Outgrowths of Hardy's Inequality

Wolfgang Arendt, Gisèle Ruiz Goldstein, and Jerome A. Goldstein

Dedicated to Rainer Nagel on the occasion of his 65th birthday

1. Introduction and main results

Scaling plays an important role in quantum mechanics and other areas of applied mathematics. When a physicist says that "kinetic energy scales like λ^{2*} , she means the following. The kinetic energy operator is the negative Laplacian, so consider the Laplacian Δ as a selfadjoint operator on the Hilbert space $L^2(\mathbb{R}^N)$. For $\lambda > 0$ let $U(\lambda)$ be the normalized scaling operator defined by

$$\left(U\left(\lambda
ight) f
ight) (x) = \lambda^{rac{N}{2}} f\left(\lambda x
ight), \qquad f\in L^{2}\left(\mathbb{R}^{N}
ight), \,\,x\in \mathbb{R}^{N}.$$

Then $U(\lambda)$ is unitary on $L^2(\mathbb{R}^N)$ and $U(\lambda)^{-1} = U(\frac{1}{\lambda})$. "The Laplacian scales like λ^2 " means

$$U(\lambda)^{-1} \Delta U(\lambda) = \lambda^2 \Delta$$

holds for all $\lambda > 0$, as is easy to verify.

Now we proceed somewhat formally and do not make precise statements about domains. The operator representing multiplication by $\frac{1}{|x|^p}$ scales like λ^p , in the sense that for

$$\left(M_{p}f
ight)\left(x
ight)=\left|x
ight|^{-p}f\left(x
ight),\qquad \quad f\in L^{2}\left(\mathbb{R}^{N}
ight),\,\,x\in\mathbb{R}^{N},$$

we have

$$U(\lambda)^{-1} M_p U(\lambda) = \lambda^p M_p$$

for all $\lambda > 0$. Consequently

(1.1)
$$U(\lambda)^{-1} \left(\Delta + \frac{c}{|x|^2} \right) U(\lambda) = \lambda^2 \left(\Delta + \frac{c}{|x|^2} \right)$$

holds for all $\lambda > 0$ and all $c \in \mathbb{R}$. Now let $A_c^0 = \Delta + \frac{c}{|x|^2}$ on $D(A_c^0) = C_c^{\infty}(\mathbb{R}^N) = \mathcal{D}(\mathbb{R}^N)$ if $N \ge 5$ and $D(A_c^0) = C_c^{\infty}(\mathbb{R}^N \setminus \{0\}) = \mathcal{D}(\mathbb{R}^N \setminus \{0\})$ if $N \le 4$. Let A_c

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A05, 47D08, 47F05, 35B05; Secondary 34G10, 47D03, 47D06.

Key words and phrases. Inverse square potential, Hardy's inequality, Cafferelli-Kohn-Nirenberg inequality, critical constant.

be a selfadjoint extension of A_c^0 for which (1.1) holds on the domain of A_c . By (1.1) the spectrum of A_c is preserved by multiplication by a positive number. Also,

$$\left(\left(\Delta + rac{c}{\left|x
ight|^2}
ight) arphi
ight| arphi
ight) = - \left\|
abla arphi
ight\|^2 + c \int_{\mathbb{R}^N} rac{\left| arphi \left(x
ight)
ight|^2}{\left| x
ight|^2} \ dx$$

is negative for $\varphi \neq 0$ and $supp(\varphi)$ shifted far away from the origin, thus, $\sigma(A_c) \supset (-\infty, 0]$. Thus $\sigma(A_c) = (-\infty, 0]$ or $\sigma(A_c) = \mathbb{R}$. If $(A_c^0 \varphi | \varphi) \leq 0$ for all $\varphi \in C_c^\infty(\mathbb{R}^N \setminus \{0\})$, let $-A_c$ be the Friedrichs extension of $-A_c^0$. Then $U(\lambda)^{-1} A_c U(\lambda) = \lambda^2 A_c$ for $\lambda > 0$ and hence $\sigma(A_c) = (-\infty, 0]$.

Hardy's inequality helps to explain how the spectrum of A_c depends on c. The usual way to express Hardy's inequality is

$$\int_{\mathbb{R}^{N}}\left|
abla u\left(x
ight)
ight|^{2}~dx\geq\left(rac{N-2}{2}
ight)^{2}\int_{\mathbb{R}^{N}}rac{\left|u\left(x
ight)
ight|^{2}}{\left|x
ight|^{2}}~dx$$

for all $u \in H^1_{loc}(\mathbb{R}^N)$ for which the right hand side is finite. The constant $\left(\frac{N-2}{2}\right)^2$ is maximal in all dimensions (including N = 2). Thus, A_c is nonpositive if and only if $c \leq \left(\frac{N-2}{2}\right)^2$.

Thus the Cauchy problem

$$egin{array}{rcl} rac{\partial u}{\partial t}&=&\Delta u+rac{c}{\leftert x
ightert ^{2}}u\qquad &x\in \mathbb{R}^{N},\;t\geq 0\ u\left(x,0
ight)&=&f\left(x
ight)\qquad &x\in \mathbb{R}^{N}, \end{array}$$

is well-posed (for $f \in L^2(\mathbb{R}^N)$) if and only if $c \leq \left(\frac{N-2}{2}\right)^2$, in which case it is governed by a positive contraction semigroup.

It is natural to ask about L^p versions of this result and about other situations in which scaling plays a role and a critical dimension dependent constant appears. The purpose of this paper is to answer these questions.

Our main result is as follows.

THEOREM 1.1. Let $\beta \in \mathbb{R}$, $1 , <math>c \in \mathbb{R}$ and let

$$Bu=B_{pceta}u:=\Delta u-rac{eta}{|x|}rac{\partial u}{\partial r}+rac{c}{|x|^2}u$$

with domain $\mathcal{D}_0 = \mathcal{D}\left(\mathbb{R}^N \setminus \{0\}\right)$ if $N \geq 2$, $\mathcal{D}_0 = \mathcal{D}\left(0,\infty\right)$ if N = 1, acting on $L^p_\beta = L^p\left(\mathbb{R}^N, |x|^{-\beta} dx\right)$ if $N \geq 2$ and $L^p_\beta = L^p\left((0,\infty), |x|^{-\beta} dx\right)$ if N = 1; here $\frac{\partial u}{\partial r} = \nabla \cdot \frac{x}{|x|}$ is the radial derivative. Then a suitable extension of $B_{pc\beta}$ generates a (C_0) contraction semigroup on L^p_β if

(1.2)
$$c \leq (N-\beta-2)^2 \left(\frac{p-1}{p^2}\right) = \left(\frac{N-\beta-2}{2}\right)^2 \frac{4}{pp'} =: K(N,p,\beta).$$

If $2 \le p < \infty$ and $c > K(N, p, \beta)$, then $B_{pc\beta}$ has no quasidissipative extension on L^p_{β} .

Specializing Theorem 1.1 to $\beta = 0$ yields

COROLLARY 1.2. Let 1 . Then

$$A = \Delta + rac{c}{\left|x
ight|^2}$$

on $\mathcal{D}_0 = \mathcal{D}(\mathbb{R}^N \setminus \{0\})$ if $N \ge 2$, $\mathcal{D}_0 = \mathcal{D}(0, \infty)$ if N = 1, has an m-dissipative extension on L^p if

(1.3)
$$c \leq (N-2)^2 \left(\frac{p-1}{p^2}\right) =: K(N,p);$$

 $L^{p}=L^{p}\left(\mathbb{R}^{N}\right) \text{ if } N\geq2, \ L^{p}=L^{p}\left(0,\infty\right) \text{ if } N=1. \ \text{ For } c>K\left(N,p\right),$

$$\sup\left\{\operatorname{Re}\left\langle Au,J_{p}\left(u\right)\right\rangle:u\in\mathcal{D}\left(A\right),\left\Vert u\right\Vert _{p}=1\right\}=\infty$$

and so A has no quasidississipative extension, provided $2 \leq p$.

This follows from Theorem 1.1 by taking $\beta = 0$; here K(N, p) = K(N, p, 0)and J_p is the duality map of L^p . Note that

$$K\left(N,2,eta
ight)=\left(rac{N-2-eta}{2}
ight)^{2}.$$

Throughout this paper we consider real vector spaces.

ACKNOWLEDGEMENT . The authors are grateful to H. Vogt for several helpful discussions.

