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Abstract. The Dirichlet-to-Neumann operator Dλ is defined on L2(Γ) where Γ is the boundary
of a Lipschitz domain Ω and λ a real number which is not an eigenvalue of the Dirichlet Laplacian
on L2(Ω). We show that Dλ is a selfadjoint lower bounded operator with compact resolvent.
There is a close connection between its eigenvalues and those of the Laplacian ∆µ on L2(Ω) with

Robin boundary conditions ∂u
∂ν

= µu|Γ where µ ∈ R. This connection is used to generalize L.

Friedlander’s result λN
k+1 ≤ λD

k to Lipschitz domains (where λD
k is the k− th Dirichlet and λN

k the

k − th Neumann eigenvalue). We show that this Euclidean result is false, though, if an arbitrary
compact Riemannian manifold M is considered instead of Rd and Ω is suitable domain in M .

0. Introduction

Let Ω ⊂ Rd be a bounded domain. There is a wealth of interesting results comparing the eigen-
values λD

1 < λD
2 ≤ λD

3 ≤ · · · of the Dirichlet Laplacian and those of the Neumann Laplacian denoted
by λN

1 < λN
2 ≤ λN

3 ≤ · · · , each time repeated according to multiplicity. A first result of this type is
due to Polya [Pol52] who showed that

λN
2 < λD

1 .

Shortly after, in 1955, Payne [Pay55] showed that

(0.1) λN
k+d ≤ λD

k (k = 1, 2, · · · )
whenever Ω is a convex, planar domain with C2-boundary. Levine and Weinberger [LW86] proved
inequality (0.1) for arbitrary bounded convex domains in Rd without any regularity assumption.
They also showed that (0.1) remains true if convexity is replaced by more general conditions on the
mean curvature of the boundary (which is assumed to be C2+α). However, without any geometric
condition, in dimension 2, it may happen that λN

3 > λD
1 for Ω ⊂ R2, (see [Avi86]). It was only in

1991 that L. Friedlander [Fri91] proved the inequality

(0.2) λN
k+1 ≤ λD

k (k = 1, 2, · · ·
for arbitray domains in Rd of class C1 without any restriction on the geometry. However, his as-
sumption on the C1-regularity of the boundary is crucial for his arguments (which are actually given
for C∞-domains, referring to a general approximation result of C1-domains by C∞-domains with
convergence of the corresponding eigenvalues in [CH89]). In view of the preceding diverse results in-
volving geometric and regularity assumptions one may wonder whether the C1-assumption is optimal
in Friedlander’s result, even though some hypothesis on Ω is needed to garantee that the Neumann
Laplacian has compact resolvent.

In the present paper we show that (0.2) does hold for Lipschitz domains by very elementary
arguments. As Friedlander we use the Dirichlet-to-Neumann operator D1 on L2(Γ) where Γ is the
boundry of Ω and λ 6∈ {λD

k : k ∈ N} a real parameter. A major point is to define the operator Dλ on
Lipschitz domains using merely the trace operator Tr : H1(Ω) → L2(Γ) and a weak definition of the
normal derivative. Instead of investigating the spectrum of Dλ directly we consider the Laplacian
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∆µ on L2(Ω) with Robin boundary conditions ∂u
∂ν = µu|Γ . The crucial relation between the spectra

of these operators is

(0.3) λ ∈ σ(∆µ) ⇔ µ ∈ σ(Dλ) .

We show that (0.2) is equivalent to the first eigenvalue of Dλ being non-positive, which is always
true for Lipschitz domains in Rd. However, (0.2) fails, in general, if Ω is a Lipschitz domain in a
compact manifold M . This had been already proved in [Maz91] if M is the sphere. Here we show
that in any compact manifold M there are domains for which (0.2) fails. It suffices to consider as
Ω the manifold with a small hole. In the paper we also show that the semigroup generated by −Dλ

is positive whenever λ < λD
1 . This allows us to prove some assertions of Krein-Rutman type on the

principal eigenvalue.

An extended version of the present article will be published elsewhere.

1. Preliminaries on forms

Let H be a Hilbert space and V a Hilbert space which is densely and continuously embedded in
H. Let a : V × V → R be symmetric, continuous and elliptic, i.e.

a(u) + ω‖u‖2H ≥ α‖u‖2V (u ∈ V )

for some ω ∈ R, α > 0 where a(u) = a(u, u). This is equivalent to saying that the form a with domain
V is lower bounded and closed in H. Denote by A the operator on H associated with a. That is, for
x, y ∈ H one has x ∈ D(A), Ax = y if and only if x ∈ V and a(x, v) = (y|v)H for all v ∈ V . Then A
is selfadjoint. The form a is accretive (i.e. a(u) ≥ 0 for all u ∈ V ) if and only if (Au | u) ≥ 0 for all
u ∈ D(A), i.e. if and only if A is monotone. A has compact resolvent if and only if the injection
V ↪→ H is compact. We assume throughout that H is separable and infinite dimensional. If A has
compact resolvent, then H has an orthogonal basis {en : n ∈ N} such that

Aen = λnen (n ∈ N)

where λ1 ≤ λ2 ≤ · · · and lim
n→∞

λn = ∞. We call this the sequence of eigenvalues of A counting
multiplicity. One has

(1.1) λn = sup{min
u∈W1

a(u) : W ⊂ V, dimV/W = n− 1} .

Here W ⊂ V is a subspace and W1 := {u ∈W : ‖u‖H = 1}.

2. The Laplacian on open sets

In this section we consider the Laplacian on L2(Ω) with Robin boundary conditions, where Ω is an
open bounded set in Rd with Lipschitz boundary (in §6 we will consider more generally a relatively
compact, open subset of a Riemannian manifold). We define the Robin Laplacians as selfadjoint
operators depending on a parameter. They all have compact resolvent and we study continuity prop-
erties of the k−th eigenvalue.

Let Ω be a bounded open subset of Rd which is connected and has Lipschitz boundary Γ := ∂Ω.
Such a subset will be called a Lipschitz domain in the sequel. We consider L2(Ω) with respect
to the Lebesgue measure. Denote by H1(Ω) the first Sobolev space which is a Hilbert space for the
norm

‖u‖2H1 =
∫

Ω

|u|2 +
∫

Ω

|∇u|2 dx .

We denote by H1
0 (Ω) the closure of D(Ω) in H1(Ω), where D(Ω) is the space of all test functions.

