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Abstract. Extending results of Davies and of Keicher on �p we show that the
peripheral point spectrum of the generator of a positive bounded C0-semigroup
of kernel operators on Lp is reduced to 0. It is shown that this implies con-
vergence to an equilibrium if the semigroup is also irreducible and the fixed
space non-trivial. The results are applied to elliptic operators.
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0. Introduction

Irreducibility is a fundamental notion in Perron-Frobenius Theory. It had been
introduced in a direct way by Perron and Frobenius for matrices, but it was H. H.
Schaefer who gave the definition via closed ideals. This turned out to be most fruit-
ful and led to a wealth of deep and important results. For applications Ouhabaz’
very simple criterion for irreduciblity of semigroups defined by forms (see [Ouh05,
Sec. 4.2] or [Are06]) is most useful. It shows that for practically all boundary con-
ditions, a second order differential operator in divergence form generates a positive
irreducible C0-semigroup on L2(Ω) where Ω is an open, connected subset of R

N .
The main question in Perron-Frobenius Theory, is to determine the asymp-

totic behaviour of the semigroup. If the semigroup is bounded (in fact Abel
bounded suffices), and if the fixed space is non-zero, then irreducibility is equiv-
alent to convergence of the Cesàro means to a strictly positive rank-one opera-
tor, i.e. to an equilibrium of the system (see Theorem 1.1 below). However, one
would like to prove strong convergence instead of just in-mean-convergence. For
this a necessary condition is that the peripheral point spectrum is reduced to
0. Recently, Davies [Dav05] showed that this condition is automatically satisfied
for positive contraction semigroups on �p and also for contraction semigroups
on Lp enjoying the Feller property. Keicher [Kei05] generalized Davies’ result to
bounded positive C0-semigroups on an arbitrary order continuous atomic Banach
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lattice and Wolff [Wol07] to more general atomic Banach lattices. In the main
result of Section 3, Theorem 3.5, we prove that the peripheral point spectrum
is reduced to 0 for any Abel bounded positive C0-semigroup of kernel opera-
tors on Lp. Notice that the Feller property automatically implies that a semi-
group consists of kernel operators and on �p every positive operator is a kernel
operator.

Once we know that the peripheral point spectrum is trivial, one possible
sufficient condition for convergence of a bounded mean ergodic C0-semigroup is
countability of the entire peripheral spectrum (cf. Theorem 4.1). This settles the
problem in the case when the resolvent is compact. A natural example of conver-
gence to an equilibrium is the semigroup generated by the Neumann Laplacian
in L1(Ω), where Ω ⊂ R

N is a bounded open domain. In fact, Neumann bound-
ary conditions physically signify an isolated boundary and the heat flow should
converge to an equilibrium. However, as Kunstmann [Kun02] showed, it may hap-
pen that the spectrum of the Neumann Laplacian on L1(Ω) is the entire left half
plane.

The main convergence result presented in this article, (Theorem 4.2), says
that a bounded, positive, irreducible C0-semigroup of kernel operators converges to
a strictly positive equilibrium if a non-zero fixed vector exists. Thus the countabil-
ity assumption can be omitted in the case of kernel operators and non-zero fixed
space. This result can be applied to the Neumann Laplacian on L1 and yields the
desired convergence result. Theorem 4.2 is due to Greiner [Gre82, Korollar 3.11].
The reader might appreciate that we include a proof of this result (which is not
complete in the monograph [Nag86]). In particular, we give a proof of an essen-
tial tool, namely non-disjointness of the powers of an irreducible kernel operator
(which is a version of a result of Axmann [Axm80]).

Kernels of semigroups generated by elliptic operators, i.e. heat kernels, are
intensely studied (see e.g. [Dav90], [Dan00], [Ouh05], [Are04], [Are06]). In the case
of Neumann boundary conditions, on domains having the extension property, very
precise information on the kernel is known: it satisfies Gaussian estimates [AtE97],
[Are04], [Are06], [Ouh05], [Dan00] and hence the semigroup is holomorphic even
on L1. But even if the domain is irregular, it is easy to prove that some sort of
kernel exists. This can be done via Bukhvalov’s characterization of kernel oper-
ators (see Corollary 3.5) and using the de Giorgi-Nash result on local regularity
of weak solutions (cf. [AB94]). A more serious problem is to show that the semi-
group is bounded. If the spectral bound is 0 and the resolvent is compact, then
by Perron-Frobenius Theory, it is again irreducibility which implies that the pole
is simple and hence that the semigroup is at least Abel bounded. Our Theorem
3.5 ensures triviality of the peripherical point spectrum also in that case. Thus
strong convergence of the semigroup is equivalent to its boundedness which may
be violated, though. But in any case we can prove strong convergence in a weighted
L1-space, thus showing that in a quite general situation, asymptotic stability holds
in a reasonable sense.
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1. Ergodicity

Let T be a C0-semigroup T on a Banach space X. We say that T is mean ergodic
if

Pf = lim
t→∞

1
t

t∫

0

T (s)f ds

exists for all f ∈ X. This implies that

X = kerA⊕R(A) ,

where A is the generator of T and R(A) := {Af : f ∈ D(A)} its range. In that
case P is the projection onto kerA along this decomposition. We call P the ergodic
projection of T . If T is bounded and X is reflexive, then T is ergodic.

Now let X = Lp = Lp(Ω) where (Ω,Σ, μ) is a σ-finite measure space and
1 ≤ p < ∞. Assume that T is positive. We say that T is irreducible if the only
invariant closed ideals of Lp are {0} and Lp. A closed ideal in Lp is a space J of
the form J = Lp(ω) where ω ∈ Σ and Lp(ω) := {f ∈ Lp : f = 0 a.e. on Ω \ ω}.
For f ∈ Lp we write f > 0 if f ≥ 0 and μ({x ∈ Ω : f(x) > 0}) > 0 and we write
f � 0 if f(x) > 0 a.e. Note that kerA = {f ∈ Lp : T (t)f = f for all t ≥ 0} is the
fixed space of T . Thus, if T is irreducible and 0 < e ∈ kerA, then e � 0. Similarly,
if 0 < ϕ ∈ kerA′, then ϕ � 0. We denote by

s(A) = sup{	λ : λ ∈ σ(A)}
the spectral bound of T . Then (s(A),∞) ⊂ �(A) and R(λ,A) := (λ − A)−1 ≥ 0
for all λ > s(A). Moreover,

λR(λ,A) =

∞∫

0

λe−λtT (t) dt

strongly for λ > s(A), i.e. λR(λ,A) is the Abel mean of T . We say that T is
Abel bounded if s(A) ≤ 0 and sup

λ>0
‖λR(λ,A)‖ < ∞. If T is bounded, then T is

also Abel bounded. It will be important for us to consider this weaker notion of
boundedness when discussing the important case where T is irreducible and A
has compact resolvent. The Gaussian semigroup on L1(R) is positive, irreducible
and contractive, but not mean ergodic. However, if kerA �= 0, then irreducibility
implies mean ergodicity as the following theorem shows.

