q1 = p · r , q2 = p′ · r . Thenq1 > 1 and 1
q1

+ 1
q2

= 1
r
. Applying Hölder’s in-

equality to (6) we obtain for 0� f ∈ Lr(Ω),∥∥et(A+V )f
∥∥

r
�

∥∥(
et(A+pV )f

)1/p∥∥
q1

· ∥∥(
etAf

)1/p′∥∥
q2

= ∥∥et(A+pV )f
∥∥1/p

r

∥∥etAf
∥∥1/p′

r
. �

3. Ultracontractivity and Gaussian estimates

Let (etA)t�0 be a positiveC0-semigroup onE = Lr(Ω) where 1� r < ∞ is fixed.
Assume that the semigroup isultracontractive of asymptotic dimensiond > 0, i.e., there
exists a constantc > 0 such that∥∥etA

∥∥
B(Lr ,L∞)

� ct−
d
2

1
r (0< t � 1). (7)

We choosec such that also∥∥etA
∥∥

B(Lr )
� c (0 < t � 1). (8)

By the Riesz–Thorin theorem it follows from (7), (8) that forr � q � ∞,∥∥etA
∥∥

B(Lr ,Lq)
� ct

− d
2 ( 1

r
− 1

q
)

(0< t � 1). (9)

Proposition 3.1.LetV :Ω → [0,∞] be measurable andp > r such thatpV is admissible.
Let

cp := sup
∥∥et(A+pV )

∥∥
B(Lr )

.

0<t�1
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-

Then∥∥et(A+V )
∥∥

B(Lr ,Lp)
� c1/p′

c
1/p
p t

− d
2 ( 1

r
− 1

p
)

(0 < t � 1). (10)

Proof. First case: r = 1. By the potential Hölder’s inequality, Theorem 2.4, for 0�
f ∈ L1,

et(A+V )f �
(
et(A+pV )f

)1/p(
etAf

)1/p′

�
(
et(A+pV )f

)1/p
c1/p′

t
− d

2
1
p′ ‖f ‖1/p′

1 .

Hence∥∥et(A+V )f
∥∥

Lp �
∥∥et(A+pV )f

∥∥1/p

L1 c1/p′
t
− d

2 (1− 1
p

)‖f ‖1/p′
1

� c
1/p
p c1/p′

t
− d

2 (1− 1
p

)‖f ‖1

for 0< t � 1.
Second case: r > 1. Letq = p · r ′ − r ′. Thenr < p < q. We now use (8) and (9).
Let 0� f ∈ Lr , 0< t � 1.

By the potential Hölder’s inequality,(et (A+V )f )p � (et (A+pV )f )(etAf )
p

p′ .
Since p

p′ · r ′ = q, it follows from Hölder’s inequality that

∫
Ω

(
et(A+V )f

)p �
∥∥et(A+pV )f

∥∥
r

(∫
Ω

(
etAf

)q
)1/r ′

� cp‖f ‖r

∥∥etAf
∥∥q/r ′

q

� cp‖f ‖rc
q/r ′

t
− d

2 ( 1
r
− 1

q
)

q

r′ ‖f ‖q/r ′
r .

Hence, for 0< t � 1,∥∥et(A+pV )f
∥∥

p
� c

1/p
p ‖f ‖1/p

r c1/p′
t
− d

2 ( 1
r
− 1

q
) 1

p′ ‖f ‖1/p′
r

� c
1/p
p ‖f ‖rc

1/p′
t
− d

2 ( 1
r
− 1

p
)
. �

We recall the following converse of the Riesz–Thorin theorem (see [1, 7.3.2]), d
Coulhon [13].

Extrapolation Theorem 3.2. Assume that(9) holds wherer < q < ∞. Assume further
more that

sup
0<t�1

∥∥etA
∥∥

B(L∞)
< ∞.

Then there exists a constantc′ � 0 such that∥∥etA
∥∥

B(Lr ,L∞)
� c′t−

d
2r (0 < t � 1).

Applying this Extrapolation Theorem to the semigroup(et (A+V ))t�0, we deduce from
Proposition 3.1 the following.
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Theorem 3.3.Let (etA)t�0 be an ultracontractive positiveC0-semigroup of asymptoti
dimensiond > 0 on E = Lr(Ω). Let V :Ω → [0,∞] be measurable such thatpV is
admissible for somep > r .

Assume that

sup
0<t�1

∥∥et(A+V )
∥∥

B(L∞)
< ∞. (11)

Then(et (A+V ))t�0 is ultracontractive of asymptotic dimensiond .

Alternatively, instead of (11) we may assume that the constantscp of Proposition 3.1
can be controlled:

Proposition 3.4.Let the assumption of Proposition3.1 be satisfied, but assume thatpV

is admissible for allp > 0. If limp→∞c
1/p
p < ∞, then(et (A+V ))t�0 is ultracontractive of

asymptotic dimensiond .