There is a unique bounded operator

Tr : H1(Ω) → L2(Γ)
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such that Tr(u) = u|Γ whenever u ∈ H1(Ω)∩C(Ω̄). This operator is called the trace operator. We
keep the symbol u|Γ := Tr(u) for u ∈ H1(Ω) even if u 6∈ C(Ω̄). Here L2(Γ) is defined with respect to
the surface measure on Γ. For µ ∈ R we want to consider Robin boundary conditions ∂u

∂ν = µu|Γ .
In order to do so, we define the weak normal derivative in the following way.

Definition 2.1. a) Let u ∈ H1(Ω). We say that ∆u ∈ L2(Ω) if there exists f ∈ L2(Ω) such that

(2.1)
∫

Ω

∇u∇v =
∫

Ω

fv

for all v ∈ D(Ω) (equivalently for all v ∈ H1
0 (Ω)). In that case we let ∆u := f . b) Let u ∈ H1(Ω)

such that ∆u ∈ L2(Ω). We say that ∂u
∂ν ∈ L2(Γ) if there exists b ∈ L2(Γ) such that

(2.2)
∫

Ω

∇u∇v −
∫

Ω

∆uv =
∫

Γ

bv

for all v ∈ H1(Ω). In that case we let ∂u
∂ν := b.

Here and later on we let
∫
Γ

bv =
∫
Γ

bu|Γ , i.e. we omit the trace signs under the integral over Γ.

Since by the Stone-Weierstraß Theorem the space {v|Γ : v ∈ C∞(Rd)} is dense in L2(Γ), the function
b ∈ L2(Γ) is unique. The definition is such that Green’s formula

(2.3)
∫

Ω

∇u∇v −
∫

Ω

∆uv =
∫

Γ

∂u

∂ν
v

holds for all v ∈ H1(Ω) whenever u ∈ H1(Ω),∆u ∈ L2(Ω) and ∂u
∂ν ∈ L2(Γ). In the case of smooth

domain and smooth functions ∂u
∂ν is the outer normal derivative where ν denotes the outer normal.

If u ∈ C2(Ω̄), then ∆u ∈ L2(Ω) and

∆u = −
d∑

j=1

D2
ju .

We use the sign of the Laplacian which makes it a form-positive operator.

For µ ∈ R we define the Robin Laplacian ∆µ on L2(Ω) by

D(∆µ) := {u ∈ H1(Ω) : ∆u ∈ L2(Ω),
∂u

∂ν
= µu|Γ}

∆µu := ∆u .

Proposition 2.2. The operator ∆µ is associated with the symmetric, continuous and elliptic form

bµ(u, v) =
∫

Ω

∇u∇v − µ

∫

Γ

uv

bµ : H1(Ω)×H1(Ω) → R .

Consequently, ∆µ is selfadjoint, bounded below and has compact resolvent.

In order to prove ellipticity, recall that the injection H1(Ω) ↪→ L2(Ω) as well as the trace operator
H1(Ω) → L2(Γ) are compact (cf. [Nec67, Chap. 2 § 6, Theorem 6.2]). Thus if un ⇀ u in H1(Ω)
(weak convergence) then un → u in L2(Ω) and un|Γ

→ u|Γ in L2(Γ).
We need the following standard estimate which will also be useful later.

Lemma 2.3. Let X1, X2, X3 be Banach spaces, X1 reflexive. Let T ∈ L(X1, X3) be compact and
S ∈ L(X1, X2) injective. Let ε > 0. Then there exists c > 0 such that for all x ∈ X1,

‖Tx‖2X3
≤ ε‖x‖2X1

+ c‖Sx‖2X2
.
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Proof. If not, there exist xn ∈ X1 such that ‖xn‖X1 = 1, ‖Txn‖2X3
≥ ε + n‖Sxn‖2X2

. Since X1 is
reflexive, we may assume that xn ⇀ x in X1. Since T is compact, it follows that Txn → Tx in X3.
Hence ‖Tx‖2X3

≥ ε. On the other hand ‖Sxn‖2X2
≤ 1

n‖Txn‖2X3
→ 0 as n→∞. Since Sxn ⇀ Sx, it

follows that Sx = 0. Since S is injective, it follows that x = 0. Hence Tx = 0, a contraction. ¤
Proof of Proposition 2.2. The form bµ is clearly continuous. In order to prove ellipticity, let X1 =
H1(Ω), X3 = L2(Γ), T ∈ L(X1, X3) the trace operator, X2 = L2(Ω) and S ∈ L(H1(Ω), L2(Ω)) the
injection. By Lemma 2.3 there exists c > 0 such that for all u ∈ H1(Ω),

µ
∫
Γ

u2 ≤ 1
2‖u‖2H1 + c

∫
Ω

u2

= 1
2

∫
Ω

|∇u|2 + (c+ 1/2)
∫
Ω

u2 .

Let ω = c+ 1. Then

bµ(u) + ω

∫

Ω

u2 =
∫

Ω

|∇u|2 − µ

∫

Γ

u2 + ω

∫

Ω

u2

≥ 1
2

(∫

Ω

|∇u|2 +
∫

Ω

u2

)
.

Thus bµ is elliptic. Let B be the operator associated with bµ. Let u ∈ H1(Ω), f ∈ L2(Ω). Then
u ∈ D(B) and Bu = f if and only if

(2.4)
∫

Ω

∇u∇v − µ

∫

Γ

uv =
∫

Ω

fv

for all v ∈ H1(Ω). Taking v ∈ H1
0 (Ω) we see that (2.4) implies that ∆u = f . Hence inserting f = ∆u

into (2.4) we deduce that ∂u
∂ν = µu. Thus u ∈ D(∆µ) and ∆µu = Bu for all u ∈ D(B). Conversely,

if u ∈ D(∆µ), then

(2.5)
∫

Ω

∇u∇v −
∫

Ω

∆uv =
∫

Γ

µuv

for all v ∈ H1(Ω) by the definition of ∂u
∂ν = µu. Thus (2.4) holds for f = ∆u. Hence u ∈ D(B) and

Bu = ∆u. We have shown that B = ∆µ. Since the injection H1(Ω) ↪→ L2(Ω) is compact, it follows
that ∆µ has compact resolvent. ¤

If µ = 0, then we find the Neumann boundary condition ∂u
∂ν = 0. We also use the symbol ∆N = ∆0

in this case and call ∆N the Neumann Laplacian. The Dirichlet Laplacian ∆D on L2(Ω) is
definied by

D(∆D) = {u ∈ H1
0 (Ω) : ∆u ∈ L2(Ω)}

∆Du = ∆u .

