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Abstract. Bisectorial operators play an important role since exactly these operators lead to a well-
posed equation on the entire line. The most simple example of a bisectorial operator is obtained
by taking the direct sum of an invertible generator of a bounded holomorphic semigroup and the
negative part of such an operator. Our main result in this paper shows that each bisectorial operator
A is of this form if we allow a more general notion of direct sum defined by an unbounded closed
projection. As a consequence we can express the solution of the evolution equation on the line by
an integral operator involving two semigroups associated with A.

1. Introduction

Let us first explain the motivation for investigating bisectorial operators. An invertible operator A
on a Banach space is called bisectorial if the imaginary line is in the resolvent set of A and λ(λ−A)−1

is bounded on the imaginary line. Such bisectorial operators were considered by McIntosh and Yagi
[8] in the framework of spectral calculus. Mielke [9] showed in 1987 that, on Hilbert spaces, an
operator A is bisectorial if and only if for some (equivalently all) f ∈ Lp(R;X), 1 < p < ∞, there is
a unique solution u ∈ W 1,p(R; X) such that

(1.1) u′(t) = Au(t) + f(t), t ∈ R.

In other words, Mielke proved a result on maximal regularity for the evolution equation on the
line for bisectorial operators on Hilbert space. He applied such results to non-linear equations and
in particular to prove the existence of central manifolds. Mielke’s result on maximal regularity was
generalized to Banach space by Schweiker [10], and in [4] with the help of the operator-valued Fourier
multiplier theorem due to Weis. Maximal regularity in Hölder spaces was considered in [1].

Most interesting is the spectral theory of bisectorial operators. A striking problem is the question
whether it is possible to decompose the Banach space with the help of a spectral projection commuting
with A such that the operator is the direct sum of an invertible generator of a bounded holomorphic
semigroup and the negative invertible generator of a bounded holomorphic semigroup. There is
always a natural spectral projection (see Section 3) defined by a contour integral, but this projection
is unbounded in general as was shown by McIntosh and Yagi [8], see also Dore and Venni [6].

However the spectral projection P is always closed. This means that its kernel and its image are
closed subspaces of X whose sum is dense in X, but possibly different from the entire space. The
part of A in these subspaces is the generator or the negative generator of a holomorphic semigroup.
In our main result we show that twisting A by its spectral projection, we obtain the generator of a
holomorphic semigroup on the entire space X. This is surprising since it shows that each bisectorial
operator is, in fact, the twisted version of a sectorial operator. Another corollary of the main result
shows that the square of a bisectorial operator A is always sectorial (i.e. −A2 always generates a
holomorphic semigroup). These results clarify somehow the nature of bisectorial operators.

The spectral projection had been investigated before by Sybille Schweiker [10]. In particular,
Schweiker associated two semigroups with a bisectorial operator which operate on the entire space
X. These semigroups are holomorphic but singular as the time goes to 0. However the singularity can
never be worse than logarithmic, as Schweiker showed. We now obtain these semigroups very simply

We are grateful to Fulvio Ricci and Giovanni Dore who showed us the consequences on the squares and roots of
our result as presented in Section 5.
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from the semigroup generated by the twisted version of A. They allow one to give a representation
formula of the solutions of (1.1) which will be exploited further in [12].

Our result holds also for non densely defined operators. For simplicity we do not consider more
general operators which are merely bisectorial outside a compact set as in [3], where a spectral theory
for these operators is developed.

2. Twisting bisectorial operators by unbounded projections

Let X be a Banach space. We start defining unbounded projections.

Definition 1. A projection P on X is a linear operator P on X with domain D(P ) such that
P 2 = P , i.e. such that Px ∈ D(P ) and P 2x = Px for all x ∈ D(P ).

Let P be a projection. Then X2 = ker P and

X1 = imP := {Px : x ∈ D(P )} = {x ∈ D(P ) : Px = x}
are subspaces of X such that X1 ∩X2 = {0}.
Lemma 2. The projection P is closed if and only if kerP and imP are closed.

This is easy to see. Conversely, the following holds. If X1 and X2 are subspaces of X such that
X1 ∩X2 = {0}, then letting

D(P ) = X1 + X2

P (x1 + x2) = x1

defines a projection on X with imP = X1 and kerP = X2. This projection is closed if and only if
X1 and X2 are closed.

Remark 3. Closability of projections.
(i) If P is closable, then P is a projection.
(ii) Let X1, X2 ⊂ X be subspaces such that X1 ∩X2 = {0}. Then the projection onto X1 defined

above is closable if and only if X1 ∩X2 = {0}.
(iii) Let X1 be a dense subspace of X which is different from X. Let X2 be an algebraic comple-

ment. Then the projection onto X1 with domain X is not closable.
(iv) Let A be a densely defined invertible operator which is not bounded. Let x′ ∈ X ′ \ D(A′),

and let u ∈ D(A) such that 〈x′, Au〉 = 1. Then Px = 〈Ax, x′〉u, with domain D(P ) = D(A),
defines an unbounded non-closable projection.

Next we consider an operator A on X with non-empty resolvent set ρ(A).

Proposition 4. Let P be a projection on X such that D(A) ⊂ D(P ). Then the following statements
are equivalent.