This follows directly from Proposition 3.1.
Next we assume thatr = 1.
Then the ultracontractivity assumption (7) means thatetA is given by a kernelKA

t ∈
L∞(Ω × Ω) via(

etAf
)
(x) =

∫
Ω

KA
t (x, y)f (y) dµ(y) x-a.e., t > 0,

where

0� KA
t (x, y) � ct−d/2 (0< t � 1),

and consequently

0� KA
t (x, y) � c1t

−d/2eωt (t > 0)

for someω > 0 and some constantc1 > 0.
Now we want to estimate the kernel ofet(A+V ) by the free kernelKA

t .
We assume now thatΩ ⊂ R

d is open and thatµ is the Lebesgue measure.

Lemma 3.5.Let k1, k2 :Ω → [0,∞) be measurable and bounded such that∫
Ω

k1(y)f (y) dµ(y) �
(∫

Ω

k2(y)f (y) dµ(y)

)1/q

for all 0� f ∈ L1(Ω), ‖f ‖1 � 1 where1� q < ∞.
Thenk1(y) � k2(y)1/q , µ-a.e.

Proof. By Lebesgue’s Differentiation Theorem (see, e.g., [6, 1.7.1]),

k1(x) = lim
r↓0

1

|Br(x)|
∫

Br(x)

k1(y) dµ(y) � lim
r↓0

(
1

|Br(x)|
∫

Br(x)

k2(y) dµ(y)

)1/q

= k2(x)1/q x-a.e. �
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Now we continue to assume (7), (8) forr = 1. Let 0� V be measurable such thatpV

is admissible for somep > 1. Assume (11). Thus(et (A+V ))t�0 is an ultracontractiveC0-
semigroup onL1(Ω) by Theorem 3.3. Thuset(A+V ) is given by a kernelKA+V

t . By the
potential Hölder’s inequality for 0� f ∈ L1(Ω) with ‖f ‖1 � 1 we have∫

Ω

KA+V
t (x, y)f (y) dy = (

et(A+V )f
)
(x) �

(
et(A+pV )f

)1/p
(x)

(
etAf

)1/p′

� ct
− d

2p

(∫
Ω

KA
t (x, y)f (y) dy

)1/p′

.

It follows from Lemma 3.5 that for almost allx ∈ Ω

KA+V
t (x, y) � ct

− d
2p KA

t (x, y)1/p′

for almost ally ∈ Ω , 0< t � 1.
By Fubini’s theorem this means that

KA+V
t (x, y) � ct

− d
2p KA

t (x, y)1/p′
(12)

for almost all(x, y) ∈ Ω × Ω .
Now we assume that(etA)t�0 admits aGaussian estimate(see [2,3]), i.e., there exis

a constant such that

KA
t (x, y) � const· t− d

2 e−|x−y|2/bt (13)

(0< t � 1) for someb > 0. Then it follows from (12) that

KA+V
t (x, y) � const· t− d

2 e−|x−y|2/p′bt

(0< t � 1). Thus we have proved the following.

Theorem 3.6.Assume that(etA)t�0 satisfies a Gaussian estimate. LetV :Ω → R be mea-
surable such thatpV is admissible for somep > 1 andsup0<t�1 ‖et(A+V )‖B(L∞) < ∞.

Then(et (A+V ))t�0 also satisfies a Gaussian estimate.

In Section 5 we will show by an example that in Theorem 3.6 it does not suffice thV

is admissible.
We remark that the Gaussian estimate (13) implies that every operatoretA is given by a

kernelKA
t such that

0� KA
t (x, y) � const· t− d

2 e−|x−y|2/bt eωt

for all t � 0 and someω � 0. Moreover, Gaussian estimates have interesting consequ
for regularity and spectral behaviour (see [2,3,8]).
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4. Schrödinger operators

We first consider the Gaussian semigroup(U(t))t�0 onL1(Rd) given by

(
U(t)f

)
(x) = 1

(2πt)d/2

∫
Rd

e−|x−y|2/2t f (y) dy.

The generator is12∆1, where∆1 is the Laplacian onL1(Rd) with domainD(∆1) = {f ∈
L1(Rd): ∆f ∈ L1(Rd)}. Following Voigt [11,12], we denote by

K̂d =
{
V ∈ L1,loc: ‖V ‖

K̂d
:= esssup

x∈Rd

∫
|x−y|�1

∣∣gd(x − y)
∣∣∣∣V (x)

∣∣dy < ∞
}

theextended Kato class, and forV ∈ K̂d

cd(V ) := lim
α↓0

(
esssup
x∈Rd

∫
|x−y|�α

∣∣gd(x − y)
∣∣∣∣V (x)

∣∣dy

)
,

where

gd(x) =




|x| if d = 1,
1
π

ln(x) if d = 2,

− Γ (d/2)

(d−2)πd/2 |x|−d/2 if d � 3.

