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The Dirichlet problem by variational methods

Wolfgang Arendt and Daniel Daners

Abstract

Let Ω ⊂ R
N be a bounded open set and ϕ ∈ C(∂Ω). Assume that ϕ has an extension Φ ∈ C(Ω̄)

such that ΔΦ ∈ H−1(Ω). Then by the Riesz representation theorem there exists a unique

u ∈ H1
0 (Ω) such that − Δu = ΔΦ in D(Ω)′.

We show that u + Φ coincides with the Perron solution of the Dirichlet problem

Δh = 0, h|∂Ω = ϕ.

This extends recent results by Hildebrandt [Math. Nachr. 278 (2005), 141–144] and Simader
[Math. Nachr. 279 (2006), 415–430], and also gives a possible answer to Hadamard’s objection
against Dirichlet’s principle.

1. The main result and its consequences

Let Ω be a bounded open set in R
N with boundary ∂Ω. Let ϕ ∈ C(∂Ω). We consider the

Dirichlet problem

D(ϕ, Ω) h ∈ H(Ω) ∩ C(Ω̄), h|∂Ω = ϕ,

where H(Ω) := {u ∈ C2(Ω): Δu = 0} denotes the space of all harmonic functions. It follows
from the maximum principle that D(ϕ, Ω) has at most one solution. We say that Ω is Dirichlet
regular if for each ϕ ∈ C(∂Ω) there exists a solution h of D(ϕ, Ω). Such a solution will be called
a classical solution in what follows.

If Ω is not Dirichlet regular, then there always exists a generalised solution of D(ϕ, Ω) namely
the Perron solution hϕ (see Section 2 for the definition). Moreover, if D(ϕ, Ω) has a classical
solution h, then h = hϕ. There is an elaborate theory describing the points z ∈ ∂Ω for which
limx→z hϕ(x) = ϕ(z) for all ϕ ∈ C(∂Ω), those are called the regular points (this is equivalent
to the existence of a barrier at z, see e.g. Kellogg [12, Section XI.17]).

Our aim is to express that hϕ = ϕ on ∂Ω in a weak sense instead by pointwise convergence.
We denote by H1(Ω) := {u ∈ L2(Ω): Dju ∈ L2(Ω), j = 1, . . . , N} the first Sobolev space and
by H1

0 (Ω) the closure of the test functions D(Ω) in H1(Ω). Finally, denote by D(Ω)′ the space
of all distributions on Ω. Given h ∈ H(Ω) we say that

h = ϕ on ∂Ω weakly

if ϕ has an extension Φ ∈ C(Ω̄) such that u := h − Φ ∈ H1
0 (Ω). This implies that −Δu = ΔΦ

in the sense of distributions, that is,

〈ΔΦ, v〉 :=
∫
Ω

ΦΔv dx =
∫
Ω

∇u∇v dx (1.1)

for all v ∈ D(Ω). As a consequence

|〈ΔΦ, v〉| � c
(∫

Ω
|∇v|2 dx

)1/2
(1.2)
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for all v ∈ D(Ω) where c = (
∫
Ω |∇u|2 dx)1/2. By virtue of Poincaré’s inequality, (

∫
Ω |∇v|2 dx)1/2

defines an equivalent norm on H1
0 (Ω). Thus (1.2) means that ΔΦ has a continuous extension

from D(Ω) to H1
0 (Ω). We keep the notation for the extension ΔΦ ∈ H−1(Ω) := H1

0 (Ω)′. Our
main result is the following.

Theorem 1.1. Let ϕ ∈ C(∂Ω) and assume that ϕ has an extension Φ ∈ C(Ω̄) such that
ΔΦ ∈ H−1(Ω). Let u ∈ H1

0 (Ω) be the unique solution of Poisson’s equation

−Δu = ΔΦ in D(Ω)′. (1.3)

Then u + Φ = hϕ is the Perron solution of the Dirichlet problem.

