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A. We consider the quasilinear parabolic equation

ut − β(t, x,u,∇u)∆u = f (t, x,u,∇u)

in a cylindrical domain, together with initial-boundary conditions, where
the quasilinearity operates on the diffusion coefficient of the Laplacian. Un-
der suitable conditions we prove global existence of a solution in the energy
space. Our proof depends on maximal regularity of a nonautonomous lin-
ear parabolic equation which we use to provide us with compactness in
order to apply Schaefer’s fixed point theorem.

1. I

We prove global existence of a solution of the quasilinear diffusion prob-
lem

(1)



ut − β(t, x,u,∇u)∆u = f (t, x,u,∇u) in (0,∞) ×Ω,
u = 0 in (0,∞) × ∂Ω,
u(0, ·) = u0(·) in Ω,

where Ω ⊂ Rd is an open set, u0 ∈ H1
0(Ω) and

β : (0,∞) ×Ω ×R1+d → [ε,
1
ε

] (ε ∈ (0, 1) is fixed) and

f : (0,∞) ×Ω ×R1+d → R
are measurable functions which are continuous with respect to the last vari-
able, for every (t, x) ∈ (0,∞)×Ω. The function f satisfies in addition a linear
growth condition with respect to the last variable.

We prove in fact existence of a solution in the space

H1
loc([0,∞); L2(Ω)) ∩ L2

loc([0,∞); D(∆D)) ∩ C([0,∞); H1
0(Ω)),

where D(∆D) is the domain of the Dirichlet-Laplacian in L2(Ω).
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2 WOLFGANG ARENDT AND RALPH CHILL

Note that this existence result is also a maximal regularity result. Maximal
regularity of the abstract linear inhomogeneous problem

u̇(t) + Au(t) = f (t) for a.e. t ∈ (0,T), u(0) = 0,

has obtained much attention in recent years. Given a closed linear operator A
on L2(Ω) (we will only consider the L2 setting here), saying that this problem
has maximal regularity means that for every f ∈ L2(0,T; L2(Ω)) there exists
a unique solution in the maximal regularity space

MR := H1(0,T; L2(Ω)) ∩ L2(0,T; D(A));

in particular, the two terms on the left-hand side of the above differential
equation have the same regularity than the inhomogeneity f .

It is known that maximal regularity results can be applied to solve non-
linear problems by using fixed point theorems. Mostly, if some Lipschitz
continuity is available (for example by making appropriate assumptions on
the regularity and the growth of the coefficients β and f ), then Banach’s
fixed point theorem is used to establish local existence; see, for example, [1],
[2], [4], [5], [12, Chapters 7 and 8], [13]. On the other hand, if come compact-
ness is available (for example by assuming that Ω is bounded and regular),
Schauder’s fixed point theorem for continuous mappings on Banach spaces
can be used in order to establish existence of solutions; see [10], [11].

We follow the second way but we will make no assumptions on bound-
edness or regularity of the set Ω, nor will we impose further regular-
ity of the coefficients β and f . We will instead use that the injection of
MR = H1(0,T; L2(Ω)) ∩ L2(0,T; D(∆D)) into L2(0,T; H1

loc(Ω)) is compact by lo-
cal regularity results for the Laplace operator, by Rellich’s theorem and by a
result of Aubin-Lions. This will allow us to use versions of Schauder’s fixed
point theorem in Fréchet spaces instead of Banach spaces. Most useful for
our purposes is Schaefer’s fixed point theorem which replaces invariance
of a convex set by an a priori estimate. Section 2 is devoted to this fixed
point theorem which can be even formulated in arbitrary topological vector
spaces thanks to the solution of Schauder’s problem by Cauty in 2001, [3].

2. S’   

In a short article in Mathematische Annalen from 1955, Schaefer gave an
elegant proof of a result from Leray-Schauder theory which is most suitable
for applications in partial differential equations, [14, Satz]. This proof is
reproduced in several textbooks and frequently cited as Schaefer’s Fixed
Point Theorem; see, for example, [8]. But Schaefer also gave an extension of
this fixed point theorem to complete locally convex spaces. It turns out that,
when proving existence of a solution of (1), we will encounter a situation
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QUASILINEAR DIFFUSION EQUATIONS IN NONDIVERGENCE FORM 3

where this is useful. The reason is that some compact embedding is needed.
IfΩ ⊂ Rd is an open set, then the embedding H2(Ω) ↪→ H1(Ω) is compact ifΩ
is a bounded Lipschitz domain, but in general not ifΩ is unbounded or the
boundary is bad. However, the embedding H2

loc(Ω) ↪→ H1
loc(Ω) is compact

for arbitrary open sets.
Schaefer deduces by a simple argument his fixed point theorem from

Schauder’s fixed point theorem in the case of a Banach space, and from
Tychonov’s fixed point theorem [16] in the case of a complete locally convex
space. In 2001, Cauty finally extended Schauder’s fixed point theorem
to arbitrary topological vector spaces, thus solving a famous problem of
Schauder in the Scottish book, [3].