The operator ∆D is associated with the form

b−∞ : H1
0 (Ω)×H1

0 (Ω) → R

b−∞(u, v) =
∫

Ω

∇u∇v .

Thus ∆D is selfadjoint and has compact resolvent. For µ ∈ R we denote the k− th eigenvalue of ∆µ

by λk(µ). We let
λN

k = λk(0) ,
which is the k−th eigenvalue of ∆N . By λD

k = λk(−∞) we denote the k−th eigenvalue of ∆D = ∆−∞.

Theorem 2.4. The functions λk : [−∞,∞) → R are continuous and nonincreasing. In particular,
lim

k→−∞
λk(µ) = λD

k .
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Note also that by definition

λk(µ) ≤ λk+1(µ) for all −∞ ≤ µ <∞ .

Since λ1(0) = λN
1 = 0, it follows that λk(µ) ≥ 0 if −∞ ≥ µ ≥ 0 for all k ∈ N. We will obtain further

information on these functions in Section 4.
For the proof of Theorem 2.3 we need the continuity of the resolvents. This can be proved with

the help of the following lemma (see [Dan03, Appendix B]).

Lemma 2.5. Let Tn, T ∈ L(X,Y ), where X,Y are Banach spaces and X is reflexive. The following
assertions are equivalent:

(i) lim
n→∞

‖Tn − T‖ = 0 and T is compact;

(ii) xn ⇀ x in X implies Tnxn → Tx in Y .

Proposition 2.6. Let −∞ ≤ µ0 <∞. Then for λ ∈ R large enough

lim
µ→µ0

(λ+ ∆µ)−1 = (λ+ ∆µ0)
−1

in L(L2(Ω)).

Proof. Let fn ⇀ f in L2(Ω), un = (λ+∆µn
)−1fn where µn → µ0 ∈ [−∞,∞). We have to show that

unk
→ u := (λ+ ∆µ0)

−1f in L2(Ω) for some subsequence. By definition we have

(2.6) λ

∫

Ω

unv +
∫

Ω

∇un∇v − µn

∫

Γ

unv =
∫

Ω

fnv (v ∈ H1(Ω)) .

In particular,

(2.7) λ

∫

Ω

u2
n +

∫

Ω

|∇un|2 − µn

∫

Γ

u2
n =

∫

Ω

fnun .

Taking λ > 0, sufficiently large, by ellipticity in Proposition 2.3, the left hand side is larger or equal
than α‖un‖2H1 for all n and some α > 0. Since

∫
Ω

fnun ≤ ‖fn‖L2‖un‖L2 , it follows (un)n∈N is bounded

in H1(Ω). Taking a subsequence if necessary, we may assume that un ⇀ u in H1(Ω). Consequently,
un → u in L2(Ω) and un|Γ

→ u|Γ in L2(Γ). Now we consider the two cases µ0 6= −∞ and µ0 = ∞
separately.
a) Let µ0 6= −∞. Then it follows from (2.6), letting n→∞, that

λ

∫

Ω

uv +
∫

Ω

∇u∇v − µ0

∫

Γ

uv =
∫

Ω

fv

for all v ∈ H1(Ω). Thus u = (λ+ ∆µ0)
−1f . Now (2.7) implies that

lim
n→∞

∫

Ω

|∇un|2 =
∫

Ω

fu− λ

∫

Ω

u2 + µ0

∫

Γ

u2

=
∫

Ω

|∇u|2 .

We have shown that un ⇀ u in H1(Ω) and ‖un‖H1 → ‖u‖H1 . This implies that un → u in H1(Ω).

b) Let µ0 = −∞. Thus lim
n→∞

(−µn) = ∞. Then (2.7) implies that lim
n→∞

∫
Γ

u2
n = 0. Hence u|Γ = 0, i.e.

u ∈ H1
0 (Ω). Letting v ∈ H1

0 (Ω) in (2.6) and n→∞ shows that

λ

∫

Ω

uv +
∫

Ω

∇u∇v =
∫

Ω

fv

for all v ∈ H1
0 (Ω). Hence u = (λ+ ∆D)−1f . Since un → u in L2(Ω) it follows from Lemma 2.6 that

(λ+ ∆µn)−1 → (λ+ ∆D)−1 in L(L2(Ω)). ¤
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Remark 2.7. If µ0 6= −∞ we have shown that (λ+ ∆µn)−1 → (λ+ ∆µ)−1 even in L(L2(Ω),H1(Ω))
as n→∞.

Now Theorem 2.5 follows from the following result, cf. [Kat66, IV § 3.5].

Proposition 2.8. Let Bn, B selfadjoint operators with compact resolvent on a separable Hilbert space
H such that

(Bnx | x) ≥ ω(x | x)
for all x ∈ D(Bn) and all n ∈ N where ω ∈ R. Assume that (λ + Bn)−1 → (λ + B)−1 in L(H) as
n→∞ for some λ > ω. Denote by λn

k the k − th eigenvalue of Bn and by λk the k − th eigenvalue
of B repeating eigenvalues according to their multiplicity. Then lim

n→∞
λn

k = λk.

3. The Dirichlet-to-Neumann Operator

In this section we define the Dirichlet-to-Neumann operator on a Lipschitz domain Ω. Let λ ∈
R \σ(∆D). Denote the boundary of Ω by Γ. The Dirichlet-to-Neumann Operator Dλ is defined
on L2(Γ) by

D(Dλ) := {ϕ ∈ L2(Γ) : ∃u ∈ H1(Ω) such that
u|Γ = ϕ,∆u = λu and ∂u

∂ν exists in L2(Γ)} ,
Dλϕ = ∂u

∂ν .

Here we use the definition of ∂u
∂ν given in the preceding section.

Theorem 3.1. The operator Dλ is selfadjoint, bounded below and has compact resolvent.

The theorem will be proved by showing that Dλ is associated with a symmetric form on L2(Γ).
We need the following lemma.

