DOI: 10.1007/s00209-005-0858-x

Addendum

Vector-valued holomorphic functions revisited

Wolfgang Arendt¹, Nicolai Nikolski²

- ¹ Universität Ulm, Abteilung Angewandte Analysis, D-89069 Ulm, Germany (e-mail: arendt@mathematik.uni-ulm.de)
- ² Université Bordeaux I, UFR de Mathématiques et Informatique, 351, cours de la Libération, F-33404 Talence, France (e-mail: nikolski@math.u-bordeaux.fr)

Math. Z., http://dx.doi.org/10.1007/s002090050008

Received: 25 May 2005 / Published online: 24 November 2005 - © Springer-Verlag 2005

One of the statements, Corollary 3.7, in [1] is erroneous. In fact, the hypothesis that *W* is a separating subspace of *X'* has to be replaced by the stronger hypothesis that *W* is almost norming. The arguments are implicitely in [1]. We give precise statements and proofs. Let *X* be a Banach space and *W* a *separating subspace* of the dual space *X'* of *X*, i.e., for all $x \in X \setminus \{0\}$ there exists $\varphi \in W$ such that $\varphi(x) \neq 0$. Then we may identify *X* with a subspace of *W'*, the dual space of *W*. To say that *W* is *almost norming* means by definition that

$$||x||_W := \sup\{|\varphi(x)| : \varphi \in W, ||\varphi|| \le 1\}$$

is an equivalent norm on X. This is equivalent to saying that X is closed in W'. By a result of Davis and Lindenstrauss [1, Remark 1.2] each separating subspace of X' is almost norming if and only if dim $X''/X < \infty$. Now we first formulate and prove the corrected version of [1, Corollary 3.7].

Theorem 1. Let $\Omega \subset \mathbb{C}$ be open and connected. Let $A \subset \Omega$ have a limit point in Ω and let $h : A \to X$ be a function. Assume that there exist $c \ge 0$, an almost norming subspace W of X' and a family $\{H_{\varphi} : \varphi \in W\}$ of holomorphic functions on Ω such that

$$H_{\varphi}(z) = \langle \varphi, h(z) \rangle \quad (\varphi \in W, z \in A)$$

and

$$|H_{\varphi}(z)| \leq c \|\varphi\| \quad (\varphi \in W, z \in \Omega).$$

Then h has a holomorphic extension to Ω with values in X.

Proof. Define the mapping $H : \Omega \to W'$ by $\langle H(z), \varphi \rangle = H_{\varphi}(z)$. Then $||H(z)|| \le c$ for all $z \in \Omega$. It follows from [1, Theorem 2.2] that H is holomorphic. Since X is a closed subspace of W' and $H(z) \in X$ for all $z \in A$ it follows from the Uniqueness Theorem [1, Theorem 2.2] that $H(z) \in X$ for all $z \in \Omega$.

Next we show that in Theorem 1 one may not replace almost norming by the weaker property of separating in general.

Theorem 2. Let $W \subset X'$ be a separating subspace which is not almost norming. Then there exists a functions $f : \mathbb{D} \to X$ such that $\varphi \circ f$ is holomorphic for all $\varphi \in W$,

$$|\varphi(f(z))| \le c \|\varphi\|$$
 for all $z \in \mathbb{D}$, $\varphi \in W$

and some constant $c \ge 0$. But f is not holomorphic.

Proof. Since *W* is separating, *X* is a subspace of *W'* and the embedding is continuous. However, *X* is not closed in *W'* since *W* is not almost norming. By [1, Theorem 1.6] there exists a function $g : \mathbb{D} \to X$ which is not holomorphic such that $g : \mathbb{D} \to W'$ is holomorphic. Then *g* is not holomorphic on $r\mathbb{D}$ with values in *X* for some 0 < r < 1. Define f(z) = g(rz) $(z \in \mathbb{D})$. Then $f : \mathbb{D} \to X$ is not holomorphic. But *f* as a function with values in *W'* is holomorphic and bounded. Hence $|\varphi(f(z))| \le c \|\varphi\|$ for all $\varphi \in W, z \in \mathbb{D}$ and some $c \ge 0$.

We emphasize that [1, Corollary 3.8] is correct as it is formulated. The Krein-Smulyan Theorem can be used to show that the weak hypothesis of separating does suffice here.

We recall the statement:

Corollary. Let Y be a Banach space continuously embedded into X. Let $f : \Omega \to X$ be holomorphic. Assume that for each $z \in \Omega$ there exists an open bounded set $\omega \subset \Omega$ such that $z \in \omega$, $\bar{\omega} \subset \Omega$, $f(v) \in Y$ for all $v \in \partial \omega$, and $\sup_{v \in \partial \omega} ||f(v)||_Y < \infty$. Then $f(z) \in Y$ for all $z \in \Omega$ and f is holomorphic if it is considered as a function with values in Y.

Proof of the Corollary. Let $A = \{z \in \Omega : f(z) \in Y\}$. Then $W := \{\varphi \in Y' : \exists f_{\varphi} : \Omega \to \mathbb{C} \text{ holomorphic such that } f_{\varphi}(z) = \varphi(f(z)) \text{ for all } z \in A\} \text{ is a subspace of } Y'$ which contains the separating space $\{\psi_{|Y} : \psi \in X'\}$. Thus W is $\sigma(Y', Y)$ -dense in Y'. We claim that W = Y'. By the Krein-Smulyan Theorem it suffices to show that

$$W_1 := \{ \varphi \in W : \|\varphi\| \le 1 \}$$
 is $\sigma(Y', Y) - \text{closed}$.

Let (φ_i) be a net in W_1 converging to φ with respect to $\sigma(Y', Y)$. It follows from the maximum principle and the hypothesis that $(f_{\varphi_i}(z))_{i \in I}$ is locally bounded. Now Vitali's Theorem [1, Theorem 2.1] implies that $\lim_i f_{\varphi_i}(z) = g(z)$ exists for all $z \in \Omega$ and defines a holomorphic function $g : \Omega \to \mathbb{C}$. Clearly, g(z) = $\lim_i \varphi_i(f(z)) = \varphi(f(z))$ whenever $z \in A$. Thus $\varphi \in W_1$. We have shown that W =Y'. It follows from the maximum principle and the hypothesis that $\sup_{z \in \tilde{\omega}} |f_{\varphi}(z)| \leq$ $\|\varphi\| \sup_{z \in \partial \omega} \|f(z)\|_Y$ whenever ω is open, $\bar{\omega} \subset \Omega$ and $\partial \omega \subset A$. Now we can apply Theorem 1 above.

Acknowledgements. We are grateful to J. Bonet, L. Frericks and E. Jordá who pointed out the error in [1, Corollary 3.7]. Interesting results of holomorphic functions with values in locally convex spaces are given in their paper [2].

References

- Arendt, W., Nikolski, N.: Vector-valued holomorphic functions revisited. Math. Z. 234, 777–805 (2000)
- [2] Bonet, J., Frerick, L., Jordá, E.: Extension of vector valued holomorphic and harmonic functions. Preprint