We take the opportunity to formulate also Schaefer’s fixed point theorem
in such generality, choosing a formulation which makes it directly applicable
in our context. This result is the precise setting where the philosophy that an
a priori bound of the solution implies the existence of the solution becomes
truth. It is a consequence of the following profound extension of Schauder’s
fixed point theorem due to Cauty.

Theorem 1 (Schauder’s fixed point theorem in topological vector space, [3]).
Let E be a topological Hausdorff vector space, C a nonempty, convex subset of E
and T : C → C a continuous mapping. If TC is contained in a compact subset of
C, then T has a fixed point.

Theorem 2 (Schaefer’s fixed point theorem). Let E be a topological Hausdorff
vector space and let T : E→ E be a continuous mapping. Assume that there exists
a continuous seminorm p : E → R+, a constant R > 0 and a compact set K ⊂ E
such that the Schaefer set

S := {u ∈ E : u = λTu for some λ ∈ [0, 1]}
is included in

C := {u ∈ E : p(u) < R}
and such that TC ⊂K . Then T has a fixed point.

Proof. Define T̃ : C̄→ C̄ (C̄ being the closure of C) by

T̃u :=
{

Tu if p(Tu) ≤ R,
R

p(Tu)Tu if p(Tu) > R.

Then T̃ is continuous and T̃C̄ ⊂ [0, 1] · K . The set [0, 1] ×K is compact by
Tychonov’s theorem and thus [0, 1] · K is compact as the continuous image
of [0, 1]×K for the mapping (λ,u) *→ λ ·u. It follows from Theorem 1 that T̃
has a fixed point u ∈ C̄. By definition of T̃, u = T̃u = λTu for some λ ∈ [0, 1],
that is u ∈ S.
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4 WOLFGANG ARENDT AND RALPH CHILL

Note that λ < 1 if and only if p(Tu) > R, and in that case p(T̃u) = R.
However, since S is included in C, we have p(T̃u) = p(u) < R. Hence, λ = 1
and u is a fixed point of T. !

3. T  

LetΩ ⊂ RN be an open set. Let V be a Hilbert space which embeds densely
and continuously into L2(Ω) (we write V ↪→ L2(Ω)) and let a : V × V → R
be a bilinear, symmetric form. We assume throughout that a is bounded and
L2(Ω)-elliptic, which means, respectively,

(2) |a(u, v)| ≤M ‖u‖V ‖v‖V for some M ≥ 0 and all u, v ∈ V, and

(3) a(u) + ω ‖u‖2L2 ≥ η ‖u‖2V for some ω ≥ 0, η > 0 and all u ∈ V.

Here and in the following we shortly write a(u) for a(u,u).
Denote by A the operator associated with a on L2(Ω), that is, for u, f ∈ L2

one has u ∈ D(A) and Au = f if and only if u ∈ V and a(u, v) = ( f , v)L2 for
every v ∈ V. The operator A is closed and D(A), when equipped with the
graph norm, is a Banach space.

Then the following maximal regularity result is well known [...]: for all
f ∈ L2(0,T; L2(Ω)), u0 ∈ V, there exists a unique solution of the autonomous
problem

u ∈ H1(0,T; L2(Ω)) ∩ L2(0,T; D(A)),
u(t) + Au(t) = f (t) for almost every t ∈ (0,T),(4)
u(0) = u0.

Recall that the maximal regularity space

MR := H1(0,T; L2(Ω)) ∩ L2(0,T; D(A))

which is equipped with the norm

‖u‖2MR :=
∫ T

0
‖u(t)‖2L2 +

∫ T

0
‖u̇(t)‖2L2 +

∫ T

0
‖Au(t)‖2L2

is continuously embedded in C([0,T]; V), [7, Exemple 1, p. 577]. We will
need the following product rule; see [7, Théorème 2, p. 575] for a similar
result.

Lemma 3. Let u ∈MR. Then a(u(·)) ∈W1,1(0,T) and

d
dt

a(u(t)) = 2 (Au(t), u̇(t))L2 for almost every t ∈ (0,T).
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QUASILINEAR DIFFUSION EQUATIONS IN NONDIVERGENCE FORM 5

Proof. For u ∈ C1([0,T]; D(A)), the assertion is a consequence of the product
rule, the symmetry of the form a, and the definition of the operator A:

d
dt

a(u(t)) = 2 a(u(t), u̇(t)) = 2 (Au(t), u̇(t))L2 .