Theorem 1.1. Let T be an Abel bounded positive C0-semigroup on Lp, 1 ≤ p < ∞,
with generator A. The following assertions are equivalent.

(i) T is irreducible and kerA �= {0};
(ii) there exist 0 � e ∈ kerA, 0 � ϕ ∈ kerA′ and dim kerA = 1;
(iii) T is mean ergodic with ergodic projection P given by

Pf = 〈f, ϕ〉e (f ∈ Lp) where 0 � ϕ ∈ kerA′ ,
0 � e ∈ kerA satisfy 〈e, ϕ〉 = 1 . (1.1)
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We denote the projection of rank 1 defined in (1.1) by P = ϕ⊗ e.

Proof. (i) ⇒ (ii). Let 0 �= f ∈ kerA. Then |f | = |T (t)f | ≤ T (t)|f |. Let 0 < ψ ∈ X ′

such that 〈|f |, ψ〉 > 0. Let ϕ be a weak* limit point of λR(λ,A)′ϕ as λ ↓ 0. Then
0 < ϕ ∈ kerA′ by the proof of [ABHN01, Proposition 4.3.6]. Hence ϕ � 0 by
irreducibility. Since 〈T (t)|f | − |f |, ϕ〉 = 〈|f |, T (t)′ϕ−ϕ〉 = 0 and T (t)|f | − |f | ≥ 0,
it follows that T (t)|f | = |f |. Thus e := |f | ∈ kerA. Since T is irreducible it follows
that e � 0 and that kerA is 1-dimensional (see [Nag86, C-III Prop. 3.5, p. 310]
and its proof).

(ii) ⇒ (iii). Since the order interval is weakly compact and invariant, it
follows from [ABHN01, Proposition 4.3.1a)] that T is Abel ergodic. Since T is
positive, T is also mean ergodic by [ABHN01, Theorem 4.3.7]. Normalizing e and
ϕ such that 〈e, ϕ〉 = 1, Pf = 〈f, ϕ〉e is a projection onto kerA vanishing on
R(A) ⊂ kerϕ. Thus P is the ergodic projection.

(iii) ⇒ (i). Let ω ∈ Σ, J = Lp(ω). Assume that μ(ω) > 0 and μ(Ω \
ω) > 0. Let 0 < f ∈ J , 0 < ψ ∈ X ′ = Lp′

such that suppψ ⊂ Ω \ ω. Then
1
t

∫ t

0
〈T (s)f, ψ〉 ds → 〈Pf, ψ〉 = 〈f, ϕ〉〈e, ψ〉 which is strictly positive. Hence there

exists s > 0 such that 〈T (s)f, ψ〉 > 0 and so T (s)f /∈ J . Thus J is not invariant.
We have shown that T is irreducible. �

The following simple example shows that in condition (ii) we have to assume
that e and ϕ are both strictly positive.

Example 1.2. Let X = R
2, A =

( −1 1
0 0

)
. Then T (t) =

(
e−t 1 − e−t

0 0

)
.

Thus lim
t→∞T (t) = P, Px = 〈x, ϕ〉e, e = (1, 1)�, ϕ = (0, 1). But T is not irreduc-

ible.

An important case where the assumption kerA �= {0} can be verified occurs
when T is an irreducible, positive C0-emigroup whose generator A has compact
resolvent. Then by de Pagter’s Theorem s(A) > −∞. We assume that s(A) = 0.
This is just a normalization which can be obtained by considering A−s(A) instead
of A. Thus 0 is a pole of the resolvent and kerA �= 0. Now by [Nag86, C-III. Prop.
3.5, p. 310], the order of the pole is 1 (because T is irreducible). Hence T is Abel
bounded. Thus we can apply Theorem 1.1 and obtain the following.

Corollary 1.3. Let T be a positive, irreducible C0-semigroup on Lp, 1 ≤ p < ∞,
whose generator A has compact resolvent. Assume that s(A) = 0. Then T is ergo-
dic with ergodic projection P given by

Pf = 〈f, ϕ〉e (f ∈ Lp)

where 0 � e ∈ kerA and 0 � ϕ ∈ kerA′.

Theorem 1.1 shows that under the assumption that T is Abel bounded and
kerA �= 0, irreducibility is equivalent to saying that T converges in the Cesàro
sense to an equilibrium P given by

Pf = 〈f, ϕ〉e (f ∈ Lp)
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where 0 � ϕ ∈ kerA′, 0 � e ∈ kerA. The aim of this article is to give conditions
which imply strong convergence instead of merely Cesàro convergence. Such results
can be seen as Tauberian theorems (see [ABHN01, Part 3]). A well-known Taube-
rian condition is that T is bounded and that the peripheral spectrum σ(A) ∩ iR
(and not just the peripheral point spectrum σp(A)∩iR) is countable ([EN00, Thm.
V.2.21], [ABHN01, Sec. 5.5]). Here we want to consider a different condition, which
is not of spectral type, namely that the semigroup consists of kernel operators.

2. Kernel operators

Let K : X → X be a positive operator where X = Lp(Ω), 1 ≤ p < ∞, as
before. We say that K is a kernel operator if there exists a measurable function
k : Ω × Ω → R+ such that

Kf(x) =
∫

Ω

k(x, y)f(y) dy

x − a.e. for all f ∈ X. Kernel operators can be characterized in an abstract
way. By [Sch74, Proposition IV.9.8, p. 290], K is a kernel operator if and only
if K ∈ (X ′ ⊗ X)⊥⊥, i.e. if there exist operators Kn, Rn such that 0 ≤ Kn ≤
Kn+1, lim

n→∞Knf = Kf for all f ∈ X and Kn ≤ Rn, Rn an operator of finite
rank. As a consequence we obtain the following permanence property. Recall that
a closed sublattice of an Lp-space is an Lp-space again (see e.g. [Sch74, Exercise
23, p. 149]).

Proposition 2.1. Let 0 ≤ K ∈ L(X) be a kernel operator.
a) If 0 ≤ S ∈ L(X), then also SK and KS are kernel operators.
b) If Y ⊂ X is a closed sublattice of X such that Y ⊂ K, then also K|Y is a

kernel operator.

Proof. a) One has limSKn = SK and SKn ≤ SRn. Similarly limKnS = KS
and KnS ≤ RnS. Since RnS and SRn are of finite rank, the claim follows.

b) There exists a positive projection P from X onto Y (see [Sch74, III.11.4]).
Thus K̃n = PKn|Y

∈ L(Y ), lim
n→∞ K̃nf = Kf (f ∈ Y ) and K̃n ≤ PRn|F

which is of finite rank.
�

We also mention the following characterization [MN91, Thm. 3.3.11] which
is most useful for applications in Section 5.

