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Let Ω ⊂ R
N be (Wiener) regular. For λ > 0 and f ∈ L∞`

R
N

´
there is a unique bounded, continuous function

u : R
N → R solving

λu − ∆u = f in D(Ω)′, u = 0 on R
N \ Ω. (PΩ)

Given open sets Ωn we introduce the notion of regular convergence of Ωn to Ω as n → ∞. It implies that the
solutions un of (PΩn ) converge (locally) uniformly to u on R

N . Whereas L2-convergence has been treated in
the literature, our criteria for uniform convergence are new. The notion of regular convergence is very general.
For instance the sequence of open sets obtained by cutting into a ball converges regularly. Other examples show
that uniform convergence is possible even if the measure of Ωn \ Ω stays larger than a positive constant for all
n ∈ N. Applications to spectral theory, parabolic equations and nonlinear equations are given.
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0 Introduction

In this article we consider the Poisson equation{
λu− ∆u = f in D(Ω)′,
u|∂Ω = 0,

(PΩ)

where Ω is an open set in RN and λ ≥ 0. If Ω is Dirichlet regular, then for each f ∈ L∞(Ω) there exists a unique
solution u ∈ C(Ω) solving the problem (PΩ). Now let Ωn be further open sets in RN . Consider the solutions
un of (PΩn). Extending un and u by zero to RN we obtain uniformly bounded functions defined on RN . The
purpose of this article is to study when un converges to u locally uniformly on RN . There is quite an extensive
theory on L2-convergence; see for instance [2,10,13,15,17,27,34,37–39] and [18] with a final characterization.

Uniform convergence seems not been treated much in context of the Poisson problem and the corresponding
parabolic problem (see [13, Remark 3, p. 129] and [17, Remark 4.6] for some results). The most comprehensive
treatment seems to be in [9]. However, our results are complementary to those in [9]. The main subject of that
paper is to study completeness properties of a metric space of open sets, where a sequence of open sets converges
if the solutions of the corresponding Dirichlet problems converge uniformly. Our emphasis is on finding simple
sufficient conditions for (local) uniform convergence of solutions, and then to discuss applications to semi-linear
elliptic equations and the heat semigroup. We also emphasize that the perturbations we allow are rather singular
perturbations. For smooth perturbations of the domain there are for instance results in [35].
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Of course we have to assume that Ωn converges to Ω in a certain sense. If Ωn ⊂ Ω for all n ∈ N, then
we are able to characterize when un converges to u uniformly (see Section 3). Convergence in general is more
complicated. We introduce the notion of regular convergence of Ωn to Ω as n → ∞ which involves somehow
Dirichlet regularity. Our main result, Theorem 5.5, shows that regular convergence of Ωn to Ω implies that the
solutions un of (PΩn) converge locally uniformly on RN to the solution of (PΩ).

There are many interesting examples. For instance, we may consider the sequence of open sets in R2 which
are obtained by cutting into the unit disc. Also in the classical example of a dumbbell with shrinking handle we
obtain uniform convergence to the solution corresponding to two disjoint balls. We obtain uniform convergence
in some examples even if Ωn \ Ω has Lebesgue measure one for all n ∈ N. All these examples go beyond
the types of convergence considered in the literature. For instance Keldysh [30] and Hedberg [26] assume that⋂

Ωn = Ω and they suppose throughout that Ω is topologically regular, that is, Ω̊ = Ω.
There is a sophisticated theory of approximation for the Dirichlet problem (see [26, 30] or [32, V §5] and the

references therein). Even though the Dirichlet problem and the Poisson equation are closely related (see Section 4
and [8]) we do not use this theory. Our results are complementary to the above mentioned theory.

There are several reasons why we consider convergence of the solutions of the Poisson equation. First of all,
the problem of non-uniqueness of certain nonlinear equations can be treated by varying domains as is shown in
the pioneering work of Dancer [13, 15] (see also [16]). As an application of our theory for linear equations, we
complement these results by a systematic theory showing that the convergence in many examples in [13, 15] is
uniform, and not just in Lp

(
R

N
)

for all p ∈ [1,∞) (see Section 8). Another reason is that our results on elliptic
equations yield results on convergence for the solutions of the heat equation (Section 9).

We allow arbitrary open sets, not necessarily bounded or connected. Hence, some preliminary results in
Section 1 and Section 2 are needed in order to establish well-posedness in L∞(Ω). Section 3 then contains our
first main result, namely a characterization of uniform convergence from the interior. To treat approximations
from the outside we need more preparation concerning the local continuity at the boundary. This is given in
Section 4. Our main approximation results are then given in Section 5, where we introduce the notion of regular
convergence as a sufficient condition for (local) uniform convergence. Various examples showing the generality
of our conditions are given in Section 6. The next three sections deal with consequences of the main results.
First, in Section 7, we discuss consequences for spectral properties. Then, we look at applications to nonlinear
problems in Section 8, and finally we study the heat equation in Section 9.

1 The elliptic equation in L∞(Ω)

In this section we collect some properties of elliptic equations in L∞(Ω). In particular we provide a characteri-
zation of distributional solutions and a compactness lemma essential for our treatment of varying domains. Let Ω
be an open set in RN . We identify the space Lp(Ω) with the subspace of Lp

(
RN

)
consisting of those functions

which vanish a.e. on Ωc. Also H1
0 (Ω) is identified with a subspace of H1(Rn) extending functions by zero. This

is consistent with derivation. In fact, let u ∈ H1
0 (Ω) and define

ũ(x) =

{
u(x) if x ∈ Ω,
0 if x �∈ Ω.

Then ũ ∈ H1
(
RN

)
and Dj ũ = D̃ju. Thus in the sequel we will omit the ∼ throughout. Let λ ≥ 0 and let

f ∈ L∞(
RN

)
. If Ω is bounded, then by the Lax–Milgram Lemma (or simply the Theorem of Riesz–Fréchet)

there exists a unique solution of the problem{
λu− ∆u = f in D(Ω)′,

u ∈ H1
0 (Ω).

(1.1)

We write u = RΩ(λ)f . Then u is bounded, measurable on RN and continuous on Ω. We consider RΩ(λ) as
a bounded operator on L∞(

RN
)
. If Ω is unbounded and λ > 0, then we define RΩ(λ) by extrapolation, in

the following way. First let f ∈ L2
(
RN

)
. By the Lax–Milgram Lemma (1.1) has a unique solution u which
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we denote by RΩ,2(λ)f . Then RΩ,2(λ) is a self-adjoint bounded operator on L2
(
RN

)
. It follows from the

Beurling–Deny criterion (see [20, 1.3]), or a direct argument, that λRΩ,2(λ) is submarkovian, that is,

0 ≤ f ≤ 1 implies 0 ≤ λRΩ,2(λ)f ≤ 1. (1.2)

Consequently, there exists a unique operatorRΩ(λ) ∈ L(
L∞(

R
N

))
such that

RΩ(λ)f = RΩ,2(λ)f for all f ∈ L2
(
R

N
) ∩ L∞(

R
N

)
(1.3)

and such that

RΩ(λ) is σ∗-continuous,

that is, f, fn ∈ L∞(
RN

)
, fn

∗
⇀ f implies RΩ(λ)fn

∗
⇀ RΩ(λ)f . Here fn

∗
⇀ f means that∫

RN

fng −→
∫

RN

fg for all g ∈ L1
(
R

N
)
. (1.4)

Remark 1.1 Note that σ∗-convergence is equivalent to (fn) being bounded in L∞
(
RN

)
and (1.4) holding for

g in a dense subset of L1(Ω), so for instance g ∈ D(
RN

)
(see [40, Section V.1, Theorem 10]).

We collect some properties of the operators RΩ(λ). They are positive linear operators on L∞(
RN

)
, that is,

RΩ(λ)f ≥ 0 for all f ∈ L∞(
R

N
)

nonnegative.

Moreover, by (1.2),

‖RΩ(λ)‖L(L∞(RN )) ≤
1
λ

for all λ > 0. (1.5)

Furthermore, since

RΩ,2(λ) −RΩ,2(µ) = (µ− λ)RΩ,2(λ)RΩ,2(µ) ≥ 0

we have

0 ≤ RΩ(µ) ≤ RΩ(λ) whenever 0 < λ ≤ µ.

Moreover, if Ω1,Ω2 ⊂ R
N are open, then

Ω1 ⊂ Ω2 implies that 0 ≤ RΩ1(λ) ≤ RΩ2(λ) (1.6)

(see for instance [8, Lemma 1.2]). In particular,

0 ≤ RΩ(λ) ≤ (λ − ∆∞)−1

where ∆∞ is the Laplacian in L∞(
RN

)
defined on the domain

D(∆∞) =
{
u ∈ L∞(

R
N

)
: ∆u ∈ L∞(

R
N

)}
,

that is, ∆∞ is the adjoint of the generator of the Gaussian semigroup on L1
(
RN

)
. If Ω2 is bounded then (1.6)

also holds for λ = 0.
If Ω is bounded, then by definition RΩ(λ)L∞(

RN
) ⊂ H1

0 (Ω). For unbounded sets and f ∈ L∞(
RN

)
it is

not true that RΩ(λ)f ∈ H1
0

(
RN

)
in general, but only locally. More precisely, we let

H1
loc

(
R

N
)

=
{
u ∈ L2

loc

(
R

N
)
: Dju ∈ L2

loc

(
R

N
)}
.
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For an open set Ω ⊂ RN we then define

H1
0,loc(Ω) :=

{
u ∈ H1

loc

(
R

N
)
: ψu ∈ H1

0 (Ω) for all ψ ∈ D(
R

N
)}
.

In particular, for u ∈ H1
0,loc(Ω) we have u(x) = 0 a.e. on Ωc. Our next theorem will characterize RΩ(λ)f as

the unique solution of −∆u + λu = f in D(Ω)′ with u ∈ H0,loc(Ω) ∩ L∞(Ω). For the proof we need some
preparation.

First we recall Kato’s inequality

1{u>0}∆u ≤ ∆u+ in D(Ω)′ (1.7)

which holds for all u ∈ L1
loc(Ω) such that ∆u ∈ L1

loc(Ω) (see [22, V.II.21]). From this we deduce the following

maximum principle
(
which is well-known if u ∈ H1

0 (Ω), see [25, Theorem 8.1]
)
.

Proposition 1.2 Suppose that λ ≥ 0, u ∈ L1
loc(Ω) and ∆u ∈ L1

loc(Ω). If u+ ∈ H1
0 (Ω) and λu − ∆u ≤ 0,

then u ≤ 0.