(i) PR(µ, A)x = R(µ,A)Px, for all x ∈ D(P ) and for some µ ∈ ρ(A);
(ii) if y ∈ D(A) is such that Ay ∈ D(P ), then Py ∈ D(A) and PAy = APy;
(iii) PR(µ, A)x = R(µ,A)Px, for all x ∈ D(P ) and for all µ ∈ ρ(A).

Proof. (i) ⇒ (ii). Let y ∈ D(A) such that Ay ∈ D(P ). Then x = µy − Ay ∈ D(P ) and, by
(i), Py = PR(µ, A)x = R(µ,A)Px ∈ D(A). Moreover (µ − A)Py = Px = µPy − PAy. Thus
APy = PAy.

(ii) ⇒ (iii). Let µ ∈ ρ(A), x ∈ D(P ), y = R(µ,A)x. Then y ∈ D(A) and µy − Ay = x. Hence
Ay ∈ D(P ). By hypothesis it follows that Py ∈ D(A) and (µ − A)Py = P (µ − A)y = Px. Hence
R(µ,A)Px = Py = PR(µ,A)x. ¤
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Definition 5. We say that a projection P commutes with A if D(A) ⊂ D(P ) and the equivalent
conditions (i)− (iii) of Proposition 4 are satisfied.

Now we introduce the basic notion of this paper.

Definition 6. An operator A is called bisectorial if

(i) iR ⊂ ρ(A);
(ii) sups∈R |s|‖R(is, A)‖ < ∞.

For 0 < θ < π
2 we consider the open horizontal sector

Σθ := {reiα : r > 0, |α| < θ}
and the open vertical bisector

Σ′θ := C \ {Σθ ∪ −Σθ}.
Let A be bisectorial. Then by the usual geometric series expansion one obtains ω ∈ (0, π

2 ) such
that

(2.1) Σ′ω ⊂ ρ(A)

and

(2.2) sup
λ∈Σ′ω

‖λR(λ,A)‖ < ∞.

We say that an operator A generates a bounded holomorphic semigroup if λ ∈ ρ(A) for
Reλ > 0 and

sup
Reλ>0

‖λR(λ, A)‖ < ∞.

In fact, then we may construct a semigroup
(
etA

)
t>0

⊂ L(X), which has a bounded and holomorphic
extension to a sector Σθ for some 0 < θ < π

2 . This semigroup is a C0-semigroup if and only if A is
densely defined. Moreover, A is invertible if and only if the semigroup is exponentially stable, i.e.
if

‖etA‖ ≤ Me−εt, t > 0

for some ε > 0, M > 0. We refer to the monographs [7] and [2] for these properties. Thus, if A
generates a bounded holomorphic semigroup, then A is in particular bisectorial.

In the following let A be a bisectorial operator on X. Let P be a closed projection on X commuting
with A. Then X+ = kerP and X− = imP are closed subspaces on X. Consider the parts A+ and
A− on X+ and X− respectively, i.e.

D(A±) = D(A) ∩X±
A±x = Ax, x ∈ D(A±).

Then it follows from Proposition 4 that A+ and A− are both bisectorial.

Next we define the twisted operator Ã which formally is given by Ã = −A on X+ and Ã = A
on X−. Let Z := X+ ⊕X− with norm ‖x1 + x2‖Z := ‖x1‖X + ‖x2‖X where x1 ∈ X+ and x2 ∈ X−.
Then Z is a Banach space such that

(2.3) D(A) ⊂ Z ↪→ X.

Moreover, the projections P+ = P|Z and P− = (I − P+)|Z are bounded as operators on Z.
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Definition 7 (The twisted operator). Define the operator Ã on X by

D(Ã) := {x ∈ Z : −P+x + P−x ∈ D(A)}
Ãx := A(−P+x + P−x).

We call Ã the operator A twisted by P+.

The part Ã|Z of Ã in Z is just the direct sum of −A+ and A−. Thus Ã|Z is a bisectorial operator
on Z. For A itself we can show the following.

Proposition 8. Let λ ∈ ρ̃ := ρ(A) ∩ ρ(−A). Then λ ∈ ρ(Ã) and

R(λ, Ã) = P+R(−λ,A) + P−R(λ,A).

In particular, iR ⊂ ρ(Ã). Moreover,

(2.4) sup
s∈R

‖R(is, Ã)‖ < ∞.

Finally, σ(Ã) = −σ(A+) ∪ σ(A−).

Proof. Let λ ∈ ρ̃. Define
R̃(λ) := P+R(λ,−A) + P−R(λ, A).

Then

−P+R̃(λ) + P−R̃(λ) = −P+R(λ,−A) + P−R(λ,A)
= −P+R(λ,−A)− P+R(λ,A) + R(λ,A)
= P+(R(−λ,A)−R(λ,A)) + R(λ,A)
= 2λP+R(−λ, A)R(λ,A) + R(λ,A)
= 2λR(−λ,A)P+R(λ,A) + R(λ,A)

which maps X into D(A). Thus R̃(λ) maps X into D(Ã) and

(λ− Ã)R̃(λ) = λR̃(λ)−A(−P+R̃(λ) + P−R̃(λ))

= λR̃(λ) + AP+(R(λ,−A) + R(λ,A))−AR(λ, A)
= λP+(R(λ,−A)−R(λ,A)) + λR(λ,A) +

+AP+(R(λ,−A) + R(λ,A))−AR(λ,A)
= P+{λR(λ,−A)− λR(λ,A) + AR(λ,−A) + AR(λ,A)}+ I

= I.(2.5)

Now let y ∈ D(Ã), i.e. y ∈ Z and −P+y + P−y ∈ D(A). Then

R̃(λ)Ãy = (P+R(λ,−A) + P−R(λ,A))A(−P+y + P−y)
= AR(λ,−A)(−P+y) + AR(λ,A)P−y

= A(−P+R(λ,−A)y + P−R(λ,A)y)

= ÃR̃(λ)y.