Lemma 3.2. For λ ∈ R \ σ(∆D) one has

H1(Ω) = H1
0 (Ω)⊕H1(λ)

where H1(λ) = {u ∈ H1(Ω) : ∆u = λu}.
Proof. a) Consider the operator A : H1

0 (Ω) → H1
0 (Ω)′ given by 〈Au, v〉 =

∫
Ω

∇u∇v. Thus ∆D

is the part of A in L2(Ω) where we consider L2(Ω) ↪→ H1
0 (Ω)′ by letting 〈f, v〉 :=

∫
Ω

fv dx for

f ∈ L2(Ω), v ∈ H1
0 (Ω). It follows from [ABHN01, Proposition 3.10.3] that σ(A) = σ(∆D). Thus

λ−A is invertible.
b) Let u ∈ H1(Ω). Consider F ∈ H1

0 (Ω)′ given by F (v) =
∫
Ω

∇u∇v− λ ∫
Ω

uv. Then by a) there exists

u0 ∈ H1
0 (Ω) such that A(u0) = F . Thus u1 := u−u0 ∈ H1(λ). Hence u = u0 +u1 ∈ H1

0 (Ω)+H1(λ).
We have shown that H1(Ω) = H1

0 (Ω) +H1(λ). Since λ 6∈ σ(∆D) one has H1
0 (Ω)∩H1(λ) = {0}. ¤

Let V := {u|Γ : u ∈ H1(Ω)} be the trace space which is a subspace of L2(Γ). If λ ∈ R \ σ(∆D),
then the trace operator restricted to H1(λ), i.e. the mapping u ∈ H1(λ) 7→ u|Γ ∈ V is linear and
bijective by Lemma 3.2. Defining ‖u|Γ‖V := ‖u‖H1(λ), the space V becomes a Hilbert space. It
follows from the closed graph theorem that a different choice of λ ∈ R\σ(∆D) leads to an equivalent
norm on V . Since the trace is a compact operator from H1(Ω) into L2(Γ), it follows that the em-
bedding of V into L2(Γ) is compact. The Stone-Weierstrass Theorem implies that V is dense in L2(Γ).

Let λ ∈ R \ σ(∆D). We define the bilinear mapping aλ : V × V → R by

aλ(ϕ,ψ) :=
∫

Ω

∇u∇v − λ

∫

Ω

uv

where u, v ∈ H1(λ) such that ϕ = u|γ , ψ = v|Γ . Then aλ is clearly continuous and symmetric. Now
Theorem 3.1 is a consequence of the following.
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Proposition 3.3. The form aλ is elliptic and Dλ is the operator on L2(Γ) associated with aλ.

Proof. 1. In order to show ellipticity we apply Lemma 2.3 to the compact embedding T : H1(λ) →
L2(Ω), u 7→ u, and the trace operator S : H1(λ) → L2(Γ), u 7→ u|Γ which is injective on H1(λ).
Given 1 > δ > 0 we find c > 0 such that∫

Ω

u2 ≤ δ‖u‖2H1 + c

∫

Γ

u2

for all u ∈ H1(λ). Since ‖u‖2H1 =
∫
Ω

|∇u|2 +
∫
Ω

u2, it follows that

∫

Ω

u2 ≤ δ

1− δ

∫

Ω

|∇u|2 +
c

1− δ

∫

Γ

u2 .

Thus, given ε > 0 there exists c1 ≥ 0 such that

(3.1)
∫

Ω

u2 ≤ ε

∫

Ω

|∇u|2 + c1

∫

Γ

u2

for all u ∈ H1(λ). Let ε > 0 such that ε(|λ|+ 1/2) = 1/2 and let ω = c1(|λ|+ 1/2). Then by (3.1),

aλ(u|Γ) + ω
∫
Γ

u2 =
∫
Ω

|∇u|2 − λ
∫
Ω

u2 + ω
∫
Γ

u2 ≥
∫
Ω

|∇u|2 + 1
2

∫
Ω

u2 − (|λ|+ 1/2)
∫
Ω

u2 + ω
∫
Γ

u2 ≥
∫
Ω

|∇u|2 + 1
2

∫
Ω

u2 − ε(|λ|+ 1/2)
∫
Ω

|∇u|2 − (|λ|+ 1/2)c1
∫
Γ

u2 + ω
∫
Γ

u2 =
1
2‖u‖2H1 for all u ∈ H1(λ) .

2. Let B be the operator on L2(Γ) which is associated with aλ. We want to show that B = Dλ.
Let u ∈ H1(λ), b ∈ L2(Γ). Then u|Γ ∈ D(B) and Bu|Γ = b if and only if

(3.2)
∫

Ω

∇u∇v − λ

∫

Ω

uv =
∫

Γ

bv

for all v ∈ H1(λ).
a) Assume that u|Γ ∈ D(B) and Bu|Γ = b. Notice that for u ∈ H1(λ) one has

∫

Ω

∇u∇v − λ

∫

Ω

uv = 0 =
∫

Γ

vb

for all v ∈ H1
0 (Ω). Since H1

0 (Ω)⊕H1(λ) = H1(Ω), it follows that (3.2) holds for all v ∈ H1(Ω). Now
introducing λu = ∆u into (3.2) one sees that ∂u

∂ν = b in the sense of our definition. Hence u ∈ D(Dλ)
and Dλu = Bu.
b) Conversely, let ϕ ∈ D(Dλ) and Dλϕ = b. Then there exists u ∈ H1(λ) such that u|Γ = ϕ and
∂u
∂ν = b. Hence

∫

Ω

∇u∇v − λ

∫

Ω

uv =

∫

Ω

∇u∇v −
∫

Ω

∆uv =
∫

Γ

∂u

∂v
v =

∫

Γ

bv

for all v ∈ H1(Ω). It follows that ϕ ∈ D(B) and Bϕ = b. ¤

We retain from the proof of Proposition 3.2.
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Lemma 3.4. Let u ∈ H1(Ω), b ∈ L2(Γ). Then u|Γ ∈ D(Dλ) and Dλu|Γ = b if and only if
∫

Ω

∇u∇v − λ

∫

Ω

uv =
∫

Γ

bv

for all v ∈ H1(Ω).

We conclude this section showing that the first eigenvalue α1(λ) of Dλ is ≤ 0 whenever λ ≥ 0.
This is done with the help of the same function used by Friedlander [Fri91, Lemma 1.3].

Lemma 3.5. Let 0 ≤ λ ∈ R \ σ(∆D). Then the first eigenvalue α1(λ) of Dλ is ≤ 0.

Proof. We extend aλ to a symmetric sesquilinear form from VC × VC → C, where VC = {u|Γ : u ∈
H1(λ,C)}, H1(λ,C) = {u ∈ H1(Ω,C) : ∆u = λu}. Let ω ∈ Rd such that |ω|2 = λ. Let u(x) = eixω.
Then Dju(x) = iωje

ixω,∆u(x) = λu(x). Thus u ∈ H1(λ,C). Let ϕ = u|Γ . Then

aλ(ϕ) =
∫

Ω

|∇u|2 − λ

∫

Ω

u2

= |ω|2
∫

Ω

1− λ

∫

Ω

1 = 0 .

