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Abstract

We consider a strictly elliptic operator

Au =
∑
ij

Di(aijDju) − b · ∇u + div(c · u) − V u,

where 0 � V ∈ L∞
loc, aij ∈ C1

b
(RN), b, c ∈ C1(RN,R

N). If divb � βV , div c � βV , 0 < β < 1, then a natural realization of A
generates a positive C0-semigroup T in L2(RN). The semigroup satisfies pseudo-Gaussian estimates if

|b| � k1V α + k2, |c| � k1V α + k2,

where 1
2 � α < 1. If α = 1

2 , then Gaussian estimates are valid. The constant α = 1
2 is optimal with respect to this property.

© 2007 Elsevier Inc. All rights reserved.
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0. Introduction

We consider a strictly elliptic operator of the form

Au =
N∑

i,j=1

Di(aijDju) − b · ∇u + div(cu) − V u

on L2(RN) where aij ∈ C1
b(RN), b, c ∈ C1(RN,R

N) and V ∈ L∞
loc(R

N) are real coefficients. If b, c,V are bounded,
then this is a classical elliptic operator and semigroup properties have been studied extensively. In particular, it is
known that the canonical realization of A in L2(RN) generates a positive C0-semigroup satisfying Gaussian esti-
mates (see e.g. [4,7,16] and the survey [3]). Here we are interested in the case where the drift terms b and c are
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unbounded. Then one still obtains a semigroup satisfying various regularity properties if the potential V compensates
the unbounded drift. We consider the assumption

divb � βV, div c � βV (H1)

where 0 < β < 1. Then we show that there is a natural unique realization A of the differential operator A which
generates a minimal positive semigroup T on L2(RN). This semigroup as well as its adjoint are submarkovian. We
say that T satisfies pseudo-Gaussian estimates of order m � 2 if T (t) has a kernel kt satisfying

0 � kt (x, y) � c1e
ωt t−N/2 exp

{−c2
(|x − y|m/t

)1/m−1}
for all x, y ∈ R

N , t > 0 and some constants c1, c2 > 0, ω ∈ R. In the case where m = 2 we say that T satisfies
Gaussian estimates. In order to obtain such pseudo-Gaussian estimates we impose an additional growth condition on
the drift terms b and c, namely,

|b| � k1V
α + k2, |c| � k1V

α + k2 (H2)

where 1
2 � α < 1, k1, k2 � 0. If α = 1

2 , then it was proved in [2] that T has Gaussian estimates. The purpose of this
paper is to show on one hand that α = 1

2 is optimal for this property (Section 3). On the other hand, if 1
2 < α < 1,

then we show that T still satisfies pseudo-Gaussian estimates even though T need not be holomorphic in that case.
Pseudo-Gaussian estimates of order m > 2 are still of interest. For instance, they imply that the realizations Ap of A in
Lp(RN) have all the same spectrum, 1 � p � ∞, at least if m < 2N

N−2 . For elliptic operators with moderately growing
drift terms but no compensating V such pseudo-Gaussian estimates had been obtained before by Karrmann [9]. Here
we do not study regularity properties of the operator A. For this we refer to [2,14,15]. We also mention the works by
Liskevich, Sobol and Vogt [12,13,18] where a different approximation is used and spectral properties are studied.

1. Elliptic operators with unbounded drift

In this section we define the realization of an elliptic operator with unbounded drift in L2(RN). The construction
is similar to the one in [2] but we ask for less regularity. Moreover, we establish an additional coerciveness property
which is used later to prove quasi-Gaussian estimates. We assume throughout this section that aij ∈ L∞(R) and

N∑
i,j=1

aij (x)ξiξj � ν|ξ |2 (1.1)

for all x ∈ R
N , ξ ∈ R

N , where ν > 0 is a fixed constant. Let b = (b1, . . . , bN), c = (c1, . . . , cN) ∈ C1(RN,R
N), and

let V ∈ L∞
loc(R

N). We assume in this section that

divb � V, div c � V. (H0)

Later in Section 2 we will replace (H0) by a stronger assumption (H1) and require more regularity on the diffusion
coefficients aij and positivity of the potential. Define the elliptic operator

A : H 1
loc

(
R

N
) →D

(
R

N
)′
,

Au =
N∑

i,j=1

Di(aijDju) − b · ∇u + div(cu) − V u,

i.e., for u ∈ H 1
loc(R

N) and v ∈ D(RN) we have

−〈Au,v〉 =
∫

RN

N∑
i,j=1

aijDjuDiv dx +
∫

RN

{
N∑

j=1

(bjDjuv + cjuDjv) + V uv

}
dx.