Theorem 2.2 (Bukhvalov). Let 0 ≤ K ∈ L(X). The following assertions are equiv-
alent.

(i) K is a kernel operator;
(ii) if fn → f in X, |fn| ≤ g for some g ∈ X, then

lim
n→∞Kfn(x) = Kf(x) a.e.
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Remark 2.3. In [MN91] condition(ii) in Theorem 2.2 is replaced by the condition
(iii)if fn

∗→ f and |fn| ≤ g for some g ∈ X, then lim
n→∞(Kfn)(x) = (Kf)(x) a.e.

Here fn
∗→ f means that each subsequence of (fn)n∈N has a subsequence

which converges a.e. to f . But if |fn| ≤ g ∈ X, then by the dominated conver-
gence theorem fn

∗→ f if and only if fn → f in X. Thus (iii) is equivalent to (ii).
The equivalence of ∗-convergence and convergence in X for a dominated sequence
also shows that (i) implies (iii).

Corollary 2.4. Assume that Ω is an open set in R
N and μ the Lebesgue measure.

If 0 ≤ K ∈ L(X) satisfies KX ⊂ L∞
loc(Ω), then K is a kernel operator.

Proof. Let ωn ⊂⊂ Ω (i.e. ωn is bounded and ωn ⊂ Ω) such that
⋃

n∈N

ωn = Ω. By

the Closed Graph Theorem there exist constants cn ≥ 0 such that

‖Kf‖L∞(ωn) ≤ cn‖f‖X .

Now let fm → f in X as m → ∞. Then Kfm → Kf in L∞(ωn) as m → ∞ for
each n ∈ N. Hence (Kfn)(x) → (Kf)(x) x- a.e. in Ω as m → ∞. Thus (ii) of the
previous theorem is satisfied. �

3. Trivial peripheral point spectrum

Let (Ω,Σ, μ) be a σ-finite measure space, 1 ≤ p < ∞, Lp = Lp(Ω). We first prove
a special case of the main result Theorem 3.5.

Theorem 3.1. Let T be a positive contractive C0-semigroup on Lp with generator
A. Assume that T (t) is a kernel operator for some t > 0. Then σp(A) ∩ iR ⊂ {0}.

Here σp(A) = {λ ∈ C : ∃ 0 �= f ∈ D(A), Af = λf} denotes the point spec-
trum of A. Theorem 3.1 is due to Davies [Dav05] in the case where Lp = �p, i.e.,
if (Ω,Σ, μ) is atomic. Keicher [Kei05] generalized the result to arbitrary bounded,
positive C0-semigroups on an atomic Banach lattice with order continuous norm
and Wolff [Wol07] to more general atomic Banach lattices. Moreover Wolff merely
assumes that the semigroup is (ω)-solvable, a notion of boundedness which is more
general than Abel bounded. Note that on �p each positive operator is a kernel oper-
ator.

Proof of Theorem 3.1. Let α ∈ R, 0 �= f ∈ Lp such that T (t)f = eiαtf for all
t ≥ 0. We want to show that α = 0.

We have |f | = |T (t)f | ≤ T (t)|f |. Since T is contractive and the norm is
strictly monotonic on the positive cone of Lp, it follows that e := |f | = T (t)|f |
for all t ≥ 0. We may assume that |f | � 0. Otherwise we replace Ω by {x ∈
Ω : f(x) �= 0}. Since the order interval [0, e] is weakly compact and total in Lp

and also invariant under T , the semigroup T is relatively weakly compact. Hence
there exists a projection P ∈ {T (t) : t ≥ 0}−Lσ commuting with T onto the space
Xr := span {g ∈ D(A) : Ag = iβg for some β ∈ R}, see [EN00, Theorem V.2.8] (cf.
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[KN07] in this volume). Since P ∈ {T (t) : t ≥ 0}−Lσ , it follows that P is positive
and contractive. Note that for f ∈ Xr, |f | = |Pf | ≤ P |f |. Since the norm is strictly
monotonic on the positive cone it follows that |f | = P |f |. Thus Xr is a closed sub-
lattice of Lp. The restriction Tr of T to Xr acts as a group of lattice isomorphisms
on Xr (see [KN07, Proposition 2.2]). By assumption and Proposition 2.1.b) there
exists t0 > 0 such that Tr(t0) is a kernel operator. The ideal property Proposition
2.1.a) implies that the identity on Xr is a kernel operator. By [MN91, Proposition
3.3.13, p. 189] this implies that Xr is atomic, i.e., Xr = �p(J) for some index set
J . Now Tr is a bounded C0-group of lattice isomorphisms on �p(J). This implies
that Tr(t) = I for all t ∈ R (see [Kei05, Proposition 3.5] for arbitrary atomic
spaces). In fact, since Tr(t) maps atoms to atoms, one has Tr(t)ej = h(t, j)eϕ(t,j)

for some h(t, j) > 0, ϕ(t, j) ∈ J . Strong continuity implies that ϕ(t, j) = j. Hence
Tr(t)ej = h(t, j)ej . This implies that h(t, j) = eλjt, and hence h(t, j) = 1 since Tr

is bounded. Since f ∈ Xr, it follows that α = 0. �

Remark 3.2. One can also use the direct argument of Davies [Dav05], i.e. the space
M of [Dav05, Theorem 4] instead of the Glicksberg-deLeeuw space Xr in the proof
of Theorem 3.1.

Next we will show that the peripheral point spectrum is trivial for each
positive C0-semigroup of kernel operators which may even mildly grow as t → ∞.
We will use a construction which will be useful later again. Let T be a positive
C0-semigroup on Lp(Ω, μ). Let 0 � ϕ ∈ Lp′

(Ω, μ) (the dual space of Lp(Ω, μ))
such that

T (t)′ϕ ≤ ϕ , for all t ≥ 0 . (3.1)

Consider the space L1(Ω, ϕμ). Since for f ∈ Lp(Ω, μ),

‖f‖L1(Ω,ϕμ) =
∫

Ω

|f |ϕdμ ≤ ‖f‖Lp(Ω,μ)‖ϕ‖Lp′ (Ω,μ) (3.2)

the space Lp(Ω, μ) is continuously embedded into L1(Ω, ϕμ). Moreover, Lp(Ω, μ)
is a sublattice of L1(Ω, ϕμ).

Proposition 3.3. Assume (3.1). Then there exists a unique C0-semigroup Tϕ on
L1(Ω, ϕμ) such that Tϕ(t)f = T (t)f for all f ∈ Lp(Ω, μ), t ≥ 0. The semigroup Tϕ

is positive and contractive. Moreover, Tϕ(t) is a kernel operator, if T (t) is one,
t > 0. If T is irreducible, then Tϕ is so too.