P r o o f. It follows from (1.7) that λu+ − ∆u+ ≤ 1{u>0}(λu − ∆u) ≤ 0. Since u+ ∈ H1
0 (Ω) we conclude

that
∫
Ω λ |u+|2 +

∫
Ω |∇u+|2 ≤ 0, so u+ = 0.

We also need the elementary identity

|∇(ψu)|2 = u2 |∇ψ|2 + ∇u∇(
ψ2u

)
(1.8)

valid for all ψ ∈ D(
RN

)
and u ∈ H1

loc

(
RN

)
. We finally write shortly

ω ⊂⊂ Ω

for saying that ω is a bounded open set such that ω ⊂ Ω.

Theorem 1.3 Suppose that Ω ⊂ RN is open, f ∈ L∞(Ω) and λ > 0. Then the following assertions are
equivalent.

(i) u = RΩ(λ)f ;

(ii) u ∈ H1
0,loc(Ω) ∩ L∞(Ω) and λu − ∆u = f in D(Ω)′.

If Ω is bounded the equivalence also holds for λ = 0.

P r o o f. If Ω is bounded the assertion of the theorem is well-known, and follows from the discussion of
(1.1). Hence assume that Ω is unbounded. We first prove (i) implies (ii). Let f ∈ L∞(Ω). Then there exist
fn ∈ L2

(
RN

)
such that fn

∗
⇀ f in L∞(

RN
)
. Let un := RΩn(λ)fn and u := RΩ(λ)f . Note that un ∈ H1

0 (Ω)
and u ∈ L∞(

RN
)
. By definition of RΩ(λ) we have un

∗
⇀ u as n → ∞. As fn

∗
⇀ f in L∞(

RN
)

there exists
M ≥ 0 such that ‖fn‖∞ ≤ M for all n ∈ N. Let now B ⊂⊂ R

N and ψ ∈ D(
R

N
)

such that 0 ≤ ψ ≤ 1 and
ψ|B ≡ 1. Then by (1.8) and since ψ2un ∈ H1

0 (Ωn),

‖∇(ψun)‖2
L2 + λ ‖ψun‖2

L2 =
∫

Ωn

∇un∇
(
ψ2un

)
+

∫
Ωn

u2
n |∇ψ|2 +

∫
Ωn

λunψ
2un

=
∫

Ωn

fnψ
2un +

∫
Ωn

u2
n |∇ψ|2 for all n ∈ N.

Using (1.5) and ‖fn‖∞ ≤M we get

‖∇(ψun)‖2
L2 + λ ‖ψun‖2

L2 ≤ 1
λ
‖fn‖2

∞ ‖ψ‖2
L2

+
1
λ2

‖fn‖2
∞ ‖∇ψ‖2

L2

≤
(
M

λ

)2 (
λ ‖ψ‖2

L2
+ ‖∇ψ‖2

L2

)
for all n ∈ N.

(1.9)

As
(‖∇(ψun)‖2

L2 +λ ‖ψun‖2
L2

)1/2
is an equivalent norm on H1

(
RN

)
this shows that un is bounded in H1(B)

for all B ⊂⊂ RN . Hence there exists a subsequence (unk
)k∈N and v ∈ H1

loc

(
RN

)
such that unk

⇀ v weakly

www.mn-journal.com c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



32 Arendt and Daners: Uniform convergence for elliptic problems on varying domains

in H1(B) for every B ⊂⊂ RN . By Rellich’s Theorem unk
→ v in L2

loc

(
RN

)
, and thus, by Remark 1.1, in

L∞(
RN

)
with respect to the σ∗-topology.

We now show that v = u and u ∈ H1
0,loc(Ω). We know that un

∗
⇀ u in L∞(

RN
)
. As unk

∗
⇀ v we

conclude that u = v. Now, by what we proved, un ⇀ u weakly in H1(B) for all B ⊂⊂ RN . Thus, if we fix
ϕ ∈ D(

RN
)

and chooseB ⊂⊂ RN such that suppϕ ⊂ B, then ϕun ∈ H1
0 (Ω∩B) for all n ∈ N and ϕun → ϕu

weakly in H1(B). As H1
0 (Ω ∩ B) is a weakly closed subspace of H1(B) we conclude that ϕu ∈ H1

0 (Ω) for all
ϕ ∈ D(

RN
)
, showing that u ∈ H1

0,loc(Ω).
We finally prove that (ii) implies (i). In view of what we just proved it is sufficient to show uniqueness of

solutions in (ii). Let u ∈ H1
0,loc(Ω) ∩ L∞(Ω) such that λu − ∆u = 0 in D(Ω)′. We have to show that u = 0.

Define w(x) := 2Nλ−1 + |x|2. Then w ∈ C∞(
RN

)
and ∆w = 2N ≤ λw. Now fix ε > 0 and choose R > 0

such that εw(R) > ‖u‖∞. Setting v := u − εw we claim that v+ ∈ H1
0 (Ω ∩ B), where B := B(0, R + 1). To

prove that, letψ ∈ D(Ω∩B) such that 0 ≤ ψ ≤ 1 andψ = 1 onB. Sinceψu ∈ H1
0 (Ω) there exist un ∈ D(Ω∩B)

such that ‖un‖∞ ≤ ‖u‖∞ and un → ψu in H1(Ω ∩ B). Hence un − εw → u − εw in H1(Ω ∩ B) and thus
also (un − εw)+ → (u − εw)+ in H1(Ω ∩B). But supp(un − εw)+ ⊂ suppun ∩ B(0, R) ⊂⊂ Ω ∩ B for all
n ∈ N, implying that (u − εw)+ ∈ H1

0 (Ω ∩ B) as claimed. Now λv − ∆v = −ε(λw − ∆w) ≤ 0. It follows
from Proposition 1.2 that v ≤ 0. Thus u ≤ εw, and as ε > 0 was arbitrary we conclude that u ≤ 0. Replacing u
by −u we deduce that u = 0, completing the proof of the theorem.

Next we will prove a compactness property of solutions of (1.1) when f and Ω vary. We first recall the
following simple regularity property of the Laplacian [19, II §3, Proposition 6].

Lemma 1.4 Let u ∈ L1
loc(Ω). If ∆u ∈ L∞(Ω), then u ∈ C1(Ω). In particular, we note that RΩ(λ)f ∈

C1(Ω) for all f ∈ L∞(
RN

)
.

An application of the closed graph theorem allows us to deduce the following interior estimate from Lemma 1.4.

Lemma 1.5 For every ω ⊂⊂ Ω there exists a constant c > 0 such that

‖u‖C1(ω) ≤ c
(‖u‖L∞(Ω) + ‖∆u‖L∞(Ω)

)
(1.10)

for all u ∈ L∞(Ω) such that ∆u ∈ L∞(Ω).

Given un, u ∈ C(Ω) we say that un converges to u in C(Ω) if un(x) → u(x) as n → ∞ uniformly on
compact subsets of Ω. We are now ready to prove the announced compactness result.

Proposition 1.6 Let Ωn,Ω ⊂ RN be open sets. Assume that for every compact setK ⊂ Ω there exists n0 ∈ N

such that K ⊂ Ωn for all n ≥ n0. Finally suppose that fn, f ∈ L∞(
RN

)
. If λ > 0 and un := RΩn(λ)fn then

the following assertions hold.
(i) If fn

∗
⇀ f in L∞(

RN
)

then there exist a subsequence (unk
)k∈N and v ∈ H1

loc

(
RN

)
such that unk

→ v

in C(ω) for all ω ⊂⊂ Ω, in L2
loc

(
RN

)
, weakly in H1(B) for all B ⊂⊂ RN and in L∞(

RN
)

for the σ∗-topology.
(ii) The limit points v above satisfy the equation −∆v + λv = f in D(Ω)′.

(iii) If there exists a ball B ⊂ RN such that Ωn ⊂ B for all n ∈ N then then (i) and (ii) hold for λ ≥ 0.

P r o o f. (i) Let fn
∗
⇀ f in L∞(

RN
)
. Set un := RΩn(λ)fn and u := RΩ(λ)f . By Theorem 1.3 un ∈

H1
0,loc(Ω) for all n ∈ N. Moreover there exists M ≥ 0 such that ‖fn‖∞ ≤ M for all n ∈ N. Now we can

proceed as in the first part of the proof of Theorem 1.3 to find a subsequence (unk
) and v such that unk

→ v
weakly in H1(B) for all B ⊂⊂ RN and in L∞(

RN
)

for the σ∗-topology. By Rellich’s Theorem convergence
is also in L2

loc

(
R

N
)
. To show convergence in C(Ω), let ω ⊂⊂ U ⊂⊂ Ω. Then there exists n0 ∈ N such that

U ⊂ Ωn for all n ≥ n0. It follows from Lemma 1.5 (with Ω = U) that the sequence (un) is bounded and
equi-continuous on ω. Thus unk

→ v in C(ω) by the Arzelá–Ascoli Theorem.
(ii) We now show that −∆v + λv = f in D(Ω)′. To do so fix ϕ ∈ D(Ω). By assumption on Ωn there exists

n0 ∈ N such that ϕ ∈ D(Ωn) for all n ≥ n0. As unk
∈ H1

loc

(
RN

)
we have

〈−∆unk
+ λunk

, ϕ〉 =
∫

RN

∇unk
∇ϕ+ λ

∫
RN

unk
ϕ = 〈fnk

, ϕ〉
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for all k large enough. As unk
⇀ v in H1(B) for everyB ⊂⊂ RN and fnk

∗
⇀ f in L∞(

RN
)

we can let k → ∞
to get

〈−∆v + λv, ϕ〉 =
∫

RN

∇v∇ϕ+ λ

∫
RN

vϕ = 〈f, ϕ〉 for all ϕ ∈ D(Ω).

Hence (ii) follows.
(iii) Suppose now that there exists a ball B with Ωn ⊂ B for all n ∈ N. Then RΩn(0) exists, and by (1.6)

we have ‖un‖∞ = ‖RΩn(0)fn‖∞ ≤ MRB(0)1 for all n ∈ N. Hence, in (1.9) we can substitute Mλ−1 by
M RB(0)1 and get a domain independent a priori estimate. We also replace H1

(
R

N
)

by H1
0 (B) and note that

‖∇u‖2 defines an equivalent norm on that space. The rest of the proof works similarly as before.