2. Hardy's inequality and the inverse square potential

The aim of this section is to study the semigroup generated by $\Delta + \frac{c}{|x|^2}$ for suitable c. We let $\mathcal{D}_0 = \mathcal{D}(\mathbb{R}^N \setminus \{0\})$.

THEOREM 2.1. (Hardy's Inequality) One has

$$\left(rac{N-2}{2}
ight)^2\int rac{\left|u
ight|^2}{\left|x
ight|^2}\,dx\leq\int \left|
abla u
ight|^2\,dx$$

for all $u \in \mathcal{D}_0$. The constant $\left(\frac{N-2}{2}\right)^2$ is optimal.

Here the integral is taken over \mathbb{R}^N if $N \ge 2$ and over $(0, \infty)$ if N = 1.

Theorem 2.1 is well-known. We give a proof of the inequality for the convenience of the reader.

PROOF. Let $u \in \mathcal{D}_0$, u real.

a) Let $N \geq 3$. Then

$$egin{array}{rcl} u\left(x
ight)^2&=&-\int_1^\infty rac{d}{d\lambda} u\left(\lambda x
ight)^2 \ d\lambda\ &=&-2\int_1^\infty u\left(\lambda x
ight) \
abla u\left(\lambda x
ight) \
abla u\left(\lambda x
ight) \cdot x \ d\lambda. \end{array}$$

Hence

$$\begin{split} \int \frac{|u|^2}{|x|^2} \, dx &= -2 \int \int_1^\infty \frac{u\left(\lambda x\right)}{|x|^2} \nabla u\left(\lambda x\right) \cdot x \, d\lambda \, dx \\ &= -2 \int_1^\infty \int \frac{\lambda^2 u\left(y\right)}{|y|^2} \nabla u\left(y\right) \cdot \frac{y}{\lambda} \, \frac{dy}{\lambda^N} \, d\lambda \\ &= -2 \int \int_1^\infty \lambda^{-N+1} \, d\lambda \, \frac{u\left(y\right)}{|y|} \nabla u\left(y\right) \cdot \frac{y}{|y|} \, dy \\ &= \frac{2}{-N+2} \int \frac{u\left(y\right)}{|y|} \nabla u\left(y\right) \cdot \frac{y}{|y|} \, dy \\ &\leq \frac{2}{N-2} \left(\int \frac{u\left(y\right)^2}{|y|^2} \, dy\right)^{\frac{1}{2}} \left(\int |\nabla u\left(y\right)|^2 \, dy\right)^{\frac{1}{2}}. \end{split}$$

Hence,

$$\left(\int \frac{u(x)^2}{|x|^2} dx\right)^{\frac{1}{2}} \le \left(\frac{2}{N-2}\right) \left(\int |\nabla u(x)|^2 dx\right)^{\frac{1}{2}}.$$

b) For N=1, $u \in \mathcal{D}_0$,

$$u(x)^{2} = \int_{0}^{1} \frac{d}{d\lambda} u(\lambda x)^{2} d\lambda$$

Now use the same arguments as in part a).

For N=1, \mathcal{D}_0 is dense in $H_0^1(\mathbb{R}\setminus\{0\}) = \{u \in H^1(\mathbb{R}) : u(0) = 0\}$, which makes sense since $H_0^1(\mathbb{R}) \subset C(\mathbb{R})$. By considering even functions in $H_0^1(\mathbb{R}\setminus\{0\})$, we can write the one dimensional Hardy inequality as

$$\int_0^\infty \left(u'\right)^2 \ dx \ge \frac{1}{4} \int_0^\infty \frac{u^2}{x^2} \ dx$$

for all $u \in H_0^1 := H_0^1(0, \infty)$.

From now on, integrals (as in (2.1)) will be over \mathbb{R}^N if $N \ge 2$ and over $(0, \infty)$ if N = 1. And for N = 1, \mathcal{D}_0 will henceforth denote $\mathcal{D}(0, \infty)$.

If N = 1, then \mathcal{D}_0 is dense in H_0^1 which makes sense, since $H_0^1(0,\infty) \subset C^b[0,\infty)$. If $N \geq 2$, then \mathcal{D}_0 is dense in $H^1(\mathbb{R}^N)$ (cf. [3, Lemma 2.4]). Consequently, the inequality remains true for all $u \in H^1(\mathbb{R}^N)$ if $N \geq 3$ and for all $u \in H_0^1(0,\infty)$ if N = 1.

We now sketch why the constant in Hardy's inequality is optimal. Let $x \in \mathbb{R}^N$ (x > 0 if N = 1) and let r = |x|. For $\varepsilon > 0$, a > 0, $b \ge 0$, let

$$\phi\left(r\right) = \begin{cases} \varepsilon^{-a-b}r^{b} & if \quad 0 \le r \le \varepsilon \\ r^{-a} & if \quad \varepsilon \le r \le 1 \\ 2-r & if \quad 1 \le r \le 2 \\ 0 & if \quad 2 \le r. \end{cases}$$

Then, letting $\psi(x) = \phi(r)$ and using $|\nabla \psi|^2 = (\phi')^2$, we can show that, given $\dot{\delta} > 0$,

$$\int |\nabla \psi|^2 < \left[\left(\frac{N-2}{2} \right)^2 + \delta \right] \int \frac{\psi^2}{|x|^2}$$

provided that ε , a, and b are suitably chosen. (We may choose b = 0 for $N \ge 3$, but b > 0 is necessary for N = 1, 2.) In fact, given $c > \left(\frac{N-2}{2}\right)^2$ and M > 0, we may choose ε , a, b so that

$$\frac{\int \left|\nabla\psi\right|^2 - c\int \frac{\left|\psi\right|^2}{\left|x\right|^2}}{\int \psi^2} < -M.$$

To see how to choose ε , a, b in this way (in a much more general setting), see [10].

In the following we use the notion of positive linear forms. Given a real Hilbert space H, a positive form on H is a bilinear mapping $a: D(a) \times D(a) \to \mathbb{R}$ such that

$$a\left(x,y
ight)=a\left(y,x
ight) \qquad \qquad x,y\in D\left(a
ight)$$

and

 $a(x,x) \ge 0$ $x \in D(a)$.

Here D(a) is a subspace of H, the *domain* of the form a. The form is called *closed* if D(a) is complete for the norm $||u||_a = (||u||_H^2 + a(u,u))^{\frac{1}{2}}$. The form is called *closable* if the continuous extension of the injection $D(a) \to H$ to the completion $D(\overline{a})$ of D(a) is injective. In that case a has a continuous extension $\overline{a}: D(\overline{a}) \times D(\overline{a}) \to \mathbb{R}$ that is a positive closed form.

If a is a closed densely defined positive form on H, the associated operator A on H is defined by

$$D(A) = \{u \in D(a) : \text{there is a } v \in H \text{ such that}$$

 $a(u, \varphi) = (v|\varphi)_H \text{ for all } \varphi \in D(a) \},$
 $Au = v.$

The operator A is selfadjoint and form positive. Thus -A generates a (C_0) contraction semigroup $(e^{-tA})_{t>0}$ on H.

In the following we let $\overline{L}^2 := L^2(\mathbb{R}^N)$ if $N \ge 2$ and $L^2 = L^2(0,\infty)$ if N = 1. If $H = L^2$, then the semigroup e^{-tA} is submarkovian (i.e. $0 \le f \le 1$ implies $0 \le e^{-tA}f \le 1$) if and only if $u \in D(a)$ implies $u \land 1 \in D(a)$ and $a\left(u \land 1, (u-1)^+\right) \ge 0$. In that case $\|e^{-tA}f\|_p \le \|f\|_p$ for all $f \in L^p \cap L^2$. Now for $c \in \mathbb{R}$, consider the positive form a_c on L^2 given by

$$a_{c}\left(u,v
ight)=\int
abla u\cdot
abla v\;dx-c\intrac{u^{2}}{\left|x
ight|^{2}}dx,$$

 $D(a) = H_0^1$, where $H_0^1 := H_0^1(\mathbb{R}^N)$ if $N \ge 2$ and $H_0^1 := H_0^1(0, \infty)$ if N = 1. We investigate the question: "For which real c is the form a_c closed or closable"?

PROPOSITION 2.2. Let $c < \left(\frac{N-2}{2}\right)^2$. Then the form a_c given by $D(a_c) = H_0^1$,

$$a_{c}\left(u,v
ight)=\int
abla u\cdot
abla v\,\,dx-c\intrac{uv}{\left|x
ight|^{2}}dx,$$

is positive and closed.