Thus by (1.1), α1(λ) ≤ inf{aλ(ψ) : ψ ∈ VC, ‖ψ‖L2(Γ) = 1} ≤ 0. ¤
We will see in Section 6 that Lemma 3.5 is no longer valid if Ω is a Lipschitz domain in a compact

Riemannian manifold M .

4. Comparing eigenvalues

In this section we establish relations between the eigenvalue of the Robin Laplacian ∆µ and the
Dirichlet-to-Neumann operator Dλ. Let Ω ⊂ Rd be a Lipschitz domain as before.

Theorem 4.1. Let λ ∈ R \ σ(∆D). Then for µ ∈ R,
a) µ ∈ σ(Dλ) ⇔ λ ∈ σ(∆µ), and
b) dim ker(µ−Dλ) = dimker(λ−∆µ).

Proof. We show that the mapping S : u 7→ u|Γ is an isomorphism from ker(∆µ−λ) onto ker(Dλ−µ).
In fact, let u ∈ ker(∆µ − λ). Then bµ(u, v) = λ

∫
Ω

uv for all v ∈ H1(Ω), i.e.

(4.1)
∫

Ω

∇u∇v − λ

∫

Ω

uv = µ

∫

Γ

uv

for all v ∈ H1(Ω). By Lemma 3.4 this implies that
u|Γ ∈ D(Dλ) and Dλu|Γ = µu|Γ . If u|Γ = 0, then u ∈ H1

0 (Ω) ∩D(Dλ) ⊂ H1
0 (Ω) ∩H1(λ) = {0}. We

have shown that S defines a 1 − 1-mapping from ker(∆µ − λ) into ker(Dλ − µ). In order to show
surjectivity, let ϕ ∈ ker(Dλ − µ). Then by Lemma 3.4 there exists u ∈ H1(λ) such that ϕ = u|Γ and
(4.1) holds for all v ∈ H1(Ω). Thus bµ(u, v) =

∫
Ω

λuv for all v ∈ H1(Ω). It follows that u ∈ D(∆µ)

and ∆µu = λu. ¤

Next we prove Friedlander’s result [Fri91] for Lipschitz domains in Rd. Recall that λN
k is the k−th

eigenvalue of ∆N repeated according to multiplicity.

Theorem 4.2. One has λN
k+1 ≤ λD

k (k = 1, 2, 3 · · · ).
Proof. For µ ∈ R,m ∈ N denote by λm(µ) the m − th eigenvalue of ∆µ. Recall that λm(µ) is
decreasing in µ, λm(0) = λN

m, lim
µ→−∞

λm(µ) = λD
m. Now assume that there exists k ∈ N such that

λD
k < λN

k+1. Choose λD
k < λ < λN

k+1. Then λm(µ) ≤ λk(µ) ≤ λD
k whenever m ≤ k, µ ∈ R, and for

m ≥ k + 1, µ ≤ 0, λm(µ) ≥ λk+1(µ) ≥ λk+1(0) = λN
k+1. Hence λ 6= λm(µ) for all µ ≤ 0,m ∈ N, i.e.
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λ 6∈ σ(∆µ) whenever µ ≤ 0. By Theorem 4.1 this implies that σ(Dλ)∩ (−∞, 0] = ∅. This contradicts
Lemma 3.5. ¤

We continue to study the functions λk : R→ R, where λk(µ) is the k − th eigenvalue of ∆µ.

Corollary 4.3. Let k ∈ N, µ1, µ2 ∈ R such that λk(µ1) = λk(µ2). If λk(µ1) 6∈ σ(∆D), then µ1 6= µ2.

Proof. Assume that µ1 < µ2. Then λk(µ) = λ := λk(µ1) for all µ ∈ [µ1, µ2] since λk is nonincreasing.
It follows from Theorem 4.1 that [µ1, µ2] ⊂ σ(Dλ). This is impossible since the spectrum of Dλ is
discrete. ¤
Corollary 4.4. lim

µ→∞
λk(µ) = −∞ for all k ∈ N.

Proof. Let k ∈ N. Assume that there exists λ < inf
µ∈R

λk(µ). We may assume that λ < 0. Then

λ 6∈ σ(∆D). For m ≥ k, one has λ < λk(µ) ≤ λm(µ) for all µ ∈ R. It follows from Theorem 4.1
that σ(Dλ) = {µ ∈ R : ∃ m < k, λ = λm(µ)}. Corollary 4.3 implies that σ(Dλ) has at most k − 1
eigenvalues, which is impossible, since Dλ has compact resolvent and dimL2(Γ) = ∞. ¤

We let λD
0 := −∞,N0 = N ∪ {0}. For λ ∈ R \ σ(∆D) we denote by αk(λ) the k − th eigenvalue of

Dλ repeating eigenvalues according to multiplicity.

Proposition 4.5. Let n ∈ N0, λ
D
n < λ < λD

n+1. Then for each k ≥ n+1 there exists a unique µk ∈ R
such that λk(µk) = λ. Moreover, αk(λ) = µn+k.

Proof. Let k ≥ n + 1. Then lim
µ→∞

λk(µ) = λD
k > λ and lim

µ→−∞
λk(µ) = −∞. Hence there exists

µk ∈ R such that λk(µk) = λ. Uniqueness follows from Corollary 4.3. It follows from Theorem 4.1
that µk ∈ σ(Dλ).
We show that µk ≤ µk+1. In fact, assume that µk+1 < µk. Then λk+1(µk+1) = λ = λk(µk) <
λk(µk+1) ≤ λk+1(µk+1), a contradiction. If µ ∈ σ(Dλ) then by Theorem 4.1, there exists k ∈ N such
that λk(µ) = λ. Hence µ = µk. Moreover, k ≥ n+ 1 (since for k ≤ n, λk(µ) ≤ λD

n < λ for all µ ∈ R).
We have shown that

σ(Dλ) = {µk : k ≥ n+ 1} and µk ≤ µk+1 for all k ≥ n+ 1 .

It remains to show that the multiplicity is correctly expressed by the series µ1, µ2, · · · . Let k ∈ N, p ∈
N0 such that µ := µk = µk+1 = · · · = µk+p < µk+p+1 and assume that µk−1 < µk if k 6= 1. Then
λk(µ) = λ = λk+1(µk+1) = λk+1(µ) = · · · = λk+p(µ), but λk+p+1(µ) < λk+p+1(µk+p+1) = λ and, if
k > 1, λk−1(µ) > λk−1(µk−1) = λ. Thus by the definition of λk(µ),dim ker(λ+ ∆µ) = p+ 1. Hence
by Theorem 4.1, also dim(µ−∆λ) = p+ 1, i.e. the multiplicity of the eigenvalue µ = µk is p+ 1 as
it was claimed. ¤

The following beautiful identity was proved by Friedlander (for smooth domains) as a tool for his
proof of Theorem 4.2.