This shows, by (2.5) that

R̃(λ)(λ− Ã)y = (λ− Ã)R̃(λ)y = y, y ∈ D(Ã).

It follows from [2, Proposition 3.10.3] that σ(Ã) = σ(Ã|Z). But Ã|Z is the direct sum of −A+ and
A−. Hence σ(Ã|Z) = −σ(A+) ∪ σ(A−).

Finally, in order to prove (2.4) observe first that isR(is, Ã|Z) = Ã|ZR(is, Ã|Z) + I|Z . Thus
‖Ã|ZR(is, Ã|Z)‖L(Z) is bounded since Ã|Z is bisectorial. Let x ∈ X. We consider D(A) as a Banach
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space for ‖x‖A := ‖Ax‖X (remind that 0 ∈ ρ(A)). Then D(A) ↪→ Z ↪→ X. Hence there exists
constants C, C1, C2 > 0 such that

‖R(is, Ã)x‖X = C‖R(is, Ã)x‖Z

= C‖ÃR(is, Ã)A−1x‖Z

≤ C sup
s∈R

‖ÃR(is, Ã)‖L(Z)‖A−1x‖Z

≤ C1‖A−1x‖Z

≤ C2‖A−1x‖D(A) = C2‖x‖X .

¤

We conclude this section by an example which shows that the estimate (2.4) cannot be essentially
improved and that Ã is not bisectorial in general.

Example 9. Let

X =

{
x = (xn)n∈N :

∞∑
n=1

{
1
n2

(|x2n|2 + |x2n+1|2) + |x2n − x2n+1|2
}

< ∞
}

.

Then X is a Hilbert space for the scalar product

(x|y) =
∞∑

n=1

{
1
n2

(x2ny2n + x2n+1y2n+1) + (x2n − x2n+1)(y2n − y2n+1)
}

.

Define the operator A on X by

(Ax)2n = −nx2n, (Ax)2n+1 = −nx2n+1,

with domain D(A) = {x ∈ X : Ax ∈ X}. Then A is invertible and generates a bounded holomorphic
C0-semigroup on X. In fact, for Reλ ≥ 0, the resolvent of A is given by R(λ,A)y = x̃, with

x̃2n =
1

λ + n
y2n, x̃2n+1 =

1
λ + n

y2n+1.

Hence

|λ|‖x̃‖ = |λ|
( ∞∑

n=1

{
1

|λ + n|2 (|y2n|2 + |y2n+1|2) 1
n2

+
1

|λ + n|2 |y2n − y2n+1|2
}) 1

2

≤ sup
Reλ≥0,n∈N

|λ|
|λ + n| ‖y‖.

Let X+ = {x ∈ X : x2n+1 = 0, n ∈ N}, X− = {x ∈ X : x2n = 0, n ∈ N}. Then X+, X−
are closed subspaces of X (which are isomorphic to `2), such that X+ ∩X− = {0}. The constant-1
sequence is in X but not in X+ + X−. Let P be the projection given by D(P ) = X+ + X−,

(Px)2n = x2n, (Px)2n+1 = 0.

Then P is closed, D(A) ⊂ D(P ) and P commutes with A in the sense of Definition 5. Let Ã be the
operator A twisted by P . Then D(Ã) = D(A) and

(Ãx)2n = nx2n, (Ãx)2n+1 = −nx2n+1.

It is not difficult to see that σ(Ã) = N ∪ (−N) and that

(R(λ, Ã)y)2n =
1

λ− n
y2n, (R(λ, Ã)y)2n+1 =

1
λ + n

y2n+1,

for λ /∈ N ∪ (−N). By (2.4) we know that sups∈R ‖R(is, Ã)‖ < ∞. However, in this example,

sup
s∈R

|s|‖R(is, Ã)‖ = ∞.
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In fact, let en = (0, . . . , 0, 1, 0, . . .) be the n-th unit vector and vn = n√
2
(e2n− e2n+1). Then ‖vn‖ = 1.

Let

un = R(in, Ã)vn =
n√
2

(
1

in− n
e2n − 1

in + n
e2n+1

)

=
1√
2

(
1

i− 1
e2n − 1

i + 1
e2n+1

)
.

Then

‖un‖2 ≥ 1
2

∣∣∣∣
1

i− 1
+

1
i + 1

∣∣∣∣
2

= 2
1

|(i− 1)(i + 1)|2

=
1
2

Hence ‖R(in, Ã)‖ ≥ 1
2 for all n ∈ N.

In the following section we will see that for each bisectorial operator A there exists a special pro-
jection, namely the spectral projection P , such that the operator Ã obtained by twisting A by P ,
is sectorial. Since ˜̃A = A, we may reformulate this in the following way. Given a bisectorial operator
B there exists a sectorial operator A , a (in general unbounded) projection P which commutes with
A such that B = Ã, where Ã is the operator A twisted by P .