2 Continuity on the boundary

The purpose of this section is to review and improve known results on continuity on the boundary for solutions to
(1.1). Let Ω ⊂ RN be open and λ > 0. If f ∈ L∞(

RN
)

then u = RΩ(λ)f is a bounded function on RN which
is continuous on Ω and vanishes on Ωc. We want to characterize when u is continuous on R

N .

Definition 2.1 A bounded open set Ω is called Dirichlet regular or simply regular, if for each ϕ ∈ C(∂Ω)
there exists h ∈ C(Ω) ∩ H(Ω) such that h|∂Ω = ϕ.

Here H(Ω) denotes the space of all harmonic functions on Ω. If Ω is bounded we let

C0(Ω) :=
{
u ∈ C

(
R

N
)
: u|Ωc = 0

}
.

Let λ > 0. Recall from [8, Lemma 2.2] that

for u ∈ C0(Ω), λu− ∆u ∈ L∞(Ω) implies u ∈ H1
0 (Ω).

Conversely, we have the following characterization of regularity [8, Theorem 2.4].

Proposition 2.2 Let Ω ⊂ RN be open and bounded and let λ > 0. Then Ω is regular if and only if
RΩ(λ)L∞(

RN
) ⊂ C0(Ω).

If Ω has a Lipschitz boundary, then Ω is regular. In fact, many more general geometric sufficient conditions
are known (see [19, 25, 31, 32]). Moreover, a bounded open set Ω is regular if and only if

for all z ∈ ∂Ω there exists r > 0 such that Ω ∩B(z, r) is regular. (2.1)

We take (2.1) as a definition of a regular domain if Ω is unbounded.

Definition 2.3 An open subset Ω ⊂ RN is called regular if (2.1) holds.

If Ω ⊂ R
N is a (possibly unbounded) set we let

BC0(Ω) :=
{
u ∈ C

(
R

N
) ∩ L∞(

R
N

)
: u = 0 on Ωc

}
,

C0(Ω) :=
{
u ∈ BC0(Ω): lim

|x|→∞
u(x) = 0

}
.

Note that BC0(Ω) = C0(Ω) if Ω is bounded.

Proposition 2.4 Let Ω ⊂ RN be an open, regular set and let λ > 0. Then

RΩ(λ)L∞(Ω) ⊂ BC0(Ω). (2.2)

For the proof we refer to Proposition 4.2, where a more general local version will be established. Thus on a
regular set we have the following characterization of RΩ(λ).

Theorem 2.5 Let Ω ⊂ RN be an open regular set. If λ > 0 and f ∈ L∞(
RN

)
then the following assertions

are equivalent.
(i) u = RΩ(λ)f ;

(ii) u ∈ H1
0,loc(Ω) ∩ L∞(Ω) and λu− ∆u = f in D(Ω)′;

(iii) u ∈ BC0(Ω) and λu − ∆u = f in D(Ω)′.
If Ω is bounded the above statements are also equivalent for λ = 0.
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34 Arendt and Daners: Uniform convergence for elliptic problems on varying domains

P r o o f. The equivalence of (i) and (ii) follows from Theorem 1.3 and (ii) ⇒ (iii) from Proposition 2.4, so it
remains to prove (iii) ⇒ (i). By assumption u = RΩ(λ)f satisfies (iii). Thus it suffices to show that (iii) has at
most one solution. Let v ∈ BC0(Ω) such that λv − ∆v = 0 in D(Ω)′. We have to show that v = 0. Fix ε > 0
arbitrary. Then λ(v − ε) − ∆(v − ε) = −λε ≤ 0 in D(Ω)′. Since (v − ε)+ = 1{v>ε}(v − ε), Kato’s inequality
(1.7) implies that

λ(v − ε)+ − ∆(v − ε)+ ≤ 0 in D(Ω)′. (2.3)

We claim that (2.3) also holds in D(
R

N
)′

. Let 0 ≤ ϕ ∈ D(
R

N
)
, K := suppϕ andA :=

{
x ∈ R

N : v(x) ≥ ε
}

.
Then Ω1 = Ac is open in RN . Since A ⊂ Ω we have Ωc ⊂ Ω1. Thus K ⊂ Ω1 ∪ Ω. Using a partition
of unity we find ϕ1, ϕ2 ∈ D(

RN
)
+

such that suppϕ1 ⊂ Ω1, suppϕ2 ⊂ Ω and ϕ = ϕ1 + ϕ2. By (2.3),〈
(v− ε)+, λϕ2 −∆ϕ2

〉 ≤ 0. On the other hand,
〈
(v− ε)+, λϕ1 −∆ϕ1

〉
= 0. Thus,

〈
(v− ε)+, λϕ−∆ϕ

〉 ≤ 0,
showing that

λ(v − ε)+ − ∆(v − ε)+ ≤ 0 in D(
R

N
)′
. (2.4)

Now recall that λ − ∆ is a bijective operator from S′(RN
)

onto S′(RN
)

with positive inverse. Thus it follows
from (2.4) that (v − ε)+ = 0. Hence v ≤ ε. Since ε > 0 was arbitrary, v ≤ 0. Replacing v by −v, we get v = 0.

Finally we look at the case λ = 0 and Ω bounded. By Theorem 1.3 we know that (i) and (ii) are equivalent.
If (ii) holds then for arbitrary λ > 0 we have λu − ∆u = f + λu in D(Ω)′ and f + λu ∈ L∞(Ω). Hence by
what we proved u ∈ BC0(Ω) and thus (ii) implies (iii). Interchanging the roles of H1

0 and BC0 we get that (iii)
implies (ii), completing the proof of the theorem.

The above shows that if Ω is a regular open set, then RΩ(λ) is a positive, linear operator from L∞(
RN

)
into

BC0(Ω). We introduce the space

L∞
0

(
R

N
)

:=
{
u ∈ L∞(

R
N

)
: ∃h ∈ C0

(
R

N
) |u(x)| ≤ h(x) a.e.

}
. (2.5)

It is easy to see that L∞
0

(
RN

)
is a closed subspace of L∞(

RN
)
.

Proposition 2.6 Let Ω be a regular, open subset of RN . Then for λ > 0 (or λ ≥ 0 if Ω is bounded),

RΩ(λ)L∞
0

(
R

N
) ⊂ C0(Ω). (2.6)

P r o o f. By [8, Theorem 3.3] we have RΩ(λ)C0(Ω) ⊂ C0(Ω). Thus (2.6) follows by applying (2.5) and
Theorem 2.5.

3 Uniform convergence from the interior

We now present our main results concerning convergence from the interior. Let Ω,Ωn ⊂ R
N be open sets and

assume that Ωn converges to Ω from the interior in the following sense.

Definition 3.1 Let Ωn,Ω ⊂ RN be open sets. We say that Ωn converges to Ω from the interior as n→ ∞ if
(a) Ωn ⊂ Ω for all n ∈ N and
(b) for each compact subset K of Ω there exists n0 ∈ N such that K ⊂ Ωn for all n ≥ n0.

We write Ωn ↑ Ω if Ωn converges to Ω from the interior and Ωn ⊂ Ωn+1 for all n ∈ N.

The main result of this section is the following theorem.

Theorem 3.2 Suppose that Ωn,Ω are open sets, Ω is regular and Ωn → Ω from the interior. Let λ > 0 and
let fn, f ∈ L∞(

RN
)
. Then the following assertions hold.

(a) If fn
∗
⇀ f in L∞(Ω), then RΩn(λ)fn → RΩ(λ)f locally uniformly on RN ;

(b) If f ∈ L∞
0 (Ω), then RΩn(λ)f → RΩ(λ)f uniformly on RN .

If Ω is bounded, then (a) and (b) also hold for λ ≥ 0 and RΩn(λ) → RΩ(λ) in L(
L∞(Ω)

)
for all λ ≥ 0.
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P r o o f. We assume throughout that λ > 0 if Ω is unbounded and that λ ≥ 0 if Ω is bounded.
(a) Suppose that fn

∗
⇀ f in L∞(Ω) and set un := RΩn(λ)fn and u := RΩ(λ)f . By Proposition 1.6 there

exists a subsequence (unk
) converging to some v ∈ H1

loc

(
RN

)
weakly in H1(B) for all B ⊂⊂ RN and in

L∞(
RN

)
with the σ∗-topology. Moreover, λv − ∆v = f in D(Ω)′. As Ωn ⊂ Ω for all n ∈ N, Theorem 1.3

implies that un ∈ H1
0,loc(Ω) for all n ∈ N. Hence v ∈ H1

0,loc(Ω) and by Theorem 1.3 v = u = RΩ(λ)f .
Having a unique σ∗-limit point, the whole sequence (un)n∈N must converge to u. By Proposition 1.6 we also
know that un → u in C(Ω). Let now M ≥ ‖f‖∞ be such that ‖fn‖∞ ≤ M for all n ∈ N. By Theorem 2.5,
w := RΩ(λ)M ∈ BC0(Ω). Furthermore, by (1.6) we have −w ≤ un ≤ w, that is, |un| ≤ w for all n ∈ N.
Similarly, |u| ≤ w. Fix now ε > 0 arbitrary. Then for every B ⊂⊂ RN the set

K :=
{
x ∈ R

N : w(x) ≥ ε/2
}∩B

is compact and K ⊂ Ω. Also, by the above, |un(x) − u(x)| ≤ 2w(x) ≤ ε for all x ∈ B \ K and n ∈ N. As
ε > 0 was arbitrary and un → u in C(Ω) it follows that un → u uniformly in B ⊂⊂ RN . Hence un → u locally
uniformly on RN .

(b) We may assume that f ≥ 0. By Proposition 2.6, u = RΩ(λ)f ∈ C0(Ω). Hence, for given ε > 0, the
set K :=

{
x ∈ RN : u(x) ≥ ε

}
is compact and K ⊂ Ω. Now we can complete the proof as in part (a) taking

w = u.
We finally look at the case of bounded Ω. Since RΩ(λ)1Ωc = 0, we have

RΩ(λ)1 = RΩ(λ)1Ω ∈ C0(Ω)

by Proposition 2.6. Since RΩ(λ) −RΩn(λ) ≥ 0 we have

‖RΩ(λ) −RΩn(λ)‖L(L∞) =
∥∥(
RΩ(λ) −RΩn(λ)

)
1
∥∥

L∞(Ω)

which converges to zero as n→ ∞ by (a).

Next we characterize convergence from the interior.