Proof. Let f ∈ Lp(Ω, μ). Then

‖T (t)f‖L1(Ω,ϕμ) =
∫

Ω

|T (t)f |ϕdμ ≤
∫

Ω

T (t)|f |ϕdμ

=
∫

|f | T (t)′ϕdμ ≤
∫

Ω

|f |ϕdμ

= ‖f‖L1(Ω,ϕμ) .
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Since Lp(Ω, μ) is dense in L1(Ω, ϕμ), the operator T (t) has a unique continuous
extension Tϕ(t) ∈ L(L1(Ω, ϕμ)). Clearly, Tϕ(t) is positive and contractive. More-
over, Tϕ(t + s) = Tϕ(t)Tϕ(s), s, t ≥ 0. In order to show strong continuity, let
f ∈ Lp(Ω, μ). Then by (3.2),

‖Tϕ(t)f − f‖L1(Ω,ϕμ) ≤ ‖T (t)f − f‖Lp(Ω,μ) · ‖ϕ‖Lp′ (Ω,μ) → 0

as t → 0. Since Lp(Ω, μ) is dense in L1(Ω, ϕμ) and Tϕ(t) is contractive, the claim
follows. If T (t) is given by a kernel kt(x, y), then Tϕ(t) is given by the kernel

1
ϕ(y)kt(x, y). Each closed ideal J of L1(Ω, ϕμ) is of the form J = L1(ω, ϕμ) for
some ω ∈ Σ. Thus J ∩ Lp(Ω, μ) = Lp(ω, μ). If Tϕ(t)J ⊂ J , then T (t)Lp(ω, μ) ⊂
Lp(ω, μ). Thus Tϕ is irreducible if T is irreducible. �

We need the following lemma whose easy proof is omitted.

Lemma 3.4. Let S be a C0-semigroup on a Banach space X which is the direct
sum of two closed subspaces X1 and X2. Assume that S(t)X1 ⊂ X1. Denote by
P2 the projection onto X2 according to the decomposition X = X1 ⊕ X2. Then
T2(t)x = P2T (t)x defines a C0-semigroup on X2. If y ∈ X,T (t)y = eiαty, then

T2(t)(P2y) = eiαt(P2y)

for all t ≥ 0.

Now we can prove a fairly general result on the triviality of the peripheral
point spectrum. Recall from Section 1 that each bounded C0-semigroup is Abel
bounded.

Theorem 3.5. Let T be a positive, Abel bounded C0-semigroup on Lp(Ω, μ), where
1 ≤ p < ∞, with generator A. Assume that T (t) is a kernel operator for some
t > 0. Then σp(A) ∩ iR ⊂ {0}.
Proof. Let 0 �= f ∈ Lp(Ω, μ) such that T (t)f = eiαtf (t ≥ 0). Then |f | ≤
T (t)|f | (t ≥ 0). Let 0 < ψ ∈ Lp′

(Ω, μ) such that 〈|f |, ψ〉 > 0. Let ϕ be a ω∗-
limit point of λR(λ,A)′ψ as λ ↓ 0. Then ϕ ∈ kerA′ and 〈|f |, ϕ〉 ≥ 〈|f |, ψ〉 > 0
[ABHN01, proof of Prop. 4.3.6]. Moreover, ϕ ≥ 0. Let ω := {x ∈ Ω : ϕ(x) > 0}.
Then T (t)Lp(Ω\ω, μ) ⊂ Lp(Ω\ω, μ). In fact, let f ∈ Lp(Ω\ω, μ), i.e.,

∫
Ω

|f |ϕdμ = 0.

Then∫

Ω

|T (t)f |ϕdμ ≤
∫

Ω

(T (t)|f |)ϕdμ =
∫

Ω

|f | · T (t)′ϕdμ =
∫

Ω

|f |ϕdμ = 0 .

Thus T (t)f ∈ Lp(Ω \ ω, μ). Define the C0-semigroup T2 on Lp(ω, μ) by T2(t)f =
1ωT (t)f (f ∈ Lp(ω, μ)), see the previous lemma. Then f1 := 1ωf �= 0 since
〈ϕ, |f |〉 > 0 and T2(t)f1 = eiαtf1 (t ≥ 0). Moreover, T2(t)′ϕ = ϕ, since for
g ∈ Lp(ω, μ),∫

ω

T2(t)gϕdμ =
∫

Ω

T (t)gϕdμ =
∫

Ω

gT (t)′ϕdμ =
∫

Ω

gϕdμ =
∫

ω

gϕdμ .
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Finally, T2(t) is a kernel operator for some t > 0. Now the semigroup T2ϕ defined on
L1(ω, ϕdμ) as in Proposition 3.3 is contractive. Moreover T2ϕ(t)f1 = eiαtf1 (t ≥
0) and f1 �= 0. It follows from Theorem 3.1 that α = 0. �

Corollary 3.6. Let T be a positive, irreducible C0-semigroup on Lp, where 1 ≤ p <
∞. Assume that
(a) T (t) is a kernel operator for some t > 0, and that
(b) s(A) = 0 is a pole of the resolvent.

Then σp(A) ∩ iR = {0}.
Proof. By [Nag86, C-III. Prop. 3.5, p. 310] the pole is simple and hence T is Abel
bounded. Now Theorem 3.5 proves the claim. �

Assume now that Ω is an open subset of R
N and μ the Lebesgue measure

dx. As in [Dav05] we say that a positive C0-semigroup on Lp(Ω, dx) has the Feller
property if

T (t)Lp(Ω, dx) ⊂ C(Ω)

(the space of all continuous functions on Ω). By Corollary 2.3 this implies that
T (t) is a kernel operator for each t > 0. Thus we obtain the following corollary
which is due to Davies [Dav05, Theorem 12] in the case where T (t) is contractive.

Corollary 3.7. Let T be a positive, Abel bounded C0-semigroup on Lp(Ω, dx) where
1 ≤ p < ∞. Assume that T has the Feller property. Then

σp(A) ∩ iR ⊂ {0} ,
where A denotes the generator of T .

4. Convergence of the semigroup

In this section we want to establish strong convergence of T (t) itself as t → ∞,
and not merely convergence of the Cesaro means. It is clear that triviality of the
peripheral point spectrum is a necessary condition. In fact, if iα ∈ σp(A), then
T (t)f = eiαtf (t ≥ 0) for some f �= 0. If T (t)f converges as t → ∞, then α = 0.

Throughout this section, (Ω,Σ, μ) is a σ-finite measure space, 1 ≤ p <
∞, X = Lp(Ω, μ). We first give a result based on the hypothesis that the periph-
eral spectrum (and not just the peripheral point spectrum) is countable.

