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1. Introduction and main results 

Scaling plays an important role in quantum mechanics and other areas of ap-
plied mathematics. When a physicist says that "kinetic energy scales like A2", she 
means the following. The kinetic energy operator is the negative Laplacian, so 
consider the Laplacian A as a selfadjoint operator on the Hilbert space L2 (RN). 
For A > 0 let U (A) be the normalized scaling operator defined by 

(U (A) / ) (x) = A* / (Ax), f e L 2 (Rn) , xeRN. 

Then U (A) is unitary on L2 (Rn) and U(A)"1 = U Q ) . "The Laplacian scales 
like A2" means 

U (A) -1 AU (A) = A2A 
holds for all A > 0, as is easy to verify. 

Now we proceed somewhat formally and do not make precise statements about 
domains. The operator representing multiplication by ĵ p- scales like Ap, in the 
sense that for 

( M p f ) (x) = \x\~p f{x), f e L 2 (Rn) ,X€Rn, 

we have 
U (A)"1 MPU (A) = XpMp 

for all A > 0. Consequently 

(1.1) U (A)"1 ( a + ^ L j u (A) = A2 ^A + j ^ j 

holds for all A > 0 and all c e l . Now let A°c = A + ^ on D(A°C) = Cc°° ( R n ) = 
V (R*) if N > 5 and D(A°C) = Cf (RN\ {0}) = V (RN\ {0}) if N < 4. Let Ac 
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be a selfadjoint extension of A°c for which (1.1) holds on the domain of Ac. By 
(1.1) the spectrum of Ac is preserved by multiplication by a positive number. Also, 

J J R 
l ^ l 2 & 

RN \x\2 

is negative for (p ^ 0 and supp(ip) shifted far away from the origin, thus, a (Ac) D 
(-oo, 0]. Thus <r(Ac) = (-oo,0] or a(Ac) = R. If (AQ

cip\ip) < 0 for all cp e 
Cc°° ( R n \ {0}), let -Ac be the Friedrichs extension of-A° c . Then U (A)"1 ACU (A) = 
\2AC for A > 0 and hence a (Ac) = (—oo, 0]. 

Hardy's inequality helps to explain how the spectrum of Ac depends on c. The 
usual way to express Hardy's inequality is 

/ T A N * 
jrn \ Z j JrN \x\ 

for all u e Hloc (Rn) for which the right hand side is finite. The constant ( ^ f ^ ) 2 

is maximal in all dimensions (including N = 2). Thus, Ac is nonpositive if and 
only i f c < ( ^ ) 2 . 

Thus the Cauchy problem 

^ = Au + ——yU x e Rn, t > 0 
ot |x| 

u(x, 0) = f{x) xeRN, 

is well-posed (for / G L2 (R^)) if and only if c < ( ^ f ^ ) 2 , in which case it is 
governed by a positive contraction semigroup. 

It is natural to ask about Lp versions of this result and about other situations 
in which scaling plays a role and a critical dimension dependent constant appears. 
The purpose of this paper is to answer these questions. 

Our main result is as follows. 

THEOREM 1.1. Let (3 e R , 1 < p < oo, c e R and let 

„ _ A 13 du c 
Bu = Bpcpu := Au - + —^u 

\x\ dr \x\2 

with, domain V0 = V(Rn\{0}) if N > 2, V0 = P(0,oo) if N = 1, acting on 
Lp

p = LP (Rn, \x\~P dx) i f N > 2 and L* = LP ((0,oo), \x\~~" dx^j if N = 1; 
/&ere = V • j^j is the radial derivative. Then a suitable extension of Bpcp 
generates a (Co) contraction semigroup on LPp if 

If 2 < p < oo and c> K (TV, p, /?), then Bpcp has no quasidissipative extension on 

Specializing Theorem 1.1 to (3 = 0 yields 



OUTGROWTHS OF HARDY'S INEQUALITY 53 

COROLLARY 1.2. Let 1 < p < oo. Then 

A = A + r ? \x\ 

on £>o = V(Rn\{0}) if N > 2, V0 = P(0,oo) if N = 1, has an m-dissipative 
extension on LP if 

(1.3) c<(N-2)2(^^j=:K(N,p); 

IP = Lp (Rn) if N > 2 , I P = Lp (0, oo) if N = 1. For c >K(N,p), 

sup | Re (Au, Jp (u)) :ueV(A), \\u\\p = 1 j = oo 

and so A has no quasidississipative extension, provided 2 < p. 

This follows from Theorem 1.1 by taking /? = 0; here K(N,p) = K(N,p, 0) 
and J p is the duality map of Lp. Note that 

2 

Throughout this paper we consider real vector spaces. 