Proposition 3.3 Let Ωn,Ω be open sets such that Ωn ⊂ Ω and let Ωn be regular for all n ∈ N. Let λ > 0
and let 0 ≤ f ∈ L∞(

RN
)

such that f �= 0 on every component of Ω. Then RΩn(λ)f → RΩ(λ)f in C(K) for
every compact set K ⊂ Ω if and only if Ωn → Ω from the interior.

P r o o f. If Ωn → Ω from the interior, then the first part of the proof of Theorem 3.2 shows that un → u :=
RΩ(λ)f in C(K) for every compact set K ⊂ Ω. To prove the converse assume that Ωn �→ Ω from the interior.
Then there exists K ⊂ Ω compact such that K ∩ Ωc

n �= ∅ for infinitely many n ∈ N. Let xk ∈ K ∩ Ωc
nk

such that xk → x ∈ K and nk → ∞ as k → ∞. Since xk �∈ Ωnk
we have unk

(xk) = 0 and |u(x)| ≤
|u(x) − u(xk)| + |u(xk) − unk

(xk)| for all k ∈ N. As u ∈ C(K) and un → u in C(K) by assumption, the
right-hand side of the above inequality goes to zero as k → ∞. Hence u(x) = 0 for some x ∈ Ω. By the strong
maximum principle [25, Theorem 8.19], applied to −u, this implies that u ≡ 0 in the component of Ω containing
x. As f �= 0 on that component by assumption, u �= 0 on that component. As this is a contradiction, Ωn → Ω
from the interior.

Remark 3.4 (Necessity of Dirichlet regularity) Proposition 3.3 also implies that the condition that Ω be
regular cannot be omitted in Theorem 3.2. In fact, given an open set Ω, there exist Ωn open, bounded of class
C∞ such that Ωn ↑ Ω. Take f ∈ C0(Ω) such that f(x) > 0 on Ω. Assume that un = RΩn(λ)f converges
uniformly on Ω to u = RΩ(λ)f . Since un ∈ C0(Ωn), it follows that u ∈ C0(Ω). By [8, Corollary 3.12] this
implies that Ω is regular.

4 Regular points

For our main result on uniform approximation (Section 5), it will be natural to consider regular points of the
Dirichlet problem. Let Ω ⊂ RN be a bounded open set and let ϕ ∈ C(∂Ω). Then the Perron solution hϕ yields a
weak solution of the Dirichlet problem

h ∈ C(Ω) ∩ H(Ω), (4.1)
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where H(Ω) denotes the set of harmonic functions on Ω. The Perron solution is defined with the help of sub-
harmonic functions (see [25, Chapter 1], [19] or [31]). For our purposes it is more convenient to use another
approach. Let ωn ⊂⊂ Ω be regular such that ωn ↑ Ω. Such sets always exist, they can even be chosen of class
C∞, [22, V.4.8]. Let Φ ∈ C

(
RN

)
such that Φ|∂Ω = ϕ. Let hn ∈ C(ωn) ∩ H(ωn) such that hn(x) = Φ(x) on

∂ωn. Then hn converges in C(Ω) to a function h ∈ H(Ω). This function h does not depend on the choice of
the sequence ωn and not on the extension Φ of ϕ. The function h coincides with the Perron solution. We refer
to [30] for a proof of these assertions.

If the Dirichlet problem (4.1) has a solution h, then h = hϕ. The function hϕ is bounded by ‖ϕ‖C(∂Ω), but in
general not continuous up to the boundary.

A point z ∈ ∂Ω is called regular, if

lim
x→z
x∈Ω

hϕ(x) = ϕ(z) for all ϕ ∈ C(∂Ω).

Thus Ω is regular if and only if each point z ∈ ∂Ω is regular.
Recall that for λ > 0 and f ∈ L∞(

RN
)

the function u = RΩ(λ)f is continuous on Ω and 0 on Ωc. Our aim
is to show that u is continuous at each regular point z ∈ ∂Ω.

For this we need to establish a relation between the Perron solution and the solution of Poisson’s equation. Let
ϕ ∈ C(∂Ω). Assume that there exists Φ ∈ C2

(
R

N
)

such that Φ|∂Ω = ϕ. Let u ∈ H1
0 (Ω) such that ∆u = ∆Φ

in D(Ω)′. Then h := Φ − u ∈ H(Ω) and h = ϕ on ∂Ω in a weak sense (namely, h − Φ ∈ H1
0 (Ω)). If Ω is

regular, then by [8, Lemma 2.2] h ∈ C(Ω), that is, h = hϕ. This is always true as we show now.

Proposition 4.1 Let Ω ⊂ RN be open and bounded. Let Φ ∈ C
(
RN

)
such that ∆Φ ∈ C

(
RN

)
. Let

ϕ = Φ|∂Ω. Let u ∈ H1
0 (Ω) such that ∆u = ∆Φ in D(Ω)′. Then

hϕ = Φ − u.

P r o o f. Let ωn ⊂⊂ Ω be Dirichlet regular sets such that ωn ↑ Ω. Let un ∈ H1
0 (Ωn) such that ∆un = ∆Φ

in D(ωn)′. Then hn = Φ − un ∈ C(ωn) ∩ H(ωn) and hn = Φ on ∂ωn. Moreover, hϕ = limn→∞ hn in
C(Ω) by the introductory remarks. On the other hand, by Theorem 3.2 we see that un → u in C(Ω). Thus
hϕ = Φ − u.

Denote by

cap(A) := inf
{‖u‖2

H1(RN ) : u ∈ H1
(
R

N
)
, u ≥ 1 a.e. on a neighborhood of A

}
the capacity of a subset A of RN . Then Wiener’s criterion states that a point z ∈ ∂Ω is regular if and only if

∞∑
j=1

2j(N−2) cap(B(z, 2−j) \ Ω) = ∞ (4.2)

if N > 2 and

∞∑
j=1

2j cap(Aj) = ∞ (4.3)

where Aj = {x ∈ Ωc : 2j < ln |x − z|−1 ≤ 2j+1} if N = 2 (see [32, p. 299] for the last case, and [32,
V §1.3 Theorem 5.2 and (5.1.7)] for the case N ≥ 3). Now, if Ω is an arbitrary open set, we call a point z ∈ ∂Ω
regular if (4.2) (or (4.3) if N = 2) holds. Clearly, z ∈ ∂Ω is a regular point of Ω if and only if z is a regular
point of Ω ∩ B(z, r) where r > 0. Thus, by Definition 2.3, an open set Ω is regular if and only if each point of
∂Ω is regular. With help of Proposition 4.1 we can now prove the following extension of Proposition 2.4. The
argument is a modification of part one of the proof of [8, Theorem 3.5].

Proposition 4.2 Let Ω be an open set, z ∈ ∂Ω and λ > 0. Then z is a regular point of Ω if and only if
u := RΩ(λ)f is continuous at z for all f ∈ L∞(

RN
)
.
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P r o o f. Suppose first that z is a regular point of Ω. Let Φ(x) = |x − z|2 and x ∈ RN . Then Φ ∈ C2
(
RN

)
and ∆Φ ≡ 2N . Let r1 > 0 and B1 = B(z, r1). Let w1 ∈ H1

0 (Ω ∩ B1) such that ∆w1 = ∆Φ = 2N in
D(Ω∩B1). Let ϕ = Φ|∂(Ω∩B1). Then hϕ = Φ−w1 by Proposition 4.1. It follows from the maximum principle
(Proposition 1.2) that w1 ≤ 0. Thus

hϕ(x) ≥ Φ(x) = |x− z|2 on Ω ∩B1.

Now consider u = RΩ(λ)f where f ∈ L∞(
RN

)
. We can assume that f ≥ 0. Thus u ≥ 0. We have to

show that limx→z u(x) = 0. Let ε > 0. Choose w ∈ C1
(
RN

)
such that −∆w = −λu + f in D(B1)′

and w(z) = ε. We may choose w = EN ∗ (
η(λu − f)

)
+ c, where η ∈ D(

RN
)
, η ≡ 1 on B1 and EN

denotes the Newtonian potential and c is a suitable constant, chosen in such a way that w(z) = ε. Choose a
ball B = B(z, r) ⊂ B1 such that w ≥ 0 on B. Choose c > 0 so large that c |x − z|2 > ‖u‖∞ on ∂B ∩ Ω
and let v = c hϕ ∈ H1(Ω ∩ B). Then u − w − v ∈ H1(Ω ∩ B) and (u − w − v)+ ∈ H1

0 (Ω ∩ B). In
fact, let ψ ∈ D(

RN
)
+

such that ψ ≡ 1 on B. Since ψu ∈ H1
0 (Ω) there exist test functions un ∈ D(Ω) such

that 0 ≤ un ≤ ‖u‖∞ and un → ψu in H1(Ω). Thus un → u and (un − w − v)+ → (u − w − v)+ in
H1(Ω ∩ B). But (un − w − v)+ ≤ (un − w − cΦ)+ ∈ C0(Ω ∩ B) ∩ H1(Ω ∩ B) ⊂ H1

0 (Ω ∩ B). Hence
also (un − w − v)+ ∈ H1

0 (Ω ∩ B). This proves that (u − w − v)+ ∈ H1
0 (Ω ∩ B). Since by the choice of w,

∆(u−w−v) = −∆v ≤ 0, it follows from the maximum principle Proposition 1.2 that u−w−v ≤ 0 on Ω∩B.
Since z is a regular point, we conclude that

lim
x→z

u(x) ≤ lim
x→z

(
w(x) + v(x)

) ≤ ε+ lim
x→z

c hϕ(x) = ε.

Since ε > 0 was arbitrary, it follows that limx→z u(x) ≤ ε. Replacing u by −u we obtain limx→z u(x) = 0.
Suppose now that R(λ)f is continuous at z for all f ∈ L∞(Ω). Fix r > 0 and let Ω0 := Ω ∩ B(z, r). Since

RΩ0(λ) ≤ RΩ(λ) it follows that RΩ0(λ)f is continuous at z for all f ∈ L∞(
RN

)
. By the resolvent identity

λRΩ0(λ)RΩ0 (0)f = RΩ0(0)f −RΩ0(λ)f,

so RΩ0(0) is continuous at z for all f ∈ L∞(
RN

)
. Consider

F :=
{
ϕ ∈ C(∂Ω): ∃Φ ∈ C2

(
R

N
)
, ϕ = Φ|∂Ω

}
.