Theorem 4.1. Let T be a positive, bounded, ergodic C0-semigroup on X, where
1 ≤ p < ∞, with generator A. Assume that T (t) is a kernel operator for some
t > 0. If σ(A) ∩ iR is countable, then

Pf = lim
t→∞T (t)f

exists for all f ∈ X.
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Proof. By [ABHN01, Prop. 4.3.13] the semigroup T is totally ergodic. This implies
that σp(A′) ∩ iR = σp(A) ∩ iR. Thus it follows from Theorem 3.5 that σp(A′) ∩
iR ⊂ {0}. Denote by P the ergodic projection and let X0 = (I − P )X. Applying
[ABHN01, Theorem 5.5.6] (or [EN00, Thm. V.2.21]) to the restriction of T to X0

proves the claim. �

It is remarkable that the assumption that the peripheral spectrum be count-
able can be omitted if we assume that kerA �= {0}. The following result is due to
Greiner [Gre82, Korollar 3.11] and is stated in [Nag86, C-IV].

Theorem 4.2. Let T be a positive, irreducible, contractive C0-semigroup on Lp with
generator A. Assume that
(a) T (t0) is a kernel operator for some t0 > 0 and that
(b) kerA �= {0}.

Then there exist 0 � e ∈ kerA, 0 � ϕ ∈ kerA′ such that

lim
t→∞T (t)f = 〈f, ϕ〉e

for all f ∈ Lp.

Proof. We know from Theorem 1.1 that T is ergodic with ergodic projection P =
ϕ⊗ e for some 0 � e ∈ kerA, 0 � ϕ ∈ kerA′. Observe that T (τ) is mean ergodic
for τ > 0. In fact, the weakly compact order interval [0, e] is invariant under T (τ)
and total in X. This implies mean ergodicity (cf. [ABHN01, Proposition 4.3.1]).
Moreover,

ker(I − T (τ)) = C · e . (4.1)

This follows from the fact that

σp(A) ∩ iR = {0} , (4.2)

which is a consequence of Theorem 3.1. In fact, if f ∈ ker(I − T (τ)), then

0 = T (τ)f − f = (A− 2πik/τ)

τ∫

0

e−2πikt/τT (t)f dt .

Since 2πik/τ �∈ σp(A) for k �= 0 it follows that the k − th Fourier coefficient of
the funtion T (·)f ∈ C([, τ ];X) is 0 for k �= 0. Hence T (·)f is constant. Thus
f ∈ kerA = C · e.

As a consequence of mean ergodicity and (4.1) we have

X = C · e+R(I − T (τ)) . (4.3)

Note that for g ∈ X,

P (g − T (τ)g) = P

⎛
⎝A

τ∫

0

T (s)g ds

⎞
⎠ =

〈
A

τ∫

0

T (s)g ds , ϕ

〉
· e = 0
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and Pe = e. Thus P is the projection according to the decomposition (4.3), i.e.,

P = lim
n→∞

1
n

n−1∑
k=0

T (τ)k

strongly. Now it follows as in the proof of Theorem 1.1 that T (τ) is irreducible. By
Greiner’s 0-2-law [Gre82, 3.7] or [Nag86, C-IV.Thm. 2.6, p. 346] for every τ > 0
one has the following alternative

|T (t+ τ) − T (t)|e → 0 as t → ∞ , (4.4)

or
|T (t+ τ) − T (t)|e = 2e for all t > 0 , (4.5)

We show that there exists at least one τ ≥ t0 such that (4.4) holds. In fact,
otherwise (4.5) holds for all τ ≥ t0. Let S = T (t0). Then S is a positive, irreduc-
ible kernel operator. Letting τ = (n− 1)t0, t = t0 in (4.5), it follows that

|Sn − S|e = 2e (4.6)

for all n ∈ N, n ≥ 2. Denote by kn the kernel of Sn, n = 1, 2 · · · . Then |kn − k1|
is the kernel of |Sn − S|. Hence there exists a null set N ⊂ Ω such that for all
x ∈ Ω \N,n ≥ 2 ∫

Ω

|kn(x, y) − k1(x, y)|e(y) dy = 2e(x)

= (Sne)(x) + (Se)(x)

=
∫

Ω

(kn(x, y) + k1(x, y))e(y) dy .

Let g(y) = (kn(x, y) + k1(x, y) − |kn(x, y) − k1(x, y)|) · e(y). Then g ≥ 0 a.e. and∫
Ω

g(y) dy = 0. This implies that g(y) = 0 a.e. Since for a, b ≥ 0, |a − b| = a + b if

and only if a · b = 0, we conclude that for all x ∈ Ω \N,n ≥ 2

kn(x, y)k1(x, y) = 0 y − a.e.

Hence

Sn ∧ S = 0

for all n ≥ 2. Since S is an irreducible kernel operator this contradicts Theorem
6.1 in the appendix. We have shown that (4.4) holds for some τ ≥ t0. For this τ
and |g| ≤ e we have

|T (t)(I − T (τ))g| = |(T (t+ τ) − T (t)g| ≤ |T (t+ τ) − T (t)|e → 0 as t → ∞.

Since the order interval [0, e] is total, it follows that lim
t→∞T (t)f = 0 for all f ∈

R(I − T (τ)). Now the claim follows from (4.3). �
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The rotation semigroup on Lp(T),T the torus, 1 ≤ p < ∞, is positive, irre-
ducible and contractive. Its generator A has a compact resolvent and 1T ∈ kerA.
But T (t) does not converge strongly as t → ∞. In fact, T is an isometric group.
Moreover, 2πiZ ⊂ σp(A). In this example condition (a) of Theorem 4.2 is violated,
i.e., T (t) is not a kernel operator for any t > 0 (even though R(λ,A) is a kernel
operator for all λ > 0).

Remark 4.3. The proof of Corollary 2.11 in [Nag86, p. 350], which would imply
Theorem 4.2, seems not to be complete. In fact, [Nag86, C-III Cor. 3.2] cannot
be applied to Aj since Tj is not known to be periodic. Moreover, Example 1.2 in
Section 1 shows that irreducibility of Tj needs a proof as does the irreducibility of
Tj(t0).

One problem in applying Theorem 4.2 is that it might not be known or not
true that T is bounded. In fact, let T be a positive, irreducible C0-semigroup
of kernel operators. Then by Jentzsch’s Theorem [Sch74, V. Thm. 6.6. p. 337]
s(A) > −∞. Replacing A be A − s(A) we may assume that s(A) = 0. Now the
problem is that in general T will not be bounded. Assume in addition that 0 is a
pole of the resolvent. Then it follows from [Nag86, C-III Thm. 3.12, p. 315] that
the pole is simple. Thus T is Abel bounded. It follows from Theorem 1.1 that T
is ergodic with ergodic projection P = ϕ⊗ e where 0 � ϕ ∈ kerA′, 0 � e ∈ ker e.
Now by Theorem 4.3, T converges strongly to P if and only if T is bounded. But
even if T is not bounded the extended semigroup Tϕ is contractive on L1(Ω, ϕdμ).
In general, the peripheral spectrum of this semigroup is no longer countable. But
Tϕ(t) is still a kernel operator. So Theorem 4.2 implies that

lim
t→∞Tϕ(t)f =

∫
fϕdμ · e

in L1(Ω, ϕμ) for all f ∈ L1(Ω, ϕμ). In particular, we obtain the following.