ACKNOWLEDGEMENT . The authors are grateful to H. Vogt for several helpful 
discussions. 

2. Hardy's inequality and the inverse square potential 

The aim of this section is to study the semigroup generated by A + for 
suitable c. We let V0 = V (.RN\ {0}) . 

THEOREM 2.1. (Hardy's Inequality) 
One has 

2 /> | i2 

for all u ET>O- The constant 2 is optimal. 

Here the integral is taken over R ^ if TV > 2 and over (0,00) if N = 1. 
Theorem 2.1 is well-known. We give a proof of the inequality for the conve-

nience of the reader. 

PROOF . Let u e V0, u real, 
a) Let N > 3. Then 

/•OO ? 
n2 dX 

/

OO 

u (Xx) Vu (Xx)' x dX. 
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Hence 

f H \ d x = - 2 f xdXdx 
J | X | J J1 | X | 

Ji J \y\ 

A 2u{y) . ydy 
A Aw 

= - 2 J J™ X~N+1 dX V u (y) • X dy 

Hence, 

< 

u (x)2 

—N + 2 
— ( 

N-2 I 

/ 
/ M 

M M 

^ d y ) (J\Vu(y)\2dy 

dx < (J dxT • 
b) For N=l , u G ©o, 

u (x)2 = f -^-u (Ax)2 d\. 
Jo 

Now use the same arguments as in part a). | 

For N=l , V0 is dense in (R\ {0}) = {u e H1 (R) : u (0) = 0} , which makes 
sense since HQ (R) C C (R). By considering even functions in HQ (R\ {0}), we can 
write the one dimensional Hardy inequality as 

Jo {U>) dX~~Jo *** 
for all u e HQ := (0, oo). 

From now on, integrals (as in (2.1)) will be over RN if N > 2 and over (0, oo) 
if N = 1. And for N = 1, V0 will henceforth denote V (0, oo). 

If N = 1, then V 0 is dense in HQ which makes sense, since HQ(0,OO) C 
Cb[0, oo). If N > 2, then V0 is dense in H1 ( R n ) (cf. [3, Lemma 2.4]). Con-
sequently, the inequality remains true for all u G H1 (Rn) if N > 3 and for all 
u G #0 (0) oo) if JV = 1. 

We now sketch why the constant in Hardy's inequality is optimal. Let x G RN 

{x > 0 if N = 1) and let r = \x\. For e > 0, a > 0, b > 0, let 

4>(r) = 

g—a—by,b 
r-a 
2 — r 
0 

if 0 <r<€ 
if £<r< 1 
if 1 < r < 2 
if 2 < r. 

Then, letting (x) = 4> (r) and using | = (</>') , we can show that, given 5 > 0, 
2 1 , ,2 (V) - / 
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provided that e, a, and b are suitably chosen. (We may choose b = 0 for N > 3, 
but 6 > 0 is necessary for N = 1,2.) In fact, given c > ( ^ f ^ ) 2 and M > 0, we 
may choose e, a, b so that 

To see how to choose e, a, 6 in this way ( in a much more general setting), see 
[10]. 

In the following we use the notion of positive linear forms. Given a real Hilbert 
space H, a positive form on H is a bilinear mapping a : D (a) x D (a) R such 
that 

a (x, y) = a (y, x) x,y G D (a) 

and 
a(x,x) > 0 x G D (a). 

Here D (a) is a subspace of iJ, the domain of the form a. The form is called 

closed if D (a) is complete for the norm ||ix||a = + a (u, u)^ 2 . The form 
is called closable if the continuous extension of the injection D (a) H to the 
completion D (a) of D (a) is injective. In that case a has a continuous extension 
a : D (a) x D (a) —> M that is a positive closed form. 

If a is a closed densely defined positive form on H, the associated operator A 
on H is defined by 

D (A) = {u G D (a) : there is a v E H such that 

a (u, <p) = (v\ <p)H for all ip G D (a) }, 

Au = v. 

The operator A is selfadjoint and form positive. Thus -A generates a (Co) con-
traction semigroup { e ~ t A ) t > Q

 o n H-
In the following we let L2 := L2 (Rn) UN >2 and L2 = L2 (0, oo) if N = 1. 
If H = L2, then the semigroup e~tA is submarkovian (i.e. 0 < / < 1 

implies 0 < e~tAf < 1) if and only if u G D (a) implies u A 1 G D(a) and 
a (u A 1, (u - 1)+ ) > 0. In that case \\e~tAf\\p < | | / | |p for all / G IP n L2. 
Now for c G R, consider the positive form ac on L2 given by 

ac (W, V ) = VIZ • Vv dx — C dx, 
J J \x\ 

D(a) = Hl, where flj := flj (R^) if N> 2 and Hi := Hi (0, oo) if N = 1. We 
investigate the question: "For which real c is the form ac closed or closable"? 