The Kato classKd is then defined byKd := {V ∈ K̂d : cd(V ) = 0}. These two classe
of functions can be alternatively described as follows (see [11, 5.1]). A measurable
tion V is in K̂d if and only if Vf ∈ L1(Rd) for all f ∈ D(A1). Moreover,Kd = {V ∈
K̂d : ‖V R(λ,A1)‖L(L1) → 0 (λ → ∞)}. Here we identifyV with the multiplication oper-
atorf → V · f from D(∆1) into L1(Rd).

Theorem 4.1.Let0� V ∈ K̂d andcd(V ) < 1. Then1
2∆1+V with domainD(∆1)∩D(V )

generates a positiveC0-semigroup which admits Gaussian estimates.

Proof. It follows from [11, Remarks 5.2(b)] thatpV is admissible forp > 1 such that
cd(pV ) < 1. Moreover, by, e.g., [5, Theorem 2.9],

sup
0<t�1

∥∥et( 1
2∆1+V )

∥∥
B(L∞)

< ∞.

Now it follows from Theorem 3.10 that the semigroup(et ( 1
2∆1+V ))t�0 admits Gaussian

estimates. [11, Theorem 5.3] implies that the generator of the semigroup(et ( 1
2∆1+V ))t�0

is the operator12∆1 +V with domainD(1
2∆1 +V ) = {f ∈ D(∆1):

∫ |f |V dx < ∞}. �
Next we will assume that(etA)t�0 is a positiveC0-semigroup onL1(Ω) satisfying a

Gaussian estimate, whereΩ ⊂ R
d is an open set. This is the case ifA is a uniformly



W. Arendt, M. Demuth / J. Math. Anal. Appl. 316 (2006) 652–663 661

ved
e of
z [7]

.
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o
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elliptic operator with measurable coefficients. More precisely, letaij , bi, ci, c0 ∈ L∞(Ω),
i, j = 1, . . . , d , be real coefficients and assume that

d∑
i,j=1

aij (x)ξiξj � α|ξ |2 (x ∈ Ω)

for all ξ ∈ R
n, whereα > 0. Consider the form

a(u, v) =
∫
Ω

(
d∑

i,j=1

aijDiuDjv +
d∑

i=1

(biDivu + ciDiuv + c0uv)

)
dx

with form domainD(a) = H 1
0 (Ω) or D(a) = H 1(Ω).

Denote byA2 the associated operator onL2(Ω). In the case whereD(a) = H 1
0 (Ω) we

do not assume any regularity condition forΩ , if D(a) = H 1(Ω), then we assume theex-
tension property(i.e., for eachu ∈ H 1(Ω) there exists̃u ∈ H 1(Rd), such that̃u|Ω = u, see
[1, 7.3.6]). Then the semigroup(e−tA2)t�0 admits Gaussian estimates. This was pro
in [3] for bi, ci ∈ W1,∞ and in the general case by Daners [4], where in the cas
D(a) = H 1(Ω) a stronger version of the extension property is assumed. Ouhaba
showed recently that the weak form of the extension property suffices (see also [8])

Since(e−tA2)t�0 satisfies Gaussian estimates, the semigroup extrapolates toLp(Ω)

and we denote by(e−tAp )t�0 the extrapolated semigroup, 1� p < ∞. Now we consider
a potential 0� V ∈ Kd . Because of the Gaussian estimate, the potentialV is not only
admissible for the Laplacian onL1(Rd) but also for the general elliptic operator conside
here. In fact, we have the following result.

Theorem 4.2. Let 0 � V ∈ Kd . Then V is admissible for−A1 and the semigroup
(e−t (A1+V ))t�0 has a Gaussian estimate.

Proof. (a) Denote byG the Gaussian semigroup onL1(Rd) with generator12∆1. Then
the hypothesis implies thate−tA1 � cG(bt)eωt for all t > 0 and for someω ∈ R+, c > 0,
b > 0 (see [3]). Taking Laplace transforms we see thatR(λ,A1) � cR((λ − ω)/b, 1

2∆1).
Since limλ→∞ ‖V R(λ, 1

2∆1)‖L(L1) = 0, by [11, 4.7 and 2.1(b)], it follows that als
limλ→∞ ‖V R(λ,A1)‖L(L1) = 0. Then by [12, 4.7, 4.5],pV is admissible with respec
to A1 for all p > 0.

(b) In order to apply Theorem 3.6, we have to show that

sup
0<t�1

∥∥et(A1+V )
∥∥

B(L∞)
< ∞.