For arbitrary u ∈MR, the assertion follows from this and an approximation
by functions in C1([0,T]; D(A)). The fact that C1([0,T]; D(A)) is dense in
MR follows from classical techniques using regularization; compare with [7,
Lemme 4, p. 586]. !

Now we consider a new problem, obtained by a multiplicative perturba-
tion.

Theorem 4 (Linear, nonautonomous problem). Let m : (0,T)×Ω→ [ε, 1
ε ] be a

measurable function, where ε ∈ (0, 1) is fixed. Then, for every f ∈ L2(0,T; L2(Ω)),
u0 ∈ V there exists a unique solution of the problem

u ∈MR = H1(0,T; L2(Ω)) ∩ L2(0,T; D(A))
u̇(t) +m(t, ·)Au(t) = f (t) for almost every t ∈ (0,T),(5)
u(0) = u0.

Moreover, there exists a constant c = c(ε,M, η,ω, c1,T, ) ≥ 0 (c1 being the em-
bedding constant of the embedding V ↪→ L2(Ω)) independent of f and u0 such
that

(6) ‖u‖MR ≤ c (‖ f ‖L2(0,T;L2(Ω)) + ‖u0‖V),

for each solution u of (5).

Remark 5. The constant c in (6) depends on the constants ε, M, η, ω, c1 and
the time T, but it does not depend on other properties of the form a or the
function m.

Proof of Theorem 4. We use the method of continuity. For every s ∈ [0, 1],
consider the function

ms := (1 − s) + sm : (0,T) ×Ω→ [ε,
1
ε

]

and the bounded operator

Bs : MR→ L2(0,T; L2(Ω)) × V

given by
Bsu = (u̇ +msAu,u(0)).

Then B : [0, 1]→ L(MR,L2(0,T; L2(Ω))×V) is continuous and B0 is invertible
by the maximal regularity result for the autonomous problem (4). Thus, in
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6 WOLFGANG ARENDT AND RALPH CHILL

order to prove the theorem, by [9, Theorem 5.2], it suffices to prove the a
priori estimate

(7) ‖u‖MR ≤ c ‖Bsu‖ = c (‖u̇ +msAu‖L2(0,T;L2(Ω)) + ‖u(0)‖V)
for all s ∈ [0, 1] and all u ∈MR,

which, for s = 1, is exactly the estimate (6) to be proved.
Let s ∈ [0, 1]. Let u ∈MR be such that

u̇ +msAu = f and u(0) = u0.

Then, for almost every t ∈ [0,T],
∫

Ω

u̇(t)2 dx
ms
+

∫

Ω

Au(t)u̇(t) dx =
∫

Ω

f (t)u̇(t)
dx
ms
.

We recall from Lemma 3 that a(u(·)) ∈W1,1 and 1
2

d
dta(u(t)) = (Au(t), u̇(t))L2 for

almost every t ∈ (0,T). This identity and the Cauchy-Schwarz inequality
applied to the term on the right-hand side of the above equality imply that,
for almost every t ∈ [0,T],

1
2

∫

Ω

u̇(t)2 dx
ms
+

1
2

d
dt

a(u(t)) ≤ 1
2

∫

Ω

f (t)2 dx
ms

Integrating this inequality on (0, t) and using the estimate ε ≤ 1
ms
≤ 1
ε , it

follows that

ε
∫ t

0
‖u̇(s)‖2L2 ds + a(u(t)) ≤ a(u0) +

1
ε

∫ T

0
‖ f (s)‖2L2 ds.

Thus, by boundedness and ellipticity of the form a,

ε
∫ t

0
‖u̇(s)‖2L2 ds + η ‖u(t)‖2V ≤M ‖u0‖2V +

1
ε
‖ f ‖2L2(0,T;L2(Ω)) + ω ‖u(t)‖2L2 .

This estimate and the estimate

‖u(t)‖2L2 = ‖u0‖2L2 +

∫ t

0

d
ds
‖u(s)‖2L2 ds

= ‖u0‖2L2 + 2
∫ t

0
〈u(s), u̇(s)〉L2 ds

≤ ‖u0‖2L2 +
2ω
ε

∫ t

0
‖u(s)‖2L2 ds +

ε
2ω

∫ t

0
‖u̇(s)‖2L2 ds,(8)
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yield the estimate

(9)
ε
2

∫ t

0
‖u̇(s)‖2L2 ds + η ‖u(t)‖2V ≤

≤ (M + ωc2
1) ‖u0‖2V +

1
ε
‖ f ‖2L2(0,T;L2(Ω)) +

2ω2c2
1

ε

∫ t

0
‖u(s)‖2V ds,

where c1 is the embedding constant of the embedding V ↪→ L2(Ω). From
this inequality and Gronwall’s lemma it follows that there is a constant
c = c(ε,M, η,ω, c1,T) ≥ 0 such that

sup
t∈[0,T]

‖u(t)‖2V ≤ c
(
‖u0‖2 + ‖ f ‖2L2(0,T;L2(Ω))

)
.