Corollary 4.6. For λ > 0 let ND(λ) be the number of k such that λD
k < λ and NN (λ) the number

of those k satisfying λN
k < λ. If λ 6∈ σ(∆D), then NN (λ) − ND(λ) is the number of all negative

eigenvalues of Dλ.

Proof. Let λD
n < λ < λD

n+1. Thus ND(λ) = n. Assume that λN
n+1 ≤ · · · ≤ λN

n+p < λ ≤ λN
n+p+1

so that NN (λ) = p + n and NN (λ) − ND(λ) = p. We keep the notation of Proposition 4.5. Thus
λn+`(µn+`) = λ for all ` ∈ N. Since for ` = 1, · · · , p, λn+`(0) = λN

n+` < λ and λn+` is nonincreasing, it
follows that µn+` < 0 for ` = 1, · · · , p. On the other hand µn+p+1 ≥ 0. In fact, otherwise µn+p+1 < 0
and consequently, λ = λn+p+1(µn+p+1) > λn+1+p(0) = λN

n+p+1 contradicting our assumption. Thus
there are exactly p negative eigenvalues of Dλ. ¤

Next we want to describe the spectrum of Dλ. We denote by αk(λ) the k − th eigenvalue of Dλ

repeating the eigenvalue according to its multiplicity (λ 6∈ σ(−∆D)). Let us denote by d1 < d2 <
d3 · · · the eigenvalues of −∆D not counting multiplicity and denote by mk the multiplicity of dk. We
let d0 = −∞. Then the picture is the following.
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Corollary 4.7. The function αk have the following properties.
a) Each function αk is continuous on R \ σ(∆D);
b) each αk is strictly increasing on (dn, dn+1) for each n ∈ N0;
c) lim

λ→−∞
αk(λ) = −∞;

d) lim
λ↑dn

αk(λ) = ∞ for k = 1, · · · ,mn, but

e) lim
λ↑dn

αk(λ) <∞ for k > mn;

f) lim
λ↓dn

αk(λ) > −∞ for n = 1, 2, · · · ,
g) α1(λ) > 0 if λ > 0,

α1(0) = 0,
α1(λ) < 0 if λ < 0.

Proof. If λ ∈ (λD
n , λ

D
n+1), where n ∈ N0, then αk(λ) = µn+k where µn+k ∈ R is the unique number

such that
λn+k(µn+k) = λ (k = 1, 2 · · · ) .

Thus αk is the inverse function of λn+k and the properties a) - e) follows from the preceedings
results. ¤

Friedlander [Fri91] showed some of these properties directly for the operator Dλ in the case where
Ω has C∞ boundary.

Remark 4.8. The forms aλ have all the same form domain. From Corollary 4.7b), one might conjec-
ture that

(4.2) aλ1(ϕ) ≥ aλ2(ϕ) (ϕ ∈ V )

if dn < λ1 < λ2 < dn+1, n ∈ N0.

This seems also to be used in Friedlander’s proof [Fri91, (2.5)] of Theorem 4.2 in the case of
C∞-domain. We are able to verify (4.2) only for n = 0. Our proof depends on Poincaré’s inequality

(4.3)
∫
|∇u|2 ≥ d1

∫
u2 (u ∈ H1

0 (Ω))

which comes in naturally. So let −∞ < λ1 < λ2 < d1, ϕ ∈ V, u ∈ H1(λ1), u|Γ = ϕ. Then u =
u0 + u2 ∈ H1

0 (Ω) ⊕ H1(λ2) so that aλ2(ϕ) =
∫
Ω

|∇u2|2 − λ2

∫
Ω

u2
2 and aλ1(ϕ) =

∫
Ω

|∇u|2 − λ1

∫
Ω

u2.

Inserting u = u2 + u0 and using that
∫
Ω

∇u2∇u0 = λ2

∫
Ω

u2u0 (since u2 ∈ H1(λ2)) we obtain

aλ1(ϕ) =
∫

Ω

|∇u2|2 + 2
∫

Ω

∇u2∇u0 +
∫

Ω

|∇u0|2

− λ1

∫

Ω

u2
2 − 2λ1

∫

Ω

u2u0 − λ1

∫

Ω

u2
0

= aλ2(ϕ) + (λ2 − λ1)
∫

Ω

u2
2 + (λ2 − λ1)

∫

Ω

2u2u0

+
∫

Ω

|∇u0|2 − λ1

∫

Ω

u2
0

≥ aλ2(ϕ) + (λ2 − λ1)
∫

Ω

(u2
2 + 2u2u0)(d1 − λ1)

∫

Ω

u2
0

≥ aλ2(ϕ) + (λ2 − λ1)
∫

Ω

(u2 + u0)2 ≥ aλ2(ϕ) .
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5. Positivity

Here we study the semigroup generated by−Aλ on L2(Γ) for positivity properties. A C0-semigroup
T = (T (t))t≥0 on a space Lp is called positive if 0 ≤ f ∈ Lp implies that T (t)f ≥ 0 for all t ≥ 0.

Theorem 5.1. If λ < λD
1 , then the semigroup generated by −Dλ on L2(Γ) is positive.

Proof. Let ϕ ∈ V . Then ϕ+, ϕ− ∈ V . In fact, let u ∈ H1(Ω) such that u|Γ = ϕ. Then u+, u− ∈
H1(Ω) and u+

|Γ = ϕ+, u−|Γ = ϕ−. By the Beurling-Deny criterion (see [Dav90] or [Ouh05, Theorem
2.6]) the semigroup is positive if and only if aλ(ϕ+, ϕ−) ≤ 0 for all ϕ ∈ V . Let ϕ ∈ V, ϕ = u|Γ
where u ∈ H1(λ). Write u+ = u0 + u1 ∈ H1

0 ⊕ H1(λ) and u− = ū0 + u2 ∈ H1
0 ⊕ H1(λ). Since

u = (u0 − ū0) + (u1 − u2) ∈ H1(λ) it follows that u0 = ū0. Now

aλ(ϕ+, ϕ−) =
∫

Ω

∇u1∇u2 − λ

∫

Ω

u1u2

=
∫

Ω

∇(u1 + u0)∇(u2 + u0)−
∫

Ω

∇u1∇u0 −
∫
∇u0∇u2 −

∫

Ω

∇u0∇u0

− λ

∫

Ω

(u1 + u0)(u2 + u0) + λ

∫

Ω

u1u0 + λ

∫

Ω

u0u2 + λ

∫
u2

0

=
∫

Ω

∇u+∇u− − λ

∫

Ω

u+u− −
∫

Ω

|∇u0|2 + λ

∫

Ω

u2
0 ≤ 0

by Poincaré’s inequality. In the last identity we used that fact that
∫

Ω

∇ui∇u0 = λ

∫

Ω

uiu0, since ui ∈ H1(λ), i = 1, 2 .

