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Abstract. In this article we describe properties of unbounded operators related to evolutionary 
problems. It is a survey article which also contains several new results. For instance we give a 
characterization of cosine functions in terms of mild well-posedness of the Cauchy problem of 
order 2, and we show that the property of having a bounded H°°-calculus is stable under rank-1 
perturbations whereas the property of being associated with a closed form and the property of 
generating a cosine function are not. 

Introduction. Many second-order elliptic differential operators can be realized on L2-
spaces by means of closed quadratic forms (see [Ev, Chapter 6]). Typically the space is 
L2(0) where O is an open subset of R^, and the domain V of the form is a Sobolev 
space such as H1(£L) or HQ(SI). The domain of the associated operator A is more difficult 
to identify but it often happens that the domain of the square root of A coincides with 
the form domain V. Kato [Kat] initiated a study of closed forms and the associated 
operators as an abstract approach to such differential operators. If one takes a fixed inner 
product, one can characterize the operators which are associated with forms by means of 
a condition that the numerical range of the operators should be contained in a suitable 
sector. If one allows changes of the inner product the class of operators associated with 
forms becomes much wider, so it is useful to study their properties modulo similarity. 

The notion of a bounded i7°°-calculus of a sectorial operator was introduced by 
Mcintosh [McI3] in work on singular integral operators but it has subsequently proved to 
be very important for questions of maximal regularity in evolution equations (see [KW] 
for an extended survey). Not every sectorial operator on Hilbert space has such a calculus, 
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and remarkably it turns out that the class of operators on Hilbert space which have a 
bounded H°°-calculus on a sector of angle less than n/2 is exactly the same as the class 
of operators associated with forms, modulo similarity (Theorem 2.5). 

Cosine functions were first studied by Fattorini (see [Fa3]) and Kisyriski [Ki] as the 
second-order analogues of Co-semigroups. Indeed the second-order Cauchy problem 

u"(t) = Au(t) (t > 0) 

is well-posed if and only if A generates a cosine function (see Theorem 5.3). A remarkable 
recent result of Haase [Hal] and Crouzeix [Cr] is that generators of cosine functions on 
Hilbert space can be characterized by a condition that the numerical range, with respect 
to some inner product, is contained inside a parabola (Theorem 5.11). 

Perturbation theory is an important tool for studying differential operators, where 
more complicated operators may be regarded as perturbations of simpler operators. Ab-
stract perturbation theory may then allow a more general case to be reduced to a simpler 
case. It is standard to regard the lower-order terms of a differential operator as a pertur-
bation of the principal part A which is relatively bounded with respect to a fractional 
power of A. Here we are interested more in A-bounded perturbations which are of finite 
rank or relatively compact. 

In this article we describe some of the connections between these topics. The emphasis 
is on Hilbert spaces but we state results for Banach spaces where appropriate. The article 
is mostly a survey of some known results but it includes some new results. For example, we 
show that bounded iT°°-calculus is stable under A-bounded perturbations of finite rank 
(Theorem 4.1), but association with a form, for a fixed scalar product, is not (Theorem 
3.8). Generation of a cosine function is also not stable under these perturbations (Theorem 
5.9) but we refer to [AB] for the proof. We do not attempt to give a complete survey 
of any of the individual topics or to give a full historical account, and broader recent 
surveys may be found in [Ar] and [KW]. 

1. Forms. Let H, V be complex Hilbert spaces such that V^H, i.e., V is continuously d 
embedded into H with dense image. Let a : V xV C b e a continuous sesquilinear form 
which is closed, i.e., 

(1.1) Rea(u,U) + (J(U\U)H > ®\\u\\y (u € V) 

holds for some a > 0, u G M. Here ( | )# denotes the scalar product of H. We call V the 
domain of the form. We can associate with a an operator A on H by 

D(A) = {u e V : there exists v £ H such that a(u, (p) = (v \ cp)n for all tp e V}, 
An — v. 

We write A ~ a and say that A is associated with a. More precisely, we may write A ~ a 
on (iJ, ( | )H)> In this situation it is always the case that D(A) is dense in H and —A 
generates a holomorphic Co-semigroup T on H. If to = 0, i.e., if the form a is coercive, then 
the semigroup T is exponentially stable. We refer to [Kat, Chapter VI] for the general 
theory of closed forms and the associated operators. 
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E X A M P L E 1 . 1 (The Laplacian with Dirichlet boundary conditions). Let Q C be 
open, if = L2(Q) with the usual inner product, V = HQ(CI) and .a(u, v) = fn Vn • Vv dx. 
Then a is a closed form. Let A ~ a. It is not difficult to see that 

where Au is understood in the sense of distributions [ABHN, Theorem 7.2.1]. 
D E F I N I T I O N 1 . 2 . Let A be an operator on (if, ( | )#). We say that is associated with 
a form if there exists a closed form a such that A ~ a. 

It is easy to characterize those operators which are associated with a form on (if, (| )#). 
For 0 < 8 < 7r we shall denote by := {reia : r > 0, |a| < the sector of half-angle 9 
with vertex 0, and by Eg + u the corresponding sector with vertex u where uo G M. For 
an operator A, we let W(A) be the numerical range of A: 

T H E O R E M 1.3 ([Kat, Theorem VI.2.7]). An operator A on (il, ( | )H) is associated with 
a form if and only if there exist 6 G (0,7r/2) and w G l such that W(A) C £0 + u and 
the range of A — u is H. 

Definition 1.2 and the definition of W(A) depend on the choice of the scalar product, 
and Theorem 1.3 characterizes the operators associated with a form for a fixed scalar 
product. If we consider a fixed form but we change to an equivalent scalar product ( | )i 
on H then we obtain a different operator. 

E X A M P L E 1.4. Let A ~ a on L2(0) when L2(fi) has the usual scalar product. Let m e 
L°°(n,R) such that infx enm(x) > 0. Consider the equivalent scalar product 

on £2(fl). Then the operator mA is associated with a on ( | )i). Here we use m 
also to denote the bounded operator of multiplication by the function ra-

it is natural to ask which operators A on H are associated with a closed form on 
(if, ( | )i) whatever the equivalent scalar product is. This occurs if A is bounded because 
we may take the form a(ii, v) = (Au | v)i. Matolcsi has recently answered the question by 
showing that only bounded operators have this property. 

T H E O R E M 1.5 ([Mat]). Let A be an operator on i f . Assume that for each equivalent 
scalar product ( | )i on if there exists a closed form a on H such that A ~ a on (if, ( | )i). 
Then A is bounded. 

Thus, given an unbounded operator A, we can always find a bad scalar product so 
that W(A) (with respect to this scalar product) is not contained in any sector. Another 
natural and more interesting question is which operators are associated with a closed 
form with respect to some equivalent scalar product. 