PROPOSITION 2 .2 . Let c < f2)2 . Then the form ac given by D (ac) = FLJ, 

/
f uv 

Vu • Vi> dx — c / —o 
J \x\ is positive and closed. 
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PROOF . Let q = c (^j^) 2 < 1. Then by Hardy's inequality 

ac(u) = q[j |Vu|2 dx - ( ^ y ^ ) / + (! - «) J |V«|2 dx 

> (1 - q) J |Vu|2 dx. 

Thus, ac (u, u) + > (1 — q) | |u | |#i . This shows that ||-||0c is equivalent to 
Urn. • 

For the critical constant we have the following result. 

PROPOSITION 2.3 . For CN = (—f-)2 , N ± 2, the form aCN is closable. 

PROOF . Define the symmetric operator B on I? by D (B) = VQ, 

u 
BU = Au + CN—2 • 

\x\ 

It is well known that the form b given by b (u, v) = — (Bu\v)L2, D(b) = D (B) is 
closable (and the operator associated with b is called the Friedrichs extension of 
b). Observe that b(u,v) = aCN (u,v) for u, v e V0. Since T>0 is dense in Hq, it 
follows that HQ C D (b) and aCN = b on HQ X HQ. This shows that aCN is closable 
and aCN = b. | 

We next show that aCN is not closed. For simplicity we consider only the case 
N = 3. Then the critical constant is C3 = We show that 

(2.2) D (07) g L6 (R3). 

On the other hand, by Sobolev embedding, Hq C L6. Consequently Hq is a proper 
subspace of D • 

PROPOSITION 2.4. The form AI is not closed and (2 .2) holds. 

PROOF . Let 77 E V (R3) be a test function such that 0 < r] < 1 and 77 = 1 in 
a neighborhood of 0. Let u (x) = rj. Then u G L2 (R3) , but u (fc L6 (R3) . 
Let u£ (x) = 7]. Then u£ G HQ and ue —• u in L2. 

Since a i is closable, it suffices to show that ai (u£l — u£2) —> 0 as £1, 
€2 —> 0. Let 6 > 0 such that rj(x) = 1 for \x\ < S. 

It suffices to show that 

c ( £ l ; £ 2 ) := [ ( i v ^ - ^ - l ^ y ^ L x ^ O 
J\x\<6 [ 4 M J 
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as ei, £2 —• 0 + . We compute 

- [ 4 (\x\2£l - 2 1+£2 + \x\2£2) |x |"3 dx 
J\x\<6 V ' 

= [ { Hi + e?) |x|2ei + + e2) ) |4"3 dx 
J\x\<5 1 J 

+ / f-2eie2 |®ri+ea + (-e2+el) \x\2e2} |x|"3 dx 
J\x\<5 L } 

Jo 

rs 

./o 

x | 3 c h 

Hi + f 1 + *£l+£2 - 2 + (-e2 + el) p-v y 2ei £\ H~ £2 2e2 

--S2e 1 + —52ei + _ 2 € l £ 2 Jgl+g2 _ 1^262 I 
2 2 Si+£2 2 2 

0 

as ei j 0, €2 i 0. 

Next we consider the associated operators and semigroups. In particular, we 
will show that the critical constant CN = ( - - i s also optimal to associate a 
semigroup to the operator A + in a reasonable way. 

We denote by — Ac the operator associated with ac for c < ( ^ j ^ ) 2 and with 
ac for c = • Then Ac is given by 

(2.3) Acu = A u + u 
\x\ 

on 

D (Ac) = \ u G Hi : Au + -^u G L2 \ 
I M J 

in case c < (—j-) 2 , and 

£> (Ac) = j u G £> (o^7) : Au + 1^5-u e L 2 1 

in the critical case. Here Au + r ^ u is understood in the sense of Vn. This follows 
\x\ u 

immediately from the definition of the associated operator. 
The semigroup etAc may be described as the limit of the semigroups defined 

by the cut-off potentials. Denote by Ap the generator of the Gaussian semigroup 
on := L9 ( R n ) for N > 2 and the Laplacian with Dirichlet boundary conditions 
on LP := LP (0,oo) if N = 1, 1 < p < 00 (cf. [8,Theorem 1.4.1]). Then - A 2 is 
associated with do. Let AC)k = A2 + c (4j- A k) for k G N. Then 

(2.4) 0 < etAc>k < etAc>k+1. 
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If c < 2 , then it follows from the monotone convergence theorem for 
forms [18, S14] that 

(2.5) lim etAc'k = etAc strongly in L2. 
k—•oo 

PROPOSITION 2 .5 . I f c > ( ^ f ^ ) 2 , then 

lim \\etAc'k | | £ ( l 2 ) = oo fort> 0. 