¤

For λ > λD
1 the semigroup generated by −Dλ is not positive, in general, as can be seen by the

explicite computation in dimension 1, for example.
Let (Y,Σ, ν) be a measure space and 1 ≤ p < ∞. A holomorphic positive C0-semigroup T on

Lp(Y,Σ, ν) is irreducible if and only if for 0 ≤ f, f 6= 0, T (t)f(x) > 0 a.e. for all t > 0 (see
[Ouh05]). Denote by −A the generator of A and assume that A is selfadjoint and has compact
resolvent. Let λ1 be the first eigenvalue of A. If T is irreducible, then λ1 is simple and there
exists u ∈ D(A), u(x) > 0 a.e. such that Au = λ1u, i.e. there exists a strictly positive eigenvector
corresponding to λ1. Moreover λ1 is the only eigenvalue with a positive eigenvector. It follows form
[Ouh05, Theorem 2.9] that the semigroup generated by −∆µ is irreducible. Hence λ1(µ) is a simple
eigenvalue with a strictly positive eigenfunction for each µ ∈ R. From this we conclude the following
for the Dirichlet-to-Neumann operator.

Theorem 5.2. Let −∞ < λ < λD
1 . Denote by µ the first eigenvalue of Dλ. Then there exists a

positive eigenfunction of Dλ corresponding to µ. Conversely, if µ is an eigenvalue with a positive
eigenfunction ϕ ∈ D(Dλ), then µ is the first eigenvalue of Dλ. Moreover, let u ∈ H1(λ) such that
u|Γ = ϕ. Then u(x) > 0 a.e. in Ω.

Proof. Since the semigroup generated by −Dλ is positive, the first assertion follows from the Krein-
Rutman-Theorem (cf. [Nag86]). In order to prove the second let 0 ≤ ϕ ∈ D(Dλ) such that ϕ 6=
0, Dλϕ = µϕ. Let u ∈ H1(λ) such that u|Γ = ϕ. Then by Lemma 3.4,

(5.1)
∫

Ω

∇u∇v − λ

∫

Ω

uv =
∫

Γ

µuv
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for all v ∈ H1(Ω). Since ϕ ≥ 0 one has u− ∈ H1
0 (Ω). Taking v = u− in (5.1) we obtain

−
∫

Ω

|∇u−|2 + λ

∫

Ω

u−2 = 0 .

By Poincaré’s inequality,

λ

∫

Ω

(u−)2 =
∫

Ω

|∇u−|2 ≥ λD
1

∫

Ω

(u−)2 .

Since λ < λD
1 , it follows that u− = 0. Thus u ≥ 0. Hence u is a positive eigenvector of ∆µ

corresponding to the eigenvalue λ. Hence uÀ 0 and λ is the first eigenvalue of ∆µ. Hence µ is the
first eigenvalue of Dλ by Theorem 4.1. ¤

Even though we do not know whether the semigroup generated by −Dλ is irreducible, Theorem 5.2
establishes the usual consequences of irreducibility. For further properties of the semigroup generated
by the Dirichlet-to-Neumann operator we refer to Escher [Esc94].

6. Manifolds

The purpose of this section is to consider the previous analaysis in a more general setting where
Rd is replaced by a Riemannian manifold. All properties established so far will be valid in this more
general context with one exception. Lemma 3.5 may fail, and in fact we will see that this lemma is
equivalent to the validity of Friedlander’s Theorem (Theorem 4.2).

Let M be a Riemannian manifold which we assume to be connected and orientable. Let Ω ⊂ M
be a Lipschitz domain in M , i.e., we assume that Ω is relatively compact, open, connected and
has Lipschitz boundary Γ := ∂Ω. The first Sobolev space H1(Ω) is defined as the completion of

H1(Ω) ∩ C∞(Ω) := {u ∈ C∞(Ω) : ‖u‖H1(Ω) <∞}
for the norm

‖u‖2H1(Ω) :=
∫

Ω

|u|2 +
∫

Ω

|∇u|2

(cf. [Heb96], [Heb99], [MMT01], [MT99]). Here ∇u : Ω → TΩ is defined as the vector field ∇u(x) :=
j−1
x du(x), where jx : TxΩ → T ∗x Ω is the canonical map identifying functionals with vectors via the

Riemannian metric. The space H1(Ω) is compactly injected into L2(Ω). On Γ we consider the surface
measure. As in the Euclidean case, the trace u ∈ C(Ω̄) ∩ H1(Ω) → L2(Γ), u 7→ u|Γ has a compact
linear extension to H1(Ω) with values in L2(Γ) (which we denote still by u 7→ u|Γ). We omit the trace
sign u|Γ when writing

∫
Γ

uv for u, v ∈ H1(Ω). By H1
0 (Ω) we denote the closure of the test functions.

Note that for u ∈ H1(Ω) one has u ∈ H1
0 (Ω) if and only if u|Γ = 0. For u, v ∈ H1(Ω), there exists a

unique function ∇u · ∇v ∈ L1(Ω) such that for each local coordinate ϕ : V → R,

∇u · ∇v =
( d∑

i,j=1

gij
( ∂

∂ϕi
u
)
(
∂

∂ϕj
v
))1/2

.

If u ∈ H1(Ω), we say that ∆u ∈ L2(Ω) if there exists f ∈ L2(Ω) such that∫

Ω

∇u∇v =
∫

Ω

fv

for all v ∈ D(Ω) := C∞c (Ω). In that case we put ∆u := f .

Next we define the outer normal. If u ∈ H1(Ω) and ∆u ∈ L2(Ω), then we say that ∂u
∂ν ∈ L2(Γ) if

there exists b ∈ L2(Γ) such that ∫

Ω

∇u∇v −
∫

Ω

∆uv =
∫

Γ

bv
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for all v ∈ H1(Ω). Then we set ∂u
∂ν = b.