Let ϕ ∈ F , ∆Φ = f and u = RΩ0f . Then hϕ := Φ − u ∈ H(Ω). As u is continuous at z and u(z) = 0,

lim
x→z
x∈Ω

hϕ(x) = ϕ(x).

Since F is dense in C(∂Ω), hϕ is continuous for all ϕ ∈ C(∂Ω), that is, z is a regular point of Ω.

5 Regular convergence of domains and uniform convergence

This section contains our main results concerning domain convergence. We introduce the following definition
of domain convergence. It turns out to be most convenient for concrete geometric descriptions as we will see in
Section 6. We call it regular convergence since it implies that the limit set is regular.

Definition 5.1 Let Ωn,Ω ⊂ RN be open sets for all n ∈ N. We say that Ωn converges regularly to Ω as
n→ ∞ if the following conditions hold:

(1) For every ω ⊂⊂ Ω there exists n0 ∈ N such that ω ⊂ Ωn for all n ≥ n0.
(2) For each z ∈ Ωc there exist a compact set Kz and sequences (zn) and orthogonal transformations Tn ∈

ON (R) such that
(a) zn → z in RN and Tn → I in ON (R);
(b) there exists n0 ∈ N such that Ωn ∩ (

zn + Tn(Kz)
)

= ∅ for all n ≥ n0,
(c) 0 ∈ ∂Kz and 0 is a regular point of Kc

z .
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Remark 5.2 (a) We could require that Tn → T inON (R), but replacing Tn by TnT
−1 we can assume without

loss of generality that Tn → I .
(b) Note that by Wiener’s criterion condition (c) in Definition 5.1 can be reformulated by saying that

∞∑
j=1

2j cap(B(z, 2−j) ∩Kz) = ∞, (5.1)

if N ≥ 3 (and by a similar condition if N = 2). Thus, the set K may be replaced by Kz ∩ B(z, ε) for each
ε > 0. In other words, Kz may be chosen arbitrarily small.

Remark 5.3 If Ωn → Ω regularly, then Ω is regular. To see this we first show that Ω ∩ (Kz + z) = ∅ for all
z ∈ Ωc. Suppose to the contrary that there exists y ∈ Kz such that x = z + y ∈ Ω. Then there exists ε > 0 such
that B(x, ε) ⊂⊂ Ω. By (1) there exists n0 ∈ N such that Ωn ⊃ B(x, ε) for all n ≥ n0. It follows from (b) that∥∥x− (

Tn(y) + zn

)∥∥ ≥ ε for all n ≥ n0, contradicting the fact that zn + Tn(y) → x. Hence the claim is proved
and thus

(
B(0, 2−j) ∩Kz

)
+ z ⊂ B(z, 2−j) \ Ω for n large. Now (5.1) implies that z is a regular point of Ω.

Remark 5.4 If Ω is a regular open set and Ωn → Ω from the interior, then Ωn → Ω regularly as n → ∞.
Indeed, let z ∈ Ωc. Then part (2) of Definition 5.1 holds if we set Kz :=

(
Ωc ∩B(z, r)

) − z for some arbitrary
r > 0, zn = z and Tn = I for all n ∈ N. Part (1) is satisfied by Definition 3.1.

Based on Definition 5.1 the following result on uniform convergence holds. We also allow Ω = ∅ as a regular
open set, setting

R∅(λ) = 0 (λ ≥ 0).

Theorem 5.5 Let Ω,Ωn ⊂ RN be open. Assume that Ωn → Ω regularly as n → ∞. Let fn, f ∈ L∞(
RN

)
and let λ > 0. Then Ω is regular and the following assertions hold.

(a) If fn
∗
⇀ f in L∞(

R
N

)
, then RΩn(λ)fn → RΩ(λ)f locally uniformly on R

N ;
(b) If f ∈ L∞

0

(
R

N
)
, then RΩn(λ)f → RΩ(λ)f uniformly on R

N .
If Ω,Ωn ⊂ B (n ∈ N) for some bounded set B ⊂ RN , then (a) and (b) also hold for λ ≥ 0. Moreover,
RΩn(λ) → RΩ(λ) in L(

L∞(
RN

))
for all λ ≥ 0.

P r o o f. 1. Suppose that fn
∗
⇀ f in L∞(

RN
)
. Then M = supn∈N ‖fn‖∞ < ∞. We set un := RΩn(λ)fn

and u := RΩ(λ)f . Moreover, for every z ∈ Ωc let Kz ⊂ RN , zn and Tn be as in Definition 5.1. Setting
wz := M R(z+Kc

z)(λ)1 and wz,n := M R(zn+Tn(Kz)c)(λ)1 we have

wz,n(x) = wz

(
z + T−1

n (x− zn)
)

and wz(z) = 0. (5.2)

Since T−1
n → I in L(

RN
)

and wz ∈ C
(
(z +Kc

z) ∪ {z}) we conclude that

lim
n→∞wz,n(xn) = wz(x) (5.3)

whenever xn → x and x ∈ (Kc
z + z) ∪ {z}. By choice of M , (1.6) and the fact that

(
zn + Tn(Kz)

) ∩ Ωn = ∅
we conclude that −wz,n(x) ≤ un(x) ≤ wz,n(x), that is,

|un(x)| ≤ wz,n(x) for all n ∈ N large, x ∈ R
N and z ∈ Ωc. (5.4)

2. Applying Proposition 1.6 there exists a subsequence (unk
) converging to some v ∈ H1

loc

(
RN

)∩L∞
(
RN

)
in C(Ω) and in L2

loc

(
RN

)
. If z ∈ Ωc then by (5.3) (for xn = z) and (5.4) we get

lim
n→∞ |un(z)| ≤ lim

n→∞wz,n(z) = wz(z) = 0 for all z ∈ Ωc.

Hence un → 0 on Ωc, showing that v = 0 a.e. on Ωc. Modifying v on a set of measure zero we may assume that
v = 0 on Ωc. As unk

→ v in C(Ω) we therefore conclude that unk
→ v point-wise on RN . Now from (5.3) and

(5.4) we get |v(x)| ≤ wz(x) for all x ∈ Ω. The latter inequality is obvious for x ∈ Ωc, so

|v(x)| ≤ wz(x) for all x ∈ R
N and z ∈ Ωc. (5.5)
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We next show that v is continuous on Ω. As unk
→ v in C(Ω) we know already that v is continuous on Ω. Hence

we only need to show continuity on ∂Ω. To do so let xn ∈ Ω and xn → z with z ∈ ∂Ω. But then, by (5.5) and
continuity of wz at z

lim
n→∞ |v(xn)| ≤ lim

n→∞wz(xn) = wz(z) = 0,

showing that v(xn) → 0. As v ≡ 0 on Ωc we conclude that v ∈ BC0(Ω). We know from Proposition 1.6 that
−∆v + λv = f in D(Ω)′. Moreover, Ω is regular by Remark 5.3, so by Theorem 2.5 v = u = RΩ(λ)f . As u is
the only possible limit point of un the whole sequence (un) must converge. Hence we have shown that un → u
point-wise on RN .

3. We next show that un → u uniformly on bounded subsets of RN . Assume to the contrary that there exists
B ⊂⊂ RN such that (un) does not converge uniformly on B. Then there exist ε > 0 and a sequence (xn) in B
such that

lim
n→∞ |un(xn) − u(xn)| ≥ 3ε.

As B is compact we can select a subsequence such that xnk
→ z in B and

|unk
(xnk

) − u(xnk
)| ≥ 2ε for all k ∈ N.

As un → u in C(Ω) it is impossible that z ∈ Ω, so z ∈ Ωc. But then by continuity u(xnk
) → u(z) = 0. Hence,

for large enough k ∈ N

|unk
(xnk

)| ≥ ε.

However, by (5.3) and (5.4)

lim
k→∞

|unk
(xnk

)| ≤ lim
k→∞

wz,nk
(xnk

) = wz(z) = 0.

As this is a contradiction un must converge uniformly to u on B. This completes the proof of (a).
4. Assertion (b) follows from (a) as in the proof of Theorem 3.2.
5. We finally suppose there exists a ball B ⊂ RN such that Ωn,Ω ⊂ B for all n ∈ N. Note that all arguments

in (a) and (b) then also work for λ = 0. Suppose now that λ ≥ 0 but RΩn(λ) does not converge in L(
L∞

(
RN

))
.

Then there exist ε > 0 and fn ∈ L∞(
RN

)
with ‖fn‖∞ = 1 such that

lim
n→∞ ‖RΩn(λ)fn −RΩ(λ)fn‖∞ ≥ 2ε.

Hence we can choose a subsequence (fnk
) such that fnk

∗
⇀ f in L∞(

RN
)

and

‖RΩnk
(λ)fnk

−RΩ(λ)fnk
‖∞ ≥ ε for all k ∈ N. (5.6)

As the support ofRΩk
(λ)fnk

lies in the fixed bounded setB we get from part (a) of the theorem thatRΩnk
(λ)fnk

→
RΩ(λ)f uniformly on RN . Similarly, RΩ(λ)fnk

→ RΩ(λ)f uniformly on RN as k → ∞. Hence

‖RΩnk
(λ)fnk

−RΩ(λ)fnk
‖∞ −→ 0.

As this is a contradiction to (5.6), RΩn(λ) must converge in the operator norm, completing the proof of the
theorem.

Remark 5.6 In Definition 5.1 we could replace the orthogonal transformations by more general transforma-
tions. We just need to make sure that the family R(zn+Tn(Kz))c1 is equi-continuous at zero. Then all results
concerning regular convergence remain valid.

Remark 5.7 Condition (1) in Definition 5.1 is necessary forRΩn(λ)f to converge inC(Ω), so it is a necessary
condition for the above theorem. To see this we just do some obvious modifications in the proof of Proposition 3.3
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In the case of decreasing sequences we may use a slightly weaker hypothesis.

Corollary 5.8 Let Ω,Ωn ⊂ RN be open such that Ω ⊂ Ωn+1 ⊂ Ωn for all n ∈ N. Assume that for each
z ∈ Ωc there exist a compact set Kz ⊂ RN , zk ∈ RN , Tk ∈ ON (R) and nk ∈ N such that

(a) nk < nk+1;
(b) zk → z and Tk → I as k → ∞;
(c) Ωnk

∩ (
zk + Tk(Kz)

)
= ∅ for all k ∈ N;

(d) 0 ∈ ∂Kz and 0 is a regular point of Kc
z .