As seen before (1.3) has a unique solution u ∈ H1
0 (Ω). It follows that Δ(u + Φ) = 0 in

the sense of distributions and hence u + Φ ∈ H(Ω), see [7, Chapter II § 3, Proposition 1] or
[13, Appendix 34, Theorem 14]. Our main point is to prove that u + Φ = hϕ which will be
done in Section 2. The Riesz representation theorem also says that u ∈ H1

0 (Ω) is the unique
minimiser of

1
2

∫
Ω

|∇u|2 dx − 〈ΔΦ, u〉 = min
{1

2

∫
Ω

|∇v|2 dx − 〈ΔΦ, v〉 : v ∈ H1
0 (Ω)

}

(see [5, Théorème V.6]). Hence if Φ ∈ H1(Ω), then hϕ is actually the solution of Dirichlet’s
principle, which can now be formulated as follows.

Corollary 1.2. Assume that ϕ has an extension Φ ∈ C(Ω̄) ∩ H1(Ω). Then hϕ is the
unique minimiser of

min
{∫

Ω
|∇w|2 dx : w ∈ H1(Ω), w − Φ ∈ H1

0 (Ω)
}

. (1.4)

Proof. Substitute v ∈ H1
0 (Ω) in (1.4) by w = v + Φ.

Hildebrandt [10, Theorem 1] shows that the minimiser h of (1.4) satisfies

lim
x→z

h(x) = ϕ(z)

for all regular points z ∈ ∂Ω. Thus, if Ω is Dirichlet regular, it follows that h = hϕ, which is
also proved by Simader [15, Theorem 1.6] or [7, Proposition II.7.10]. However, even if Ω is
Dirichlet regular, not every ϕ ∈ C(∂Ω) has an extension Φ ∈ C(Ω̄) ∩ H1(Ω). This follows from
Hadamard’s famous example [9] on the unit disc D of R

2. Let

ϕ(eiθ) =
∞∑

n=1

2−n cos(22nθ).

Then the classical solution of D(ϕ, D) is given by

hϕ(reiθ) =
∞∑

n=1

r22n

2−n cos(22nθ)

(see e.g [6, page 179–180]), and the energy of hϕ is∫
D

|∇hϕ|2 dx = ∞,

hence hϕ �∈ H1(Ω). As a consequence of Theorem 1.1, for this ϕ there exists no exten-
sion Φ ∈ C(Ω̄) ∩ H1(Ω) such that Φ|∂D = ϕ. Indeed, then (1.3) would imply that also
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hϕ = Φ + u ∈ H1(Ω). We refer to Maz’ya and Shaposhnikova [14, § 123] for the interesting
history of Hadamard’s example.

On the other hand, the condition that ϕ has an extension Φ ∈ C(Ω̄) such that ΔΦ ∈ H−1(Ω)
is weaker than Φ ∈ H1(Ω). Indeed, if D(ϕ, Ω) has a classical solution h ∈ H(Ω) ∩ C(Ω̄), then
ΔΦ = Δh ∈ H−1(Ω) since Δh = 0.

Remark 1.3. Let Φ ∈ C(Ω̄). The following assertions are equivalent.
(i) ΔΦ ∈ H−1(Ω);
(ii) Φ ∈ H1

loc(Ω) and there exists c > 0 such that∣∣∣
∫
Ω

∇Φ∇v dx
∣∣∣ � c

(∫
Ω

|∇v|2 dx
)1/2

for all v ∈ D(Ω).
In fact, if ΔΦ ∈ H−1(Ω), then u + Φ = hϕ ∈ C∞(Ω) where ϕ = Φ|∂Ω and u ∈ H1

0 (Ω) solves
(1.3). Thus Φ ∈ H1

loc(Ω). Now (1.2) implies the estimate. Conversely, (ii) implies (i) since
(
∫

|∇v|2 dx)1/2 is an equivalent norm on H1
0 (Ω). However, as we saw above (ii) does not imply

that Φ ∈ H1(Ω).