3. Twisting by the spectral projection

The simplest way to obtain a bisectorial operator is the following. Assume that X = X+ ⊕X− is
the direct sum of two closed subspaces. Let −A+ and A− be invertible generators of bounded and
holomorphic semigroups, and let A = A+ ⊕ A−. Then A is bisectorial. Moreover, A+ is the part of
A in X+ and A− is the part of A in X−. We want to give this simple situation a name.

Definition 10. A bisectorial operator A on X is called decomposable if X is the direct sum
X = X+ ⊕ X− of closed subspaces such that R(is, A)X+ ⊂ X+ and R(is, A)X− ⊂ X− for all
s ∈ R \ {0} and

σ(A+) ⊂ {λ ∈ C : Reλ ≥ 0},
σ(A−) ⊂ {λ ∈ C : Reλ ≤ 0},

where A+ is the part of A in X+ and A− is the part of A in X−.

It is not difficult to see the following (see e.g. the appendix of [7]).

Proposition 11. Let A be the generator of a holomorphic C0-semigroup such that iR ⊂ ρ(A). Then
A is bisectorial and decomposable.

Even on Hilbert spaces there exist undecomposable invertible bisectorial operators. This was
shown by McIntosh and Yagi (see [8]).

Theorem 12 (McIntosh-Yagi). Let X be a separable Hilbert Space. Then there exists an invertible
bisectorial operator A which is not decomposable.

Our aim is to prove the following.
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Theorem 13. Let A be an invertible, bisectorial operator. Then there exists a (possibly unbounded)
projection P commuting with A such that the operator Ã obtained by twisting A by P generates a
bounded holomorphic semigroup.

We start defining the projection P which will fulfill the requirement. Let A be a bisectorial,
invertible operator. Let 0 < ω < π

2 such that Σ′ω ⊂ ρ(A) and supλ∈Σ′ω
‖λR(λ,A)‖ < ∞ (see (2.1)

and (2.2)).
Let ε > 0 such that {z ∈ C : |z| ≤ ε} ⊂ ρ(A). For ω < θ < π

2 we consider the contour Γ+
θ,ε which

consists of the line {re−iθ : r > ε}, the arc {εeiα : −θ ≤ α ≤ θ} and the line {reiθ : r > ε} oriented
downwards. Let

Q+ :=
1

2πi

∫

Γ+
θ,ε

R(λ,A)
dλ

λ
.

Then Q+ ∈ L(X) does not depend on the choice of θ and ε > 0 satisfying the requirement above (by
Cauchy’s Theorem).

Proposition 14. Let P+ = AQ+ with domain D(P+) = {x ∈ X : Q+x ∈ D(A)}. Then P+ is a
closed projection commuting with A.

Proof. Let ω < θ′ < θ < π
2 , and 0 < ε < ε′ such that {z ∈ C : |z| ≤ ε′} ⊂ ρ(A). Then by Cauchy’s

Theorem and the resolvent identity,

Q2
+ =

1
(2πi)2

∫

Γ+
θ,ε

R(λ,A)
∫

Γ+
θ′,ε′

1
λ′ − λ

dλ′

λ′
dλ

λ
+

− 1
2πi

∫

Γ+
θ′,ε′

R(λ′, A)
λ′

1
2πi

∫

Γ+
θ,ε

1
λ′ − λ

dλ

λ
dλ′

=
1

2πi

∫

Γ+
θ′,ε′

R(λ′, A)
(λ′)2

dλ′

=
1

2πi

∫

Γ+
θ,ε

R(λ,A)
λ2

dλ.

Hence Q2
+X ⊂ D(A) and

AQ2
+ =

1
2πi

∫

Γ+
θ,ε

λR(λ,A)− I

λ2
dλ

= Q+.

Let x ∈ D(P+), i.e. Q+x ∈ D(A). Then

Q+P+x = Q+AQ+x = AQ2
+x = Q+x.

Hence P+x ∈ D(P+) and

P+P+x = AQ+P+x = AQ+x = P+x.

¤

Let X+ := imP+ and let A+ be the part of A in X+ (cf. Section 2). Then the following holds.

Proposition 15. σ(A+) ⊂ {µ ∈ C : Reµ > 0}.
Proof. It follows from Proposition 4 that ρ(A) ⊂ ρ(A+) and R(µ, A)|X+ = R(µ,A+) for all µ ∈ ρ(A).
Let Reµ < 0. We have to show that µ ∈ ρ(A+). Define

R+ =
1

2πi

∫

Γ+
θ,ε

R(λ,A)
µ− λ

dλ.
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Then R+ ∈ L(X). We first show that (µ−A)R+ = P+. In fact, let ω < θ′ < θ < π
2 , and 0 < ε < ε′.

We have

R+Q+ =
1

(2πi)2

∫

Γ+
θ,ε

(∫

Γ+
θ′,ε′

R(λ′, A)
µ− λ′

dλ′
)

R(λ,A)
λ

dλ

=
1

(2πi)2

∫

Γ+
θ,ε

∫

Γ+
θ′,ε′

R(λ′, A)−R(λ, A)
λ− λ′

1
µ− λ′

1
λ

dλ′dλ

=
1

2πi

∫

Γ+
θ′,ε′

R(λ′, A)
µ− λ′

(
1

2πi

∫

Γ+
θ,ε

dλ

λ(λ− λ′)

)
dλ′ +

− 1
2πi

∫

Γ+
θ,ε

R(λ,A)
λ

(
1

2πi

∫

Γ+
θ′,ε′

dλ′

(µ− λ′)(λ− λ′)

)
dλ

=: I1 − I2.