PROOF . For a selfadjoint operator i o n a Hilbert space H one has — 
e
tsw where s (A) = sup {(Au\u)H : u G D (A), — 1} • This follows from the 

spectral theorem. In our situation 

5 (ACik) = sup j - J |Vit|2 dx + c j \u\2 ^-pp- AkjdxiueD (A 2 ) , \\u\\L2 = l | . 

It follows from the optimality of the constant CM in Hardy's inequality that 
s (ACjk) —> oo as k —> oo if c > CJV- I 

Another way of looking at semigroups associated with the operator A + T-% is \x\ 
to consider the minimal operator AC)inin on L2 given by 

Q 

Ac,min (u) = A U + —^U 
X 

D(Ac, min) = Vo-

THEOREM 2.6 . Let N> 5. 

a) Let c < (—Y-) . Then Ac generates a positive (Co) semigroup on L2 which 
is minimal among all positive (Co) semigroups generated by an extension of ACyinin. 

b) If c> (^j^-)2 , then no extension of Ac>min generates a positive (Co) semi-
group on L2. 

For the proof we need the following. 

LEMMA 2.7 . Let N > 5. Then V0 is a core of A2 (the Laplacian on L2 ( R ^ ) ) . 

PROOF . It is well-known that V (R^) is a core. Let u G V ( R ^ ) . Let rj G 
C1 (R) be such that 0 < rj < 1, r\ (r)' = 1 for |r| > 2, rj (r) = 0 for r < 1, and 
let rjk (x) = rj(k |#|) . It is easy to see that rjkU —• u and A (rjku) —> Au in 
L2 (R^). | 

PROOF OF THEOREM 2.6. Let B be the generator of a positive (Co) semigroup 

etB such that AC)inIN C B. Consider the semigroup Tk (t) = for 
c > 0. Then 0 < Tk+X (t) < Tk (t). It follows from [2] or [22] that limfc^oo Tk (t) = 
T^ (t) exists strongly and defines a (Co) semigroup whose generator we call B^. 
Let v G T>o- Then there exists ko such that Bkv = Av for all k > ko. Since 

Tk(t)v-v= [ Tk(s)Bvds, 
JO 

letting k —• oo we see that 

( t ) v - v = [ 
Jo 

TOO (5) Bv ds. 
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Thus, v G D (B^) and B^v = Av. Since N > 5, V0 is dense in H2 (RN) = 
D (A2) . Thus A2 coincides with B00 on a core. Consequently, A2 = i?^ . Thus 
etA2 < e

t ( B - c ( l ^ A f c ) ) for all fc. It follows that etA^ < etB for all k. Now 
Proposition 2.5 implies that c < ( ^ j ^ ) , and from (2.5) it follows that etAc < etB 

for t > 0. | 

By a result of Kalf, Schmincke, Walter and Wiist [12], V0 is a core of Ac iff 
c < ( ^ f ^ ) — 1; see also [18] for dimension N = 5. 

3. The Caffarelli-Kohn-Nirenberg inequality and associated semigroups 

Let (3 G R, L2 := L2 (Rn, \X\~P dx) if AT > 2 and Lj| := L2 ((0, oo), \x\"P dx^j 
if N = 1. Note that C L2

loc (RN\ {0}) if N > 2 and L2 C L2
oc (0, oo) if N = 1. 

Thus, L2
p c V'0 where V0 = V (RN\ {0}) if N > 2 and V0 = V (0, oo) if N = 1. 

We let Hq0 := {u G H1 (R^) : supp u is compact and 0 £ supp u} if N > 2 and 
Hq0 := {u G H1 (0, oo) : supp u is compact, supp u C (0, oo)} if N = 1. 

Consider the unitary operator U : —> L§, ^ 1—* * u- ^ maps H$0 onto 
Hq0. Consider the Dirichlet form 

a (u, v) = J Vu - Vv dx 

on Lq with domain Hq0. We transport the Dirichlet form by U to the space L2^ by 
defining 

b(u,v) = J V -V (\x\~* v} dx 

= a (Uu, Uv) 

for u, v G Hq0. Then we have 

(3.1) b(u,v) = J Vu-Vv dx 

X 

for all u, v G Hq0. 