We define the maximal operator Amax in L2(RN) by

D(Amax) := {
u ∈ L2(

R
N

) ∩ H 1
loc

(
R

N
)
, Au ∈ L2(

R
N

)}
,

Amaxu = Au.
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Now we describe the minimal realization of A in L2(RN) as follows.

Theorem 1.1. There exists a unique operator A on L2(RN) such that

(a) A ⊂ Amax;
(b) A generates a positive C0-semigroup T on L2(RN);
(c) if B ⊂ Amax generates a positive C0-semigroup S, then T (t) � S(t) for all t � 0.

We call A the minimal realization of A in L2(RN).

When giving the proof we also establish important properties of A and of T .

Proposition 1.2 (Coerciveness). One has D(A) ⊂ H 1(RN) and

−(Au|u) � ν‖u‖2
H 1 (1.2)

for all u ∈ D(A).

Proposition 1.3 (Ultracontractivity). The semigroup T and its adjoint are submarkovian. Moreover T is ultracontrac-
tive, namely∥∥T (t)

∥∥
L(L1,L∞)

� cνt
−N/2 (t > 0), (1.3)

where cν > 0 depends only on the space dimension and the ellipticity constant ν.

Recall that a C0-semigroup S on L2(RN) is called submarkovian if S is positive and∥∥S(t)f
∥∥∞ � ‖f ‖∞ (t > 0),

for all f ∈ L∞ ∩ L2. If B is an operator on L2(RN) we let

‖B‖L(Lp,Lq) := sup
‖f ‖p�1
f ∈L2

‖Bf ‖q .

Since T and T ∗ are submarkovian, it follows from the Riesz–Thorin Theorem that∥∥T (t)
∥∥
L(Lp)

� 1 (t � 0),

for all 1 � p � ∞.
The remainder of this section is devoted to the proofs of Theorem 1.1 and Propositions 1.2, 1.3. As in [2] we ap-

proximate the operator A by realizations of A on balls whose radii go to ∞. However, here we do not study regularity
properties of A and we restrict ourselves to the Hilbert space case L2(RN) (whereas Lp(RN) was considered in [2]).
Our assumptions on V and aij are more general than in [2]. Denote by Br = {x ∈ R

N : |x| < r} the ball of radius
r > 0. The bilinear form

ar(u, v) :=
∫
Br

N∑
i,j=1

aijDjuDiv dx +
∫
Br

{
N∑

j=1

(bjDjuv + cjuDjv) + V uv

}
dx

is continuous on H 1
0 (Br). We show that

ar(u,u) � ν

∫
Br

|∇u|2 dx (1.4)

for all u ∈ H 1(Br). In fact, let u ∈ H 1(Br). Then
0 0
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ar(u,u) � ν

∫
Br

|∇u|2 dx +
∫
Br

{
N∑

j=1

(bj + cj )
1

2
Dju

2 + V u2

}
dx

= ν

∫
Br

|∇u|2 dx +
∫
Br

(
−div

b + c

2
+ V

)
u2 dx � ν

∫
Br

|∇u|2 dx.

In view of Poincaré’s inequality, (1.4) implies that ar is coercive. Denote by −Ar the associated operator on
L2(Br). Then Ar generates a C0-semigroup Tr on L2(Br). Since u ∈ H 1

0 (Br) implies that u+, u− ∈ H 1
0 (Br) and

a(u+, u−) = 0 the semigroup Tr is positive by the first Beurling–Deny criterion on forms [16, Theorem 2.6]. Since ar

is coercive, Tr is contractive [16, Chapter 1]. Next we show that for 0 < r1 < r2

Tr1(t) � Tr2(t), (1.5)

or, equivalently,

R(λ,Ar1) � R(λ,Ar2) (λ > 0). (1.6)

Here we identify L2(Br) with a subspace of L2(RN) and extend an operator B on L2(Br) to L2(RN) by defining it
as 0 on L2(Br)

⊥ = {u ∈ L2(RN): u|Br = 0}. Similarly, we may identify H 1
0 (Br1) with a subspace of H 1

0 (Br2), see
[5, Proposition IX.18].