D E F I N I T I O N 1.6. A densely defined operator A on if is called form-similar if there exists 
an equivalent scalar product ( | )i on_H and a closed form a on H such that A ~ a on 

D(A) = {ue HQ ( O ) : Au G L 2 ( F T ) } , Au = - A u , 

W(A) = {(AX,X)H : Z G D(A)9 \\X\\H = 1}. 

(u I = — dx 
J a m 
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Thus our question is: which operators on H are form-similar? We shall describe the 
answer in the next section. 

2. Functional calculus. In this section we shall describe the answer to the question 
posed at the end of Section 1. For this we shall recall the notion of a bounded func-
tional calculus of a sectorial operator A. For many purposes, for instance for questions of 
regularity of solutions of Cauchy problems, it does not matter whether A or the shifted 
operator A + u is considered. If —A generates the semigroup T then —(A + u) generates 
the semigroup (e~utT(t))t>o- The class of form-similar operators is also invariant under 
these shifts. If A ~ a on a Hilbert space iiZ", then A + u is associated with the closed 
form a^ given by au{u,v) = a{u,v) +u){u | V)H- So we build such invariance into our 
definitions. 

In the following, Eg is the closure of the sector for 0 < 9 < 7r, and Do = = 
[0, oo). For an operator A, let i?(A,A) = (A — A) - 1 for A in the resolvent set Q(A) = 
C \ a(A) of A. 

The following use of the term "sectorial operator" is the one which has become stan-
dard (apart from varying conventions whether A is required to be densely defined, injec-
tive or invertible); it can be found in many books on semigroup theory and related topics. 
However it differs from Kato [Kat] who used the term for operators whose numerical range 
is contained in a sector T>Q -f- CJ with 9 < ir/2. 

D E F I N I T I O N 2.1. Let A be an operator on a Banach space X. 

a) Let 0 < 9 < TT. We say that A is sectorial of angle 9 and write A G Sec(0) if cr(A) C £0 
and supA£20/ ||Ai2(A, A) || < oo for each 9' > 9. 

b) We say that A is quasisectorial of angle 9 and write A G QSec(0) if there exists u G R 
such that A + u e Sec(<9). 

c) We say that A is sectorial (resp., quasisectorial) and we write A G Sec (resp., A G 
QSec) if A G Sec(0) (resp., A G QSec(<9)) for some 9 G (0, TT). 

When A G Sec, we let 

#s(A) := inf{# : A G Sec(#)} 
be the sectorial angle of A. If X is reflexive and A G Sec, then D(A) is dense in X [Ha2, 
Proposition 2.1.1]. 

Note that if cr(A) C Y,Q and supA^0 ||Aii(A, A)\\ < oo, then a standard argument with 
a Neumann series expansion shows that there exists 9' < 9 such that cr(A) C Eef U {0} 
and ||Ai?(A, A)\\ < oo. However, Definition 2.1 a) has been set up in such a 
way that A G Sec(tfs(i4)). 

It is clear that if A G Sec(0) then A + u G Sec(<9) for all tu > 0. 
When A G QSec, we let 

$QS(A) = i n f { 9 : A G QSec(<9)} = l i m #S(A + w ) . U)—^oo . 
If A E Sec, then one can define fractional powers A7 for 7 G M. We refer to [MS] for 

a full account, but we shall only need the basic properties in the case when A is sectorial 
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and invertible and these can be found in many books on semigroup theory and in the 
appendix of [KWj. For 7 > 0, one defines 

(2.1) A-t = J z-**R(z, A) dz, 

where T is a path of the form {re±ie : r > 5} U {6ei(? : \(p\ < 0}, for 6 and 6 > 0 chosen 
so that cr(A) lies to the right of V. The integral is absolutely convergent in C(X). Then 
{A~7 : 7 > 0} is a semigroup, and it is a Co-semigroup if A is densely defined. Moreover, 
A~7 is injective and one defines A7 = ( A - 7 ) - 1 with domain equal to the range of A~7. 
If 7tfs(A) < 7r, then A1 G Sec and = If 0 < 7 < 1, then D(A) C L>(A7) 
and there is a constant c (depending on 7) such that 

p 7 z | | < c l l ^ p l l ^ l l 1 - 7 [x G D(A)). 

Hence A7 is small relative to A in the sense that, for every e > 0, there exists b (depending 
on 7 and e) such that 

(2.2) ||A7z|| < e\\Ax\\ + b\\x\\ (x G D(A)). 

See [KW, Theorem 15.14] or [MS, Lemma 3.1.7]. 
It is well known that —A generates a holomorphic Co-semigroup T if and only if 

A is densely defined and A G QSec(0) for some 0 < 7r/2. Moreover, T is a bounded 
holomorphic semigroup if and only if A G Sec(#) for some 9 < 7r/2, and then T is defined 
by a contour integral of the form 

(2.3) T(t) = exp(-tA) := [ e x p ( - t z ) R ( z , A ) dz 2ix% Jr 

where T = {reie> : r > 6} U {Se^ : 0' < ip < 2TT - 0'} for 8 <0r < TT/2 and 5 > 0. 
We record here two simple, well known facts which we shall need later. 

P R O P O S I T I O N 2 . 2 . Let A be a densely defined operator on a Banach space X, and suppose 
that A G Sec(0) for some 6 G [0,7r). Then 

LIM | | A R ( A , A)x\\ = 0 

for allxeX, 6' G (0,TT). 

Proof It is clear that this holds for x G D(A), and then it follows for x G X by density 
and the uniform boundedness of AR(\, A) for A ^ S^/. a 

P R O P O S I T I O N 2.3. Let a be a closed form on a Hilbert space H, with domain V, and let 
A ~ a. Let Ay be the part of A in V, so that 

D{AV) = {u G D(A) : Au G V} , Avu = An. 

Then Ay G QSec(<9) for some 6 < n/2. 