For this, sinceV is admissible, it suffices to show that‖et(A1+Vn)f ‖B(L∞) � c for all n ∈ N

and all 0� f ∈ L1 ∩ L∞, ‖f ‖∞ � 1. Consider the adjoint forma∗ given bya∗(u, v) =
a(v,u) with form domainD(a∗) = D(a). The associated operator isA∗

2, the adjoint ofA2.
Then the adjoint ofA2 + Vn is A∗

2 + Vn. SinceV is admissible also forA∗
1 (the negative

generator of the extrapolated semigroup of(e−tA2)t�0 to L1) it follows from (a) that∥∥et(−A∗
2+Vn)g

∥∥
L1 � c

for all f ∈ L1 ∩ L∞, ‖f ‖L1 � 1, n ∈ N, t � 0. This implies the claim by duality. �
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5. Unbounded drift

As a further application we consider Schrödinger semigroups with unbounded dri
b = (b1, . . . , bd) :Rd → R

d beC1 functions and letV0 :Rd → [0,∞) bec continuous. Let
1� r < ∞. Assume thatV0 satisfies the condition

divb

r
� V0 + c (14)

for some constantc � 0. Define the maximal operator

Ar,maxu = ∆u −
d∑

j=1

bjDju − V0u

onLr(Rd) with domain

D(Ar,max) := {
u ∈ W

1,r
loc

(
R

d
)
: Ar,maxu ∈ Lr

(
R

d
)}

.

Then it is shown in [1] thatAr,max has a (unique) restrictionAr which generates a minima
positiveC0-semigroup onLr(Rd). Note that the drift functionsbj may be unbounded. I
that case the potentialV0 is needed for compensation. Now assume thatV0 satisfies the
stronger condition

divb � βV0 + c (15)

for someβ < 1 and somec � 0, and also∣∣b(x)
∣∣ � γV0(x)1/2 (

x ∈ R
d
)
. (16)

Then it is shown in [1] that theC0-semigroup(etAr )t�0 admits Gaussian estimates. Con
quently, it has an extrapolation semigroup(etA1)t�0 onL1(Rd). The previous results allow
us to add a positive potentialV . In fact, as in Section 4 we obtain the following result.

Theorem 5.1.Let 0� V ∈ Kd . ThenV is admissible forA1 and the semigroup(
et(A1+V )

)
t�0

admits an upper Gaussian bound.

The proof is the same as for Theorem 4.2. Note that for the duality argument we
the complete operator (also with coefficientscj as in the case considered above). We re
to [1, Section 5].

Note added in proof

We are grateful to V. Liskevich who pointed out that Hölder’s inequality (6) appears
more special situation in: Y. Semenov, Stability ofLp-spectrum of generalized Schröding
operators and equivalence of Green’s function, Int. Math. Res. Not. 12 (1997) 573
inequality (6.2).



W. Arendt, M. Demuth / J. Math. Anal. Appl. 316 (2006) 652–663 663

tes, in:
ol. 1,

itions,

(2000)

, Basel,

ton, FL,

omplex

(1986)

.

References

[1] W. Arendt, G. Metafune, D. Pallara, Schrödinger operators with unbounded drift, preprint.
[2] W. Arendt, Semigroups and evolution equations: Functional calculus, regularity and kernel estima

C.M. Dafermos, E. Feireisl (Eds.), Handbook of Differential Equations. Evolutionary Equations, v
Elsevier, 2004, pp. 1–85.

[3] W. Arendt, A.F.M. ter Elst, Gaussian estimates for second order elliptic operators with boundary cond
J. Operator Theory 38 (1997) 87–130.

[4] D. Daners, Heat kernel estimates for elliptic operators with boundary conditions, Math. Nachr. 217
13–41.

[5] M. Demuth, J. van Casteren, Stochastic Spectral Theory for Selfadjoint Feller Operators, Birkhäuser
2000.

[6] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Ra
1992.

[7] E.M. Ouhabaz, Gaussian upper bounds for heat kernels of second order elliptic operators with c
coefficients on arbitrary domains, J. Operator Theory 51 (2004) 335–360.

[8] E.M. Ouhabaz, Analysis of Heat Equations on Domains, Princeton Univ. Press, Oxford, 2005.
[9] W. Rudin, Functional Analysis, McGraw–Hill, 1986.

[10] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982) 447–526.
[11] J. Voigt, Absorption semigroups, their generators, and Schrödinger semigroups, J. Funct. Anal. 68

167–205.
[12] J. Voigt, Absorption semigroups, J. Operator Theory 20 (1988) 117–131.
[13] Th. Coulhon, Dimension à l’infini d’un semi-groupe analytique, Bull. Sci. Math. 114 (1990) 485–500