We note two further consequences for Poisson’s equation. Let

C0(Ω) := {u ∈ C(Ω̄) : u|∂Ω = 0}.

Corollary 1.4. Let v ∈ C0(Ω) such that Δv ∈ H−1(Ω). Then v ∈ H1
0 (Ω).

Proof. Let Φ := v so that ϕ = Φ|∂Ω = 0. Let u ∈ H1
0 (Ω) be the solution of (1.3). Then by

Theorem 1.1 we get u + v = hϕ = 0.

The following result extends [2, Lemma 2.2].

Corollary 1.5. Assume that Ω is Dirichlet regular. Let f ∈ Lp(Ω) with N/2 < p � ∞
if N � 2, and let f be a bounded Borel measure on Ω if N = 1. Then there exists a unique
solution u ∈ C0(Ω) of the Poisson equation

−Δu = f in D(Ω)′.

Proof. Since H1
0 (Ω) ⊂ Lq(Ω) whenever q < N

N−2 if N � 2 and H1
0 (Ω) ⊂ L∞(Ω) in the case

N = 1 we have Lp(Ω) ⊂ H−1(Ω) if p > N/2 and M(Ω) ⊂ H−1(Ω) if N = 1, where M(Ω)
denotes the space of all bounded signed Borel measures on Ω. It follows from the Riesz
representation theorem that there exists a unique u ∈ H1

0 (Ω) such that∫
Ω

∇u∇v dx =
∫
Ω

fv dx

for all v ∈ H1
0 (Ω), that is,

−Δu = f in D(Ω)′.

Let Φ(x) =
∫
Ω f(y)E(x − y) dy if N � 2 and Φ(x) =

∫
Ω E(x − y)df(y) if N = 1, where E is the

Newtonian potential. Then Φ ∈ C(Ω̄). This follows from the fact that E ∈ Lp′

loc(R
N ) if N � 2

and E ∈ C(R) if N = 1. Moreover ΔΦ = f in D(Ω)′. Let ϕ = Φ|∂Ω. It follows from Theorem 1.1
that hϕ = Φ + u. Since Ω is Dirichlet regular, hϕ ∈ C(Ω̄) and hϕ|∂Ω = ϕ. Thus u ∈ C0(Ω). In
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order to prove uniqueness, let u ∈ C0(Ω) such that −Δu = f in D(Ω)′. Then h = u + Φ ∈ C(Ω̄)
is a classical solution of D(ϕ, Ω). So uniqueness follows from the uniqueness of the classical
solution of the Dirichlet problem D(ϕ, Ω).

We conclude this section commenting on weak solutions of the Dirichlet problem.

Remark 1.6. Let ϕ ∈ C(∂Ω). We call h ∈ H(Ω) a weak solution of D(ϕ, Ω) if ϕ has an
extension Φ ∈ C(Ω̄) such that ΔΦ ∈ H−1(Ω) and h − Φ ∈ H1

0 (Ω).
(a) It is not obvious that weak solutions are unique. Theorem 1.1 gives a positive answer:

since h = hϕ and since the Perron solution hϕ is unique there is at most one solution.
(b) If Ω is Dirichlet regular, then ϕ ∈ C(∂Ω) has an extension Φ ∈ C(Ω̄) with ΔΦ ∈ H−1(Ω),

namely the Perron solution hϕ. We do not know whether this is true in general. Here is a class
of examples where it is true.

(c) Let G ⊂ R
N be a bounded open set which is Dirichlet regular and assume that N � 2.

Let F ⊂ G be a finite non-empty set and Ω = G \ F . Then Ω is not Dirichlet regular. Let
ϕ ∈ C(∂Ω). Let h ∈ H(G) ∩ C(Ḡ) such that h(z) = ϕ(z) for all z ∈ ∂G. Let ψ ∈ C1(RN ) such
that ψ = 0 on R

N \ G and ψ(z) = ϕ(z) − h(z) for all z ∈ F . Then ΔΦ = Δ(h + ψ) ∈ H−1(Ω)
and Φ(z) = ϕ(z) for all z ∈ ∂Ω = ∂G ∪ F .