Then Ωn → Ω regularly and the assertions of Theorem 5.5 hold.

P r o o f. We may assume that there exists z̃1 ∈ RN such that (z̃1 + Kz) ∩ Ω1 = ∅. Choose z̃m = z̃1 and
T̃n := I for 1 ≤ m < n1. Let z̃m = zk and T̃m := Tk for nk ≤ m < nk+1. Then

(
z̃m + T̃m(Kz)

) ∩ Ωm = ∅
for all m ∈ N and limm→∞ z̃m = z.

Regular convergence of Ωn to Ω does not imply that
⋂

n∈N
Ωn ⊂ Ω, in general. This is interesting for many

examples (see Section 6). However, as a special case of Theorem 5.5 we may consider a more conventional
notion of convergence, if we assume stronger regularity of Ω.

Definition 5.9 We call an open set Ω ⊂ RN strongly regular, if for each z ∈ Ωc there exist a compact set
Kz ⊂ RN , zk ∈ RN and Tk ∈ ON

(
RN

)
such that

(a) zk → z and Tk → I as k → ∞;
(b) Ω ∩ (

zk + Tk(Kz)
)

= ∅ for all k ∈ N;
(c) 0 ∈ ∂Kz and 0 is a regular point of Kc

z .

Every strongly regular open set is regular (see the discussion in Remark 5.3). But the set Ω = (0, 1)∪ (1, 2) ⊂
R is regular (as every open subset of R) but not strongly regular. And indeed, we will see in Example 6.2 that the
assertion of Corollary 5.11 below is not true for this set. Note however, that Ω is not topologically regular, that

is, Ω̊ �= Ω.
Keldysh studied convergence of solutions of the Dirichlet problem for approximations from the exterior, that

is, Ω ⊂ Ωn+1 ⊂ Ωn for all n ∈ N and Ω =
⋂

n∈N
Ωn. His example [30, V.3 p. 55] yields a topologically regular

open set Ω ⊂ R3 which is regular but not strongly regular.
If Ω ⊂ R2 is bounded and has continuous boundary in the sense of [22, V.4.1], then it follows from [22,

Theorem 4.4, p. 246] that Ω is strongly regular. However, Lebesgue’s cusp [32, V. §1.3 Example p. 287] yields a
bounded open set in R3 which has continuous boundary but is not strongly regular (in fact, it is not even regular).
But if Ω ⊂ RN is regular and has continuous boundary then it is strongly regular.

We now look at a more conventional notion of convergence of Ωn, called metric convergence in [37, p. 29].

Theorem 5.10 Let Ω be a strongly regular open set in RN . Let Ωn ⊂ RN be open sets such that for all
compact sets K1 ⊂ Ω and K2 ⊂ Ω

c
there exists n0 ∈ N such that K1 ⊂ Ωn and K2 ⊂ Ω

c

n for all n ≥ n0. Then
Ωn → Ω regularly and all assertions of Theorem 5.5 hold.

P r o o f. We want to show that under the assumptions of the theorem Ωn → Ω regularly, and thus Theorem 5.5
applies. Part (1) of Definition 5.1 is obviously satisfied by definition of metric convergence. Hence we need to
show part (2) is satisfied. For z ∈ Ωc let Kz , (zn) and (Tn) be as in Definition 5.9. By assumption on Ωn

and the compactness of Kz , for every k ∈ N there exists nk ∈ N such that
(
zk + Tk(Kz)

) ∩ Ωn = ∅ for all

n ≥ nk. Moreover, we can choose nk strictly increasing. If we set z̃n := zk and T̃n := Tk for nk ≤ n < nk+1

then
(
z̃k + T̃n(Kz)

) ∩ Ωn = ∅ for all n ≥ nk. Hence part (2) of Definition 5.9 is satisfied, and thus Ωn → Ω
regularly.

Finally we want to look at monotone convergence of Ωn to Ω from the exterior. The following corollary is an
immediate consequence of the above theorem.

Corollary 5.11 Let Ω ⊂ RN be a strongly regular open set. Let Ωn be regular open sets such that Ω ⊂
Ωn+1 ⊂ Ωn and Ω =

⋂
n∈N

Ωn. Then Ωn → Ω regularly and all assertions of Theorem 5.5 hold.
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6 Examples

In the one-dimensional case we are able to characterize convergence from the exterior.

Example 6.1 (Dimension N = 1) Let Ωn ⊂ R be open and bounded such that Ωn+1 ⊂ Ωn. Let Ω =
(
⋂

n∈N
Ωn)◦ and λ ≥ 0. Then

RΩn(λ) −→ RΩ(λ) in L(
L∞(R)

)
as n −→ ∞.

P r o o f. We may considerK = {0} since R \ {0} is regular. Let z ∈ Ωc. Then there exists zk ∈ (
⋂

n∈N
Ωn)c

such that limk→∞ zk = z. Thus, we find inductively nk < nk+1 such that zk /∈ Ωnk
, that is, (K+zk)∩Ωnk

= ∅.
Thus Ωn converges regularly to Ω by Corollary 5.8. The claim follows from Theorem 5.5.

In the next example we produce a regularly converging sequence by cutting into the unit disc. Similar examples
are possible in higher dimension.

Example 6.2 (Cutting into a disc) Let N = 2 and

Ω =
{
x ∈ R

2 : |x| < 1
} \ {

(x1, 0): 0 ≤ x1 < 1
}
,

Ωn =
{
x ∈ R

2 : |x| < 1
} \ {

(x1, 0): δn ≤ x1 < 1
}
,

where δn ↓ 0 as n → ∞ as shown in Figure 1. Then RΩn(λ) → RΩ(λ) in L(
L∞(

RN
))

for all λ ≥ 0 as
n→ ∞. We can obviously give examples for N ≥ 3 by replacing the cutting line by part of a hyper-plane.

Ωn Ωn+1 Ω

Fig. 1 Cutting a disc

P r o o f. Let z = (x1, 0) ∈ ∂Ω where 0 ≤ x1 ≤ 1. Let K = {(x1, 0): 0 ≤ x1 ≤ 1}. Then Kc is
regular, [19, II §4 Sec. 1 Example 8, p. 337]. Let zn = z+(δn, 0). Then limn→∞ zn = z and (K+zn)∩Ωn = ∅.
This shows that Ωn converges regularly to Ω. The claim follows from Theorem 5.5.

Example 6.3 Let N = 2 and let Ωn be a domain obtained by cutting a circular arc into an open set as shown
in Figure 2. Then RΩn(λ) → RΩ(λ) in L(

L∞(
RN

))
for all λ > 0 as n → ∞. As the set K in Definition 5.1

we take a small circular arc and argue similarly as in Example 6.2. We cannot just move that arc by translation
but also need a rotations.

Ωn Ωn+1 Ω

Fig. 2 Cutting a domain with an arc

In the example given Ω ⊂ Ωn for all n ∈ N. We can modify the above example by for instance cutting along
a straight line segment and then turn that segment about a point as shown in Figure 3.

The next example shows that Ωn may converge regularly to Ω even though Ωn \Ω has Lebesgue measure one
for all n ∈ N.

www.mn-journal.com c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



42 Arendt and Daners: Uniform convergence for elliptic problems on varying domains

Fig. 3 Rotate a line segment

Example 6.4 (Converging combs) Let R := (−1, 1)× (0, 1), Ω := (−1, 0)× (0, 1) and Ωn = R \ Tn where

Tn =
{
(x1, x2) ∈ R : x1 ≥ 0, (2k − 1)/n ≤ x2 ≤ 2k/n for k = 1, 2, . . . , [n/2]

}
.

Here [n/2] is the integer part of n/2. Then Ωn is a comb as shown in Figure 4. The sequence (Ωn) converges
regularly to Ω as is easy to see. Just take for K a horizontal line segment and note that the rational numbers are
dense in [0, 1]. Thus by Theorem 5.5, RΩn(λ) → RΩ(λ) as n→ ∞ in L(

L∞(
R2

))
even though the measure of

Ωn \ Ω does not go to zero as n→ ∞.

n→∞−−−−→

Fig. 4 Combs converging to a square

Example 6.5 (Closing up a sector) Let Ωn be a disc with a sector of angle βn attached as shown in Figure 5. If
βn → 0 then Ωn → Ω regularly with Ω being the disc only. Hence Theorem 5.5 applies andRΩn(λ)f → RΩ(λ)f
in C

(
R

N
)

for all f ∈ L∞
(
R

N
)

and uniformly on R
N if f ∈ L∞

0

(
R

N
)
.

βn

Fig. 5 A sector closing up

Example 6.6 (Dumbbells) Suppose that Ωn is a dumbbell as shown in Figure 6. Suppose B0 and B1 are two
fixed balls and that Cn shrinks to a line. Then Ωn → Ω regularly, where Ω is the union of the two balls. Again
Theorem 5.5 applies.

B0 B1

Cn

Fig. 6 A dumbbell

Instead of looking at a fixed ball B1 we now shift B1 to infinity in the direction of Cn. At the same time we
shrink Cn to a line. Then Ωn → Ω regularly, where Ω is just the ball B0. Hence the assertions of Theorem 5.5
hold.
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7 Application: Spectral theory

Let Ω ⊂ RN be an open regular set. We define the Dirichlet Laplacian ∆Ω on L∞(Ω) by

D(∆Ω) =
{
u|Ω : u ∈ BC0(Ω), ∃f ∈ BC0(Ω) such that ∆u = f in D(Ω)′

}
,

∆Ωu = f.

Then by Theorem 2.5, (0,∞) ⊂ �(∆Ω) and

(λ− ∆Ω)−1 = RΩ(λ)|L∞(Ω).

For λ ∈ �(∆Ω) we set for f ∈ L∞(
RN

)
(
RΩ(λ)

)
f(x) :=

{(
(λ− ∆Ω)−1f |Ω

)
(x), x ∈ Ω,

0, x ∈ Ωc.

Then RΩ(λ) ∈ L(
L∞(

RN
))

and RΩ(λ)L∞(
RN

) ⊂ BC0(Ω). It is clear that

RΩ : �(∆Ω) → L(
L∞(Ω)

)
is a pseudo resolvent which is maximal in the sense of [2, Definition 3.1.] (see [2, Proposition 3.5]).