The function f(λ′) := [(µ−λ′)(λ−λ′)]−1 is holomorphic in the set Σθ′ ∩{z ∈ C : |z| > ε′} so that
I2 = 0. Moreover by Cauchy’s Formula we have that

1
2πi

∫

Γ+
θ,ε

dλ

λ(λ− λ′)
=

1
λ′

.

Thus

R+Q+ =
1

2πi

∫

Γ+
θ′,ε′

R(λ′, A)
(µ− λ′)λ′

dλ′.

Consequently R+Q+ ∈ L(X; D(A)) and

(µ−A)R+Q+ =
1

2πi

∫

Γ+
θ′,ε′

((µ− λ′) + (λ′ −A))R(λ′, A)
(µ− λ′)λ′

dλ′

=
1

2πi

∫

Γ+
θ′,ε′

R(λ′, A)
λ′

dλ′ +
1

2πi

∫

Γ+
θ′,ε′

dλ′

(µ− λ′)λ′

= Q+.

Observe that for x ∈ D(A), R+x ∈ D(A) and AR+x = R+Ax. It follows that

(µ−A)R+P+x = P+x

for all x ∈ D(P+) and
R+(µ−A)x = x

for all x ∈ D(A) ∩X+. This shows that µ ∈ ρ(A+) and

R(µ,A+) = R+|X+ .

¤

Since the spectrum of A+ is included in the right half-plane, we call P+ the positive spectral
projection associated with A.

Similarly, we let Γ−θ,ε = −Γ+
θ,ε oriented from down to up,

Q− =
1

2πi

∫

Γ−θ,ε

R(λ,A)
dλ

λ

and P− = AQ−.
Observe that, for integrable f : Γ+

θ,ε → X,

−
∫

Γ−θ,ε

f(−λ)dλ =
∫

Γ+
θ,ε

f(λ)dλ.
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Since R(λ,−A) = −R(−λ,A), P− is the positive spectral projection associated with −A. It
follows from the residuum theorem that Q+ +Q− = A−1. Hence D(P+) = D(P−) and P+ = I −P−.
Defining X− := kerP+, and letting A− being the part of A in X− we deduce from Proposition 15
that σ(A−) is in the left half-plane. Now consider the operator Ã obtained by twisting A by P+.
Then by Proposition 8 one has

(3.1) σ(Ã) ⊂ −σ(A+) ∪ σ(A−) ⊂ {λ ∈ C : Reλ < 0}.

Moreover

(3.2) sup
s∈R

‖R(is, Ã‖ < ∞.

Finally we show that

(3.3) sup
s∈R

‖isR(is, Ã)‖ < +∞.

For µ ∈ ρ(A) ∩ ρ(−A) we have that

R(µ, Ã) = P+R(µ,−A) + P−R(µ,A)
= P+(R(µ,−A)−R(µ,A)) + R(µ,A)
= S(µ) + R(µ,A),

where S(µ) := P+(R(µ,−A)−R(µ,A)).

Lemma 16. sups∈R ‖sS(is)‖ < +∞.

Proof. We compute S(µ). Let µ be to the left of Γ+
θ,ε. Then

Q+R(µ,A) =
1

2πi

∫

Γ+
θ,ε

R(λ,A)R(µ, A)
λ

dλ

=
1

2πi

∫

Γ+
θ,ε

R(λ,A)−R(µ,A)
(µ− λ)λ

dλ

=
1

2πi

∫

Γ+
θ,ε

R(λ,A)
(µ− λ)λ

dλ.

Since P+R(µ, A) = AQ+R(µ,A) and AR(λ,A) = λR(λ,A)− I for each λ ∈ ρ(A) we have

P+R(µ,A) =
1

2πi

∫

Γ+
θ,ε

AR(λ,A)
(µ− λ)λ

dλ

=
1

2πi

∫

Γ+
θ,ε

R(λ,A)
µ− λ

dλ− 1
2πi

∫

Γ+
θ,ε

1
λ(µ− λ)

dλ

=
1

2πi

∫

Γ+
θ,ε

R(λ,A)
µ− λ

dλ.

Let µ be to the left of the curve Γ′ consisting of the lines {reiθ : r ≥ 0} and {re−iθ : r ≥ 0}
oriented upwards.

Then we have, by Cauchy’s Theorem,

P+R(µ,A) =
1

2πi

∫

Γ′

R(λ,A)
µ− λ

dλ,
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and, if −µ is to the left of Γ′ then

P+R(µ,−A) = −P+R(−µ,A)

= − 1
2πi

∫

Γ′

R(λ,A)
−µ− λ

dλ

=
1

2πi

∫

Γ′

R(λ,A)
λ + µ

dλ

In particular, for µ = is, (s 6= 0) we have

S(is) = P+(R(is,−A)−R(is, A))

=
1

2πi

∫

Γ′

(
1

is + λ
− 1

is− λ

)
R(λ,A)dλ

=
1
iπ

∫

Γ′

λ

s2 + λ2
R(λ,A)dλ.