PROOF OF (3.1). Let u, v e #oo- Then 

b(u, v) 

y^j . ^ dx 

= J Vu • Vv |x|_ /? dx + Juv \x\~p~2 dx - | J \x\~p~2 x • V (tw) dx 

/ V« • V« | x | - ^ x - { - ^ 

0 . Ai)-1 x . \ ( 0. A^)-1 x 

= I Vu-Vv\x\-pdx-U : —alxfdx 
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since by integration by parts, 

J \x\-P~2
x.V{uv) dx = -^{(3 + 2) J \x\-P~2uvdx + ^N J dx. 

7u\2 \x\ P dx 

Now by Hardy's inequality, 

J\Vu\2\x\~P dx- ^ 

/, , \ f N — 2\2 f (W"f*) 
= a 2 u, \x\ 2 uj - ^——J j ±—j ^ J dx > 0. 

Thus, we have proved the following. 

THEOREM 3 . 1 . One has 

(CKN) 
for all u, v G Hq0, with optimal constant. 

This is the Caffarelli-Kohn-Nirenberg inequality [7] which we have deduced 
from Hardy's inequality by similarity. Note that the case of N = 2 is included 
here. 

Now for c £ R we consider the form bc on L2^ given by 

bc(u, v) = J Vu-Vv \x\~^ dx — c J uv \x\~^ dx 

with domain D (bc) = HQ0. Then by Theorem 3.1 the form bc is positive iff c < 

THEOREM 3.2. Let (3 e R and let c < . Then the form bc is closable 
and Vo is a form core. Let —Bc be the operator on associated with bc. Then 
VQ C D (Bc) and 
, . „ A B du u 
3.2 Bcu = Au-fr—+ c—2 

\x\ dr \x\2 

for all u G T>q. The operator Bc generates a positive (Co) semigroup on L^ which 
is submarkovian i f f c < 0. 

P R O O F . Letting S = - ( ^ ) 2 + ( ^ f ^ ) * we have, by (3.1), bs = b and 
more generally, 
(3.3) acs (Uu,Uv) = bc (u, v) 
for all u, v G HQ0. Since UVQ = V0, it follows from the results of Section 2 that bc 
is closable and V0 is a form core. It follows from (3.3) that 

Bc = U^AcsU 
and so 

etBc = JJ-IJA^SJJ 
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for t > 0. In particular, etBc > 0. 
Let u G X>0j v = Au — + c]i]2- Integration by parts shows that 

,(u,(p) = — J v<p\x\ ^ dx 

for all (p EVo. Hence, u G Bc and Bcu = v. 
Finally we show that etBc is submarkovian iff c < 0. Let u G HQ0. It follows 

from [9, p. 152] that (u A 1) sgn u G Hq0 and 

Dj ((|u| A 1) sgn u) = Dju l|{| t t|<i} 

where sgn u = ^ l{u^o}- Thus 

bo ((1 A |u|) sgn u, (1 A |u|) sgn u) 

= J |Vu|2 l|{|u |<i} dx <b0(u,u). 

It follows from [17, Theorem 2.6, Theorem 2.14] that (e t B ° ) t > 0 is submarkovian. 
If c > 0, then the semigroup etBc is not submarkovian. In fact, let u G T>o 

be such that (u - 1)+ ^ 0. Then Dj (u - 1)+ = Dju l{u>i} and Dj (u A 1) = 
DjU • l{ t t<i}. Thus 

bc(u A l , (u- 1)+) = yV(uAl).v((u-l)+) 

cJ (uAl)(u-l)+ ^ 

-

2 | | dx 
x\ 

I l 2 \x\ 
dx < 0. 

Thus etBc is not submarkovian by [17, Corollary 2.17]. | 

Next we want to describe the domain of bc. We denote by 

Hi := {u G L% : G Lj|, j = 1 , N } 

the weighted Sobolev space where DjU is understood in the sense of£>0. Then H} 
is a Hilbert space for the scalar product 

(U\V)H* : = (U\V)L2
p + J V u - V v \x\~P dx. 

D (bc) is the completion of Vo with respect to the norm 

\ I 
|ti|| +b(u,u)j =\\u\\Hy 

Thus, D (6^) is the closure Hp0 of T>o in Hp . It follows from Fatou's Lemma 
that (CKN) remains true for all u G Hp0. As in the proof of Proposition 2.2, one 

deduces that for 0 < c < , one has D (bc) = H^0 and 

Yc(u,v) = J Vu-Vv \x\~P dx-c / M dx. 