Inserting this estimate into (9), we find that there exists a constant c =
c(ε,M, η,ω, c1,T) ≥ 0 (possibly different from the preceding one) such that

∫ T

0
‖u̇(s)‖2L2 ds ≤ c

(
‖u0‖2 + ‖ f ‖2L2(0,T;L2(Ω))

)
.

This gives the estimate (7) for the second part of the MR norm of u. Since
u(t) = u(0) +

∫ t

0 u̇(s) ds, it follows that
∫ T

0
‖u(t)‖2L2 dt ≤ c (‖u0‖2V +

∫ T

0
‖u̇(t)‖2L2 dt),

for some c = c(c1,T) ≥ 0. This gives the estimate for the first part of the MR
norm of u. Since

∫ T

0
‖Au(t)‖2L2 dt ≤ 1

ε2

∫ T

0
‖msAu(t)‖2L2 dt

and msAu(t) = −u̇(t) + f (t), also the third term of the MR norm of u can be
estimated, and the proof of (7) is complete. !

4. T  

Let Ω ∈ Rd be an open set. Let V be a closed subspace of H1(Ω) which
is dense in L2(Ω). We assume for simplicity that V is equipped with the H1

norm.
Let a : V×V → R be a bilinear, symmetric, bounded, L2-elliptic form, and

denote by A the operator associated with a on L2(Ω). We assume that

(10) D(A) ⊂ H2
loc(Ω).

Below, in Section 5, we will give several concrete examples for which this
condition is satisfied. We consider D(A) with the graph norm and let MR =
H1(0,T; L2(Ω)) ∩ L2(0,T; D(A)), as in Section 3.
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8 WOLFGANG ARENDT AND RALPH CHILL

Theorem 6. Let ε ∈ (0, 1) and let

β : (0,T) ×Ω ×R1+d → [ε, 1
ε ] be a measurable function such that

β(t, x, ·) : R1+d → [ε, 1
ε ] is continuous for almost every (t, x).

Let moreover
f : (0,T) ×Ω ×R1+d → R be a measurable function such that
f (t, x, ·) : R1+d → R is continuous for almost every (t, x) and
| f (t, x,u, p)| ≤ g(t, x) + L (|u| + |p|) for every (t, x,u, p), and some
g ∈ L2(0,T; L2(Ω)) and L ≥ 0.

Then, for every u0 ∈ V there exists a solution of the problem

u ∈MR = H1(0,T; L2(Ω)) ∩ L2(0,T; D(A))
u̇(t) + β(t, x,u,∇u)Au(t) = f (t, x,u,∇u) for almost every t ∈ (0,T),(11)
u(0) = u0.

Moreover, there exists a constant c = c(ε,M, η,ω, L,T) ≥ 0 such that for every
solution u of (11) one has
(12) ‖u‖MR ≤ c (‖u0‖V + ‖g‖L2(0,T;L2(Ω))).

Remark 7. Under the hypotheses of Theorem 6, one may in general not expect
uniqueness of solutions. A simple counterexample is given in Example 10
below.

Let (Ωk)k be an increasing sequence of open, bounded subsets ofRd which
are of class C∞ and such that Ω̄k ⊂ Ω and

⋃
k∈NΩk = Ω. Such a sequence

(Ωk)k exists for every open set Ω ⊂ Rd; compare with [6, Lemme 1, p.409].
We consider the space

E := L2(0,T; H1
loc(Ω))

:= {u ∈ L2
loc((0,T) ×Ω) : u|(0,T)×Ωk ∈ L2(0,T; H1(Ωk)) for every k ∈N},

which is a Fréchet space for the sequence (pk) of seminorms given by

pk(u)2 :=
∫ T

0

∫

Ωk

(
|u(t, x)|2 + |∇u(t, x)|2

)
dx dt = ‖u‖2L2(0,T;H1(Ωk)).