PROOF. Let $q = c \left(\frac{N-2}{2}\right)^{-2} < 1$. Then by Hardy's inequality

$$egin{array}{rcl} a_c\left(u
ight)&=&q\left\{\int |
abla u|^2 \ dx-\left(rac{N-2}{2}
ight)^2\int rac{u^2}{|x|^2} \ dx
ight\}+(1-q)\int |
abla u|^2 \ dx\ &\geq& (1-q)\int |
abla u|^2 \ dx. \end{array}$$

Thus, $a_c(u, u) + \|u\|_{L^2}^2 \ge (1-q) \|u\|_{H^1}^2$. This shows that $\|\cdot\|_{a_c}$ is equivalent to $\|\cdot\|_{H^1}$.

For the critical constant we have the following result.

PROPOSITION 2.3. For $c_N = \left(\frac{N-2}{2}\right)^2$, $N \neq 2$, the form a_{c_N} is closable.

PROOF. Define the symmetric operator B on L^2 by $D(B) = \mathcal{D}_0$,

$$Bu = \Delta u + c_N rac{u}{\left|x
ight|^2}.$$

It is well known that the form b given by $b(u,v) = -(Bu|v)_{L^2}$, D(b) = D(B) is closable (and the operator associated with \overline{b} is called the Friedrichs extension of b). Observe that $b(u,v) = a_{c_N}(u,v)$ for $u, v \in \mathcal{D}_0$. Since \mathcal{D}_0 is dense in H_0^1 , it follows that $H_0^1 \subset D(\overline{b})$ and $a_{c_N} = \overline{b}$ on $H_0^1 \times H_0^1$. This shows that a_{c_N} is closable and $\overline{a_{c_N}} = b$.

We next show that a_{c_N} is not closed. For simplicity we consider only the case N = 3. Then the critical constant is $c_3 = \frac{1}{4}$. We show that

(2.2)
$$D\left(\overline{a_{\frac{1}{4}}}\right) \nsubseteq L^6\left(\mathbb{R}^3\right).$$

On the other hand, by Sobolev embedding, $H_0^1 \subset L^6$. Consequently H_0^1 is a proper subspace of $D\left(\overline{a_1}\right)$.

PROPOSITION 2.4. The form $a_{\frac{1}{4}}$ is not closed and (2.2) holds.

PROOF. Let $\eta \in \mathcal{D}(\mathbb{R}^3)$ be a test function such that $0 \leq \eta \leq 1$ and $\eta = 1$ in a neighborhood of 0. Let $u(x) = |x|^{-\frac{1}{2}} \eta$. Then $u \in L^2(\mathbb{R}^3)$, but $u \notin L^6(\mathbb{R}^3)$. Let $u_{\varepsilon}(x) = |x|^{-\frac{1}{2}+\varepsilon} \eta$. Then $u_{\varepsilon} \in H_0^1$ and $u_{\varepsilon} \longrightarrow u$ in L^2 .

Since $a_{\frac{1}{4}}$ is closable, it suffices to show that $a_{\frac{1}{4}}(u_{\varepsilon_1} - u_{\varepsilon_2}) \longrightarrow 0$ as ε_1 , $\varepsilon_2 \longrightarrow 0$. Let $\delta > 0$ such that $\eta(x) = 1$ for $|x| \le \delta$.

It suffices to show that

$$c\left(\varepsilon_{1},\varepsilon_{2}\right):=\int_{|x|\leq\delta}\left\{\left|\nabla\left(u_{\varepsilon_{1}}-u_{\varepsilon_{2}}\right)\right|^{2}-\frac{1}{4}\frac{\left(u_{\varepsilon_{1}}-u_{\varepsilon_{2}}\right)^{2}}{\left|x\right|^{2}}\right\}dx\longrightarrow0$$

as $\varepsilon_1, \varepsilon_2 \longrightarrow 0 +$. We compute

$$\begin{aligned} 4c\,(\varepsilon_{1},\varepsilon_{2}) &:= \int_{|x|\leq\delta} 4\left[\left(-\frac{1}{2}+\varepsilon_{1}\right)|x|^{\varepsilon_{1}}-\left(-\frac{1}{2}+\varepsilon_{2}\right)|x|^{\varepsilon_{2}}\right]^{2}|x|^{-3} dx \\ &- \int_{|x|\leq\delta} 4\left(|x|^{2\varepsilon_{1}}-2|x|^{\varepsilon_{1}+\varepsilon_{2}}+|x|^{2\varepsilon_{2}}\right)|x|^{-3} dx \\ &= \int_{|x|\leq\delta} \left\{\left(-\varepsilon_{1}+\varepsilon_{1}^{2}\right)|x|^{2\varepsilon_{1}}+\left(\varepsilon_{1}+\varepsilon_{2}\right)|x|^{\varepsilon_{1}+\varepsilon_{2}}\right\}|x|^{-3} dx \\ &+ \int_{|x|\leq\delta} \left\{-2\varepsilon_{1}\varepsilon_{2}|x|^{\varepsilon_{1}+\varepsilon_{2}}+\left(-\varepsilon_{2}+\varepsilon_{2}^{2}\right)|x|^{2\varepsilon_{2}}\right\}|x|^{-3} dx \\ &= \int_{0}^{\delta} \left\{\left(-\varepsilon_{1}+\varepsilon_{1}^{2}\right)r^{2\varepsilon_{1}-1}+\left(\varepsilon_{1}+\varepsilon_{2}\right)r^{\varepsilon_{1}+\varepsilon_{2}-1}\right\} dr \\ &+ \int_{0}^{\delta} \left\{-2\varepsilon_{1}\varepsilon_{2}r^{\varepsilon_{1}+\varepsilon_{2}-1}+\left(-\varepsilon_{2}+\varepsilon_{2}^{2}\right)r^{2\varepsilon_{2}-1}\right\} dr \\ &= \left(-\varepsilon_{1}+\varepsilon_{1}^{2}\right)\frac{\delta^{2\varepsilon_{1}}}{2\varepsilon_{1}}+\delta^{\varepsilon_{1}+\varepsilon_{2}}-2\frac{\varepsilon_{1}\varepsilon_{2}}{\varepsilon_{1}+\varepsilon_{2}}\delta^{\varepsilon_{1}+\varepsilon_{2}}+\left(-\varepsilon_{2}+\varepsilon_{2}^{2}\right)\frac{\delta^{2\varepsilon_{2}}}{2\varepsilon_{2}} \\ &= -\frac{1}{2}\delta^{2\varepsilon_{1}}+\frac{\varepsilon_{1}}{2}\delta^{2\varepsilon_{1}}+\delta^{\varepsilon_{1}+\varepsilon_{2}}-2\frac{\varepsilon_{1}\varepsilon_{2}}{\varepsilon_{1}+\varepsilon_{2}}\delta^{\varepsilon_{1}+\varepsilon_{2}}-\frac{1}{2}\delta^{2\varepsilon_{2}}+\frac{\varepsilon_{2}}{2}\delta^{2\varepsilon_{2}} \\ &\longrightarrow 0 \end{aligned}$$

as $\varepsilon_1 \downarrow 0, \varepsilon_2 \downarrow 0$.

Next we consider the associated operators and semigroups. In particular, we will show that the critical constant $c_N = \left(\frac{N-2}{2}\right)^2$ is also optimal to associate a semigroup to the operator $\Delta + \frac{c}{|x|^2}$ in a reasonable way.

We denote by $-A_c$ the operator associated with a_c for $c < \left(\frac{N-2}{2}\right)^2$ and with $\overline{a_c}$ for $c = \left(\frac{N-2}{2}\right)^2$. Then A_c is given by

(2.3)
$$A_c u = \Delta u + \frac{c}{|x|^2} u$$

on

$$D\left(A_{c}
ight)=\left\{u\in H_{0}^{1}:\Delta u+rac{c}{\left|x
ight|^{2}}u\in L^{2}
ight\}$$

in case $c < \left(\frac{N-2}{2}\right)^2$, and

$$D\left(A_{c}\right) = \left\{u \in D\left(\overline{a_{c_{N}}}\right) : \Delta u + \frac{c}{\left|x\right|^{2}}u \in L^{2}
ight\}$$

in the critical case. Here $\Delta u + \frac{c}{|x|^2}u$ is understood in the sense of \mathcal{D}'_0 . This follows immediately from the definition of the associated operator.