We summarize these facts as 
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PROPOSITION 3 .3 . One has D (b) = and 

(CKN) ( N ~ l ~ f i ) 2 f J ^ N " ' dx< J\Vu\2 \x\~P dx 

for all u G H}q. IfO < c < ( ^ f ^ ) * , then D (Tc) = 

For N >3 and /3 ^ N - 2, we have the following 

PROPOSITION 3 .4 . If N >3 and (3 ^ N — 2, then H\ = \x\* H1 = 

PROOF . Let u G H1, v = \x\* u. Then v G and DjV = § |ar| 2 - 1 ^ u + 

\x\ * DjU in T>'0. It follows from Hardy's inequality that u G L2p. Hence 
DjV G Lp and v G Hp. 

Conversely, let v G Hp, u = \x\~* v. Thenii G L2 andDju = — § 

\x\~* Djv. It follows from (CKN) that \x\~*~xv G L2. Since v G Hone has 

G £2 Thus, DjU G ff1. 

We have shown that Hp = |ar|2 H1. The above computation also shows that 

| l^i and I I a: | 2 v ^ are equivalent norms on HQ. Since \x\ 2 VQ = VQ and 
since VQ is dense in H1 it follows that VQ is also dense in HP. | 

Next we consider realizations of the semigroup (e tBc) on L^ := IP ^R^, \x\~^ dx} 

if N > 2 and Lp
p := LP ((0, oo), \x\'p dx} if JV = 1. Here p G [1, oo) will have to 

be restricted to a certain interval containing 2. 
Let us write B = BQ, Since (ETB)T>0 is submarkovian, there exists a consistent 

family 

V J t> o 
of (Co) semigroups on L^, 1 < p < oo with B® = B. Consider the bounded 
potentials 

Then e*(^(p)+cVfc) [s a (C0) semigroup on LVp for all c > 0, 1 < p < oo . Moreover, 

0 < et(B^+cVk) < e t (BW+cV k + 1 ) m 

( \ 2 
N ~2~ P ) • Let 1 < (c) < 2 < (c) < oo be such that 

[p_ (c) , p + (c)] = j p G [ l , o o ] : c < ± ( i V " 2
2 " ^ ) 2 | • 

Note that 1 < p- (c) < p+ (c) < oo if c > 0, and p- (c) = 1, p+ (c) = oo if c < 0. 
Observe that p G [p_ (c) (c)] iff p' G [p_ (c) (c)]. By 5C ) m i n we denote the 
operator given by D (BC)MIN) = V 0 , 

„ A f3 du c 
Bc,minU = AU ~ —r— + —^U \x\ or \x\ 
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which acts on all 1 < p < oo. 

THEOREM 3.5. Let p G \p~ (c) ,p+ (c)], p < oo. Then TPiC(t) := stronglim 
k >00 

et(#(p)+ k)exists in C ( j ^ j ami defines a (Co) semigroup TPjC on LPp. Its generator 

B i s an extension of BCilnin. In addition B^ = Bc. 

It clearly follows from Theorem 3.5 that the semigroup TPjC are consistent, i.e., 

Tp,c (t)f = Tq,c (t)f 

for all t > 0, / G LPp fl L^, (c) < p, q < p+ (c). For the proof of Theorem 3.5 we 
will use the following simple argument for increasing semigroups referring to Voigt 
[22], [23] for further information and developments. 

PROPOSITION 3 .6 . Let Tk be ( C o ) contraction semigroups on Lp, 1 < p < 0 0 , 
such that 0 <Tk (t) < Tk+i (t). Then T (t) f = lim Tk (t) f exists for all f G Lp, k >-oo 
t > 0, and defines a (Co) semigroup T. 

P R O O F . The strong limit exists by the Beppo Levi Theorem. Then T (t) G 
C (IP) and T (t + 5) = T (t)T (s) for t, s > 0. It remains to prove strong continuity. 
Let tn | 0, 0 < / G Lp. We have to show that fn := T (tn) f —> f as n —> 00. 
Let gn Ti (tn) f . Then 0 < gn < fn and gn —• / as n —> 00. Moreover, 
IIS»IILP<II / | ILP-

a) Let p = 1. Then 

J ( f n ~ gn) dx + J gndx = J fn dx< \\f\\LK 

Since ( f n -gn)> 0 and J gn dx —• | | / | |L i . , it follows that \\fn - gn ||L1 = f ( f n - gn) 
dx —y 0 as n —> 00. Since gn —• f in L1, also fn —> / in L1. 