Proof This is proved in [Ou, Theorem 1.55] and [Ta, Lemma 3.6.1] for the corresponding 
operator Ay on the dual space V'. However, Ay is similar to Ay under the isomorphism 
Ayr + u : V —» V'', for suitable cu, by the Lax-Milgram Theorem. • 
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Now we define the functional calculus. Here H°°(T,Q) is the Banach algebra of all 
bounded holomorphic functions / on £0, with ||/||oo = sup{|/(z)| : 2 £ 

DEFINITION 2 . 4 . Let A be an operator on a Banach space X. 

a) Let 9 E (0,7r). We say that A has a bounded H°°-calculus of angle 9, and write simply 
A E H°°{9), if cr(A) C £0 and there exists a bounded algebra homomorphism 

H°°(ZE) - / ~ / ( A ) , 

satisfying the following two properties: 

(i) rA(A) = A) for all A E C \ £0, where rx{z) = 1/(A - *); 

(ii) If (/n) is a sequence in iJ°°(£0) such that supn ||/n||oo < 00 and fn(z) —> f(z) 
as n —> 00 for each z E £0, then fn(A) —> /(-A) in the strong operator topology. 

b) We say that A has a bounded quasi-H°°-calculus of angle 9, and we write A E QH°° (9), 
if there exists u E R such that A + CJ E H°°(9). 

c) We say that A has a bounded H°°-calculus, and we write A E JEf°°, if there exists 
9 E (0, TT) such that A eH°° (9). 

d) We say that A has a bounded quasi-H°° -calculus, and we write A E QH°°, if there 
exists UJ E R such that A + wG 

When A eH°°, we let 

= inf{0 : A E 

be the H°°-angle of A. 
We remark that our Definition 2.4 a) is not arranged so that A E H^^NIA)), in 

contrast to Definition 2.1 a). This difference is of no significance for the purposes of this 
article. 

We refer to [Ha2] and [KW] for full accounts of the notion of bounded iJ°°-calculus, 
and we mention here only those aspects which are most relevant to our purpose. 

In Definition 2.4 a), the homomorphism / »—> f(A) is uniquely determined by the two 
properties (i) and (ii) [Ha2, Proposition 5.3.9], [KW, Remark 9.7]. If f(z) = p(z)/q(z) 
where p(z),q(z) are complex polynomials such that the zeros of q(z) all lie in C \ £0 and 
the degree of q(z) is greater than the degree of p(z), then f(A) = p(A)q(A)~1. Hence, if 
A E H°°(9) there is a constant C such that 

(2.4) IIP^MA)-1!! < Csup{\p(z)q(z)~1\ 

for all such p(z),q(z). In particular taking p{z) = 1 and q(z) = A — z shows that A E 
Sec(0). The smallest constant C such that (2.4) holds coincides with the operator norm 
of f 1—• f(A), and it is known as the H°°(£0)-constant of A. If the functional calculus 
takes the constant function 1 to the identity operator then A has dense domain and dense 
range [Ha2, Proposition 5.3.9]. 

Suppose that A has dense domain and dense range. If (2.4) holds, it then follows that 
A E H°°(9) [Ha2, Proposition 5.3.4]. In particular, this means that condition (ii) could be 
omitted from the definition that A E H°°(9) in Definition 2.4 in this case, although it may 
still be needed in order to define f{A) uniquely. There is an explicit way to extend the 
homomorphism / H-> f{A) from the space of rational functions to the whole of H°°(Yio). 
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Indeed, suppose t h a t f G H^^e) and there exists a > 0 such t h a t f(z) = 0(\z\~a) as 
\z\ oo, and either A is invertible or f ( z ) = O^z^) as z —> 0. Then f(A) is given by 
the absolutely convergent integral 

(2.5) f{A) = ^-Jj{z)R{z,A)dz, 

where T = {re±l6 : r > 0}, for 9 > 9' > and the contour is taken in the 
downward direction. If A is invertible, then the contour can be diverted to the right of 
the origin and (2.5) holds without any assumption on f(z) as -z —> 0. In particular, the 
functional calculus is consistent both with the definition (2.1) of fractional powers when 
f(z) = (o;-j-z)~7 for some u > 0 and 7 > 0, and with the definition (2.3) of the semigroup 
when $s(A) < 7r/2 and f(z) = exp(—tz). 

If A G H°°{9) and u > 0, then A + to G H°°(9) with f(A + u) = g(A), where 
g(z) = f(z + uj). 

When A G QH°°, we let 

0QH(A) = inf{9 : A G QH°°(E)} = lim TIQH(A + u). 
CJ—> 0 0 

For concrete examples of operators with bounded iJ°°-calculus and sectorial operators 
without it, we refer to [KW, Section 10], [CDMY], [MY]. 

Now we give the answer to the question of Section 1. 
T H E O R E M 2 . 5 . Let —A be a closed operator on a Hilbert space H. The following asser-
tions are equivalent: 

(i) A is form-similar; 
(ii) A is densely defined and A G QH°°(9) for some 9 < 7r/2; 

(iii) A G QH°° and — A generates a holomorphic Co-semigroup. 

This result was proved in [ABH] based on a result of Le Merdy [LM] characterizing 
semigroups on Hilbert space which are similar to contraction semigroups. A more direct 
proof can be found in Haase's thesis [Hal] and in his book [Ha2, Corollary 7.3.10]. In 
fact the proofs there show that a sectorial operator A is form-similar if and only if A has 
"bounded imaginary powers" but on Hilbert space that is equivalent to A G and 
then dH{A) = (see [ADM], [Ar, Theorem 4.4.10], [Ha2, Theorem 7.3.1]). 

Given a Schauder basis in a Banach space X which is not unconditional, one can con-
struct a diagonal operator A on X such that —A generates a holomorphic Co-semigroup 
but A £ QH°° (see [Ar, Section 4.5], for example). In particular, such an example can 
be given on a Hilbert space. However it seems that so far no operator on Hilbert space 
arising naturally from a model has been found with these properties. 

3. Compact perturbation of sectorial operators. Let A be a closed operator on 
a Banach space X. Then D(A) is a Banach space for the graph norm + \\Ax\\. 
We will always consider this Banach space when we talk about a bounded or compact 
operator B : D(A) —» X. We first state the following perturbation result. The proof is a 
modification of [ABHN, Theorem 3.7.25], which we include for completeness. 
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THEOREM 3 .1 . Let A be a densely defined operator and let 9 G (0, re). Assume thatcr(A) C 
£0 and < 00. Let B : D(A) —• X be compact. Then there exists 
w E l + such that a (A + B) C £0 - u and ||AJ?(A, A + B)\\ <00. 
Proof. We may assume that 0 G and supA£S<? ||Ai?(A,A)|| < 00, considering A + e 
otherwise. Since AR(A, A)=XR(X, A)—I, it follows that M:=supA^S e ||-R(A,̂ 4)||£(x,£>(A)) 
< 00. By Proposition 2.2, AR(\,A)x —> 0 as |A| —» 00, A ̂  £0, for each x G X. By the 
Banach-Steinhaus Theorem this convergence is uniform on compact subsets. Thus 

\\AR(X,A)B\\JC{D(A)IX)^0 as |A| - 0 0 , A g E* . 