Remark 7.1 Alternatively, we may define the multi-valued operator AΩ on L∞(
RN

)
by D(AΩ) = D(∆Ω),

AΩu =
{
f ∈ L∞(

RN
)
: ∆u = f in D(Ω)′

}
. Then �(∆Ω) = �(AΩ) and RΩ(λ) = (λ − AΩ)−1 for all

λ ∈ �(AΩ).
It follows from [4] that �(∆Ω,2) = �(∆Ω). Next we establish compactness of the resolvent.

Theorem 7.2 Assume that Ω has finite measure. Then RΩ(λ) is compact for all λ ∈ �(∆Ω). Moreover,
λ �= µ ∈ �(∆Ω) if and only if (µ− λ)−1 ∈ �

(
RΩ(λ)

)
.

P r o o f. Let λ ∈ �(∆Ω) and µ > 0. Consider the Laplacian ∆2 on L2
(
RN

)
. Then (µ − ∆2)−kL2

(
RN

)
=

H2k
(
RN

) ⊂ L∞(
RN

)
if k > N/2. Since 0 ≤ RΩ(µ) ≤ (µ− ∆2)−1, it follows that ‖RΩ(µ)kf‖∞ ≤ c ‖f‖L2(

f ∈ L2(Ω)
)

for some c ≥ 0. Thus RΩ(µ)k extends to a compact operator on L2(Ω). Since L∞(Ω) ↪→ L2(Ω),
it follows that RΩ(µ)k is compact. Observe that

µRΩ(µ)RΩ(λ0) =
µ

µ− λ0

(
RΩ(λ0) −RΩ(µ)

)
converges to RΩ(λ0) in L(

L∞(
RN

))
as µ → ∞. By induction we deduce that

(
µRΩ(µ)

)k
RΩ(λ0) → RΩ(λ0)

as µ→ ∞. ThusRΩ(λ0) is compact. The last assertion follows from [18, Appendix A] by settingE = L∞(
RN

)
and F = L∞(Ω) with the natural restriction and extension.

Let Ωn,Ω be open sets all contained in a large ball such that Ωn → Ω regularly. Then by Theorem 5.5 we
know that

RΩn(λ) → RΩ(λ) in L(
L∞(

R
N

))
as n −→ ∞ for all λ ≥ 0. (7.1)

For the remainder of this section we assume that (7.1) holds. The following is then a consequence of Theo-
rem 7.2 and [29, IV §3.5].

Theorem 7.3 Assume hat (7.1) holds for some λ > 0 and let µ ∈ �(∆Ω). Then there exists n0 ∈ N such that
µ ∈ �(∆Ωn) for all n ≥ n0 and

lim
n→∞RΩn(µ) = RΩ(µ) in L(

L∞(
R

N
))
.

If λ ∈ σ(∆Ω) then λ is an isolated eigenvalue of finite algebraic multiplicity.
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Let U ⊂ C be an open neighbourhood of λ not containing any other eigenvalue of ∆Ω and let m be the
algebraic multiplicity of λ. Then there exists n0 ∈ N such that, counting multiplicity, ∆Ωn has precisely m
eigenvalues in U for all n ≥ n0.

Denote these eigenvalues by λnk (k = 1, . . . ,m, n ≥ n0). Moreover denote by Pn the spectral projection of
∆Ωn corresponding to λn1, . . . , λnm, and by P the spectral projection of ∆Ω corresponding to λ. Then

lim
n→∞λnk = λ for all k = 1, . . . ,m

and

lim
n→∞Pn = P in L(

L∞(
R

N
))
.

8 Application: Nonlinear problems

We now look at nonlinear elliptic problems of the form

−∆u = f(u) in Ω,
u = 0 on ∂Ω

(8.1)

and determine how solutions persist under perturbations of Ω. Throughout we assume that f ∈ C1(R) and that
Ω is a bounded open set, having possibly several components. We now want to rewrite (8.1) as a fixed point
problem. Let B ⊂ R

N be an open ball containing Ω. Then the substitution operator

F : L∞(B) −→ L∞(B), u �−→ f ◦ u
is Lipschitz continuous on every bounded set of L∞(B). Hence if u ∈ L∞(B) is a (weak) solution of (8.1) then
F (u) ∈ L∞(B) and thus RΩ(0)F (u) = u ∈ L∞(B). Hence, u is a fixed point of

GΩ := RΩ(0) ◦ F
in L∞(B). Also, by Theorem 1.3 every fixed point of GΩ is a (weak) solution of (8.1). Hence there is a one-to-
one correspondence between fixed points of GΩ and solutions of (8.1).

We now state some properties ofGΩ. Recall that a map between Banach spaces is called completely continuous
if it is continuous and maps bounded sets onto relatively compact sets. Moreover, a map is called compact if it is
continuous and its image is relatively compact (see [21, Definition 2.8.1]).

Lemma 8.1 The map GΩ : L∞(B) → L∞(B) is completely continuous.

P r o o f. We know already that F : L∞(B) → L∞(B) is Lipschitz continuous on bounded sets. In particular,
if U is a bounded subset of L∞(B) then F (U) is bounded in L∞(B). Hence by Theorem 7.2 the set GΩ(U) =
RΩ(0)F (U) is relatively compact in L∞(B). As the image of RΩ(0) lies in L∞(B) the assertion of the lemma
follows.

One common technique to prove existence of solutions to (8.1) is by means of the Leray–Schauder degree
(see [21, Chapter 2.8] or [33, Chapter 4]). The Leray–Schauder degree (or simply degree) is defined for compact
perturbations of the identity. By Lemma 8.1 the map GΩ is compact when restricted to a bounded set. Hence,
if U ⊂ L∞(B) is an open bounded set such that u �= GΩ(u) for all u ∈ ∂U , then the Leray–Schauder degree,
deg(I −GΩ, U, 0) ∈ Z, is well-defined.

Now we look at a sequence of bounded open sets Ωn. As before, bounded weak solutions of

−∆u = f(u) in Ωn,

u = 0 on ∂Ωn
(8.2)

correspond to fixed points of GΩn := RΩn(0) ◦ F . The following is the main result of this section. The
basic idea of the proof goes back to [13]. The proof given here is similar to the one of [17, Theorem 7.1] (see
also [16, Theorem 6.1]). The advantage of working in L∞ is that there are no problems with growth conditions
on the nonlinearity f ∈ C1(R), so the proofs partly simplify.
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Theorem 8.2 Suppose Ωn,Ω are open sets contained in a ball B ⊂ RN such that Ωn → Ω regularly.
Moreover, let U ⊂ L∞(B) be an open bounded set such that GΩ(u) �= u for all u ∈ ∂U . Then there exists
n0 ∈ N such that GΩn(u) �= u for all u ∈ ∂U and

deg(I −GΩ, U, 0) = deg(I −GΩn , U, 0) for all n ≥ n0. (8.3)

P r o o f. We use the homotopy invariance of the degree (see [21, Section 2.8.3] or [33, Theorem 4.3.4]) to
prove (8.3). We set G := GΩ andGn := GΩn and define the homotopiesHn(t, u) := tGn(u)+ (1− t)G(u) for
t ∈ [0, 1], u ∈ L∞(B) and n ∈ N. To prove (8.3) it is sufficient to show that there exists n0 ∈ N such that

u �= Hn(t, u) (8.4)

for all n ≥ n0, t ∈ [0, T ] and u ∈ ∂U . Assume to the contrary that there exist nk → ∞, tnk
∈ [0, 1] and

unk
∈ ∂U such that unk

= Hnk
(tnk

, unk
) for all k ∈ N. As U is bounded in L∞(B) and F Lipschitz we can

assume that

tnk
−→ t0 in [0, 1],

gnk
:= F (unk

) ∗
⇀ g in L∞(B)

if we select a further subsequence. By Theorem 5.5

Gnk
(unk

) = RΩnk
(0)gnk

−→ RΩ(0)g

G(unk
) = RΩ(0)gnk

−→ RΩ(0)g

in L∞(B) as k → ∞. Hence

unk
= Hnk

(tnk
, unk

)

= tnk
Gnk

(unk
) + (1 − tnk

)G(unk
) k→∞−−−−→ t0RΩ(0)g + (1 − t0)RΩ(0)g = RΩ(0)g

in L∞(B). Setting u := RΩ(0)g we conclude that u ∈ ∂U and unk
→ u in L∞(B). Moreover, gnk

=
F (unk

) → F (u) = g by continuity of F . Hence u = G(u) for some u ∈ ∂U , contradicting our assumptions.
Thus (8.4) must be true for some n ≥ n0, completing the proof of the theorem.

Of course, we are most interested in the case deg(I − GΩ, U, 0) �= 0. Then, by the solution property of the
degree (see [33, Theorem 4.3.2]), (8.1) has a solution in U . As a corollary to Theorem 8.2 we therefore have the
following result.

Corollary 8.3 Suppose that Ωn → Ω regularly and that U ⊂ L∞(B) is open bounded and u �= GΩ(u) for
all u ∈ ∂U . If deg(I−GΩ, U, 0) �= 0, then there exists n0 ∈ N such that (8.2) has a solution in U for all n ≥ n0.

Now we consider an isolated solution u0 of (8.1) and recall the definition of its index. Denote by Bε(u0) the
open ball of radius ε > 0 and centre u0 in L∞(B). Then deg(I − GΩ, Bε(u0), 0) is defined for small enough
ε > 0. Moreover, by the excision property of the degree deg(I −GΩ, Bε(u0), 0) stays constant for small enough
ε > 0. Hence the index of u0,

i0(GΩ, u0) := lim
ε→0

deg(I −GΩ, Bε(u0), 0)

is well-defined.

Theorem 8.4 Suppose that u0 is an isolated solution of (8.1) with i0(GΩ, u0) �= 0. If Ωn → Ω regularly
then, for n large enough, there exist solutions un of (8.2) such that un → u0 in L∞(B) as n→ ∞.

P r o o f. By assumption there exists ε0 > 0 such that

i0(GΩ, u0) = deg(I −GΩ, Bε(u0), 0) �= 0 for all ε ∈ (0, ε0).

Hence by Corollary 8.3 problem (8.2) has a solution in Bε(u0) for all ε ∈ (0, ε0) if only n large enough.
Suppose now that there exists no sequence of solutions as claimed in the theorem. Then there exist ε ∈ (0, ε0)
and a subsequence nk → ∞ such that (8.2) (for n = nk) has no solution in Bε(u0) for all k ∈ N. However, this
contradicts what we have just proved.
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Without additional assumptions it is possible that there are several different sequences of solutions of (8.2)
converging to u0. However, if u0 is non-degenerate, that is, the linearized problem

− ∆w = f ′(u0)w in Ω,
w = 0 on ∂Ω

(8.5)

has only the trivial solution, then un is unique for large n ∈ N.