b) Let 1 < p < 00. It suffices to show that each subsequence of ( f n ) has a 
subsequence converging to / in IP. Since Lp is reflexive, we may assume that fn 
converges weakly to a function h G LP (consider a subsequence otherwise). Since 
9n < f n and gn —> f it follows that f < h. Hence \\f\\LP < II^IIlp • Since IP is 
uniformly convex, this implies that fn converges strongly to h. It follows that 
\\h\\LP < Wfllip • Since f < h, this implies that f — h. | 

P R O O F OF THEOREM 3 . 5 . L e t p G [p_ (c) (c)] , i .e . c < ( I V ~ 2 ~ / 3 ) • 

We show that BW + cVk is dissipative for all k G N. Let u G D ( f lW) . We have 
to show that 

(B^u + cVku, \u\p~x sgn u} < 0. 

By a result of Liskevich-Semenov [17, Theorem 3.9] one has u \u\ G D (b) and 

(B^u, K"1 sgn u) < (u M'"1, u |u^"1) . 

Hence by (CKN) in Proposition 3.3, 
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Since 

1-/3 dx :(vku,\u\p 1 sgn u) = c HP 1 sgn u \x\ 
X ' JM2>i W 

= c [ dx, 
M 

and the claim follows. By Proposition 3.6, there exists a (Co) semigroup TCjP on 
Lp

0 such that TC)P (*) = f lim eKB<ip)+cV*) strongly. Denote the generator of Tc 

ko 

CFP J
 11111 C OULWllgX̂ . JVCIiUtC U11C ^IL^LAUKJL UI J. C p 

/c—>-oo 
by Let u G V0. Then there exists fc0 G N such that u (x) = 0 if |x|2 < 
Hence 

(flW + u = ^BM + ^ u = Be,minU —• ^ 

for all k > ko. 
Observe that 

e t { B ^ + c V k ) u _ u = / ' e s ( B ^ + c V k ) v d s 
- f Jo 

for all k > ko. Passing to the limit as k —> oo, we obtain 

TC,P (t)u — u= [ Tc,p(s)vds (t> 0). 
Jo 

This implies that u G D and B^u = v. We have shown that BCjmin C 
It follows from the convergence theorem for an increasing sequence of closed positive 
forms [18,Theorem S.14, p.373] that B{2) = Bc. | 

Finally, we describe the behavior of B ^ by rescaling. For A > 0, the operator 
U\ given by 

(Uxf)(x) = X ^ f ( X x ) 
is an isometric isomorphism on L^ which is unitary if p = 2. Moreover, UXHQ0 = 

HQ0 and 

(3.4) bc(Uxu,Uxv) = \2bc(u,v) 

for all u, v G HQ0 (as one easily shows). It follows that U\D (6C) = D (6C) and that 
(3.4) remains valid for all u,v G D (bc) • This implies that 

(3.5) UXB~Z = A2Bc (A > 0) 

by the definition of the associated operator. This implies that 

(3.6) U x e t B ^ U ^ 1 = { t > 0) 

for all A > 0. By consistency it follows that 

(3.7) UxetB^U^=etx2B^ (t> 0) 
2 

J • 

From these rescaling properties we deduce the following result on the spectrum. 
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PROPOSITION 3 .7 . (a) For p = 2 one has cr(Bc) = ( - 0 0 , 0 ] for all c < 

(b) Letc < . Then a ( ^ p ) ) n M = (—00,0], for allp E [p_ (c) (c)], 
p < 00. 

PROOF , (a) It follows from (3 .5) that a (Bc) = A2CR (2?C) for all A > 0. Since 
cr (Bc) ^ 0, the claim follows. 

(b) Let p e [p_(c),p+(c)], p < 00. We first show that <7 ( b ^ ) ^ 0. 

In fact, if a ( B ^ = 0, then it follows from Weis' Theorem [4, Theorem 5.3.6] 

that UJ ^ = — 00, where UJ denotes the growth bound (or type) of the semi-

group generated by B^. But then it follows from the Riesz-Thorin Theorem that 

^Sc 2^ = — 00, which is impossible by (a). 
The spectral bound 

5 (fiCri) = sup jRe / i : fi e a ( b ^ } 

is finite. It follows from (3.7) and (a) that 5 = 0 and (-00,0] C A ( B ^ . | 

REMARK 3.8 . We refer to [21], [20], [16] and [1] for results on p-independence 
of the spectra of consistent semigroups. In general the spectrum of the generator 
of a symmetric submarkovian semigroup may depend on p G [1,00). An interesting 
example is the Neumann Laplacian on irregular domains (see Kunstmann [14])-

Finally, we show that the constant in Theorem 3.5 is optimal. 
For /? = 0 this result has been proved by Vogt [21, Example 3.31]. 