Hence we may choose r > 0 such that ||i?(A, A)B\\C(D{A)) < \ whenever A ^ £0, |A| > r. 
Then ( I - R(\,A)B) is invertible in C(D(A)) and 

\\(I-R(\,A)B)-1\\cmA))<2. 
Consequently, A - A - B = (A - A)(I - R(A, A)B) is invertible in C{X) and 

R{ A, A + B) = (I — R{ A, A)£?)-1i?(A, A), 

+ < 2||i?(A,A)||£pW)) < 2M. 
Since A + 5 is bounded from D(A) to X, this implies that 

||AJ2(A, A + B)\\c(x) = ||I + (A + B)R(X, A + B)\\c{x) <1 + \\A + B\\c{D(A),X)2M 
for A ̂  £0, |A| > r. There exists UJ G R+ such that {A : |A| < r} C £0 — LJ and the proof 
is complete. • 

REMARK 3.2. Theorem 3.1 remains true if the assumption that B : D(A) —> X is com-
pact is replaced by the assumption that B : D{A1) —> X is bounded for some 0 < 7 < 1. 
This follows from (2.2) by a standard argument (see [ABHN, Theorem 3.7.23]). 

COROLLARY 3 .3 . Suppose that A is densely defined and quasisectorial, and B : D(A) —> 
X is compact. Then A + B is quasisectorial and '9QS{A + B) = 19QS(A). 

The following result is a counterpart to Theorem 3.1. It follows from [AB, Theorem 
1.3]. 

THEOREM 3 . 4 . Let A be a densely defined operator, and let 9 G (0,7r). Assume that, 
for each B G £(D(A),X) of rank-1, there exists u such that a (A + B) C £0 — u and 
suPA££0-U, LL-R(^)^ + B)|| < 00. Then there exists 9f < 9 such that A G QSec(0'). 

A particular case is the following. 

COROLLARY 3 ? 5 (Desch-Schappacher). Let A be the generator of a Co-semigroup T. As-
sume that A + B generates a Co-semigroup for all B G C(D(A))X) of rank 1. Then T is 
holomorphic. 

Proof. Since A + B generates a Co-semigroup, its resolvent exists and is bounded on a 
right half-plane. Then Theorem 3.4 implies that -A G QSec(0') for some 9' < 7r/2, SO T 
is holomorphic. • 

REMARK 3 . 6 . Corollary 3.5 was proved by Desch and Schappacher [DS] using a Baire 
argument. This result was generalized in [AB]. In fact a much more general version of 
Theorem 3.4 is true. Suppose that A is densely defined and o-(A) C £0 where 9 G [0,7r). 
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Let gn : C —> R+ be arbitrary functions satisfying gn(A) > | | I?(A, A)|| on C \ E<9. Assume 
that for each rank-1 operator B G £(D(A),X) there exists n G N such that cr(A + B) C 
E * + N and ||JR(A, A + B ) | | < £ N ( A ) (A G C \ (S0 + N ) ) . Then there exists 6' < 6 such 
that A G QSec(0')-

We note the following special case of Theorem 3.1 which is the counterpart of Corollary 
3.5. 

COROLLARY 3 . 7 . Let A be the generator of a holomorphic Co-semigroup and let B : 
D(A) —» X be compact. Then A + B generates a holomorphic Co-semigroup. 

Corollary 3.7 is no longer true if we consider the smaller class of operators associated 
with a form on a Hilbert space. We shall now make this more precise. 

Consider an operator A on a Hilbert space H which is associated with a closed form 
a : V x V C where V^H. Let ip.ueH. Then d 

Bx := (Ax | IP)HV> 

defines a rank-1 operator B G C(D(A),X) which we denote by 

B = (ip <g> u)A. 

We suppose that V ^ iJ, i.e., A is unbounded. 

T H E O R E M 3 . 8 . Let <p G H\V. Then there exists u G V such that the operator A+((p®u) A 
is not associated with a form. 

For the proof we need the following lemma. Since A is associated with a form, there 
exists N such that (n + A) - 1 exists whenever n> N. 

L E M M A 3 . 9 . Let (p G H such that ((nA(n + A)~xv | ^P)H)TI>N is bounded for each v G V. 
Then <peV. 

Proof. Let cpn = n(n + A*)~ V- Since A* is sectorial and densely defined, (pn —• (p in H 
by Proposition 2.2. 
a) We show that swpn>N |a(v, <pn)\ < oo for all v G V. In fact, recall that the adjoint A* 
of A is associated with a* where a*(it,t>) = a(v,u) [Ta, Theorem 2.2.2]. Thus 

a(v, tpn) = a*(n(n +A*)~V^) = (nA*(n + A*)'1(p\v)H = (nA(n + A)~lv \ ip)H-
b) Let u) G R, a > 0 such that Rjea(u,u) + U(U\U)H > {u G V). Let ip G 
V*. By the Lax-Milgram Theorem there exists v G V such that ij){w) = A0(w | V)h + 
a*(w,v) (w G V). Thus a) shows that (^n)n€N is weakly bounded in V. Since V is 
reflexive and continuously embedded into H and since <pn —> (p in H it follows that 
(p G V. • 

Proof of Theorem 3.8. Since (p ̂  V, it follows from Lemma 3.9 that there exists v G V 
such that (nA(n-\-A)~1v \ (p)n is unbounded. Let xnk := ^ ( n ^ + i ) " 1 ? ; be a subsequence 
such that (Axnk | <p)h = is such that r^ —> oo and 9 k —9. By Propositions 2.3 
and 2.2, xnk v inV. Let u = —e~%ev. Then 

(Axnk | (p)H(u | xnk)H = -rnkei0ke~i0(v | xnk)H. 
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Let (Axnk \xnk)ff = Pk^k' Then \pk\ = \a(xnh, xak)\ < c for some c > 0 since (xnk) is 
bounded in V and a is continuous on V. Thus 

((A +(ip® u)A)xnk\xnk)H = pkeilpk - rkSB»~B\v \ xnk)H. 

This shows that the numerical range of A + (<p ® u)A is not contained in any sector 
5V + CJ, so A + (ip <S> u)A is not associated with a form, by Theorem 1.3. • 

On the other hand we shall see in the next section that form-similar operators are 
stable under finite rank perturbation and even under nuclear perturbation. 

4. Nuclear perturbation of H°°-calculus. Let A be a sectorial operator on a Banach 
space X with bounded H°°-calculus. We shall give here some positive results showing 
that certain perturbations of A also have bounded H°°-calculus. When X is a Hilbert 
space, Theorem 2.5 shows that such results establish stability of the class of form-similar 
operators. 

The following is an easy result (see [AHS], [KW, Proposition 13.1]). 

P R O P O S I T I O N 4 . 1 . Let A G H°° and B e C(D(A^),X) where 0 < 7 < 1. Then A + B e 
QH°°. 