Proof of (1.6). Let 0 � f ∈ L2(RN),λ > 0, u1 = R(λ,Ar1)f , u2 = R(λ,Ar2)f . We want to show that u1 � u2. One
has by definition of Ar1 ,Ar2 ,

λ

∫
Br1

ukv +
∫

Br1

N∑
i,j=1

aijDiukDjv +
∫

Br1

N∑
i=1

biDiukv +
∫

Br1

N∑
i=1

ciDivuk +
∫

Br1

V ukv =
∫

Br1

f v

for all v ∈ H 1
0 (Br1), k = 1,2. Since u2 � 0 one has (u1 − u2)

+ � u1, hence (u1 − u2)
+ ∈ H 1

0 (Br1). Taking v =
(u1 − u2)

+ and subtracting the two identities we obtain

λ

∫
Br1

(u1 − u2)(u1 − u2)
+ +

∫
Br1

N∑
i,j=1

aijDi(u1 − u2) · Dj(u1 − u2)
+ +

∫
Br1

N∑
i=1

biDi(u1 − u2)(u1 − u2)
+

+
∫

Br1

N∑
i=1

ciDi(u1 − u2)
+(u1 − u2) +

∫
Br1

V (u1 − u2)(u1 − u2)
+ = 0.

Since Di(u1 − u2)(u1 − u2)
+ = Di(u1 − u2)

+(u1 − u2)
+ this gives

λ

∫
Br1

(u1 − u2)
+2 +

∫
Br1

ν
∣∣∇(u1 − u2)

+∣∣2
dx +

∫
Br1

{
N∑

j=1

(bi + ci)

2
Di(u1 − u2)

+2 + V (u1 − u2)
+2

}
� 0.

The third term equals∫
Br1

(
−div

b + c

2
+ V

)
(u1 − u2)

+2 dx

which is � 0 by the hypothesis (H0). Thus (u1 − u2)
+ � 0, hence u1 � u2 on Br1 . �

Next we show that

lim
r↑∞Tr(t)f =: T (t)f (1.7)

exists in L2(RN) for all f ∈ L2(RN) and defines a positive contraction C0-semigroup whose generator we denote
by A.
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Proof of (1.7). (a) Let 0 � f ∈ L2(RN). Since Tr1(t)f � Tr2(t)f for 0 < r1 � r2 and ‖Tr(t)f ‖2 � ‖f ‖2, the
limit in (1.7) exists in L2(RN). It follows that T (t) is a positive contraction and T (t + s) = T (t)T (s) for s, t � 0.
In order to show that T is strongly continuous, let 0 � f ∈ D(RN). Let tn ↓ 0, fn = T (tn)f . We have to show
that fn → f in L2(RN) as n → ∞. Let r > 0 such that suppf ⊂ Br . Observe that 0 � gn := Tr(tn)f � fn.
Since Tr is strongly continuous, limn→∞ gn = f . Moreover, ‖fn‖2 � ‖f ‖2. Hence lim supn→∞ ‖gn − fn‖2

2 =
lim supn→∞{‖gn‖2

2 + ‖fn‖2
2 − 2(gn|fn)2} � lim supn→∞{2‖f ‖2

2 − 2(gn|gn)2} = 0. �
We mention that, by dominated convergence as in [1, Section 3.6], property (1.7) implies that

R(λ,A)f = lim
r↑∞R(λ,Ar)f (1.8)

for all λ > 0, f ∈ L2(RN). Next we show that

D(A) ⊂ H 1(
R

N
)

and ν

∫
RN

|∇u|2 dx � (−Au|u) (1.9)

for all u ∈ D(A). Moreover,

A ⊂ Amax. (1.10)

(a) We prove (1.9). Let f ∈ L2(RN), un = R(1,Arn)f , u = R(1,A)f where rn ↑ ∞. Then un → u in L2(RN) by
(1.8). Since un − Arnun = f and u − Au = f in L2(Brn), it follows that

Arnun → Au in L2(
R

N
)
.

By (1.4) we have

ν

∫
RN

|∇un|2 dx � −(Arnun|un).

Since −(Arnun|un) → (−Au | u) as n → ∞, it follows that

ν lim sup
n→∞

∫
RN

|∇un|2 dx � (−Au|u). (1.11)

Thus (un)n∈N is bounded in H 1(RN). Considering a subsequence, we may assume that un → u weakly in H 1(RN).
Let h = (h1, . . . , hN) ∈ L2(RN)N such that ‖h‖2 � 1. Then by (1.11),∫

RN

∇u · hdx = lim
n→∞

∫
RN

∇un · hdx � lim
n→∞

( ∫
RN

|∇un|2
)1/2

�
[−(Au|u)/ν

]1/2
.