The semigroup e^{tA_c} may be described as the limit of the semigroups defined by the cut-off potentials. Denote by Δ_p the generator of the Gaussian semigroup on $L^p := L^p(\mathbb{R}^N)$ for $N \ge 2$ and the Laplacian with Dirichlet boundary conditions on $L^p := L^p(0,\infty)$ if $N = 1, 1 \le p < \infty$ (cf. [8,Theorem 1.4.1]). Then $-\Delta_2$ is associated with a_0 . Let $A_{c,k} = \Delta_2 + c \left(\frac{1}{x^2} \land k\right)$ for $k \in \mathbb{N}$. Then

(2.4)
$$0 \le e^{tA_{c,k}} \le e^{tA_{c,k+1}}.$$

If $c \leq \left(\frac{N-2}{2}\right)^2$, then it follows from the monotone convergence theorem for forms [18, S14] that

(2.5)
$$\lim_{k \to \infty} e^{tA_{c,k}} = e^{tA_c} \quad \text{strongly in } L^2.$$

PROPOSITION 2.5. If $c > \left(\frac{N-2}{2}\right)^2$, then $\lim_{k \to \infty} \left\| e^{tA_{c,k}} \right\|_{\mathcal{L}(L^2)} = \infty \qquad \text{for } t > 0.$

PROOF. For a selfadjoint operator A on a Hilbert space H one has $\|e^{tA}\|_{\mathcal{L}(H)} = e^{ts(A)}$ where $s(A) = \sup \{(Au|u)_H : u \in D(A), \|u\|_H = 1\}$. This follows from the spectral theorem. In our situation

$$s(A_{c,k}) = \sup\left\{-\int |
abla u|^2 dx + c \int |u|^2 \left(rac{1}{|x|^2} \wedge k
ight) dx : u \in D(\Delta_2), \ \|u\|_{L^2} = 1
ight\}.$$

It follows from the optimality of the constant c_N in Hardy's inequality that $s(A_{c,k}) \longrightarrow \infty$ as $k \longrightarrow \infty$ if $c > c_N$.

Another way of looking at semigroups associated with the operator $\Delta + \frac{c}{|x|^2}$ is to consider the minimal operator $A_{c,\min}$ on L^2 given by

$$egin{array}{rcl} A_{c,\min}\left(u
ight)&=&\Delta u+rac{c}{\left|x
ight|^{2}}u\ D\left(A_{c,\min}
ight)&=&\mathcal{D}_{0}. \end{array}$$

THEOREM 2.6. Let $N \geq 5$.

a) Let c ≤ (N-2/2)². Then A_c generates a positive (C₀) semigroup on L² which is minimal among all positive (C₀) semigroups generated by an extension of A_{c,min}.
b) If c > (N-2/2)², then no extension of A_{c,min} generates a positive (C₀) semi-

b) If $c > (-\frac{1}{2})$, then no extension of $A_{c,\min}$ generates a positive (C_0) semigroup on L^2 .

For the proof we need the following.

LEMMA 2.7. Let $N \geq 5$. Then \mathcal{D}_0 is a core of Δ_2 (the Laplacian on $L^2(\mathbb{R}^N)$).

PROOF. It is well-known that $\mathcal{D}(\mathbb{R}^N)$ is a core. Let $u \in \mathcal{D}(\mathbb{R}^N)$. Let $\eta \in C^1(\mathbb{R})$ be such that $0 \leq \eta \leq 1$, $\eta(r) = 1$ for $|r| \geq 2$, $\eta(r) = 0$ for $r \leq 1$, and let $\eta_k(x) = \eta(k|x|)$. It is easy to see that $\eta_k u \longrightarrow u$ and $\Delta(\eta_k u) \longrightarrow \Delta u$ in $L^2(\mathbb{R}^N)$.

PROOF OF THEOREM 2.6. Let B be the generator of a positive (C_0) semigroup e^{tB} such that $A_{c,\min} \subset B$. Consider the semigroup $T_k(t) = e^{t\left(B-c\left(\frac{1}{\|x\|^2} \wedge k\right)\right)}$ for c > 0. Then $0 \le T_{k+1}(t) \le T_k(t)$. It follows from [2] or [22] that $\lim_{k\to\infty} T_k(t) = T_{\infty}(t)$ exists strongly and defines a (C_0) semigroup whose generator we call B_{∞} . Let $v \in \mathcal{D}_0$. Then there exists k_0 such that $B_k v = \Delta v$ for all $k \ge k_0$. Since

$$T_{k}(t) v - v = \int_{0}^{t} T_{k}(s) Bv \ ds,$$

letting $k \longrightarrow \infty$ we see that

$$T_{\infty}\left(t
ight)v-v=\int_{0}^{t}T_{\infty}\left(s
ight)Bv\;ds.$$

Thus, $v \in D(B_{\infty})$ and $B_{\infty}v = \Delta v$. Since $N \geq 5$, \mathcal{D}_0 is dense in $H^2(\mathbb{R}^N) = D(\Delta_2)$. Thus Δ_2 coincides with B_{∞} on a core. Consequently, $\Delta_2 = B_{\infty}$. Thus $e^{t\Delta_2} \leq e^{t\left(B-c\left(\frac{1}{|x|^2} \wedge k\right)\right)}$ for all k. It follows that $e^{tA_{c,k}} \leq e^{tB}$ for all k. Now Proposition 2.5 implies that $c \leq \left(\frac{N-2}{2}\right)^2$, and from (2.5) it follows that $e^{tA_c} \leq e^{tB}$ for $t \geq 0$.

By a result of Kalf, Schmincke, Walter and Wüst [12], \mathcal{D}_0 is a core of A_c iff $c \leq \left(\frac{N-2}{2}\right)^2 - 1$; see also [18] for dimension N = 5.

3. The Caffarelli-Kohn-Nirenberg inequality and associated semigroups

Let $\beta \in \mathbb{R}$, $L_{\beta}^2 := L^2 \left(\mathbb{R}^N, |x|^{-\beta} dx\right)$ if $N \ge 2$ and $L_{\beta}^2 := L^2 \left((0, \infty), |x|^{-\beta} dx\right)$ if N = 1. Note that $L_{\beta}^2 \subseteq L_{loc}^2 \left(\mathbb{R}^N \setminus \{0\}\right)$ if $N \ge 2$ and $L_{\beta}^2 \subseteq L_{loc}^2 (0, \infty)$ if N = 1. Thus, $L_{\beta}^2 \subset \mathcal{D}'_0$ where $\mathcal{D}_0 = \mathcal{D} \left(\mathbb{R}^N \setminus \{0\}\right)$ if $N \ge 2$ and $\mathcal{D}_0 = \mathcal{D} \left(0, \infty\right)$ if N = 1. We let $H_{00}^1 := \left\{u \in H^1 \left(\mathbb{R}^N\right) : \text{supp } u \text{ is compact and } 0 \notin \text{supp } u\right\}$ if $N \ge 2$ and $H_{00}^1 := \left\{u \in H^1 \left(0, \infty\right) : \text{supp } u \text{ is compact, supp } u \subset (0, \infty)\right\}$ if N = 1.

Consider the unitary operator $U: L^2_\beta \longrightarrow L^2_0, u \longmapsto |x|^{-\frac{\beta}{2}} u$. It maps H^1_{00} onto H^1_{00} . Consider the Dirichlet form

$$a\left(u,v
ight)=\int
abla u\cdot
abla v\;dx$$

on L_0^2 with domain H_{00}^1 . We transport the Dirichlet form by U to the space L_{β}^2 by defining

$$\begin{array}{lll} b\left(u,v\right) & = & \displaystyle \int \nabla\left(|x|^{-\frac{\beta}{2}} \, u\right) \cdot \nabla\left(|x|^{-\frac{\beta}{2}} \, v\right) \ dx \\ & = & a\left(Uu,Uv\right) \end{array}$$

for $u, v \in H_{00}^1$. Then we have

$$(3.1) b(u,v) = \int \nabla u \cdot \nabla v |x|^{-\beta} dx \\ -\left\{ \left(\frac{N-2-\beta}{2}\right)^2 - \left(\frac{N-2}{2}\right)^2 \right\} \int \frac{uv}{|x|^2} |x|^{-\beta} dx$$

for all $u, v \in H^1_{00}$.