Now we want to give a result of this type for the case when 7 = 1, but one has to 
impose further assumptions on J5, since the result clearly fails if B = — 2A, for example. 
A natural assumption is that B : D(A) —> X is compact (see Theorem 3.1 and Corollary 
3.7). We consider here only the case when B : D(A) —> X is a nuclear operator and we 
give a direct proof using the iJ°°-calculus directly. Since this work was carried out, N.J. 
Kalton [Kal] has obtained a stronger result but his method uses other characterizations 
of bounded H°°-calculus. He has also shown that the result is not true for arbitrary 
compact operators B : D(A) —> X when X is a Hilbert space but it is true for arbitrary 
compact operators when X is an L1-space. 

Let C be a nuclear operator on X, so that 

0 0 

n=l where ipn G X*, un G X, 
0 0 

n (xex), || H^nll < CO. 
7 2 = 1 

Let B = CA, and consider A + B : D(A) X. 

T H E O R E M 4 . 2 . Suppose that A is densely defined, invertible, and sectorial with a bounded 
H°°-calculus on gome sector £<9. Let B = CA where C is a nuclear operator on X, and 
suppose that A + B is invertible and sectorial. Then A + B has a bounded H°°-calculus, 
and 

&H(A + B)< mzx(<&H(A)^s(A + B)), 0H(A) < m a x ( t f H ( A + B), $S(A)). 
COROLLARY 4 . 3 . Suppose that A is densely defined and A G QH°°. Let B : D(A) —> X 
be nuclear. Then A + B G QH°° and tfQH(A + B) = $QH(A). 
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Proof of Theorem 2. Let 0\ > max($#(^4), $s(A + B)) and choose 62, #3 such that 
61>62>63> max(#H(A),0s(A + B)). 

Consider the contours Tj = : r > 0} (j = 2, 3), taken in the downward direction. 
Since B : -D(A) —» X is compact, Theorem 3.1 shows that ||i?(A,-A + B)\\C(X,D(A)) 
bounded for A E C \ E<93 and |A| sufficiently large. Since A 1-+ R(\,A + B) is continuous 
from T2 to C(X}D(A))J 

M := sup ||i2(A, A + B)\\JR(X,D(A)) < 00. 
\er2 

Let / E i l 0 0 ^ ^ ) (if desired, one may assume also t h a t / is rat ional wi th no poles in 
EeJ. For z E , let g(z) = (1 + z)~^2f{z), and 

S M - Z s l & W K A + B)^-,. 

The integral defining S(z) is absolutely convergent and 

IKMII < M|l/l|o° f ^ 

Let A = re±i02 e T2. If r> 2\z\, then 

|A-z| >r-\z\ > \{r + |z|). 
U 

If 0 < r < 2\z\, then 

|A - z\ > \z\ sin (02 - e3) > + 

Also 
|1 + A| = r | l / r + e ± ^ 2 | >rsm02. 

Hence 

i i q ^ i k , i i f i , r dr ci||/||°° r ds 

for some Co, ci, C2 depending on 62,0s,M. Take J > 0 such that {A : |A| < 5} C p(A +-B) 
and let f 2 be the contour {re±l62 : r > 5}U{5eie : -02 < 6 < 02}. By Cauchy's Theorem, 

S(z) = -^-T f g(\)AR(\,A + B)^-+g(z)AR(z,A + B) (z E \z\ < 5). Z7TI JF2 A — z 
The right-hand side stays bounded as z —> 0. Hence there is a constant C3 such that 

\\S(z)\\<0^ (*€ Efl,). 

For x £ X, ip E X* , 2? E S^g, let 

= <p), hXitp(z) = (1 + z)1/2gX}(fi{z). 

Then gXi{p,hXt(p E H°°(T,e3) and 

gx„(A) = (1 + A)~1/2hXfip(A)) \\hx„(A)\\ < c4\\fU\x\\ Ml , 
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where C4 depends on C3 and the H°°(Y!,e3)-constant of A. Now 

9XAa) = (S(z)x,ip)R(z,A)dz 

= h L , h I , sU>!Am- A + w j h A> ^ 

-hi, (±x̂ dz)3ixHAR(KA+B)x-!p)dx 

= g(\)(AR(\,A + B)x,ip)R(\,A)d\ 27T2 J r 2 

by Fubini's and Cauchy's Theorems. Also 

g(A) = G(A)I?(A, A) dX, g{A + B) = ^-J^ g(X)R(X, A + B) dX, 

where the integrals are absolutely convergent. For x S X, 

g(A + B)x - g(A)x = f g(X)R(X, A)BR{A, A + B)x dX 
2m JV2 
00 1 f 

= g(X)(AR{X, A + ^ „ ) J ? ( A , A K DA 
2 m 

OO OO 

n=l n=l 
Here the interchange of integration and summation is justified by Lebesgue's Series The-
orem. 

Let (A)un. Then ||Tnz|| < c 4 | | / | | o o | M | \\<Pn\\ IKII, so that ||Tn|| < 
C411/11CXD11(Pn11 ||Mn||. Thus Y ^ = i T n i s absolutely convergent and 

0 0 0 0 

(4.1) | | E T » < ^ l l / l l o o £ l K | | I K I | . 
72=1 71=1 

Take n fixed, and let (xk) be a sequence in X with ||a;fc|| < 1. Montel's Theorem shows 
that there is a subsequence (xkr) such that 

A) := lim (AR(A, A + B)xkr, <pn) r—> oo 

exists for all A G T2. By Lebesgue's Theorem l im r_>oo 9xkr,<pn(z) exists for each z G 

Hence l im r_>oo hXkri(Pn(z) exists. By the property (ii) in Definition 2 . 4 a), l im r _*oo T n X k r 

exists. Thus Tn is compact, and hence Kf := X^Li ^n is compact. We have 

5(J4 + B) = 5(J4) + (l + A ) - 1 / 2 i f / . 

Now take / = 1, so that 5(A) = (1 + A) - 1 / 2 . Then we obtain that 

(1 + A + Br1/2 = (1 + A)~^2(l + i*Ti). 

This shows that D(( 1 + .A + 5) 1 / 2 ) C D((l + A)1^) a n d 

(4.2) (1 + A) 1 / 2 (1+A + S ) - 1 / 2 = J + JTi 
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where K\ is compact. Since (1 -f A)1/2( 1 + A B) 1//2 is injective, Fredholm theory 
implies that it is invertible. Thus 

D((l + A + B)1/2) = D(( 1 + A)1/2). 

Now, for general rational, bounded / , 

(4.3) f(A + B) = (l + A + B)^2g(A + B) = (1 + A + B)^2{ 1 + A)~^2(f(A) + i f / ) . 

It now follows from (4.1) that 
oo 

H/04 + B)|| < ||(1 + A + B)1/>2(1 + (c5 + c4 £ \\<pn\\ M l ) ll/IU 
71=1 

where C5 is the fP^EflJ-constant of A. Thus A + B has bounded fP^EflJ-calculus, 
whenever 

This shows that 
#H(A + B)< max(#H(A),tis(A + B)). 