We recall that for an open, bounded set U ⊂ Rd of class C∞ the injection
of H2(U) into H1(U) is compact by Rellich’s theorem. As a consequence, the
embedding

H1(0,T; L2(U)) ∩ L2(0,T; H2(U)) ↪→ L2(0,T; H1(U))

is compact by a result of Lions-Aubin (see [15, III.1 Proposition 1.3, page
106]). Since D(A) ⊂ H2

loc(Ω) by our standing assumption (10), and since this
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QUASILINEAR DIFFUSION EQUATIONS IN NONDIVERGENCE FORM 9

embedding is continuous by the closed graph theorem, it follows from the
preceding that the embedding

(13) MR = H1(0,T; L2(Ω)) ∩ L2(0,T; D(A)) ↪→ L2(0,T; H1
loc(Ω)) = E

is compact, too.

Remark 8. Following the above arguments, it turns out that, in fact, the
embedding (13) is compact as soon as the embedding

D(A) ↪→ H1
loc(Ω)

is compact. Compactness of this embedding is ensured by the assumption
(10), but we do not know whether it is true in general.

Proof of Theorem 6. Fix u0 ∈ V.
In the first step of the proof we show that for every k the problem

u ∈MR = H1(0,T; L2(Ω)) ∩ L2(0,T; D(A))
u̇(t) + β(t, x,u,∇u)Au(t) = f (t, x,u,∇u)1Ωk(x) for a.e. t ∈ (0,T),(14)
u(0) = u0

admits a solution and that there exists a constant c = c(M, ε, η,ω,L,T) ≥ 0
independent of k (!) such that for every solution of this problem one has

(15) ‖u‖2MR ≤ c (‖u0‖2V + ‖g‖2L2(0,T;L2(Ω))).

Fix k ∈N. For every v ∈ E we put

mv(t, x) := β(t, x, v(t, x),∇v(t, x)) and
fv,k(t, x) := f (t, x, v(t, x),∇v(t, x))1Ωk(x).

Then mv and fv,k are measurable functions on (0,T) ×Ω, mv takes values in
[ε, 1

ε ], and

‖ fv,k‖2L2(0,T;L2(Ω)) ≤ c
∫ T

0

∫

Ωk

[
g(t, x)2 + (|v|2 + |∇v|2)

]

≤ c (‖g‖2L2(0,T;L2(Ω)) + pk(v)2) < ∞
for some constant c = c(L) ≥ 0.

Hence, by Theorem 4, there exists a unique solution u =: Tkv ∈ MR of the
problem

u̇(t) +mv(t, ·)Au(t) = fv,k(t) for almost every t ∈ (0,T), and
u(0) = u0.

and there exists a constant c = c(ε,M, η,ω,T) ≥ 0 (depending also on the
embedding constant of the embedding V ↪→ L2(Ω), which is now equal to
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10 WOLFGANG ARENDT AND RALPH CHILL

1) such that

‖u‖2MR ≤ c (‖u0‖2V + ‖ fv,k‖2L2(0,T;L2(Ω)))

≤ c (‖u0‖2V + ‖g‖2L2(0,T;L2(Ω)) + ‖v‖2L2(0,T;H1(Ωk))).(16)

In this way, we defined an operator Tk : E→ E.
(a) We show that Tk is continuous. Let vn → v in E, and let un = Tkvn and

u = Tkv. We have to show that un → u in E.
Since a sequence in a metric space converges to a certain limit if and only

if each subsequence has a subsequence which converges to that same limit,
it suffices to prove un → u for a subsequence.

Since (un) is bounded in MR by the estimate (16), and since MR is a Hilbert
space, we may assume (after passing to a subsequence) that un ⇀ w in MR.
For a subsequence, we may in addition assume that

u̇n ⇀ ẇ in L2(0,T; L2(Ω)), and
Aun ⇀ Aw in L2(0,T; L2(Ω)).

We show that w = u. Since vn → v in E, we may assume (after passing to a
subsequence again) that there exists a function hk ∈ L2((0,T) ×Ωk) such that

(vn,∇vn)→ (v,∇v) almost everywhere on (0,T) ×Ω and
|vn| + |∇vn| ≤ hk almost everywhere on (0,T) ×Ωk, for every n ∈N.

The almost everywhere convergence on (0,T) ×Ω is established by using a
diagonalization argument.

Then, by the continuity of β and f ,

mvn(t, x) := β(t, x, vn,∇vn) → β(t, x, v,∇v) =: mv(t, x) and
fvn,k(t, x) := f (t, x, vn,∇vn)1Ωk(x) → f (t, x, v,∇v)1Ωk(x) =: fv,k(t, x)

almost everywhere on (0,T) ×Ω.
Moreover, by the growth assumption on f and the uniform domination of
vn, we have

| fvn,k| ≤ g + L hk almost everywhere on (0,T) ×Ωk, for every n ∈N.
Recall that, for every n ∈N,

(17) u̇n +mvnAun = fvn,k.