2. Proof of Theorem 1.1

We start this section by giving a definition of the Perron solution. A function u ∈ C(Ω) is
called subharmonic if Δu � 0 in D(Ω)′ (that is, if

∫
Ω uΔv dx � 0 for all 0 � v ∈ D(Ω)) and

u is called superharmonic if −u is subharmonic. We write

u � ϕ on ∂Ω if lim sup
x→z

u(x) � ϕ(z) for all z ∈ ∂Ω

and
u � ϕ on ∂Ω if lim inf

x→z
u(x) � ϕ(z) for all z ∈ ∂Ω.

Then by Perron’s method

hϕ(x) := sup{u(x) : u ∈ C(Ω) is subharmonic and u � ϕ on ∂Ω}
= inf{u(x) : u ∈ C(Ω) is superharmonic and u � ϕ on ∂Ω}

exists for all x ∈ Ω and defines a bounded harmonic function hϕ. The mapping ϕ �→ hϕ from
C(∂Ω) into H(Ω) ∩ L∞(Ω) is linear, positive (that is, ϕ � 0 implies hϕ � 0) and contractive
(that is, supx∈Ω |hϕ(x)| � supz∈∂Ω |ϕ(z)|). We refer to [7, Chapter II § 4] for proofs of these
classical results.

Let Ω be a bounded open set and let ϕ ∈ C(∂Ω). For the proof we use the following
alternative description of the Perron solution hϕ. Let Ωn ⊂ Ω be open, Dirichlet regular such
that Ωn ⊂ Ωn+1 and

⋃
n∈N

Ωn = Ω. Such Ωn can always be constructed even of class C∞ (see
[7, Chapter II § 4 Lemma 1]). Extend ϕ to a function Φ ∈ C(Ω̄). Let hn ∈ C(Ω̄n) ∩ H(Ωn) such
that hn = Φ on ∂Ωn. Then

hϕ(x) = lim
n→∞

hn(x) (2.1)

uniformly on compact subsets of Ω. We refer to [11, Theorem II] or [3, Theorem 3.4] for this
result. Now we assume in addition that

Ωn ⊂ {x ∈ Ω: dist(x, ∂Ω) > 1/n}.

This can always be arranged by re-indexing the Ωn. Let �n be a mollifier, that is, 0 � �n ∈
D(RN ), supp �n ⊂ B(0, 1/n) and

∫
�n dx = 1. We also assume that �n(x) = �n(−x) for all

x ∈ R
N . Extend Φ to a uniformly continuous function on R

N , which we still denote by Φ, and
let Φn := �n ∗ Φ. Then Φn → Φ uniformly on R

N . Let kn ∈ H(Ωn) ∩ C(Ω̄n) such that kn = Φn
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on ∂Ωn , that is, kn is the solution of D(Ωn, Φn|∂Ωn). We show that also

kn(x) → hϕ(x) (2.2)

uniformly on compact subsets of Ω. In fact, let K ⊂ Ω be compact. There exists n0 such that
K ⊂ Ωn for all n � n0. By the maximum principle we have

‖kn − hn‖C(K) � ‖kn − hn‖C(Ω̄n) � ‖kn − hn‖C(∂Ωn) = ‖Φn − Φ‖C(∂Ωn) → 0

as n → ∞. Now (2.2) follows from (2.1).
Consider the function

un = kn − Φn ∈ C0(Ωn).

Then −Δun = ΔΦn in D(Ωn)′. It follows from [2, Lemma 2.2], (see also [3]) that un ∈ H1
0 (Ωn).