PROOF OF (3.1). Let $u, v \in H_{00}^1$. Then

$$b(u,v) = \int \nabla \left(|x|^{-\frac{\beta}{2}} u \right) \cdot \nabla \left(|x|^{-\frac{\beta}{2}} v \right) dx$$

$$= \int \left(-\frac{\beta}{2} |x|^{-\left(\frac{\beta}{2}\right)-1} \frac{x}{|x|} u + |x|^{-\frac{\beta}{2}} \nabla u \right) \cdot \left(-\frac{\beta}{2} |x|^{-\left(\frac{\beta}{2}\right)-1} \frac{x}{|x|} v + |x|^{-\frac{\beta}{2}} \nabla v \right) dx$$

$$= \int \nabla u \cdot \nabla v |x|^{-\beta} dx + \frac{\beta^2}{4} \int uv |x|^{-\beta-2} dx - \frac{\beta}{2} \int |x|^{-\beta-2} x \cdot \nabla (uv) dx$$

$$= \int \nabla u \cdot \nabla v |x|^{-\beta} dx - \left\{ \left(\frac{N-2-\beta}{2} \right)^2 - \left(\frac{N-2}{2} \right)^2 \right\} \int \frac{uv}{|x|^2} |x|^{-\beta} dx$$

since by integration by parts,

$$-\frac{\beta}{2} \int |x|^{-\beta-2} x \cdot \nabla (uv) \ dx = -\frac{\beta}{2} (\beta+2) \int |x|^{-\beta-2} uv \ dx + \frac{\beta}{2} N \int \frac{uv}{|x|^2} |x|^{-\beta} \ dx.$$

Now by Hardy's inequality,

$$\int |\nabla u|^2 |x|^{-\beta} dx - \left(\frac{N-2-\beta}{2}\right)^2 \int \frac{u^2}{|x|^2} |x|^{-\beta} dx$$
$$= a\left(|x|^{-\frac{\beta}{2}} u, |x|^{-\frac{\beta}{2}} u\right) - \left(\frac{N-2}{2}\right)^2 \int \frac{\left(|x|^{-\frac{\beta}{2}} u\right)^2}{|x|^2} dx \ge 0.$$

Thus, we have proved the following.

THEOREM 3.1. One has

(CKN)
$$\left(\frac{N-2-\beta}{2}\right)^2 \int \frac{u^2}{|x|^2} |x|^{-\beta} dx \le \int |\nabla u|^2 |x|^{-\beta} dx$$

for all $u, v \in H_{00}^1$, with optimal constant.

This is the Caffarelli-Kohn-Nirenberg inequality [7] which we have deduced from Hardy's inequality by similarity. Note that the case of N = 2 is included here.

Now for $c \in \mathbb{R}$ we consider the form b_c on L^2_β given by

$$b_{c}\left(u,v
ight)=\int
abla u\cdot
abla v\,\left|x
ight|^{-eta}\,\,dx-c\int uv\,\,\left|x
ight|^{-eta}\,\,dx$$

with domain $D(b_c) = H_{00}^1$. Then by Theorem 3.1 the form b_c is positive iff $c \leq \left(\frac{N-2-\beta}{2}\right)^2$.

THEOREM 3.2. Let $\beta \in \mathbb{R}$ and let $c \leq \left(\frac{N-2-\beta}{2}\right)^2$. Then the form b_c is closable and \mathcal{D}_0 is a form core. Let $-B_c$ be the operator on L^2_β associated with $\overline{b_c}$. Then $\mathcal{D}_0 \subset D(B_c)$ and

(3.2)
$$B_c u = \Delta u - \frac{\beta}{|x|} \frac{\partial u}{\partial r} + c \frac{u}{|x|^2}$$

for all $u \in \mathcal{D}_0$. The operator B_c generates a positive (C_0) semigroup on L^2_β which is submarkovian iff $c \leq 0$.

PROOF. Letting $\delta = -\left(\frac{N-2}{2}\right)^2 + \left(\frac{N-2-\beta}{2}\right)^2$ we have, by (3.1), $b_{\delta} = b$ and more generally,

$$(3.3) a_{c-\delta} (Uu, Uv) = b_c (u, v)$$

for all $u, v \in H_{00}^1$. Since $U\mathcal{D}_0 = \mathcal{D}_0$, it follows from the results of Section 2 that b_c is closable and \mathcal{D}_0 is a form core. It follows from (3.3) that

$$B_c = U^{-1} A_{c-\delta} U$$

and so

$$e^{tB_c} = U^{-1}e^{tA_{c-\delta}}U$$

for $t \ge 0$. In particular, $e^{tB_c} \ge 0$. Let $u \in \mathcal{D}_0, v = \Delta u - \frac{\beta}{|x|} \frac{\partial u}{\partial r} + c \frac{u}{|x|^2}$. Integration by parts shows that $b_c (u, \varphi) = -\int v\varphi |x|^{-\beta} dx$

for all $\varphi \in \mathcal{D}_0$. Hence, $u \in B_c$ and $B_c u = v$.

Finally we show that e^{tB_c} is submarkovian iff $c \leq 0$. Let $u \in H_{00}^1$. It follows from [9, p.152] that $(u \wedge 1) \operatorname{sgn} u \in H_{00}^1$ and

$$D_j\left((|u| \wedge 1) \, sgn \; u\right) \; = D_j u \; 1|_{\{|u| < 1\}}$$

where $sgn \ u = \frac{u}{|u|} \ \mathbf{1}_{\{u \neq 0\}}$. Thus

$$egin{aligned} &b_0\left((1\wedge |u|)\,sgn\,\,u,\;\;(1\wedge |u|)\,sgn\,\,u
ight)\ &=\;\;&\int |
abla u|^2\,1|_{\{|u|<1\}}\,|x|^{-eta}\;\;dx\leq b_0\left(u,u
ight). \end{aligned}$$

It follows from [17, Theorem 2.6, Theorem 2.14] that $(e^{tB_0})_{t>0}$ is submarkovian.

If c > 0, then the semigroup e^{tB_c} is not submarkovian. In fact, let $u \in \mathcal{D}_0$ be such that $(u-1)^+ \neq 0$. Then $D_j (u-1)^+ = D_j u \ 1_{\{u>1\}}$ and $D_j (u \wedge 1) = D_j u \cdot 1_{\{u<1\}}$. Thus

$$\begin{array}{lll} b_{c}\left(u\wedge 1,\ (u-1)^{+}\right) &=& \int \nabla \left(u\wedge 1\right)\cdot \nabla \left((u-1)^{+}\right) \\ && -c\int \frac{\left(u\wedge 1\right)\left(u-1\right)^{+}}{\left|x\right|^{2}}\left|x\right|^{-\beta} \ dx \\ &=& -c\int \frac{\left(u-1\right)^{+}}{\left|x\right|^{2}}\left|x\right|^{-\beta} \ dx < 0. \end{array}$$

Thus e^{tB_c} is not submarkovian by [17, Corollary 2.17].

Next we want to describe the domain of $\overline{b_c}$. We denote by

$$H^1_eta := \left\{ u \in L^2_eta : D_j u \in L^2_eta, \; j = 1, ..., N
ight\}$$

the weighted Sobolev space where $D_j u$ is understood in the sense of \mathcal{D}'_0 . Then H^1_β is a Hilbert space for the scalar product

$$(u|v)_{H^1_eta}:=(u|v)_{L^2_eta}+\int
abla u\cdot
abla v ~|x|^{-eta}~dx.$$

 $D(\overline{b_c})$ is the completion of \mathcal{D}_0 with respect to the norm

$$\left(\left\| u \right\|_{L^{2}_{\beta}}^{2} + b\left(u, u \right) \right)^{\frac{1}{2}} = \left\| u \right\|_{H^{1}_{\beta}}.$$

Thus, $D(\overline{b_c})$ is the closure $H^1_{\beta 0}$ of \mathcal{D}_0 in H^1_{β} . It follows from Fatou's Lemma that (CKN) remains true for all $u \in H^1_{\beta 0}$. As in the proof of Proposition 2.2, one deduces that for $0 < c < \left(\frac{N-2-\beta}{2}\right)^2$, one has $D(\overline{b_c}) = H^1_{\beta 0}$ and

$$\overline{b_c}\left(u,v
ight)=\int
abla u\cdot
abla v ~\left|x
ight|^{-eta}~dx-c\int rac{\left|u
ight|^2}{\left|x
ight|^2}\left|x
ight|^{-eta}~dx$$

We summarize these facts as

PROPOSITION 3.3. One has $D(\overline{b}) = H^1_{\beta 0}$ and

(CKN)
$$\left(\frac{N-2-\beta}{2}\right)^2 \int \frac{u^2}{|x|^2} |x|^{-\beta} dx \leq \int |\nabla u|^2 |x|^{-\beta} dx$$

for all $u \in H^1_{\beta 0}$. If $0 \le c \le \left(\frac{N-2-\beta}{2}\right)^2$, then $D\left(\overline{b_c}\right) = H^1_{\beta 0}$.