By the dominated convergence theorem, fvn,k → fv,k strongly (and weakly) in
L2(0,T; L2(Ω)). Moreover, by the dominated convergence theorem, for every
ϕ ∈ L2(0,T; L2(Ω)),

mvnϕ→ mvϕ in L2((0,T) ×Ω).
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Since Aun ⇀ Aw in L2(0,T; L2(Ω)), it follows that for everyϕ ∈ L2(0,T; L2(Ω))
∫ T

0

∫

Ω

mvnAunϕ→
∫ T

0

∫

Ω

mvAwϕ,

or, in other words,

(18) mvnAun ⇀ mvAw in L2((0,T) ×Ω).

Thus, letting n→∞ in (17) shows that

ẇ(t) +mvAw(t) = fv,k(t) for almost every t ∈ (0,T).

Since MR ↪→ C([0,T]; V), we have also un ⇀ w in C([0,T]; V) and in partic-
ular w(0) = w − limn→∞ un(0) = u0. Since also u is solution of the problem
u̇(t) + mvAu(t) = fv,k(t) and u(0) = u0, and since the solution of this problem
is unique by Theorem 4, this shows that w = u.

We have shown that un ⇀ u in MR. Since the embedding MR ↪→ E is
compact, this implies that, after passing to a subsequence again, un → u in
E. Therefore, Tk is continuous.

(b) We prove that there exists a constant c = c(ε,M, η,ω, L,T) ≥ 0 indepen-
dent of k such that for every element u in the Schaefer set

Sk = {u ∈ E : u = λTku for some λ ∈ [0, 1]}

the estimate (15) holds.
Assume that u = λTku for some λ ∈ [0, 1]. Note that u = λTku if and only

if

u̇(t) +m(t, ·,u,∇u)Au(t) = λ f (t, ·,u,∇u)1Ωk for a.e. t ∈ (0,T),
u(0) = u0.

By multiplying the differential equation by u̇
mu

and integrating over Ω, we
obtain

∫

Ω

u̇(t)2 dx
mu
+

∫

Ω

Au(t) u̇(t) dx =

= λ
∫

Ωk

f (t, x,u,∇u) u̇
dx
mu

≤ 1
2

∫

Ω

| f (t, x,u,∇u)|2 dx
mu
+

1
2

∫

Ω

u̇(t)2 dx
mu

≤
∫

Ω

g(t)2 dx
mu
+ 2L2

∫

Ω

(|u(t)|2 + |∇u(t)|2)
dx
mu
+

1
2

∫

Ω

u̇(t)2 dx
mu
.
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Using the estimate ε ≤ 1
mu
≤ 1
ε and the equality 1

2
d
dta(u(t)) = (Au(t), u̇(t))L2 , we

thus obtain, for almost every t ∈ [0,T],

ε
2

∫

Ω

u̇(t)2 +
1
2

d
dt

a(u(t)) =
1
ε

∫

Ω

g(t)2 +
2L2

ε
‖u(t)‖2V.

We integrate this inequality on (0, t), use the boundedness and the ellipticity
of the form a, and we obtain

ε
2

∫ t

0
‖u̇(s)‖2L2 ds +

η
2
‖u(t)‖2V ≤

≤ M ‖u0‖2V +
1
ε

∫ t

0
‖g(s)‖2L2 ds +

ω
2
‖u(t)‖2L2 +

2L2

ε

∫ t

0
‖u(s)‖2V ds

As in (8), we can estimate the third term on the right-hand side of this
inequality. It follows that

ε
4

∫ t

0
‖u̇(s)‖2L2 ds +

η
2
‖u(t)‖2V ≤

≤ (M +
ω
2

) ‖u0‖2V +
1
ε
‖g‖2L2(0,T;L2(Ω)) + (

ω2

ε
+

2L2

ε
)
∫ t

0
‖u(s)‖2V ds.

This estimate is similar to the estimate (9) from the proof of Theorem 4. As
in the proof of Theorem 4 we can now continue to estimate, and we see that
there exists a constant c = c(ε,M, η,ω, L,T) ≥ 0 such that the estimate (15) is
true for every u ∈ Sk.

(c) In particular, the setSk is bounded in MR. By continuity of the embed-
ding (13) (or just a simple direct estimate of the corresponding norms), this
implies that there exists R > 0 such that Sk is included in

Ck := {v ∈ E : pk(v) < R}.
It follows from the definition of Tk and the estimate (16) that TkCk is contained
in a bounded subset of MR. By compactness of the embedding (13), this
implies that TkCk is contained in a compact subset of E.

Hence, by Schaefer’s fixed point theorem (Theorem 2), the mapping Tk
admits a fixed point u ∈ MR. By the definition of Tk, this element u is a
solution of the problem (14) which, being an element of Sk, satisfies the
claimed estimate (15).