Assume that Ω 6= M (this is automatic if M is non-compact). Then we can define as in the
Euclidean case the operators ∆µ (µ ∈ R),∆N = ∆0 and ∆D = ∆−∞. They are selfadjoint and have
compact resolvent. Denoting by λk(µ) the k − th eigenvalue of ∆µ we obtain continuous, increasing
functions λk : [−∞,∞) → R as in Theorem 2.4. If M is a compact manifold, and Ω = M , then
H1

0 (M) = H1(M) and Γ = ∅. Thus ∆N = ∆D which is just the Laplace-Beltrami operator.

Next, for λ ∈ R\σ(∆D) and Ω 6= M , we define the Dirichlet-to-Neumann operatorDλ as in Section
3. It is a selfadjoint, lower bounded operator on L2(Γ) which has compact resolvent. Theorem 4.1
stays true in this general context. Now the point in the non-Euclidean case is that Lemma 3.5 fails
in general (as we will show below). In fact, it is equivalent to the validity of Friedlander’s result
Theorem 4.2. More precisely, the following holds. By αk(λ) we denote the k − th eigenvalue of
Dλ, λ ∈ R \ σ(∆D).

Theorem 6.1. Let Ω be a Lipschitz domain in M,Ω 6= M . Let k ∈ N such that λD
k < λD

k+1. The
following assertions are equivalent:

(i) One has α1(λ) ≤ 0 for all λ ∈ (λD
k , λ

D
k+1);

(ii) λN
k+1 ≤ λD

k .

Proof. (i) ⇒ (ii) as in Section 4. (ii) ⇒ (i) Assume that λD
k < λN

k+1.
Let λD

k < λ < λN
k+1. Since λm(µ) ≤ λD

k for all µ ∈ R,m ≤ k, and λm(µ) > λN
k+1 for all m ≥

k+ 1, µ ≥ 0, there exist no µ ≥ 0 and no m ∈ N such that λm(µ) = λ. Hence by Theorem 4.1, µ > 0
for all µ ∈ σ(Dλ). ¤

Next we show that it may happen that the two equivalent conditions of Theorem 6.1 fail in the
non-Euclidean case. In fact, taking an arbitrary compact Riemannian manifold, we show that these
assertions fail for Ω = M \K if K is a compact subset of M which is small enough.

Theorem 6.2. Let M be a compact Riemannian manifold of dimension d ≥ 2. Let Kn+1 ⊂
Kn ⊂ M be compact sets such that

⋂
n∈N

Kn = {a} where a ∈ M . Let Ωn = M \ Kn. Then for

λ > 0, (λ + ∆D
Ωn

)−1 → (λ + ∆M )−1 and (λ + ∆N
Ωn

)−1 → (λ + ∆µ)−1 in L(L2(M)), where ∆M

denotes the Laplace-Beltrami operator on L2(M) and ∆D
Ωn

the Dirichlet- and ∆N
Ωn

the Neumann
Laplacian on L2(Ωn). Consequently, lim

n→∞
λD

k (Ωn) = λk(M), lim
k→∞

λN
k (Ωn) = λk(M) for all k ∈ N,

where λk(M), λD
k (Ωn), λN

k (Ωn) denotes the k− th eigenvalue of the Laplace-Beltrami, Dirichlet- and
Neumann Laplacian on L2(M) and L2(Ωn), respectively.

Proof. We identify L2(Ωn) with a closed subspace of L2(M) extending functions in L2(Ωn) by 0
outside Ωn and we also consider L(L2(Ωn)) ⊂ L(L2(M)) in a canonical way. Since dimension d ≥ 2,
the space C∞c (M \ {a}) is dense in H1(M) (cf. [AB93, Remark 2.6], [Bré83, p. 171]). Let λ > 0.
a) We show that (λ+ ∆N

Ωn
)−1 → (λ+ ∆M )−1 in L(L2(M)) as n→∞. Let fn ⇀ f in L2(M), un =

(λ + ∆N
Ωn

)−1fn. By Lemma 2.5 we have to show that un → u := (λ + ∆M )−1f in L2(M). By
definition

(6.1) λ

∫

Ωn

unv +
∫

Ωn

∇un∇v =
∫

Ωn

fnv

for all v ∈ H1(Ωn). In particular,

λ

∫

Ωn

u2
n +

∫

Ωn

|∇un|2 =
∫

Ωn

fnun ≤ ‖fn‖L2(M)‖un‖L2(M) .

It follows that ‖un‖H1(Ωn) is bounded by a constant c. Let (unk
) be a subsequence. By the diagonal

argument, there exist a w ∈ L2(M) and a subsequence (unk`
) such that w|Ωm

∈ H1(Ωm) and
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unk`
⇀ w|Ωn

in H1(Ωm) as ` → ∞ for all m ∈ N. Hence w ∈ H1
loc(M \ {a}) and

∫
M

|∇w|2 < ∞.

Letting `→∞ it follows from (6.1) that

λ

∫

M

wv +
∫

M

∇w∇v =
∫

M

fv

for all v ∈ C∞c (M \ {a}) and hence for all v ∈ H1(M) by density. Thus w = u and unk`
→ u in

L2(Ωm) for all m ∈ N. Recall that (un)n∈N is bounded in L2(M). Since |M \Ωm| → 0 as m→∞, it
follows that unk`

→ u in L2(M). We have shown that each subsequence of (un)n∈N has a subsequence
converging to u in L2(M). Hence the sequence itself converges to u and a) is proved.
b) The proof that (λ + ∆D

Ωn
)−1 → (λ + ∆M )−1 in L(L2(M)) as n → ∞ is similar to a) but easier

since H1
0 (Ωn) ⊂ H1(M) (via the extension by 0). The remaining assertions follow from Proposition

2.8. ¤
Now we obtain in each compact Riemannian manifold a Lipschitz domain Ω such that the inequal-

ity λN
k+1 ≤ λD

k fails. We keep the notations of the preceding theorem.

Corollary 6.3. Let k ∈ N such thath λk(M) < λk+1(M). Then for n large enough λN
k+1(Ωn) >

λD
k (Ωn).

Proof. Since lim
n→∞

λN
k+1(Ωn) = λk+1(M) and lim

n→∞
λD

k (Ωn) = λk(M) this is obvious. ¤

In fact, in special cases one can give more precise information. If M = S3, then taking of M a
cap in the upper half sphere, we obtain a domain for which the inequality λN

k+1 ≤ λD
k is violated, see

[Maz91]. For other results on subdomains of the sphere see Ashbaugh and Levine [AL97].
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