Observe that

|a + be2iθ| ≥
√

1 + cos(2θ)
2

(a + b), a, b ≥ 0.

Thus

‖sS(is)‖ ≤
∥∥∥∥

1
iπ

∫

Γ′

λs

s2 + λ2
R(λ,A)dλ

∥∥∥∥

≤ 2
π

∫ +∞

0

M |s|
|s2 + r2e2iθ|dr

≤ 2M

π

√
2

1 + cos(2θ)

∫ +∞

0

|s|
s2 + r2

dr

=
2M

π

√
2

1 + cos(2θ)

∫ +∞

0

|s|
s2(1 + ( r

|s| )
2)

dr

=
2M

π

√
2

1 + cos(2θ)

∫ +∞

0

1
1 + t2

dt

=
2M

π

√
2

1 + cos(2θ)
π

2

= M

√
2

1 + cos(2θ)
,

where M = sups∈R ‖sR(is, A)‖. This proves the claim (3.3). ¤

Next we use the following theorem

Theorem 17 (Phragmen-Lindelöff, [5, Corollary 6.4.4]). Let C+ = {z ∈ C : Rez > 0}, and let
h : C+ → X be continuous and holomorphic on C+. Assume that for each δ > 0 there exists c > 0
such that

‖h(z)‖ ≤ Ceδ|z|, z ∈ C+.

Assume that
‖h(is)‖ ≤ M, s ∈ R.

Then ‖h(z)‖ ≤ M for all z ∈ C+.
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Now let h(µ) = µR(µ, Ã) for Reµ ≥ 0. Then M1 := sups∈R ‖h(is)‖ < +∞, and, by (3.2),

‖h(µ)‖ ≤ |µ|M2, Reµ ≥ 0,

for some M2 > 0. It follows from the Phragmen-Lindelöff Theorem that ‖h(µ)‖ ≤ M for Reµ ≥ 0.
We have proved that Ã generates a bounded holomorphic semigroup. Thus Theorem 13 is proved.

4. The semigroups associated with a bisectorial operator

Let A be an invertible, bisectorial operator on X. We consider the operators Q+ and Q− defined
in the previous section, and the spectral projections P+ = AQ+, P− = AQ−. Let Ã be the operator
A twisted by P+ and let T̃ be the holomorphic semigroup generated by Ã.

Proposition 18. Define, for t > 0,

T+(t) := P+T̃ (t), T−(t) := P−T̃ (t).

Then T+(t), T−(t) ∈ L(X) for all t > 0 and

T+(t + s) = T+(t)T+(s), T−(t + s) = T−(t)T−(s), t, s > 0.

Moreover T+(t)T−(s) = T−(t)T+(s) = 0 for all t, s > 0.

Proof. Since T̃ (t)X ⊂ D(Ã) ⊂ Z, the operators T+(t), T−(t) are bounded. Since Q+, Q− commute
with the resolvent of A, they also commute with R(µ, Ã) = P+R(µ,−A)+P+R(µ,A) (see Proposition
8). Consequently, Q+, Q− also commute with T̃ (t). Hence also P+, P− commute with T̃ . This implies
the semigroup property. Since

P−x = x− P+x, x ∈ D(P+) = D(P−)

we have P+P−x = P−P+x = 0. This implies that T+(t)T−(s) = T−(s)T+(t) = 0. ¤

It follows from the definition that

(4.1) T̃ (t) = T+(t) + T−(t), t > 0.

Moreover T+, T− ∈ C∞((0, +∞), X) and
d

dt
T±(t) = ∓AT±(t), t > 0.(4.2)

It follows that, for x ∈ Z

(4.3) ∓A

∫ t

0

T±(s)xds = T±(t)x− x.

It is possible to express the semigroups T+, T− directly by a contour integral, without using T̃ . Let
ω < θ < π

2 as in Section 3.

Proposition 19. One has, for t > 0,

T+(t) =
1

2πi

∫

Γ+
θ,ε

e−λtR(λ,A)dλ,(4.4)

T−(t) =
1

2πi

∫

Γ−θ,ε

eλtR(λ,A)dλ.(4.5)

Proof. For t > 0 let

S(t) :=
1

2πi

∫

Γ+
θ,ε

e−λtR(λ,A)dλ ∈ L(X).

If x ∈ X+, then R(λ,A)x has a holomorphic extension to C+ (by Proposition 15). Hence S(t)x = 0
by Cauchy’s Theorem.
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Let x ∈ X+. Then substituting λ by −λ we have

S(t)x = − 1
2πi

∫

Γ−θ,ε

eλtR(−λ,A)xdλ

=
1

2πi

∫

Γ−θ,ε

eλtR(λ,−A)xdλ

=
1

2πi

∫

Γ−θ,ε

eλtR(λ, Ã)xdλ

= T̃ (t)x = T+(t)x

by the usual exponential formula of the holomorphic semigroup T̃ . Hence S(t)x = T+(t)x for all
x ∈ X+ + X− and hence for all x ∈ X by density. This proves (4.4). The identity (4.5) is proved
similarly. ¤

Even though T̃ (t) = T+(t) + T−(t) converges strongly to the identity as t → 0, each of the
semigroups T+, T− are singular at 0 as t → 0 whenever P± is unbounded.