In the second step of the proof, we show that the problem (11) admits
a solution. For every k ∈ N, we choose a solution uk of the problem (14).
Since every solution of the problem (14) is an element of Sk and satisfies
the estimate (15) (which is independent of k), the sequence (uk) remains
bounded in MR. Since MR is a Hilbert space, we may therefore assume
(after passing to a subsequence) that uk ⇀ u in MR. Using the compactness
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of the embedding (13) and after passing to a subsequence again, if necessary,
we may in addition assume that

u̇k ⇀ u̇ in L2(0,T; L2(Ω)),
Auk ⇀ Au in L2(0,T; L2(Ω)),
(uk,∇uk)→ (u,∇u) almost everywhere on (0,T) ×Ω and
|uk| + |∇uk| ≤ h almost everywhere on (0,T) ×Ω, for every k ∈N,

where h ∈ L2
loc((0,T) × Ω). The almost everywhere convergence and the

domination may be proved by using a diagonalization argument.
By continuity of β and f , and since Ωk is increasing to Ω, this implies

β(t, x,uk,∇uk) → β(t, x,u,∇u) and
f (t, x,uk,∇uk) 1Ωk(x) → f (t, x,u,∇u) almost everywhere on (0,T) ×Ω.

By the growth assumption on f and the domination of uk, we have

| f (t, x,uk,∇uk)1Ωk | ≤ g+L h almost everywhere on (0,T)×Ω, for every k ∈N.

As in (18), this implies that

β(t, x,uk,∇uk)Auk ⇀ β(t, x,u,∇u)Au in L2(0,T; L2(Ω)).

As a consequence, we obtain that f (t, x,uk,∇uk)1Ωk = u̇k + β(t, x,uk,∇uk)Auk
converges weakly in L2(0,T; L2(Ω)). On the other hand, for every ϕ ∈
L2(0,T; L2(Ω)) with compact support in (0,T) ×Ωwe have

∫ T

0

∫

Ω

f (t, x,uk,∇uk)1Ωkϕ→
∫ T

0

∫

Ω

f (t, x,u,∇u)ϕ

by the dominated convergence theorem. Since the compactly supported
functions are dense in L2(0,T; L2(Ω)), we thus obtain

f (t, x,uk,∇uk)1Ωk ⇀ f (t, x,u,∇u) in L2(0,T; L2(Ω)).

Letting k→∞ in the problem (14), we therefore find that

u̇ + β(t, x,u,∇u)Au = f (t, x,u,∇u) for a.e. t ∈ (0,T).

We recall that uk ⇀ u in MR ↪→ C([0,T]; V) implies uk(0) ⇀ u(0) in V, and
therefore u(0) = u0. Hence, u is a solution to the problem (11). The estimate
(12) for a solution of (11) is proved in a similar way than the a priori estimate
of the set Sk. !
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5. E

We now give several concrete examples.
Let Ω ⊂ Rd be an open set. We denote by ∆max the maximal Laplacian on

L2(Ω), that is,

D(∆max) := {u ∈ L2(Ω) : ∆u ∈ L2(Ω)},
∆maxu := ∆u.

Then, by local regularity of the Laplacian, one has

(19) D(∆max) ⊂ H2
loc(Ω).

Thus, condition (10) is satisfied whenever A ⊂ ∆max, that is, whenever A is
a realization of the Laplacian with boundary conditions or, more generally,
supplementary conditions. In order to apply Theorem 6, we also need to
know that A is selfadjoint and nonnegative. We give three examples of this
type.

Example 9 (The Dirichlet-Laplacian). Let V = H1
0(Ω) and a(u, v) =

∫
Ω
∇u∇v.

Let A be the associated operator. Then D(A) = H1
0(Ω)∩D(∆max) and Au = −∆u

for every u ∈ D(A).
Hence, if

β and f : (0,∞) ×Ω ×R1+d → R are measurable functions satisfying(20)
the hypotheses of Theorem 6 on (0,T) ×Ω ×R1+d for every T > 0

then, by Theorem 6, for every u0 ∈ H1
0(Ω) the problem (1) from the Introduc-

tion admits a global solution

u ∈ H1
loc([0,∞); L2(Ω)) ∩ L2

loc([0,∞); D(A)) ∩ C([0,∞); H1
0(Ω)).