For $N \geq 3$ and $\beta \neq N-2$, we have the following

PROPOSITION 3.4. If $N \ge 3$ and $\beta \ne N-2$, then $H^1_\beta = |x|^{\frac{\beta}{2}} H^1 = H^1_{\beta 0}$.

PROOF. Let $u \in H^1$, $v = |x|^{\frac{\beta}{2}} u$. Then $v \in L^2_\beta$ and $D_j v = \frac{\beta}{2} |x|^{\frac{\beta}{2}-1} \frac{x_j}{|x|} u + |x|^{\frac{\beta}{2}} D_j u$ in \mathcal{D}'_0 . It follows from Hardy's inequality that $|x|^{\frac{\beta}{2}-1} u \in L^2_\beta$. Hence $D_j v \in L^2_\beta$ and $v \in H^1_\beta$.

Conversely, let $v \in H^1_\beta$, $u = |x|^{-\frac{\beta}{2}} v$. Then $u \in L^2$ and $D_j u = -\frac{\beta}{2} |x|^{-\frac{\beta}{2}-1} \frac{x_j}{|x|} v + |x|^{-\frac{\beta}{2}} D_j v$. It follows from (CKN) that $|x|^{-\frac{\beta}{2}-1} v \in L^2$. Since $v \in H^1_\beta$, one has $|x|^{-\frac{\beta}{2}} D_j v \in L^2$. Thus, $D_j u \in H^1$.

We have shown that $H_{\beta}^{1} = |x|^{\frac{\beta}{2}} H^{1}$. The above computation also shows that $\|v\|_{H_{\beta}^{1}}$ and $\||x|^{-\frac{\beta}{2}} v\|_{H^{1}}$ are equivalent norms on H_{β}^{1} . Since $|x|^{-\frac{\beta}{2}} \mathcal{D}_{0} = \mathcal{D}_{0}$ and since \mathcal{D}_{0} is dense in H^{1} it follows that \mathcal{D}_{0} is also dense in H_{β}^{1} .

Next we consider realizations of the semigroup (e^{tB_c}) on $L^p_\beta := L^p\left(\mathbb{R}^N, |x|^{-\beta} dx\right)$ if $N \ge 2$ and $L^p_\beta := L^p\left((0,\infty), |x|^{-\beta} dx\right)$ if N = 1. Here $p \in [1,\infty)$ will have to be restricted to a certain interval containing 2.

Let us write $B = B_0$. Since $(e^{tB})_{t \ge 0}$ is submarkovian, there exists a consistent family

$$\left(e^{tB^{(p)}}\right)_{t\geq 0}$$

of (C_0) semigroups on L^p_β , $1 \le p < \infty$ with $B^{(2)} = B$. Consider the bounded potentials

$$V_k(x) = \inf\left\{\frac{1}{\left|x\right|^2}, k\right\}.$$

Then $e^{t(B^{(p)}+cV_k)}$ is a (C_0) semigroup on L^p_β for all $c > 0, 1 \le p < \infty$. Moreover,

$$0 \le e^{t(B^{(p)} + cV_k)} \le e^{t(B^{(p)} + cV_{k+1})}$$

Now let $c < \left(\frac{N-2-\beta}{2}\right)^2$. Let $1 \le p_-(c) < 2 < p_+(c) \le \infty$ be such that

$$[p_{-}(c), p_{+}(c)] = \left\{ p \in [1, \infty] : c \leq \frac{4}{pp'} \left(\frac{N - 2 - \beta}{2} \right)^{2} \right\}.$$

Note that $1 < p_{-}(c) < p_{+}(c) < \infty$ if c > 0, and $p_{-}(c) = 1$, $p_{+}(c) = \infty$ if $c \le 0$. Observe that $p \in [p_{-}(c), p_{+}(c)]$ iff $p' \in [p_{-}(c), p_{+}(c)]$. By $B_{c,\min}$ we denote the operator given by $D(B_{c,\min}) = \mathcal{D}_0$,

$$B_{c,\min} u = \Delta u - rac{eta}{|x|} rac{\partial u}{\partial r} + rac{c}{|x|^2} u$$

which acts on all L^p_{β} , $1 \le p < \infty$.

THEOREM 3.5. Let $p \in [p_{-}(c), p_{+}(c)], p < \infty$. Then $T_{p,c}(t) := strong \lim_{k \to \infty} e^{t(B^{(p)+cV_{k}})} exists in \mathcal{L}(L^{p}_{\beta})$ and defines a (C_{0}) semigroup $T_{p,c}$ on L^{p}_{β} . Its generator $B^{(p)}_{c}$ is an extension of $B_{c,\min}$. In addition $B^{(2)}_{c} = B_{c}$.

It clearly follows from Theorem 3.5 that the semigroup $T_{p,c}$ are consistent, i.e.,

$$T_{p,c}(t) f = T_{q,c}(t) f$$

for all $t \ge 0$, $f \in L^p_\beta \cap L^q_\beta$, $p_-(c) \le p, q \le p_+(c)$. For the proof of Theorem 3.5 we will use the following simple argument for increasing semigroups referring to Voigt [22], [23] for further information and developments.

PROPOSITION 3.6. Let T_k be (C_0) contraction semigroups on L^p , $1 \le p < \infty$, such that $0 \le T_k(t) \le T_{k+1}(t)$. Then $T(t) f = \lim_{k \to \infty} T_k(t) f$ exists for all $f \in L^p$, $t \ge 0$, and defines a (C_0) semigroup T.

PROOF. The strong limit exists by the Beppo Levi Theorem. Then $T(t) \in \mathcal{L}(L^p)$ and T(t+s) = T(t) T(s) for $t, s \ge 0$. It remains to prove strong continuity. Let $t_n \downarrow 0, 0 \le f \in L^p$. We have to show that $f_n := T(t_n) f \longrightarrow f$ as $n \longrightarrow \infty$. Let $g_n := T_1(t_n) f$. Then $0 \le g_n \le f_n$ and $g_n \longrightarrow f$ as $n \longrightarrow \infty$. Moreover, $\|g_n\|_{L^p} \le \|f\|_{L^p}$.

a) Let p = 1. Then

$$\int (f_n - g_n) \, dx + \int g_n \, dx = \int f_n \, dx \le \|f\|_{L^1}.$$

Since $(f_n - g_n) \ge 0$ and $\int g_n dx \longrightarrow ||f||_{L^1}$, it follows that $||f_n - g_n||_{L^1} = \int (f_n - g_n) dx \longrightarrow 0$ as $n \longrightarrow \infty$. Since $g_n \longrightarrow f$ in L^1 , also $f_n \longrightarrow f$ in L^1 .

b) Let $1 . It suffices to show that each subsequence of <math>(f_n)$ has a subsequence converging to f in L^p . Since L^p is reflexive, we may assume that f_n converges weakly to a function $h \in L^p$ (consider a subsequence otherwise). Since $g_n \leq f_n$ and $g_n \longrightarrow f$ it follows that $f \leq h$. Hence $||f||_{L^p} \leq ||h||_{L^p}$. Since L^p is uniformly convex, this implies that f_n converges strongly to h. It follows that $||h||_{L^p} \leq ||f||_{L^p}$. Since $f \leq h$, this implies that f = h.