In fact, the following holds.

Proposition 20. a) For x ∈ X the following are equivalent:

(i) x ∈ D(P+),
(ii) limt→0 T+(t)x exists.

In that case P+x = limt→0 T+(t)x.
b) If P+ is unbounded, then limt→0 ‖T+(t)‖ = ∞.

Proof. a) If x ∈ D(P+), then limt→0 T+(t)x = limt→0 T̃ (t)P+x = P+x. Conversely, assume that
limt→0 T+(t)x = y. Since limt→0 T̃ (t)x = x and since P+ is closed it follows that x ∈ D(P+) and
P+x = limt→0 P+T̃ (t)x = limt→0 T+(t)x = y.

b) Assume that there exists tn → 0 such that ‖T+(tn)‖ ≤ C. Then for x ∈ D(P+) one has
‖P+x‖ = limn→+∞ ‖T+(tn)x‖ ≤ C‖x‖. Since D(P+) is dense, it follows that P+ is bounded. ¤

However, the following corollary of Proposition 19 shows that the singularity of T± at 0 is mild.

Corollary 21. There exists a constant c > 0 such that

‖T±(t)‖L(X) ≤ c| log t|, 0 < t ≤ 1/2.

Proof. Since 0 ∈ ρ(A), there exists a constant c > 0 such that

‖R(λ,A)‖ ≤ M

1 + |λ|

for all λ = re±iθ, r ≥ 0. Let Γ′ consist of the two rays {re±iθ : r ≥ 0} where θ is chosen as in Section
3, directed upwards. Then by Cauchy’s Theorem

T+(t) =
1

2πi

∫

Γ′
e−λtR(λ,A)dλ.
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Hence, for 0 < t ≤ 1/2,

‖T+(t)‖L(X) ≤ 1
2π

2M

∫ +∞

0

e−rt cos(θ) 1
1 + r

dr

=
M

π

∫ +∞

1

e−(s−1)t cos(θ) ds

s

=
M

π
et cos(θ)

∫ ∞

1

e−st cos(θ) ds

s

≤ M

π
ecos(θ)/2

∫ +∞

t

e−r cos(θ) dr

r

≤ M

π
ecos(θ)/2

(∫ +∞

1

e−r cos(θ) dr

r
+

∫ 1

t

dr

r

)

≤ c1(c2 − log t),

where c1, c2 > 0 are constants. ¤

Schweiker [10] defined the semigroups T+, T− directly, by the expressions given in Proposition 19,
and also proved the estimate of Corollary 21

5. Squares and roots

Let A be an invertible bisectorial operator on X and let Ã be its twisted version.

Proposition 22. The operator Ã is invertible and Ã2 = A2.

Proof. It follows from Proposition 8 that Ã−1 = −P+A−1 +P−A−1. Since P+ and P− commute with
A, it follows that

Ã−2 = (Ã−1)2 = A−2.

Consequently, Ã2 = A2. ¤

As a consequence of Proposition 22, the operator A2 is sectorial. This is surprising since the
spectral mapping theorem alone does not allow us to conclude that the spectrum of A2 is contained
in a sector.

Since A2 is sectorial, we may consider its square root (A2)
1
2 [2, Section 3.8], which is a sectorial

operator again.

Theorem 23. One has

−Ã = (A2)
1
2 .
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Proof. Let Q+, Q−, P+, P− be defined as in Section 3. A change of variable and the resolvent identity
show that

Q+ −Q− =
1

2πi

{∫

Γ+
θ,ε

R(λ,A)
λ

dλ−
∫

Γ−θ,ε

R(λ,A)
λ

dλ

}

=
1

2πi

∫

Γ+
θ,ε

R(λ,A)−R(−λ, A)
λ

dλ

= −2
1

2πi

∫

Γ+
θ,ε

R(λ, A)R(−λ,A)dλ

= 2
1

2πi

∫

Γ+
θ,ε

R(λ2, A2)dλ

=
1

2πi

∫

(Γ+
θ,ε)2

R(w, A2)w−
1
2 dw

= −(A2)−
1
2 ,

where (Γ+
θ,ε)

2 = {z2 : z ∈ Γ+
θ,ε}, and the last identity is the well-known formula for the square root

[2, (3.51) p.166]. It follows that

Ã−1 = −P+A−1 + P−A−1

= −(Q+ −Q−)

= −(A2)−
1
2 .

Hence Ã = −(A2)−
1
2 . ¤

6. Mild solutions

Let A be a linear operator on X. Given f ∈ L1
loc(R; X) we consider the problem

(6.1) u′(t) = Au(t) + f(t), t ∈ R.

A continuous function u : R→ X is called a mild solution of (6.1) if
∫ t

0
u(s)ds ∈ D(A) and

u(t) = u(0) + A

∫ t

0

u(s)ds +
∫ t

0

f(s)ds

for all t ∈ R.
In order to prove uniqueness of the solution of (6.1) we need a spectral condition on A and a

growth condition on u. Let g ∈ L1
loc(R; X). We say that g is polynomially bounded if

‖g(t)‖ ≤ c(1 + |t|)k, t ∈ R,

for some k ∈ N, c > 0. The function f is called weakly polynomially bounded if
∫ +∞

−∞
‖g(t)‖(1 + |t|)−kdt < +∞,

for some k ∈ N. This last notion is clearly weaker than that of polynomially boundedness. Note that
g is weakly polynomially bounded whenever g ∈ Lp(R; X) for some 1 ≤ p ≤ +∞.