Example 10 (The Neumann-Laplacian). Let u ∈ H1(Ω) ∩ D(∆max). We say
that ∂u∂ν = 0 weakly if

∫
Ω
∇u∇v +

∫
Ω
∆uv = 0 for every v ∈ H1(Ω). This is

motivated by Green’s formula
∫

Ω

∇u∇v +
∫

Ω

∆uv =
∫

∂Ω

∂u
∂ν

v dσ,

which is valid for u ∈ C2(Ω̄), v ∈ C1(Ω̄) and if Ω is bounded and of class C1.
Let V = H1(Ω) and a(u, v) =

∫
Ω
∇u∇v. Then the associated operator A is

given by

D(A) = {u ∈ H1(Ω) ∩D(∆max) :
∂u
∂ν
= 0 weakly},

Au = −∆u.
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Using this operator A with the above interpretation of the homogeneous
Neumann boundary condition, and if β and f are as in (20), then, by Theorem
6, for every u0 ∈ H1(Ω), the problem

(21)



ut − β(t, x,u,∇u)∆u = f (t, x,u,∇u) in (0,∞) ×Ω,
∂u
∂ν
= 0 in (0,∞) × ∂Ω,

u(0, ·) = u0(·) in Ω,

admits a global solution

u ∈ H1
loc([0,∞); L2(Ω)) ∩ L2

loc([0,∞); D(A)) ∩ C([0,∞); H1(Ω)).

In this example, it is easy to see that one may in general not expect
uniqueness of solutions. If Ω is bounded, and if one considers solutions
u which depend only on t (that is, u(t, ·) is constant on Ω), then the prob-
lem (21) reduces essentially to an ordinary differential equation for which
nonuniqueness is known. For example, if f (t, x,u, p) = 2

√|u| and if the
initial value u0 = 0, then u(t, x) = 0 and u(t, x) = t2 are two solutions of (21).

Example 11 (The Robin-Laplacian). LetΩbe bounded with Lipschitz bound-
ary, and let b ∈ C(∂Ω) be positive. Let V = H1(Ω) and a : V × V → R be
given by

a(u, v) =
∫

Ω

∇u∇v +
∫

∂Ω
buv dσ,

where u and v on the boundary are given by the trace operator, and σ is the
surface measure on ∂Ω. Then a is continuous, symmetric and L2(Ω)-elliptic.
The associated operator A is given by

D(A) = {u ∈ H1(Ω) ∩D(∆max) :
∂u
∂ν
+ bu = 0},

Au = ∆u.

Here we use the following weak normal derivative. Let h ∈ L2(∂Ω), u ∈
H1(Ω) ∩D(∆max). We say that ∂u∂ν = h if

∫

Ω

∇u∇v +
∫

Ω

∆uv =
∫

∂Ω
hv dσ for all v ∈ H1(Ω).

Hence, if the functions β and f are as in (20), then, by Theorem 6, for every
u0 ∈ H1(Ω), the problem

(22)



ut − β(t, x,u,∇u)∆u = f (t, x,u,∇u) in (0,∞) ×Ω,
∂u
∂ν
+ bu = 0 in (0,∞) × ∂Ω,

u(0, ·) = u0(·) in Ω,
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admits a global solution

u ∈ H1
loc([0,∞); L2(Ω)) ∩ L2

loc([0,∞); D(A)) ∩ C([0,∞); H1(Ω)).

Example 12 (Elliptic operators). Let aij ∈ C1(Ω) ∩ L∞(Ω) such that aij = aji
and ∑

i, j

ai j(x)ξiξ j ≥ α |ξ|2 for every ξ ∈ Rd, x ∈ Ω.

Let V be a closed subspace of H1(Ω) which is dense in L2(Ω). Define a :
V × V → R by

a(u, v) =
∫

Ω

∑

i, j

ai j∂iu∂ jv.

Then a is symmetric, continuous and L2(Ω)-elliptic. Let A be the operator
associated with a on L2(Ω). Then for u ∈ D(A) one has

Au =
∑

i, j

∂ j(aij∂iu)

in the sense of distributions. Hence, D(A) ⊂ H2
loc(Ω) by [8, 6.3.1, Theorem 1]

or [9, Theorem 8.9].
If we consider homogeneous Dirichlet boundary conditions (so that V =

H1
0(Ω)), and if the functions β and f are as in (20), then Theorem 6 implies

that, for every u0 ∈ H1
0(Ω), the problem

(23)



ut − β(t, x,u,∇u)
∑

i, j ∂ j(aij∂iu) = f (t, x,u,∇u) in (0,∞) ×Ω,
u = 0 in (0,∞) × ∂Ω,
u(0, ·) = u0(·) in Ω,

admits a global solution

u ∈ H1
loc([0,∞); L2(Ω)) ∩ L2

loc([0,∞); D(A)) ∩ C([0,∞); H1
0(Ω)).
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I ̈ A A, Ü U, D-89069 U, G
E-mail address: wolfgang.arendt@uni-ulm.de
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