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One of the statements, Corollary 3.7, in [1] is erroneous. In fact, the hypothesis
thatW is a separating subspace ofX′ has to be replaced by the stronger hypothesis
that W is almost norming. The arguments are implicitely in [1]. We give precise
statements and proofs. LetX be a Banach space andW a separating subspace of the
dual space X′ ofX, i.e., for all x ∈ X \ {0} there exists ϕ ∈ W such that ϕ(x) �= 0.
Then we may identify X with a subspace of W ′, the dual space of W . To say that
W is almost norming means by definition that

‖x‖W := sup{|ϕ(x)| : ϕ ∈ W, ‖ϕ‖ ≤ 1}

is an equivalent norm on X. This is equivalent to saying that X is closed inW ′. By
a result of Davis and Lindenstrauss [1, Remark 1.2] each separating subspace of
X′ is almost norming if and only if dimX′′/X < ∞. Now we first formulate and
prove the corrected version of [1, Corollary 3.7].

Theorem 1. Let� ⊂ C be open and connected. LetA ⊂ � have a limit point in�
and let h : A → X be a function. Assume that there exist c ≥ 0, an almost norming
subspaceW ofX′ and a family {Hϕ : ϕ ∈ W } of holomorphic functions on� such
that

Hϕ(z) = 〈ϕ, h(z)〉 (ϕ ∈ W, z ∈ A)
and

|Hϕ(z)| ≤ c‖ϕ‖ (ϕ ∈ W, z ∈ �) .
Then h has a holomorphic extension to � with values in X.
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Proof. Define the mappingH : � → W ′ by 〈H(z), ϕ〉 = Hϕ(z).Then‖H(z)‖ ≤ c

for all z ∈ �. It follows from [1, Theorem 2.2] thatH is holomorphic. SinceX is a
closed subspace ofW ′ and H(z) ∈ X for all z ∈ A it follows from the Uniqueness
Theorem [1, Theorem 2.2] that H(z) ∈ X for all z ∈ �. �
Next we show that in Theorem 1 one may not replace almost norming by the weaker
property of separating in general.

Theorem 2. Let W ⊂ X′ be a separating subspace which is not almost norming.
Then there exists a functions f : D → X such that ϕ ◦ f is holomorphic for all
ϕ ∈ W ,

|ϕ(f (z))| ≤ c‖ϕ‖ for all z ∈ D, ϕ ∈ W
and some constant c ≥ 0. But f is not holomorphic.

Proof. Since W is separating, X is a subspace of W ′ and the embedding is con-
tinuous. However, X is not closed in W ′ since W is not almost norming. By [1,
Theorem 1.6] there exists a function g : D → X which is not holomorphic such
that g : D → W ′ is holomorphic. Then g is not holomorphic on rD with values in
X for some 0 < r < 1. Define f (z) = g(rz) (z ∈ D). Then f : D → X is not
holomorphic. But f as a function with values in W ′ is holomorphic and bounded.
Hence |ϕ(f (z))| ≤ c‖ϕ‖ for all ϕ ∈ W , z ∈ D and some c ≥ 0. �

We emphasize that [1, Corollary 3.8] is correct as it is formulated. The Krein-
Smulyan Theorem can be used to show that the weak hypothesis of separating does
suffice here.

We recall the statement:

Corollary. Let Y be a Banach space continuously embedded intoX. Let f : � →
X be holomorphic. Assume that for each z ∈ � there exists an open bounded set
ω ⊂ � such that z ∈ ω, ω̄ ⊂ � , f (v) ∈ Y for all v ∈ ∂ω, and sup

v∈∂ω
‖f (v)‖

Y
<

∞. Then f (z) ∈ Y for all z ∈ � and f is holomorphic if it is considered as a
function with values in Y .

Proof of the Corollary. Let A = {z ∈ � : f (z) ∈ Y }. ThenW := {ϕ ∈ Y ′ : ∃ fϕ :
� → C holomorphic such that fϕ(z) = ϕ(f (z)) for all z ∈ A} is a subspace of Y ′
which contains the separating space {ψ|Y : ψ ∈ X′}. Thus W is σ(Y ′, Y )-dense in
Y ′. We claim thatW = Y ′. By the Krein-Smulyan Theorem it suffices to show that

W1 := {ϕ ∈ W : ‖ϕ‖ ≤ 1} is σ(Y ′, Y )− closed .

Let (ϕi) be a net in W1 converging to ϕ with respect to σ(Y ′, Y ). It follows from
the maximum principle and the hypothesis that (fϕi (z))i∈I is locally bounded.
Now Vitali’s Theorem [1, Theorem 2.1] implies that lim

i
fϕi (z) = g(z) exists for

all z ∈ � and defines a holomorphic function g : � → C. Clearly, g(z) =
lim
i
ϕi(f (z)) = ϕ(f (z)) whenever z ∈ A. Thus ϕ ∈ W1. We have shown thatW =

Y ′. It follows from the maximum principle and the hypothesis that sup
z∈ω̄

|fϕ(z)| ≤
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‖ϕ‖ sup
z∈∂ω

‖f (z)‖Y whenever ω is open, ω̄ ⊂ � and ∂ω ⊂ A. Now we can apply

Theorem 1 above. �
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