Hence( ∫
RN

|∇u|2 dx

)1/2

= sup
h∈L2(RN)N

‖h‖2�1

∫
RN

∇u · hdx �
[−(Au|u)/ν

]1/2
.

Thus (1.9) is proved.
(b) In order to prove (1.10) we keep the notations of (a) and have to show that u ∈ D(Amax) and Au = Amaxu. Let

v ∈ D(RN). Then

(−Arnun|v) =
∫

RN

N∑
i,j=1

aijDjunDiv dx +
∫

RN

{
N∑

j=1

(bjDjunv + cjunDjv) + V unv

}
dx.

Since un → u weakly in H 1(RN) and Arnun → Au in L2(RN), it follows that (−Au|v) = (Au|v).
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Next we show the minimality property in Theorem 1.1. Assume that S is a positive semigroup whose generator B

satisfies B ⊂ Amax. Then

0 � T (t) � S(t) (t � 0). (1.12)

Proof of (1.12). We have to show that

R(λ,A) � R(λ,B) (1.13)

for λ > 0 sufficiently large. Let r > 0; because of (1.8) it suffices to show that

R(λ,Ar) � R(λ,B). (1.14)

Let f ∈ L2(RN), f � 0, u1 = R(λ,Ar)f , u2 = R(λ,B)f . Then 0 � u1 ∈ H 1
0 (Br), 0 � u2 ∈ H 1

loc(R
N). We have to

show that u1 � u2. Since B ⊂ Amax we have λu2 − Au2 = f in D(Br)
′, and also λu1 − Au1 = f in D(Br)

′ by the
definition of Ar . Hence

λ

∫
Br

(u1 − u2)v dx +
∫
Br

N∑
i,j=1

aijDj (u1 − u2)Div dx +
∫
Br

N∑
j=1

(
bjDj (u1 − u2)v + cj (u1 − u2)Djv

)
dx

+
∫
Br

V (u1 − u2)v dx = 0

for all v ∈ D(Br). This identity remains true for v ∈ H 1
0 (Br) by passing to the limit. Since u2 � 0 one has

(u1 − u2)
+ � u1, hence (u1 − u2)

+ ∈ H 1
0 (Br). Choosing v = (u1 − u2)

+ in the identity above we obtain

λ

∫
Br

(u1 − u2)
+2 +

∫
Br

N∑
i,j=1

aijDj (u1 − u2)
+Dj(u1 − u2)

+ dx

+
∫
Br

N∑
j=1

(
bjDj (u1 − u2)

+(u1 − u2)
+ + cjDj (u1 − u2)

+(u1 − u2)
+)

dx +
∫
Br

V (u1 − u2)
+2 dx

= 0.

Consequently

λ

∫
Br

(u1 − u2)
+2 dx + ν

∫
Br

∣∣∇(u1 − u2)
+∣∣2

dx +
∫
Br

(
−div

(
b + c

2

)
+ V

)
(u1 − u1)

+2 dx � 0.

Since −div( b+c
2 ) + V � 0 this implies that (u1 − u2)

+ = 0; i.e., u1 � u2. �
The proofs of Theorem 1.1 and Proposition 1.2 are complete.
We now show that T is submarkovian. Because of (1.7), it suffices to show that Tr is submarkovian. By the second

criterion of Beurling–Deny–Ouhabaz on forms (see [16]) this is equivalent to

ar

(
u ∧ 1, (u − 1)+

)
� 0 (1.15)

for all u ∈ H 1
0 (Br).

Proof of (1.15). Since Dj(u ∧ 1) = Dju1{u<1}, Dj((u − 1)+) = Dju1{u>1} and Dju = 0 a.e. on {u = 1}, one has

ar

(
u ∧ 1, (u − 1)+

) =
∫
N

{
N∑

j=1

cj (u ∧ 1)Dj (u − 1)+ + V (u ∧ 1)(u − 1)+
}

dx
R
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=
∫

RN

{
N∑

j=1

cjDj (u − 1)+ + V (u − 1)+
}

dx

=
∫

RN

(−div c + V )(u − 1)+ dx � 0

in view of the hypothesis (H1). �
Next we show that the adjoint semigroup T ∗ = (T (t)∗)t�0 is generated by the minimal realization of the adjoint

differential operator A∗ which is defined by replacing aij by aji and by interchanging b and c, i.e.