PROOF OF THEOREM 3.5. Let $p \in [p_{-}(c), p_{+}(c)]$, i.e. $c \leq \frac{4}{pp'} \left(\frac{N-2-\beta}{2}\right)^{2}$. We show that $B^{(p)} + cV_{k}$ is dissipative for all $k \in \mathbb{N}$. Let $u \in D(B^{(p)})$. We have to show that

$$\left\langle B^{(p)}u + cV_ku, \left|u\right|^{p-1}sgn \ u\right\rangle \leq 0.$$

By a result of Liskevich-Semenov [17, Theorem 3.9] one has $u |u|^{\frac{p}{2}-1} \in D(\overline{b})$ and

$$\left\langle B^{(p)}u, |u|^{p-1} \, sgn \, u \right\rangle \leq -\frac{4}{pp'} \overline{b} \left(u \, |u|^{\frac{p}{2}-1}, u \, |u|^{\frac{p}{2}-1} \right).$$

Hence by (CKN) in Proposition 3.3,

$$\left\langle B^{(p)}u,\left|u
ight|^{p-1}sgn~u
ight
angle \leq -rac{4}{pp'}\left(rac{N-2-eta}{2}
ight)^2\intrac{\left|u
ight|^p}{\left|x
ight|^2}\left|x
ight|^{-eta}~dx.$$

Since

$$c\left\langle V_{k}u, |u|^{p-1} sgn \ u \right\rangle = c \int_{|x|^{2} \ge \frac{1}{k}} \frac{u}{|x|^{2}} |u|^{p-1} sgn \ u \ |x|^{-\beta} \ dx$$
$$= c \int_{|x|^{2} \ge \frac{1}{k}} \frac{|u|^{p}}{|x|^{2}} |x|^{-\beta} \ dx,$$

and the claim follows. By Proposition 3.6, there exists a (C_0) semigroup $T_{c,p}$ on L^{p}_{β} such that $T_{c,p}(t) = \lim_{k \to \infty} e^{i(B^{(p)} + cV_{k})}$ strongly. Denote the generator of $T_{c,p}$ by $B_c^{(p)}$. Let $u \in \mathcal{D}_0$. Then there exists $k_0 \in \mathbb{N}$ such that u(x) = 0 if $|x|^2 \leq \frac{1}{k_0}$. Hence

$$\left(B^{(p)} + cV_k\right)u = \left(B^{(p)} + c\frac{1}{|x|^2}\right)u = B_{c,\min}u =: v$$

for all $k \geq k_0$.

Observe that

$$e^{t(B^{(p)}+cV_k)}u-u=\int_0^t e^{s(B^{(p)}+cV_k)}v \, ds$$

for all $k \ge k_0$. Passing to the limit as $k \longrightarrow \infty$, we obtain

$$T_{c,p}\left(t
ight)u-u=\int_{0}^{t}T_{c,p}\left(s
ight)v\;ds\qquad\left(t\geq0
ight).$$

This implies that $u \in D\left(B_c^{(p)}\right)$ and $B_c^{(p)}u = v$. We have shown that $B_{c,\min} \subset B_c^{(p)}$. It follows from the convergence theorem for an increasing sequence of closed positive forms [18, Theorem S.14, p.373] that $B_c^{(2)} = B_c$.

Finally, we describe the behavior of $B_c^{(p)}$ by rescaling. For $\lambda > 0$, the operator U_{λ} given by

$$\left(U_{\lambda}f\right)\left(x
ight)=\lambda^{\frac{N-eta}{p}}f\left(\lambda x
ight)$$

is an isometric isomorphism on L^p_β which is unitary if p = 2. Moreover, $U_\lambda H^1_{00} =$ H_{00}^1 and

$$(3.4) b_c (U_\lambda u, U_\lambda v) = \lambda^2 b_c (u, v)$$

for all $u, v \in H^1_{00}$ (as one easily shows). It follows that $U_{\lambda}D(\overline{b_c}) = D(\overline{b_c})$ and that (3.4) remains valid for all $u, v \in D(\overline{b_c})$. This implies that

(3.5)
$$U_{\lambda}B_{c\lambda}^{-1} = \lambda^2 B_c \qquad (\lambda > 0)$$

by the definition of the associated operator. This implies that

(3.6)
$$U_{\lambda}e^{tB_{c}^{(2)}}U_{\lambda}^{-1} = e^{t\lambda^{2}B_{c}^{(2)}} \qquad (t>0)$$

for all $\lambda > 0$. By consistency it follows that

(3.7)
$$U_{\lambda}e^{tB_{c}^{(p)}}U_{\lambda}^{-1} = e^{t\lambda^{2}B_{c}^{(p)}} \qquad (t>0)$$

for all $\lambda > 0, \ p \in [p_{-}\left(c\right), p_{+}\left(c\right)], \ p < \infty, \ \text{whenever} \ c < \left(\frac{N-2-\beta}{2}\right)^{2}.$

From these rescaling properties we deduce the following result on the spectrum.

PROPOSITION 3.7. (a) For p = 2 one has $\sigma(B_c) = (-\infty, 0]$ for all $c \leq \left(\frac{N-2-\beta}{2}\right)^2$.

(b) Let $c < \left(\frac{N-2-\beta}{2}\right)^2$. Then $\sigma\left(B_c^{(p)}\right) \cap \mathbb{R} = (-\infty, 0]$, for all $p \in [p_-(c), p_+(c)]$, $p < \infty$.

PROOF. (a) It follows from (3.5) that $\sigma(B_c) = \lambda^2 \sigma(B_c)$ for all $\lambda > 0$. Since $\sigma(B_c) \neq \emptyset$, the claim follows.

(b) Let $p \in [p_{-}(c), p_{+}(c)], p < \infty$. We first show that $\sigma\left(B_{c}^{(p)}\right) \neq \emptyset$. In fact, if $\sigma\left(B_{c}^{(p)}\right) = \emptyset$, then it follows from Weis' Theorem [4, Theorem 5.3.6] that $\omega\left(B_{c}^{(p)}\right) = -\infty$, where ω denotes the growth bound (or type) of the semigroup generated by $B_{c}^{(p)}$. But then it follows from the Riesz-Thorin Theorem that $\omega\left(B_{c}^{(2)}\right) = -\infty$, which is impossible by (a).

The spectral bound

4

$$s\left(B_{c}^{\left(p
ight)}
ight)=\sup\left\{\operatorname{Re}\mu:\mu\in\sigma\left(B_{c}^{\left(p
ight)}
ight)
ight\}$$

is finite. It follows from (3.7) and (a) that $s\left(B_c^{(p)}\right) = 0$ and $(-\infty, 0] \subset \sigma\left(B_c^{(p)}\right)$.

REMARK 3.8. We refer to [21], [20], [16] and [1] for results on p-independence of the spectra of consistent semigroups. In general the spectrum of the generator of a symmetric submarkovian semigroup may depend on $p \in [1, \infty)$. An interesting example is the Neumann Laplacian on irregular domains (see Kunstmann [14]).

Finally, we show that the constant $\frac{4}{pp'}\left(\frac{N-2-\beta}{2}\right)^2$ in Theorem 3.5 is optimal. For $\beta = 0$ this result has been proved by Vogt [21, Example 3.31].

THEOREM 3.9: Let $2 \leq p < \infty$, $\frac{1}{p} + \frac{1}{p'} = 1$, and let $c > \frac{4}{pp'} \left(\frac{N-2-\beta}{2}\right)^2$. Then the operator $B_{c,\min}$ is not quasidissipative. Thus no extension of $B_{c,\min}$ generates a (C_0) semigroup T on L^p_β satisfying $||T(t)||_{\mathcal{L}(L^p_\beta)} \leq e^{\omega t}$ for $t \geq 0$ and for some $\omega \in \mathbb{R}$.

Recall that an operator A on a Banach space X is dissipative iff

$$||x|| \le ||x - tAx||$$
 $x \in D(A), t \ge 0.$

An operator A is quasidissipative iff $A - \omega I$ is dissipative for some $\omega \in \mathbb{R}$. Let $U : X \longrightarrow X$ be an isometric isomorphism. Then this characterization of dissipativity shows that A is dissipative iff UAU^{-1} is dissipative. If A is dissipative, then also λA is dissipative for all $\lambda > 0$, and $A - \omega$ is dissipative for all $\omega \ge 0$. Conversely, let $\omega \ge 0$ and assume that $\lambda A - \omega$ is dissipative for all $\lambda > 0$. Then it follows that A is dissipative.