Theorem 4.4. Let T be a positive, irreducible C0-semigroup on Lp(Ω, μ) where
1 ≤ p < ∞. Denote by A its generator. Assume that
(a) T (t) is a kernel operator for some t > 0, and that
(b) s(A) = 0 is a pole of the resolvent.

Then there exist 0 � e ∈ kerA, 0 � ϕ ∈ kerA′ such that

lim
t→∞

∫

Ω

|T (t)f − c(f)e|ϕdμ = 0

where c(f) =
∫
fϕdμ for all f ∈ LP (Ω, μ).

We add another result of Perron Frobenius Theory which will be useful for
the applications given in Section 5.

Theorem 4.5. Let T be a positive, irreducible C0-semigroup on X. Assume that
there exist
(a) 0 < e ∈ kerA and
(b) τ > 0 such that T (τ) is compact.
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Then there exist 0 � ϕ ∈ kerA′, M ≥ 0, ε > 0 such that

‖T (t) − P‖L(X) ≤ Me−εt (t ≥ 0)

where Pf = 〈f, ϕ〉e (f ∈ X).

Proof. It follows from irreducibility that e � 0 and that s(A) = 0. Since T (τ) is
compact, the semigroup is quasicompact [Nag86, B-IV.2.8 p. 214]. Now the result
follows from [Nag86, C-IV.2.1 p. 343 and C-III.3.5(d) p. 310]. �

5. Applications

We will consider elliptic operators with measurable coefficients. In the first two
examples we consider a domain Ω ⊂ R

N with finite volume. If Ω is sufficiently
regular, we can apply Theorem 4.5 and show exponential convergence to an equi-
librium. For arbitrary Ω exponential convergence is not true, in general. Heat
propagation might be too slow if the boundary is complicated. Analytically, this
means in particular that the semigroup consists no longer of compact operators.
It is interesting that they are still kernel operators. This follows from the de Gi-
orgi-Nash Theorem. So we can apply Theorem 4.2 and prove strong convergence
to an equilibrium. Finally, we consider operators with unbounded drift. Here the
semigroup is not known to be bounded and we apply Theorem 4.4 to deduce
convergence to an equilibrium in a weighted norm.

5.1. The Neumann Laplacian

Let Ω ⊂ R
N be an open, bounded set. Consider the Neumann Laplacian ΔN

2 on
L2(Ω). It generates a selfadjoint submarkovian C0-semigroup T2(t) on L2(Ω). By
Ouhabaz’ simple criterion [Ouh05, Sec. 4.2] it follows that T2 is irreducible. It had
been proved in [AB94, Theorem 5.2] that T2(t) is a kernel operator for all t > 0.
Let T1 be the extrapolation semigroup on L1(Ω). Then T1 is contractive, positive,
irreducible and T1(t) is a kernel operator for all t > 0. Note that T1(t)1Ω = 1Ω for
all t ≥ 0. Thus it follows from Theorem 4.2 that

lim
t→∞T1(t)f =

1
|Ω|

∫

Ω

f(x) dx · 1Ω (5.1)

in L1(Ω). If Ω is irregular, it can happen that the generator ΔN
1 of T1 has the

entire left half-plane as spectrum (see Kunstmann [Kun02] for this surprising phe-
nomenon).

Remark. However, in the case of Example 5.1, we can also argue in a different
way. Since T2 is holomorphic, it follows that for f ∈ L2(Ω)

lim
t→∞T2(t)f =

1
|Ω|

∫
f(x) dx1Ω

in L2(Ω). By standard arguments this implies (5.1).
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In fact, let 0 ≤ f ≤ 1. Since T (t)f → c(f)1Ω in L2(Ω), for each sequence tn → ∞
there is a subsequence such that T (tnk

)f → c(f)1Ω a.e. Thus T (tnk
)f → c(f)1Ω

in L1(Ω) by the dominated convergence theorem. Here c(f) = 1
|Ω|

∫
Ω

f(x) dx. Since

[0, 1Ω] is total in L1(Ω), the claim follows.

5.2. Elliptic operators

Let Ω ⊂ R
N be open, connected of finite volume. Let aij ∈ L∞(Ω), bj ∈ L∞(Ω)

such that
N∑

i,j=1

aij(x)ξiξj ≥ ν|ξ|2 (ξ ∈ R
N , x ∈ Ω) ,

where ν > 0. Define the form a : H1(Ω) ×H1(Ω) → C given by

a(u, v) =
∫

Ω

⎧⎨
⎩

N∑
i,j=1

aij(x)DiuDjv +
N∑

j=1

bjDjuv̄

⎫⎬
⎭ dx .

Then a is continuous and L2(Ω)-elliptic, i.e.,

	a(u, u) + ω‖u‖2
L2 ≥ β‖u‖2

H1

for all u ∈ H1(Ω) and some ω ∈ R, β > 0. Denote by −A2 the operator asso-
ciated with a and by T2 the semigroup generated by A2. The semigroup T2 is
positive and irreducible [Ouh05, 4.2 p. 103f]. Since a(1, v) = 0 for all v ∈ H1(Ω)
one has A21Ω = 0, hence T2(t)1Ω = 1Ω (t ≥ 0). Consequently, the restriction
Tp(t) of T2(t) to Lp(Ω) defines a positive C0-semigroup Tp on Lp(Ω), 2 < p <
∞, whose generator we denote by Ap. It is shown by Ouhabaz [Ouh05, Theo-
rem 4.28 p. 135] that there also exist C0-semigroups Tp on Lp(Ω) for 1 < p < 2
such that ‖Tp(t)‖ ≤ eωpt (t ≥ 0) where ωp ∈ R and Tp(t)|L2(Ω)

= T2(t) (t ≥ 0),
see also Daners [Dan00]. However, if the bj are not differentiable, then it may
happen that lim

p↓1
ωp = ∞, and it is not clear that a C0-semigroup extending T2

exists on L1(Ω) without further assumptions.