Finally, note that 

A = (A + B) + (—CA(A + B)~1)(A + B). 
We can apply the above with A replaced by A + B and C by —CA(A + i?) - 1 , which is 
nuclear, to deduce that 

tiH(A) <max(tiH(A + B),0s(A)). • 

Note that (4.2) and (4.3) show that, for any f G H°°(E0) where 6 > $H{A), 

f(A + B) = (I + K1)~1(f(A) + Kf), 

where K\ and Kf are compact. Hence, 

f(A + B) - f(A) = (I + Kj-^Kf - Kx f(A)) 

which is compact. Moreover, (4.1) shows that 

\\f(A + B)-f(A)\\^0 as HCIU-O, 

where \\CWn is the nuclear norm of C. 

Proof of Corollary 4.3. Take 6>I, 62 such that TT > 9X > 62 > $QH{A). Since B : D(A) X 
is compact, Theorem 3.1 shows that there exists U such that A + U is invertible and 
sectorial, A .+ u G H°°(62), A + B + uj is invertible, and A + B + u G Sec(02). Let 
A = A + w, and C = B(A + UJ)'1 which is nuclear on X. By Theorem 4.2, A + B + w = 
A+CA G H°°(6i). So A + B G QH°° and T}QH(A + B) < $QH(A). The reverse inequality 
follows by replacing A by A + B and B by — B. u 

5. Cosine functions. Let X be a Banach space. A strongly continuous function C : 
R —> C(X) is called a cosine function if C(0) — I and 

(5.1) C(t + 5) + C(t - s) = 2C(t)C(s) 

whenever s,t e l . Taking t = 0 shows that any cosine function is an even function. 
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We shall refer primarily to [ABHN, Section 3.14] for standard facts about cosine 
functions. Other texts include [Go, Section II.8] and [Fa3]. 

In [ABHN, Definition 3.14.2] a cosine function was defined to be a strongly continuous 
function C : R+ —> £>(X) satisfying (5.1) for t > s > 0, and it was implicitly assumed 
that the even extension of C is a cosine function as defined above. This is true but it is 
not immediately obvious and we take the opportunity to close that gap here. 

PROPOSITION 5 . 1 . Let C : R + —> £(X) be a strongly continuous function satisfying ( 5 . 1 ) . 

Then 

(i) C(s)C(t) = C(t)C(s) whenever s,t> 0; 
(ii) The even extension of C is a cosine function. 

Proof. Let t > 0. Replacing s and t by tj2 in (5.1) gives C{t) = 2C(t/2)2 - I. A simple 
induction shows that, for each n > 1, C(t) is a polynomial in C(t/2n), so they commute. 

Now suppose that C(t) commutes with C[rtj2n) for r = 0 ,1 , . . . , fc, for some k > 1. 
Since 

it follows that C(£) commutes with C((k + l)t/2n). 
By induction, C(t) commutes with C(rt/2n) for all integers r, n > 1. Now (i) holds 

by strong continuity of C. Then (ii) follows easily. • 

The generator A of a cosine function C is defined by 

{.DC A) = I x E X : lim 4 (C(t)x - x) existsl , 
l 2 / 

Then A is closed and densely defined, and A generates a holomorphic Co-semigroup of 
angle 7r/2. In particular, —A £ QSec(fl) for every 0 > 0, and one can define the fractional 
powers (CJ — A)7 for large w G l and all j G R. 

EXAMPLES 5.2. 1. Suppose that B generates a Co-group {U{t) : t e M} on a Banach 
space X, and let A = B2. Then it easy to verify that A generates a cosine function C on 
X given by 

C{t) = \{U{t) + U{-t)). 

2. Another standard fact is that if A generates a cosine function Co, then A — u also 
generates a cosine function C^, for each UJ £ R. A representation of C^ in terms of Co is 
given in [Go, Remark II.8.11]. 

It is remarkable that, in many Banach spaces, all cosine functions arise from the two 
processes in Examples 5.2. See Theorem 5.7. 

Cosine functions were introduced by Sova [So], Da Prato and Giusti [DG] and Fat-
torini [Fal] as an approach to abstract second order Cauchy problems analogous to the 
semigroup approach to first order problems. We describe the connection here in terms of 
mild solutions of second order problems. 
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Let A be a closed operator on a Banach space X. For x, y E X consider the problem 
fu"(t) = Au(t) (t> 0), 

P2(x,y) u( 0) = X 

K uf(0) = y. 

A mild solution of P2(x, y) is a function u E C(M+, X) such that f*(t — s)u(s) ds E D(A) 
and 

(5.3) u(t) =x + ty + A [ (t-s)u(s)ds 
Jo 

for all t > 0. 
Suppose that A is closed and densely defined, and u E C(R+ ,X). Then u is a mild 

solution of P2(x,y) if and only if, for each x* E X*, 

(5.4) = (*>0), 

(5.5) (u(t),x*) = (y,x*) and u( 0) = x. 

This is easily seen using [ABHN, Proposition B.10]. 
If A generates a cosine function C, then P2(x,y) has a unique mild solution given by 

u(t) = C{t)x + f*C(s)yds. We refer to [ABHN, Corollary 3.14.8] for this. Here we will 
show the converse. For classical solutions with continuous dependence on the data, such 
a result was given by Fattorini [Fal], [Fa3, Theorem II. 1.1]. 

T H E O R E M 5.3. Let A be a closed operator. Assume that for each x E X there exists a 
unique mild solution of P2(x,0). Then A generates a cosine function. 

Proof. Let x E X and let ux be the mild solution of P2(x,0). Since ux(0) = x and 
f*(t — s)ux(s) ds E D(A), it follows that 

X~ dt2 t_0 ( / ^ " d s ) G D t e -

nuis D(A) = X. 
Consider the mapping cj) : X I ^ H>x 

from X into C(]R+, X), where C(M_|_, X) carries the 
Frechet topology of uniform convergence on compact subsets of R+. Since A is closed, 
it follows from the well-posedness assumption that </> has a closed graph and hence </> is 
continuous. Consequently, for each t > 0, there exists C(t) E C(X) such that C(t)x = 
ux(t) for all x E X. The function C : M+ —• C(X) is strongly continuous and C(0) = I. 
We let C(-t) = C(t) for t < 0 and we shall show that (5.1) holds. First we observe from (5.4) that 

^(C(t)x,x*) = (C(t)x,A*x*) 

for alH e R, x G X, x* G D(A*), since we consider the even extension of ux to R. Now 
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4 ( v ( t ) , X*} = 0 and v(0) = C(s)x. at t=o 
From the uniqueness assumption it follows that v(t) = C(t)C(s)x for t > 0 and then for 
arbitrary t G M since both sides are even. Thus C is a cosine function. 