Now we assume in addition that ΔΦ ∈ H−1(Ω), that is, there exists a constant c > 0 such that∣∣∣
∫
Ω

ΦΔv dx
∣∣∣ � c

(∫
Ω

|∇v|2
)1/2

(2.3)

for all v ∈ D(Ω). This will allow us to prove that(∫
Ω

|∇un|2 dx
)1/2

� c (2.4)

for all n ∈ N. In order to prove (2.4) fix n ∈ N. Let v ∈ D(Ωn). Then∫
Ωn

∇un∇v dx = −
∫
Ωn

unΔv dx =
∫
Ωn

(Φn − kn)Δv dx =
∫
Ωn

ΦnΔv dx

=
∫

RN

(�n ∗ Φ)Δv dx =
∫

RN

Φ(�n ∗ Δv) dx =
∫

RN

ΦΔvn dx

where vn = �n ∗ v ∈ C∞(RN ) with supp vn ⊂ B(0, 1/n) + supp v ⊂ Ω. Thus vn ∈ D(Ω) and it
follows from (2.3) that∣∣∣

∫
RN

∇un∇v dx
∣∣∣ � c

(∫
RN

|∇vn|2 dx
)1/2

� c
(∫

RN

|∇v|2 dx
)1/2

for all v ∈ D(Ωn) since Djvn = �n ∗ Djv and ‖�n‖L1 = 1. As D(Ωn) is dense in H1
0 (Ωn) and∫

Ω ∇w1∇w2 dx defines an equivalent scalar product on H1
0 (Ω), the claim (2.4) follows. Now we

define ũn(x) = un(x) if x ∈ Ωn and ũn(x) = 0 if x �∈ Ωn. Then ũn ∈ H1
0 (Ω) and ∇ũn = ∇̃un

(see e.g. [5, Proposition IX.18]). We identify ũn and un to simplify the notation. By (2.4) the
sequence (un) is bounded in H1

0 (Ω). Hence there exists a subsequence (unm) converging weakly
to a function u ∈ H1

0 (Ω) as m → ∞. Since

unm + Φnm = knm (2.5)

we have

−
∫
Ωnm

∇unm∇v +
∫
Ωnm

ΦnmΔv =
∫
Ωnm

knmΔv = 0

for all v ∈ D(Ωnm). Letting m → ∞ we conclude that

−
∫
Ω

∇u∇v +
∫
Ω

ΦΔv = 0

for all v ∈ D(Ω) =
⋃

m∈N
D(Ωnm

). Thus u is the solution of

u ∈ H1
0 (Ω), −Δu = ΔΦ in D(Ω)′.

On the other hand, it follows from (2.5) and (2.2) that

u + Φ = hϕ.

This completes the proof of Theorem 1.1.
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3. Further comments

1. Our proof of Theorem 1.1 is based on exhausting Ω by Dirichlet regular sets. It allows
us actually to identify the weak solution with Perron’s solution. Hildebrandt [10] and
Simader [15], in the case where ϕ has an extension Φ ∈ C(Ω̄) ∩ H1(Ω), use barriers to
show that the weak solution has the same regularity properties as the Perron solution.
Simader’s proof [15, Theorem 1.6] depends on the notion of H1-barriers which are introduced
in [2, Definition 3.1] (cf. [15, Definition 3.1]). By [2, Lemma 3.1] Ω is Dirichlet regular if and
only if at every point z ∈ ∂Ω an H1-barrier exists (cf. [15, Theorem 1.7]).

2. A further consequence of Corollary 1.4 is that

H1
0 (Ω) ∩ C(Ω̄) ⊂ C0(Ω) (3.1)

whenever Ω is Dirichlet regular [15, Corollary 5.3]. We mention that Biegert and Warma [4]
actually showed that (3.1) holds if and only if cap(B(z, r) \ Ω) > 0 for each z ∈ ∂Ω, r > 0, that
is, if Ω is regular in capacity [1, Definition 3.12]. By Wiener’s criterion [8, (2.37)] regularity in
capacity is weaker than Dirichlet regularity.
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