PROOF OF THEOREM 3.9. Let $\omega \geq 0$. Assume that $B_{c,\min} - \omega$ is dissipative in L^p_{β} . Let $\lambda > 0$, $\widetilde{U_{\lambda}} = const \cdot U_{\lambda}$ where the constant is chosen in such a way that $\widetilde{U_{\lambda}}$ is an isometric isomorphism on L^p_{β} . Then $\lambda^2 B_{c,\min} - \omega = \widetilde{U_{\lambda}} (B_{c,\min} - \omega) \widetilde{U_{\lambda}}^{-1}$ is dissipative. Since $\lambda > 0$ is arbitrary, it follows that $B_{c,\min}$ is dissipative. Thus, we merely have to prove that $B_{c,\min}$ is not dissipative in L^p_{β} . Let us assume that $B_{c,\min}$ is dissipative. Let $u \in \mathcal{D}_0$. It follows that

(3.8)
$$0 \ge \left\langle \Delta u - \frac{\beta}{|x|} \frac{\partial u}{\partial r} + c \frac{u}{|x|^2}, |u|^{p-1} \operatorname{sgn} u \right\rangle.$$

We compute, since $p \geq 2$,

$$\begin{split} \left\langle \Delta u, |u|^{p-1} \, sgn \, u \right\rangle &= \int \Delta u \left(|u|^{p-1} \, sgn \, u \right) |x|^{-\beta} \, dx \\ &= -\int |\nabla u|^2 \, (p-1) \, |u|^{p-2} \, |x|^{-\beta} \, dx \\ &- \int \sum_{j=1}^N D_j u \, |u|^{p-1} \, sgn \, u \cdot (-\beta) \, |x|^{-\beta-1} \, \frac{x_j}{|x|} \, dx \\ &= -(p-1) \int |\nabla u|^2 \, |x|^{p-2} \, |x|^{-\beta} \, dx \\ &+ \int \frac{\beta}{|x|} \frac{\partial u}{\partial r} sgn \, u \, |u|^{p-1} \, |x|^{-\beta} \, dx. \end{split}$$

Thus it follows from (3.8) that

$$egin{array}{rcl} c \int rac{\left| u
ight|^p}{\left| x
ight|^2} \left| x
ight|^{-eta} \, dx &= \left\langle c rac{u}{\left| x
ight|^2}, \left| u
ight|^{p-1} sgn \, u
ight
angle \ &\leq & (p-1) \int \left|
abla u
ight|^2 \left| u
ight|^{p-2} \left| x
ight|^{-eta} \, dx. \end{array}$$

In order to rewrite the last expression we compute

$$abla \left|u\right|^{rac{p}{2}} = rac{p}{2} \left|u
ight|^{rac{p}{2}-1}
abla u rac{u}{\left|u
ight|},$$

hence

$$\left| \nabla \left| u \right|^{\frac{p}{2}} \right|^2 = \frac{p^2}{4} \left| u \right|^{p-2} \left| \nabla u \right|^2.$$

So we obtain

$$c \int \frac{|u|^p}{|x|^2} |x|^{-\beta} dx \le \frac{4}{p^2} (p-1) \int \left| \nabla |u|^{\frac{p}{2}} \right|^2 |x|^{-\beta} dx.$$

Hence

(3.9)
$$c \int \frac{|u|^2}{|x|^2} |x|^{-\beta} dx \leq \frac{4}{pp'} \int \left| \nabla u^{\frac{p}{2}} \right|^2 |x|^{-\beta} dx$$

for $u \in \mathcal{D}_{0+}$. By replacing u by $\lambda_{\varepsilon} * u$ where $\{\lambda_{\varepsilon}\}_{\varepsilon>0}$ is a Friedrichs mollifier, we deduce that (3.9) remains true for all $u \in H^1_{00} \cap L^\infty_+$. Here we again use that $p \ge 2$. Let $r = \frac{p}{2}$. We define

$$\varphi_n(s) = s \wedge ns^r \quad (s \ge 0), \quad u_n = \varphi_n \circ u.$$

Then $u_n^{\frac{1}{r}} \in H_{00}^1$. So (3.9) implies

(3.10)
$$c\int \frac{|u_n|^2}{|x|^2} |x|^{-\beta} dx \leq \frac{4}{pp'}\int |\nabla u_n|^2 |x|^{-\beta} dx.$$

Letting $n \to \infty$, since $|\nabla u_n|^2 \leq \frac{p^2}{4} |\nabla u|^2$ for all $n \in \mathbb{N}$, we deduce that

(3.11)
$$c \int \frac{|u|^2}{|x|^2} |x|^{-\beta} dx \leq \frac{4}{pp'} \int |\nabla u|^2 |x|^{-\beta} dx$$

for all $u \in H_{00}^1 \cap L_+^\infty$. Applying (3.11) to $u \wedge n$ instead of u and letting $n \longrightarrow \infty$, we see that (3.11) remains true for all $u \in H_{00+}^1$. Finally, applying (3.11) to |u| instead of u it follows that (3.11) holds for all $u \in H_{00}^1$. Now Theorem 3.1 implies $c \leq \frac{4}{pp'} \left(\frac{N-2-\beta}{2}\right)^2$.

We remark that even though for $0 < c < \left(\frac{N-2-\beta}{2}\right)^2$ the interval $[p_-(c), p_+(c)]$ is optimal for obtaining quasicontractive (equivalently, contractive) extrapolating semigroups to L^p_β for all $p \in [p_-(c), p_+(c)]$, one might still have extensions which are not quasicontractive. In fact, for $\beta = 0$, it is shown by Vogt [21, Example 3.31] that for $p \in \left(\frac{N}{N-2}p_-(c), \frac{N}{N-2}p_+(c)\right)$, and $N \ge 3$, such an extrapolation semigroup on $L^p(\mathbb{R}^N)$ exists.

References

- W. Arendt, Gaussian estimates and interpolation of the spectrum in L^p, Differential and Integral Equations, 7 (1994) 1153-1168.
- W. Arendt and C. Batty, Abosrption semigroups and Dirichlet boundary conditions, Math. Ann. 295 (1993), 427-448.
- [3] W. Arendt and C. Batty, Exponential stability of a diffusion equation with absorption, Differential and Integral Equations, 6 (1993), 1009-1024.
- [4] W. Arendt, C. Batty, M. Hieber, and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Birkhäuser, Basel 2001.
- [5] P. Baras and J. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121-139.
- [6] P. Baras and J. Goldstein, Remarks on the inverse square potential in quantum mechanics, North Holland Math. Stud., 92 (1984), 31-35.
- [7] L. Caffarelli, R. V. Kohn and L. Nirenberg, First order interpolation inequality with weights, Compositio Math. 53 (1984), 259-275.
- [8] E. B. Davies, Heat Kernels and Spectral Theory, Oxford University Press 1989.
- [9] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin 1998.
- [10] G. R. Goldstein, J. A. Goldstein and I. Kombe, The power potential and nonexistence of positive solutions, Proc. 2004 Cortona Conf., to appear.
- [11] J. A. Goldstein and I. Kombe, Instantaneous blow-up, Contemporary Math 327 (2003), 141-150.
- [12] H. Kalf, U.-W. Schmincke, J. Walter and R. Wüst, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, Lecture Notes in Math., Vol. 448, Springer, Berlin (1975), 182-226.
- [13] H. Kalf and J. Walter, Strongly singular potentials and essential self-adjointness of singular elliptic operators in $C_0^{\infty}(\mathbb{R}^N \setminus \{0\})$, J. Functional Analysis 10 (1972), 114-130.
- [14] P. C. Kunstmann, L^p-spectral properties of the Neumann Laplacian on horns, comets, and stars, Math. Z. 242 (2002), 183-201.
- [15] V. Liskevich and Yu. Semenov, Some inequalities for submarkovian generators and their applications to the perturbation theory, Proc. Amer. Math. Soc. 119 (1993), 1171-1177.
- [16] V. Liskevich, A. Sobol and H. Vogt, On the L_p-theory of C₀-semigroups associated with second order elliptic operators, II, J. Functional Analysis 193 (2002), 55-76.
- [17] E.M. Ouhabaz, Analysis of Heat Equations on Domains, LMS Monograph Series 31, Princeton University Press, Princeton 2004.

- [18] M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. I Functional Analysis, 2nd edition, Academic Press, London 1980.
- [19] M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. II Fourier Analysis, Self-Adjointness, Academic Press, London 1975.
- [20] Z. Sobol and H. Vogt, On the L_p -theory of C_0 -semigroups associated with second order elliptic operators, I, J. Functional Analysis 193 (2002), 24-54.
- [21] H. Vogt, L_p -properties of second order elliptic differential equations, PhD thesis, Dresden 2001.
- [22] J. Voigt, Absorption semigroups, their generators and Schrödinger semigroups, J. Functional Analysis 67 (1986), 167-205.
- [23] J. Voigt, Absorption semigroups, J. Operator Theory 20 (1988), 117-131.
- [24] J. Voigt, One-parameter semigroups acting simultaneoously on different L_p -spaces, Bull. Soc. Roy. Sci. Liège **61** (1992), 465-470.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ULM, ULM, GERMANY *E-mail address*: arendt@mathematik.uni-ulm.de

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF MEMPHIS, MEMPHIS, TN 38152 E-mail address: ggoldste@memphis.edu

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF MEMPHIS, MEMPHIS, TN 38152 *E-mail address*: jgoldste@memphis.edu