Denote by B the generator of C. We shall show that A = B. Let x G D(B). As t j 0, 

— / {t — s)C(s)xds —» x, 
£ 7o 

" = ^(C(t)z - x) - a. 

Since is closed, it follows that x G D(A) and Ax = Bx. We have shown that B C A. 
In order to show the converse inclusion, note first that there exists A G R such that 

A2 G Q(B) [ABHN, Proposition 3.14.4]. In particular, A2 -B is surjective. Since A2 -B C 
A2 —A, it suffices to show that A2—A is injective in order to conclude that X2—A = \2—B) 

and so A = B. Let (A2 — A)x = 0. Then u(t) := (coshA^)a; is a solution of P2(x,0), so 
C(t)x = (cosh At)x. This implies that Bx = \2x. Hence x = 0 since A2 G g(B). The proof 
is complete. • 

R E M A R K 5 . 4 (weak well-posedness). Let A be a closed, densely defined operator on a 
Banach space X. Call a function u G C(R + ,X) a weak solution of if ^(0) = x 
and ( 5 .4 ) , (5 .5) hold. Then Theorem 5 . 3 shows that A generates a cosine function if and 
only if for each x G X there exists a unique weak solution of 0). This is analogous 
to the characterization of generators of Co-semigroups given by Ball [Ba]. 

There is a characterization of generators of cosine functions in terms of estimates for 
derivatives of the function A H-> AiJ(A2, A) on a real interval (<J,OO) which was indepen-
dently discovered in [So], [DG] and [Fal] (see [ABHN, Theorem 3.15.3]). Although this 
is analogous to the Hille-Yosida Theorem for semigroups, it is impossible to apply it in 
practice. Instead we shall describe a more useful way to characterize generators of cosine 
functions. 

Write P2(x,y) as a system introducing the matrix 

Then formally, u is a solution of y) if and only if u = u\ where 

«(»)-.«»(»)->'• 
A rigorous result realizing this idea is the following. 
T H E O R E M 5.5 ([ABHN, Theorem 3.14.11]). A closed operator A on a Banach space X 
generates a cosine function if and only if there exists a Banach space W satisfying D{ A) C 
W ^ X such that the operator A with domain D(A) = D(A) x W generates a Co-
semigroup on W x X. 

let x G X and s G R. Let v(t) = t)x + C(s - t)x). Then for a;* G D(A*)t 

= (t G M), 

- G o > 
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It is a remarkable result due to Kisynski [Ki] that the space W is uniquely determined 
by these properties. 

THEOREM 5.6 (Kisynski, [ABHN, Theorem 3.14.11]). Let A be the generator of a cosine 
function C on a Banach space X, and let W be as in Theorem 5.5. Then 

W = {x E X : C(-)x is continuously differentiate} 

equipped with an appropriate norm. 

We call the space W x X the phase space of the cosine function. It is important 
for several reasons. For example, if £ € D(A) and y £ W, then the mild solution u of 
P2{x,y) is actually a classical solution, i.e., u e C2(M, X), u{t) € D(A) for all t £ M and 
u"\t) = Au(t) (t > 0) [ABHN, Corollary 3.14.12]. 

If X is a UMD-space, there is a very simple description of cosine functions and their 
phase spaces due to Fattorini [Fa2]. We refer to [Fr] for the definition and properties of 
a UMD-space, but we note that any Hilbert space, and any Lp-space for 1 < p < oo, is 
a UMD-space. 

THEOREM 5.7 (Fattorini, [ABHN, Corollary 3.16.8]). Let A be an operator on a UMD-
space. The following are equivalent: 

(i) A generates a cosine function; 
(ii) There exist a generator B of a Co-group and uo > 0 such-that A = B2 

When these conditions are satisfied, one may choose U such that UJ — A is sectorial, and 
then (u> — A)1/2 generates a Co-group and the space W of Theorem 5.5 coincides with 
D((oo — A)1/2), with a norm equivalent to the graph norm. 

In general Banach spaces, Theorem 5.7 is not true [Fa3, Example 8.2]. Moreover, 
W = D((lu — A)1/2) if and only if (u - A)1/2 generates a Co-group on X [Go, Theorem 
II.8.8, Remark II.8.9]. 

Next, we discuss perturbations of cosine functions. From Theorem 5.5 we obtain an 
immediate corollary which generalizes Example 5.2(2). 

COROLLARY 5 . 8 . Let A be the generator of a cosine function on a Banach space X with 
phase space W x X. Let B G CiW^X). Then A + B generates a cosine function. 

Proof. The operator A = Q q) with domain D(A) = D(A) x W generates a Co-
semigroup on W x X. Since B = (^ °Q) is bounded on W x X, A + B = q) with 
domain D(A) x W also generates a Co-semigroup on WxX. Thus by Theorem 5.5, A 
generates a cosine function and the phase space is W x X again. • 

In many models generators of cosine functions appear as perturbations of self-adjoint 
operators on Hilbert space. Thus it is Corollary 5.8 and a more complicated dual version 
which allow one to treat a general class of hyperbolic equations (see [ABHN, Chapter 7]). 

Suppose that A generates a cosine function and W = D((uj - A)1/2) ( see Theorem 
5.7). One may ask whether one can ever replace this space W in the perturbation result 
Corollary 5.8 by a smaller space D((U — A)1) for some 7 > The answer is negative. 
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T H E O R E M 5.9 ([AB, Theorem 2.1]). Let A be the generator of a cosine function on a 
Banach space X. Let uj E R such that tu — A is sectorial and let 1/2 < 7 < 1. If A is 
unbounded, then there exists a rank-1 operator B G £(D((cu — A)7), X) such that A + B 
does not generate a cosine function. 

Now we consider generators of cosine functions on a Hilbert space iJ, or, equivalently 
up to addition of a scalar, squares of generators of Co-groups on H (see Theorem 5.7). 
We wish to consider the relation of the generation property to the concepts considered in 
Sections 1 and 2, and the natural sign convention is now to take — A to be the generator of 
a cosine function so that A is a quasi-sectorial operator. In many examples, the operator 
A is defined via a closed form 

a : V x V —» C where d 
The following open question relates to this situation. 

PROBLEM 5.10. Suppose that A is associated with a closed form a on a Hilbert space 
H and that —A generates a cosine function on H. Does it follow that the space W = 
D((A + w)1/2) of Theorem 5.5 coincides with the domain V of the form a? 