Theorem 8.5 Suppose that f ∈ C2(R), that u0 is a non-degenerate solution of (8.1) and that Ωn → Ω
regularly. Then there exists ε > 0 such that (8.2) has a unique solution in Bε(u0) for all n large enough.
Moreover these solutions are non-degenerate.

P r o o f. As f ∈ C2(R) it follows that the substitution operator induced by f ′ is also locally Lipschitz on
L∞(B) and F is continuously differentiable. Hence also GΩ is continuously differentiable. That the solution
is non-degenerate means that I − DGΩ(u0) is invertible with bounded inverse. By [33, Theorem 5.2.3 and
Theorem 4.3.14] i0(GΩ, u0) = ±1, so by Theorem 8.4 there exists a sequence of solutions un of (8.2) with
un → u as n → ∞. We now show uniqueness. Suppose to the contrary that there exist solutions un and vn of
(8.2) converging to u0 and un �= vn for all n ∈ N large enough. As f ′ ∈ C1(R) we get

f(un) − f(vn) =
∫ 1

0

f ′(τun + (1 − τ)vn

)
dτ(un − vn)

and since un and vn converge to u0 in L∞(B)

an :=
∫ 1

0

f ′(τun + (1 − τ)vn

)
dτ −→ f ′(u0) in L∞(B) as n −→ ∞.

Passing to a subsequence we can assume that

wn :=
un − vn

‖un − vn‖∞
∗
⇀ w in L∞(B).

As un, vn solve (8.2) we conclude from the above that

wn =
GΩn(un) −GΩn(vn)

‖un − vn‖∞ = RΩn(0)(anwn).

Since an → f ′(u0) uniformly and wn
∗
⇀ w in L∞(B) we have that anwn

∗
⇀ f ′(u0)w in L∞(B). Hence by

Theorem 5.5

wn = RΩn(0)(anwn) n→∞−−−−→ RΩ(0)(f ′(u0)w)

Therefore, wn → w in L∞(B), ‖w‖∞ = 1 and w = RΩ(0)(f ′(u0)w), showing that (8.5) has a nontrivial
solution. However, by assumption no such nontrivial solution exists, proving uniqueness of (un). It remains to
show that un is non-degenerate for large n ∈ N. If we suppose not, then there exists a subsequence (unk

) and
wnk

∈ L∞(B) such that ‖wnk
‖∞ = 1 such that wnk

= RΩnk
(0)(f ′(unk

)wnk
) for all k ∈ N. By possibly

passing to another subsequence we may assume that wnk

∗
⇀ w in L∞. As un → u0 in L∞(B) we have

f ′(un) → f ′(u0) in L∞(B) and thus f ′(unk
)wnk

∗
⇀ f ′(u0)w in L∞(B). Hence by Theorem 5.5

wnk
= RΩnk

(0)(f ′(unk
)wnk

) k→∞−−−−→ RΩ(0)(f ′(u0)w).

Thus wnk
→ w in C0(Ω), ‖w‖∞ = 1 and w satisfies (8.5), showing that (8.5) has a nontrivial solution. As this

is a contradiction, un must be non-degenerate for all n large enough.

To illustrate the use of the above results we finally give an example to the Gelfand equation from combustion
theory (see [23, §15]), similar to those in [13]. The idea in [13] was to show that simple equations can have many
solutions depending on the geometry (and not the topology) of the domain.
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Example 8.6 Consider the Gelfand equation

−∆u = µeu in Ω,
u = 0 on ∂Ω,

(8.6)

on a bounded domain of class C2. If µ > 0, then µeu > 0 for all u and thus by the maximum principle every
solution of (8.6) is positive. By [24, Theorem 1] positivity implies that all solutions are radially symmetric if Ω
is a ball.

It is well-known that there exists µ0 > 0 such that (8.6) has a minimal positive solution for µ ∈ [0, µ0]
and no solution for µ > µ0 (see [1, 11]). Moreover, for µ ∈ (0, µ0) this minimal solution is non-degenerate
(see [11, Lemma 3]). Let now Ω = B0 ∪B1 be the union of two balls B0 and B1 of the same radius and Ωn the
dumbbell-like domains as shown in Figure 6. If µ ∈ (0, µ0) and N = 2 there exists a second, solution for the
problems on B0 and B1. By [28, p. 242] or [23, §15, p. 359] the equation has in fact precisely two solutions on
the ball if N = 2 and µ ∈ (0, µ0). (This is not true for N ≥ 3, see [28].) Equation (8) on page 415 together with
the results in [12, Section 2] imply that there is bifurcation from every degenerate solution. Since we know that
there is no bifurcation in the interval (0, µ0), it follows that the second solution is also non-degenerate.

We now show that there are possibly more than two solutions on (simply connected) domains other than balls.
Looking at Ω = B0 ∪B1 we have four nontrivial non-degenerate solutions of (8.6). Hence by Theorem 8.5 there
exist at least four non-degenerate solutions of (8.6) on Ωn for n large. These solutions are close to the original
four solutions in the L∞-norm. The equation possibly has more than four solutions on Ωn. These additional
solutions, if they exist, essentially live on the handle connecting the balls, and their L∞-norm goes to infinity as
the handle of the dumbbell shrinks. These solutions are often called “large solutions.” More on the existence and
non-existence of such large solutions can be found for instance in [14]. Connecting n balls with strips we can get
domains where (8.6) has at least 2n different solutions.

9 Application: Parabolic equations

Let Ω ⊂ RN be open and regular.

Theorem 9.1 There exists a unique bounded continuous function

TΩ : (0,∞) → L(
L∞(

R
N

))
such that

RΩ(λ) =
∫ ∞

0

e−λtTΩ(t) dt (λ > 0). (9.1)

Moreover, TΩ has the following properties.
(a) There exists an angle 0 < θ < π

2 such that TΩ has a unique holomorphic extension to

Σθ := {reiα : r > 0, |α| < θ}
with values in L(

L∞(
RN

))
;

(b) TΩ(z1 + z2) = TΩ(z1)TΩ(z2) for all z1, z2 ∈ Σθ,
(c) TΩ(z)L∞(

RN
) ⊂ BC0(Ω) for all z ∈ Σθ.

P r o o f. Because of (1.2) there exists the generator ∆Ω,1 of a positive, contractiveC0-semigroup T on L1(Ω)
such that R(λ,∆Ω,1)f = RΩ(λ)f for all f ∈ L1(Ω) ∩ L∞(Ω) and λ > 0. This semigroup is bounded and
holomorphic by [6] or [3] (see also [36]). Define TΩ(z) = T (z)′. Then TΩ restricted to L∞(Ω) is a bounded
holomorphic semigroup on L∞(Ω) (in the sense of [7, Definition 3.7.1]). Since R(λ,∆Ω,1)′ = RΩ(λ)′L∞(Ω) its
generator is ∆Ω. Since RΩ(λ)L∞(Ω) ⊂ BC0(Ω) by Proposition 2.4, it follows from [7, Theorem 3.7.19] that
TΩ(t)L∞(

RN
) ⊂ BC0(Ω). Hence (c) follows from the uniqueness of holomorphic extensions.

We call TΩ the semigroup on L∞(Ω) generated by ∆Ω. The following theorem is a simple consequence
of [5, Theorem 5.2].
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Theorem 9.2 Let Ωn,Ω be regular open sets and assume that

lim
n→∞RΩn(λ) = RΩ(λ)

in L(
L∞(

RN
))

for some λ > 0. Then

lim
n→∞TΩn(t) = TΩ(t) in L(

L∞(
R

N
))

uniformly on [ε, ε−1] for all 0 < ε < 1.

In Section 6 diverse situations implying the assumptions of the above theorem are discussed.
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[8] W. Arendt and P. Bénilan, Wiener regularity and heat semigroups on spaces of continuous functions, in: Topics in Non-

linear Analysis, edited by J. Escher and G. Simonett, Progress in Nonlinear Differential Equations and their Applications
Vol. 35 (Birkhäuser, Basel, 1999), pp. 29–49.

[9] J. M. Arrieta, Elliptic equations, principal eigenvalue and dependence on the domain, Comm. Partial Differential Equa-
tions 21, 971–991 (1996).

[10] D. Bucur and J.-P. Zolésio, Spectrum stability of an elliptic operator to domain perturbations, J. Convex Anal. 5, 19–30
(1998).

[11] M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear
elliptic eigenvalue problems, Arch. Rational Mech. Anal. 58, 207–218 (1975).

[12] E. N. Dancer, On the structure of solutions of an equation in catalysis theory when a parameter is large, J. Differential
Equations 37, 404–437 (1980).

[13] E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differ-
ential Equations 74, 120–156 (1988).

[14] E. N. Dancer, On the influence of domain shape on the existence of large solutions of some superlinear problems, Math.
Ann. 285, 647–669 (1989).

[15] E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations. II, J. Dif-
ferential Equations 87, 316–339 (1990).

[16] E. N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions, J. Differ-
ential Equations 138, 86–132 (1997).

[17] D. Daners, Domain perturbation for linear and nonlinear parabolic equations, J. Differential Equations 129, 358–402
(1996).

[18] D. Daners, Dirichlet problems on varying domains, J. Differential Equations 188, 591–624 (2003).
[19] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 1

(Springer-Verlag, Berlin, 1990).

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com



Math. Nachr. 280, No. 1–2 (2007) 49

[20] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics Vol. 92 (Cambridge University Press,
Cambridge, 1989).

[21] K. Deimling, Nonlinear Functional Analysis (Springer-Verlag, Berlin, 1985).
[22] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators (Clarendon Press, Oxford, 1987).
[23] I. M. Gel’fand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl. Ser. 2 29, 295–381

(1963).
[24] B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys.

68, 209–243 (1979).
[25] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Grundlehren der

Mathematischen Wissenschaften Bd. 224 (Springer-Verlag, Berlin, 1983).
[26] L. I. Hedberg, Approximation by harmonic functions, and stability of the Dirichlet problem, Exposition. Math. 11,

193–259 (1993).
[27] A. Henrot, Continuity with respect to the domain for the Laplacian: a survey, Control Cybernet. 23, 427–443 (1994).
[28] D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal.

49, 241–269 (1972/73).
[29] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften Bd. 132

(Springer-Verlag, Berlin, 1976).
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