Nonetheless, since the semigroup governs a heat equation, the space L1 is of
particular interest. Indeed, given an initial heat distribution 0≤f ∈Lp(Ω), u(t, x)=
(Tp(t)f)(x) is the density of the heat at time t at the point x ∈ Ω. For a Borel set
B ⊂ Ω the integral ∫

B

u(t, x) dx

is the heat amount in B at time t. We want to discuss in which sense u(t, ·) con-
verges to an equilibrium as t → ∞ depending on various hypotheses on Ω and
on the coefficients. Before doing so we collect some properties which hold with-
out further assumptions. The semigroup T2 is holomorphic. Consequently, Tp is
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holomorphic for 1 < p < ∞; cf. [Are04, 7.2.2]. Next we show that Tp(t) is a
kernel operator for 1 < p < ∞, t > 0. In fact, it is obvious that the prop-
erty of being a kernel operator extrapolates from one Lp space to all others, on
which the semigroup operates, even to L1 (in contrast to properties as holomor-
phy and compactness as Example 5.1 shows). Thus we may consider p > N/2.
Then for λ > 0 large, R(λ,Ap)Lp(Ω) ⊂ L∞

loc(Ω). In fact, let f ∈ Lp(Ω), u =
R(λ,Ap)f . Then λu − Apu = f . It follows from the de Giorgi-Nash Theorem
[GT77, Theorem 8.22] that u is continuous. Hence D(Ap) ⊂ L∞

loc(Ω). Since Tp is
holomorphic, Tp(t)Lp(Ω) ⊂ D(Ap) ⊂ L∞

loc(Ω). It follows from Corollary 2.3 that
Tp(t) is a kernel operator for all t > 0.

In order to obtain a semigroup on L1(Ω) and kernels in L∞(Ω×Ω) we discuss
several assumptions on the domain and the coefficients.
First case: Assume that Ω has the Sobolev injection property, i.e. H1(Ω) ⊂ L2∗

(Ω)
where L2∗

(Ω) = L2N/N−2(Ω) if N ≥ 3, L2∗
(Ω) =

⋃
2≤q<∞

Lq(Ω) if N = 2 and

L2∗
(Ω) = L∞(Ω) if N = 1. This condition is satisfied if Ω is bounded and has

Lipschitz boundary, or more generally the extension property. But the Sobolev
injection property is also true for any Ω = Ω̃ \L where Ω̃ has the extension prop-
erty and L is closed subset of a hyperplane. Such Ω has not longer the extension
property if int(L) ∩ Ω �= ∅, where int(L) denotes the interior of L in the relative
topology of the hyperplane (see also [Dan00]). The assumption that Ω has the
Sobolev injection property implies that Tp has Gaussian bounds [Ouh05]. Con-
sequently, Tp(t) is given by a bounded kernel and the semigroup extends to a
C0-semigroup T1 on L1(Ω). Moreover, each T1(t) is a compact operator. Now we
can apply Theorem 4.5 and find 0 � ϕ ∈ kerA′

1, ε > 0,M ≥ 0 such that

‖T1(t) − P‖L(L1) ≤ Me−εt (t ≥ 0)

where Pf =
∫
Ω

fϕ dx · e. Thus T1(t) converges in operator norm exponentially fast

to the equilibrium P . This implies in particular that σ(A1) ⊂ {λ ∈ C : 	eλ ≤
−ε}∪{0}. Thus, the Neumann Laplacian considered in 5.1 shows that such a result
cannot hold for irregular Ω.
Second case: The domain Ω is arbitrary, of finite volume. In order to make sure
that the semigroup extends to L1(Ω) we impose further conditions on the drift
terms, namely that bj ∈ W 1,∞

0 (Ω) and

N∑
j=1

Djbj ≤ 0 .

Then by the Beurling-Deny criterion, ‖T2(t)‖L1(Ω) ≤ ‖f‖L1 (see [Ouh05], [Are06,
Example 9.3.3]) and we obtain a contractive C0-semigroup T1 on L1(Ω) such that
T1(t)|L2(Ω)

= T2(t) for all t ≥ 0. Since T2(t) is a positive kernel operator on L2(Ω),
also T1(t) is a positive kernel operator on L1(Ω). Moreover, T1 is irreducible since
T2 is so. Finally, T1(t)1Ω = T2(t)1Ω = 1Ω for all t ≥ 0. Now Theorem 4.2 implies
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that there exists 0 � ϕ ∈ kerA′
1 ⊂ L∞(Ω) such that

lim
t→∞T1(t)f =

∫

Ω

fϕ dx1Ω

in L1(Ω) for all f ∈ L1(Ω).

5.3. Elliptic operators with unbounded drift

Let aij ∈ C1(RN ) be bounded with bounded derivatives and assume that
N∑

i,j=1

aij(x)ξiξj ≥ α|ξ|2

for all x ∈ R
N , ξ ∈ R

N . Let b ∈ C1(RN ,RN ), V ∈ C(RN ) such that

divb
p

≤ V

where 1 ≤ p < ∞, is fixed. Consider the operator

A : W 11
loc(R

N ) → D′(RN )

given by

Au =
N∑

i,j=1

Di(aijDju) −
N∑

j=1

bjDju− V u .

Let Amax be the part of A in Lp(RN ); i.e.

D(Amax) = {u ∈ Lp(RN ) ∩W 11
loc(R

N ) : Au ∈ Lp(RN )}
Amaxu = Au. Then there exists a unique operator A ⊂ Amax on Lp(RN ) which
generates a minimal positive C0-semigroup T on Lp (see [AMP06]). It follows from
the construction that this semigroup is irreducible and that T (t) is a kernel oper-
ator for all t > 0. Moreover, ‖T (t)‖ ≤ 1 for all t ≥ 0. Now assume in addition
that

lim
|x|→∞

(V (x) − p−1divb(x)) = ∞ . (5.2)

Then the operator A has compact reslovent [AMP06].
Now we consider two cases.

First case: s(A) = 0. Then by Theorem 4.2 there exist 0 � e ∈ kerA, 0 � ϕ ∈
kerA′ such that

lim
t→∞T (t)f =

∫

Ω

f(x)ϕ(x) dx · e

in Lp(RN ) for all f ∈ Lp(RN ).

Second case: s(A) < ∞. It follows from de Pagter’s or from Jentzsch’s Theorem
[MN91, Thm. 4.3.3., Cor. 4.2.14], [Sch74, Thm. V.6.6. p. 337] that s(A) > −∞.
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Since s(A) is a pole, the rescaled semigroup (e−s(A)tT (t))t≥0 is ergodic with ergodic
projection P = ϕ⊗ e for some

0 � e ∈ ker(A− s(A)), 0 � ϕ ∈ ker(A′ − s(A)) .

By Theorem 4.1 the rescaled semigroup converges strongly to P if and only
if it is bounded. However, this will not be the case in general. So we use Theorem
4.4 which gives us the following asymptotic behaviour. For all f ∈ Lp(RN ) one
has

lim
t→∞

∫

RN

|e−s(A)tT (t)f − c(f)e|ϕ(x) dx = 0 (5.3)

where c(f) =
∫

RN

f(x)ϕ(x) dx.

6. Appendix

The aim of this section is to prove a result which is a version of [Axm80, Satz 3.5]
with the same arguments as given by Axmann.

Let (Ω,Σ, μ) be a σ-finite measure space, 1 ≤ p < ∞, X = Lp(Ω, μ). We
assume that dimX ≥ 2.