Proposition 24. Assume that iR ⊂ ρ(A). Then there exists at most one weakly polynomially
bounded solution u of (6.1).

Proof. Let u be a weakly polynomially bounded solution of (6.1) for f = 0. Then the Carleman
spectrum of u (as defined in [2, Section 4.6]) is empty. This is proved as the last 6 lines of [4,
Theorem 2.7]. It follows from [2, Theorem 4.8.2] that u(t) = 0 for all t ∈ R. ¤
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Remark 25. Conversely Schweiker [11, Theorem 1.1] showed the following. If for each f ∈ BUC(R;X)
there is a unique mild solution u ∈ BUC(R;X) of (6.1), then iR ⊂ ρ(A) and sups∈R ‖R(is, A)‖ <
+∞. She also showed that on Hilbert spaces this condition is sufficient for this type of well-posedness.

Now we assume that A is bisectorial and invertible and keep the notation of Sections 3 and 4. In
particular, we consider the semigroups T+ and T− associated with A. Recall that there exist ω > 0
and c > 0 such that

(6.2) ‖T±(t)‖ ≤ c(1 + | log t|)e−ωt, t > 0.

Let f ∈ L1
loc(R; X) be weakly polynomially bounded. Then the function u : R→ X given by

(6.3) u(t) :=
∫ t

−∞
T−(t− s)f(s)ds−

∫ +∞

t

T+(s− t)f(s)ds

is continuous and polynomially bounded. In fact
∣∣∣∣
∫ t

−∞
T−(t− s)f(s)ds

∣∣∣∣ ≤
∫ t

−∞
e−ω(t−s)f(s)(1 + |s|)−k(1 + |s|)kds

≤ C sup
s≤t

e−ω(t−s)(1 + |s|)k

= C sup
r≥0

e−ωr(1 + |t− r|)k

≤ C

(
1 + sup

r≥0

∣∣∣∣∣
k∑

n=0

(−1)n

(
k

n

)
tnrk−n

∣∣∣∣∣

)
.

Analogously for the second term in the right-hand side of (6.3).

Theorem 26. The function u defined by (6.3) is the unique mild solution of (6.1).

Proof. Let u be defined by (6.3). In order to show that u is a mild solution we consider the function
v given by v(t) = A−2u(t). It suffices to show that

(6.4) v(t) = v(0) + A

∫ t

0

v(s)ds +
∫ t

0

A−1f(s)ds.

Note that, by definition,

v(s) =
∫ s

−∞
T−(s− r)A−1f(r)dr −

∫ +∞

s

T+(r − s)A−1f(r)dr.

Hence by Fubini’s Theorem

∫ t

0

v(s)ds =

0∫

−∞

t∫

0

T−(s− r)A−1f(r)dsdr +

t∫

0

t∫

r

T−(s− r)A−1f(r)dsdr

−
t∫

0

r∫

0

T+(r − s)A−1f(r)dsdr −
∞∫

t

t∫

0

T+(r − s)A−1f(r)dsdr.
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Since A is closed we obtain by (4.3), for t > 0

A

∫ t

0

v(s)ds =
∫ 0

−∞

(
T−(t− r)A−1f(r)− T−(−r)A−1f(r)

)
dr +

+
∫ t

0

(
T−(t− r)A−1f(r)− P−A−1f(r)

)
dr +

−
∫ t

0

(
P+A−1f(r)− T+(r)A−1f(r)

)
dr +

−
∫ +∞

t

(
T+(r − t)A−1f(r)− T+(r)A−1f(r)

)
dr

= v(t)−
∫ 0

−∞
T−(−r)A−1f(r)dr +

−
∫ t

0

A−1f(r)dr +
∫ +∞

0

T+(r)A−1f(r)dr

= v(t)−
∫ t

0

A−1f(r)dr − v(0).

¤

Our point is the representation formula (6.3). In special cases it had been proved before. Lunardi
[7, (4.4.26) p.164] gave a proof when A generates a holomorphic semigroup and Schweiker [10, Chapter
2] gave a proof if f ∈ BUC(R;X) and A is densely defined. Here we do not address the question of
maximal regularity. This had been done in previous work with the help of multiplier theorems. In fact,
in [1] it is shown that for each f ∈ Cα(R; X) there exists a unique classical solution u ∈ C1+α(R; X) of
(6.1), where 0 < α < 1. Since a classical solution is also a weak solution we now have a representation
formula for this solution. On the other hand, with the help of the representation formula (6.3) one
may prove that u ∈ C1+α(R; X) for f ∈ Cα(R; X) more directly as in [7, Theorem 4.3.1] without
making use of Fourier multiplier theorems. This will be done in the forthcoming paper [12].

In the Lp-context the following is known. Let 1 < p < +∞. If X is a Hilbert space and
f ∈ Lp(R;X), then there exists a unique strong solution u ∈ W 1,p(R;X)∩Lp(R; D(A)) of (6.1) (see
[4] or [9]). Again we can deduce that u is given by (6.1). If X is a UMD-space this result remains
true if A is R-bisectorial (instead of merely sectorial, see [4]).
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