THEOREM 3.9 . Let 2 < p < 00, ± + ± = 1, and let c> ^ . Then 
the operator -Bc,min is not quasidissipative. Thus no extension of Bc^n generates 
a (Co) semigroup T on LPp satisfying \\T (t)\\c^LP^ < ewt for t > 0 and for some 
UJ G R . 

Recall that an operator A o n a Banach space X is dissipative iff 

||z|| < \\x - tAx|| xeD(A), t > 0. 
An operator A is quasidissipative iff A — UJI is dissipative for some w G l . Let U : 
X —• X be an isometric isomorphism. Then this characterization of dissipativity 
shows that A is dissipative iff UAU-1 is dissipative. If A is dissipative, then also 
A A is dissipative for all A > 0, and A — UJ is dissipative for all UJ > 0. Conversely, 
let UJ > 0 and assume that XA — UJ is dissipative for all A > 0. Then it follows that 
A is dissipative. 

PROOF OF THEOREM 3 . 9 . Let UJ > 0. Assume that I?c,min — UJ is dissipative 
in LPp. Let A > 0, U\ = const • U\ where the constant is chosen in such a way that 

U\ is an isometric isomorphism on LPp. Then A2BC)min — UJ = U\ (i?c,min — U\ 
is dissipative. Since A > 0 is arbitrary, it follows that BCimin is dissipative. 
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Thus, we merely have to prove that -Bc,min is not dissipative in L^. Let us 
assume that i?c,min is dissipative. Let u G VQ. It follows that 

(3.8) 

We compute, since p > 2, 

^Au, sgn u 

j . (3 du u . iz?_i ' 
0 > ( A u - T-TTT- + c—2, \u\F sgn u 

\ W d r W I 

J A u ^\u\p 1 sgn uj \x\ ^ dx 

— J\Vu\2(p-l)\u\p~2\x\-^ dx 

f N X — / ^ DjU \u\p~x sgn u • (—(3) j^t dx 
J j=i M 

— (p—1) J\Vu\2 |x |p _ 2 dx 

[ (3 du p 
-f / i—son u \u\ \x\ ax. 

J \x\dr * 11 11 

Thus it follows from (3.8) that 

f K i ^ c J —p- \x\ ax = 

< (p- 1) J |V' 

In order to rewrite the last expression we compute 

C 2 ? M U 

\x\ i 

u\2 2 Ixl ^ dx. 

V7I i f ^ I | ? - 1 V7 U 
V M 2 = - m 2 vu— i i 2 i i u\ 

hence 

So we obtain 

V|« | 
2 p2 \p—2 | T 7 . 2 = — \u\F \Vu\ . 4 

; J H ! ^ < 1 (p _ 1) J | V |ti|" Ixl ^ dx. 

Hence 

(3.9) c f —It H ^ dx < ——— f 
J Ixl PPF J 

VIA 2 Ixl p dx 

for u G £>o+. By replacing ^ by Ae * ^ where {Aer}er>0 is a Friedrichs mollifier, we 
deduce that (3.9) remains true for all u G #00 n lq ° . Here we again use that p > 2. 

Let r = We define 

<pn (s) = s A ns r (5 > 0), un = (fno u. 

Then u\ G So (3.9) implies 

(3.10) , [ w 
V Ixl2 

Ixl p dx < A / I V , 
pp' J 

x\ ^ dx. 
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Letting n oo, since |Vi£n \ < \ |V«r for all n G N, we deduce that 

(3-11) 

for all ^ G #00 n • Applying ( 3 .11 ) to u A n instead of u and letting n —> oo, 
we see that ( 3 .11 ) remains true for all u G HQ0+. Finally, applying ( 3 . 1 1 ) to \u\ 
instead of u it follows that ( 3 .11 ) holds for all u G HQ0. NOW Theorem 3 . 1 implies 

We remark that even though for 0 < c < ^ N 2 the interval [p_ (c), p+ (c)] 
is optimal for obtaining quasicontractive (equivalently, contractive) extrapolating 
semigroups to LPp for all p G [p_ (c), p+ (c)] , one might still have extensions which 
are not quasicontractive. In fact, for (3 = 0, it is shown by Vogt [21, Example 
3.31] that for p G (j^z^P- (c), j^P^- (C)) , and N > 3, such an extrapolation 
semigroup on LP (Rn) exists. 
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