Theorem 6.1. Let 0 ≤ T ∈ L(X) be a kernel operator such that Tn ∧ T = 0 for all
n ≥ 2. Then T is not irreducible.

Denote by kn : Ω×Ω → R+ the kernel of Tn. By [Sch74, Prop. IV. 9.8 p. 290],
the mapping which associates to each kernel operator its kernel is a lattice homo-
morphism into the space of all measurable functions on Ω×Ω. Thus, the hypothesis
Tn ∧ T = 0 (n ≥ 2) means that

kn(x, y) · k1(x, y) = 0 x, y − a.e.

if n ≥ 2, or equivalently (by Fubini’s Theorem, cf. [AB94]) that for all n > 2 there
exists a null set N ⊂ Ω such that for x ∈ Ω \N, kn(x, y) · k1(x, y) = 0 for μ-almost
all y ∈ Ω.
Proof of Theorem 6.1. First step: We show that we may assume that p = 1 and
μ(Ω) < ∞. In fact, let λ > r(T ) (the spectral radius of T ), and let ψ ∈ Lp′

(Ω, μ)
(the dual space of Lp(Ω, μ)), ϕ := R(λ, T ′)ψ. Then ϕ ≥ 0, λϕ − T ′ϕ = ψ. Hence
T ′ϕ ≤ λϕ. Consider the space E = L1(Ω, ϕdμ). Then Lp(Ω, μ) ⊂ E by Hölder’s
inequality and

‖Tf‖E =
∫

ω

|Tf |ϕdμ

≤
∫

Ω

T |f |ϕdμ

=
∫

Ω

|f |T ′ϕdμ ≤ λ‖f‖E ,
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for all f ∈ Lp(Ω, μ). Thus T has a unique continuous extension T̃ ∈ L(E). Observe
that ϕ � 0. In fact, if 0 < f ∈ Lp(Ω, μ), then

∫
Ω

fϕdμ =
∫
Ω

R(λ, T )fψdμ > 0 since

R(λ, T )f > 0 and ψ � 0. Denoting the kernel of T by k1 as before, one easily sees
that T̃ has the kernel k̃ given by k̃(x, y) = 1

ϕ(y)k(x, y). Moreover, since T ∧Tn = 0

also (T ∧ Tn)∼ = T̃ ∧ T̃n = 0 for n ≥ 2. Finally, T̃ is irreducible if and only if T is
so. Thus, replacing T by T̃ we may assume that p = 1. Now let 0 � η ∈ L1(Ω, μ).
Then

V : L1(Ω, μ) → L1(Ω, ημ) , V f =
f

η

defines a lattice isomorphism. Replacing T by V TV −1 and μ by ημ we may as-
sume that the measure μ is finite. Thus in the following we assume throughout
that p = 1 and μ(Ω) < ∞.

Second step: There exists 0 < f ∈ L1(Ω, μ) such that

f ∧ Tnf = 0 for all n ∈ N . (6.1)

Since the operator T ′n on L∞(Ω) is given by the kernel k′
n where k′

n(x, y) =
kn(y, x), it follows that T ′n ∧ T ′ = 0 for n = 2, 3, . . . . Now we identify L∞(Ω)
with C(K), where K is a compact space (using Kakutani’s Theorem). Then the
operator T ′ corresponds to an operator 0 ≤ S on C(K) satisfying S ∧ Sn = 0 for
all n ≥ 2. Hence for n ≥ 2,

0 = (S ∧ Sn)1K = inf
0≤h≤1K

(Sh+ Sn(1K − h)) , (6.2)

where the infinum is taken in the space C(K). For m,n ∈ N, n ≥ 2, let On
m := {t ∈

K : (Sh)(t) + (Sn(1K − h))(t) < 1
m for some h ∈ C(K) satisfying 0 ≤ h ≤ 1K}.

Then On
m is open, and it follows from (6.2) that On

m is dense in K. It fol-
lows from Baire’s Theorem that G :=

⋂
n,m∈N

n≥2

On
m is dense in K. Note that for

t ∈ K, 〈S′δt ∧ S′nδt, 1K〉 = inf
0≤h≤1K

(Sh(t) + (Sn(1K − h))(t)). Thus

S′δt ∧ S′nδt = 0 for all t ∈ G (6.3)

and all n ≥ 2. For t ∈ K,S′δt is a positive linear form on X ′ = C(K). We identify
X = L1(Ω, μ) with a band in X ′′ = C(K)′. The assumption that T is a kernel
operator implies that there exists t ∈ G such that S′δt ∈ X⊥. In fact, we may
assume that S �= 0. Then k0 = k ∧ 1Ω×Ω > 0. Consider the kernel operator R0 on
L1(Ω, μ) defined by the kernel k0. Then R0 = T ∧ R1 > 0 where R1f =

∫
Ω

fdμ1Ω

for all f ∈ L1(Ω, μ). The adjoint S1 of R1 considered as an operator on C(K)
is given by S1g = 〈g, μ̃〉1K where μ̃ ∈ L∞(Ω)′ is given by 〈f, μ̃〉 =

∫
Ω

fdμ for all

f ∈ L∞(Ω). Since S1 ∧ S = (R1 ∧ T )′ > 0, it follows that

� := (S1 ∧ S)1K ∈ C(K)
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is a positive function different from 0. Thus U := {t ∈ K : �(t) > 0} is open and
non-empty. Consequently, U ∩G �= ∅. For 0 ≤ h ≤ 1K one has

� = (S1 ∧ S)1K = (S1 ∧ S)h+ (S1 ∧ S)(1K − h)
≤ S1h+ S(1K − h) .

Hence for t ∈ U, 0 < �(t) ≤ 〈h, μ̃〉+〈1K −h, S′δt〉. Thus for t ∈ U, f := μ̃∧S′δt > 0.
Now observe that μ̃ ∈ X ⊂ X ′′. Since 0 < f ≤ μ̃, it follows that f ∈ X = L1(Ω, μ).
If we choose t ∈ U ∩ G, then 0 < f ≤ S′δt and for n ∈ N, f ∧ Tnf ≤ S′δt ∧
(S′)n+1δt = 0 by (6.3). Thus (6.1) is proved.
Third step: We prove that T is not irreducible. Since dimX ≥ 2, we may assume
that T �= 0. Let u = Tf . Then u ≥ 0. If u = 0, then TJ = 0 where J = f⊥⊥.
Thus J is an invariant closed ideal, J �= 0. One has J �= X, since T �= 0. Thus J
is a non-trivial closed invariant ideal. If u �= 0, let

J0 = {g ∈ X : ∃ c ≥ 0,m ∈ N, |g| ≤ c(u+ Tu+ · · · + Tmu)} .
Then J0 is an ideal, J0 �= {0}, TJ0 ⊂ J0. Thus, J := J̄0 is a closed ideal and
TJ ⊂ J . Since by (6.1) J ⊂ f⊥, it follows that J �= X.
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