In other words, we ask whether the phase space of the cosine function has the natural 
form V x H. This is useful to know because it is the space V which is given naturally 
in applications. Indeed, H is frequently L2(Q,) with the natural scalar product, where 
Q C Rn is open, and V is the Sobolev space H1(Q) or i n niany cases. However, 
the domain of the square root may be difficult to identify. 

Problem 5.10 is a special case of Kato's famous square root problem for operators 
A associated with coercive forms a. By [Ar, Theorem 5.5.2], the question can be refor-
mulated as: Under the assumptions of Problem 5.10, is Ay £ QH°°? See Proposition 
2.3. 

By a counterexample of Mcintosh [Mcll] (see also [AT, Section 0, Theorem 6]) we 
know that the domain of A1/2 and the domain of a may be different in general, but in 
many cases they coincide. In particular, this occurs for second-order elliptic differential 
operators in divergence form (see [AHLMT] and the survey article [Ar]). Another special 
case with a positive answer is mentioned in Remark 5.12. 

In Problem 5.10 a fixed scalar product on H is assumed. However, there are striking 
results if we allow equivalent scalar products. In fact, if —A generates a cosine function, 
then A is always form-similar. This result is due to Haase ([Hal, Corollary 5.18] and [Ha2, 
Corollary 7.4.6]) who showed further that a scalar product can always be chosen in such 
a way that the numerical range W(A) of A is contained in the interior of a horizontal 
parabola Pu := {A2 : Re A > a;}. It is most remarkable that the converse is also true: 
Crouzeix [Cr] showed recently that —A generates a cosine function if A is densely defined, 
W(A) lies in a parabola Pu and g(A) \ Pu 0. Thus we may formulate the following 
generation result for cosine functions on Hilbert spaces. 

T H E O R E M 5 . 1 1 . Let A be a densely defined operator on a Hilbert space H. The following 
are equivalent: 

(i) —A generates a cosine function; 
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(ii) there exist an equivalent scalar product ( | )i on H andu G M such that W\(A) C P{L, 
and Q(A) \ P^ ^ 0, where WI(A) denotes the numerical range of A with respect to 
( i ) i -

One may compare Theorem 5.11 with the Lumer-Phillips Theorem which says that 
an operator —A on a Hilbert space H generates a Co-semigroup if the numerical range 
of A is contained in a half-plane C^ {A G C : Re A > cj} and g(A) \ C ,̂ ^ 0. However, 
in contrast to cosine generators, the Lumer-Phillips Theorem does not characterise semi-
group generators on Hilbert space even if one allows equivalent scalar products. Indeed, 
there exists an operator A on H such that —A generates a Co-semigroup on H but there 
is no equivalent scalar product on H such that the corresponding numerical range W\ (A) 
of A is contained in a half-plane. See the remarks following Theorem 2.5. 

In contrast to the real generation theorem [ABHN, Theorem 3.15.3] for cosine func-
tions which involves estimates for all powers of the resolvent, Theorem 5.11 looks more 
promising for applications. 

In the context of Theorem 5.11 we add a remark concerning Problem 5.10 on the 
coincidence of W and V. 

REMARK 5.12. Assume that A is an operator on a Hilbert space H such that W(A) c P{L, 
and Q(A)\PUJ ^ 0 for some w G i Then we know from Theorem 5.11 that —A generates 
a cosine function. Since the parabola P^ lies in a sector, it follows from Theorem 1.3 that 
A is associated with a closed form a : V x V —> C where V^H. Moreover in this case, d 
where W(A) is inside a parabola, Mcintosh [McI2] has shown that Problem 5.10 has a 
positive answer, i.e., V x H is the phase space. 

Finally in this section we observe that generators of cosine functions on Hilbert space 
have bounded i7°°-calculus. Indeed, the following is a corollary of Theorems 5.11, 1.3 
and 2.5. 

COROLLARY 5 . 1 3 . Let — A be the generator of a cosine function on a Hilbert space. Then 
A G QH°°. 

PROBLEM 5 . 1 4 . Does Corollary 5 . 13 hold on a larger class of Banach spaces, for instance, 
on UMD-spaces? 

6. Hierarchic properties and perturbation. In the following we give a resume of 
the preceding results by putting together a list of hierarchic properties which a closed 
operator may possess with respect to evolution. We then give a list explaining how these 
properties behave under perturbation. We refer to Lions [Li] and [AEK] for the definition 
of distribution semigroups which generalizes that of Co-semigroups. 

Hierarchic list. Let A be an operator on a Banach space X. Then the following hold. 

1. a) A generates a cosine function. 

U 

b) A generates a holomorphic Co-semigroup. 
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c) A generates a Co-semigroup. 

d) A generates a distribution semigroup. 
2. Assume that X is a Hilbert space. Then 

a) A generates a cosine function. 
(Corollary 5.13) 

e) -A e QH°°. 
$ (Theorem 2.5) 

f) —A is form-similar. 

b) A generates a holomorphic Co-semigroup. 
Now we give a summary of results which show how the properties a)-f) are preserved 

or destroyed by diverse kinds of perturbations. 
Perturbation results. Let X be a Banach space, and let A be an operator on X such that 
A e QSec or -A e QSec. Choose u such that cu + A e Sec or UJ — A G Sec. For 0 < 7 < 1, 
let = (u + A)1 or A1 = (u — A)1

) and let D{A1) be the domain of A7 equipped with 
the graph norm. 

a) Let A be the generator of a cosine function and let 0 < 7 < 1. Then A+B generates 
a cosine function for all (rank-1) B G C(D(A^),X) only if either 7 < \ or A is 
bounded. If X is a UMD-space, the converse also holds. (Corollary 5.8, Theorem 
5.9) 

b) Let A be the generator of a holomorphic Co-semigroup. Then A + B generates a 
holomorphic Co-semigroup for each compact B : D{A) —> X and each bounded 
B e JC(D{A7),X) for 0 < 7 < 1. (Corollary 3.7, [ABHN, Theorem 3.7.23]) 

c,d) Let A be the generator of a distribution semigroup. Then A + B generates a distri-
bution semigroup for each rank-1 operator B G C(D(A),X) only if A generates a 
holomorphic Co-semigroup. (Corollary 3.5, [AB, Theorem 3.1]) 

e) Let A E QH°°. Then A + B G QH°° for each nuclear B : D(A) —> X and each 
bounded B E C(D(A^),X), 0 < 7 < 1. (Theorem 4.2, Proposition 4.1) 

Now let X = H be a Hilbert space. 
f) Let A be form-similar. Then A + B is form-similar for each nuclear B : D(A) —> H 

and each bounded B : D{A1) —> H for 0 < 7 < 1. (Theorem 2.5 and e)) 
f ) Let A be a closed operator. Then A + B is associated with a form for each B : 

D(A) —» H of rank-1 if and only if A is bounded. (Theorem 3.8) 
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