A∗u =
N∑

i,j=1

Di(ajiDju) + c∇u − div(bu) − V u
(
u ∈ H 1

loc

)
. (1.16)

Lemma 1.4. The minimal realization in L2(RN) of A∗ is the adjoint A∗ of A.

Proof. The adjoint −A∗
r of −Ar is associated with the form a∗

r defined on H 1
0 (Br) × H 1

0 (Br) by

a∗
r (u, v) = ar(v,u).

The semigroup generated by A∗
r is the adjoint T ∗

r of Tr . Let B be the minimal realization of A∗ in L2(RN) and S the
semigroup generated by B . Then

S(t)f = lim
r↑∞Tr(t)

∗f = T (t)∗f

for all f ∈ L2(RN). �
As a consequence, we deduce that also T ∗ is submarkovian. Finally, we have to show ultracontractivity. We use

the following criterion (cf. [6,19], [3, Section 7], [17]).

Proposition 1.5. For each δ > 0 there exists a constant cδ > 0 such that the following holds. Let S be a C0-semigroup
on L2(RN) such that S and S∗ are submarkovian. Assume that the generator B of S satisfies

(a) D(B) ⊂ H 1(RN);
(b) (−Bu|u) � δ‖u‖2

H 1 (u ∈ D(B));

(c) (−B∗u|u) � δ‖u‖2
H 1 (u ∈ D(B∗)).

Then ∥∥S(t)
∥∥
L(L1,L∞)

� cδt
−N/2 (t > 0). (1.17)

The proof of Proposition 1.5 is based on Nash’s inequality

‖u‖2+4/N

2 � cN‖u‖2
H 1‖u‖4/N

1 (1.18)

for all u ∈ H 1(RN) and some constant cN > 0, and one may choose cδ = (
cN ·N

δ
)N/2.

Proof of Proposition 1.5. (i) D(B) ∩ L1 is dense in L1 ∩ L2. In fact, the semigroup S extrapolates to a C0-
semigroup on L1 (see [8], [3, Section 7.2]). Hence for f ∈ L1 ∩ L2, λR(λ,B)f → f in L1 and in L2 as λ → ∞. But
λR(λ,B)f ∈ D(B).

(ii) Now we modify the proof of [4, Proposition 3.8] to show that

∥∥S(t)f
∥∥

2 �
(

NcN

)N/4

t−N/4‖f ‖1 (1.19)

4δ
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for all f ∈ D(B) ∩ L1. Let f ∈ D(B) ∩ L1. Then, by (1.18)

d

dt

∥∥S(t)f
∥∥2

2 = (
BS(t)f |S(t)f

) + (
S(t)f |B∗S(t)f

)
� −2δ

∥∥S(t)f
∥∥2

H 1 � − 2δ

cN

‖S(t)f ‖2+4/N

2

‖S(t)f ‖4/N

1

.

Hence
d

dt

(∥∥S(t)f
∥∥2

2

)−2/N = − 2

N

∥∥S(t)f
∥∥2(−2/N−1)

2

d

dt

∥∥S(t)f
∥∥2

2 � 4δ

NcN

1

‖S(t)f ‖4/N

1

� 4δ

NcN

1

‖f ‖4/N

1

.

Integrating, we obtain(∥∥S(t)f
∥∥2

2

)−2/N � t
4δ

NcN

1

‖f ‖4/N

1

which implies (1.19).
It follows from (i) that (1.19) remains true for f ∈ L1 ∩ L2.
(iii) Applying (b) to S∗ instead of S shows that

∥∥S∗(t)f
∥∥

2 �
(

NcN

4δ

)N/4

t−N/4‖f ‖1 (1.20)

(f ∈ L1 ∩ L2). Hence

∥∥S(t)f
∥∥∞ �

(
NcN

4δ

)N/4

t−N/4‖f ‖2 (1.21)

(f ∈ L2 ∩ L∞). Concluding, for f ∈ L1 ∩ L2,

∥∥S(t)f
∥∥∞ =

∥∥∥∥S

(
t

2

)
S

(
t

2

)
f

∥∥∥∥∞
�

(
NcN

4δ

)N/4(
t

2

)−N/4∥∥∥∥S

(
t

2

)
f

∥∥∥∥
2
�

[(
NcN

4δ

)N/4(
t

2

)−N/4]2

‖f ‖1

= cδt
−N/2‖f ‖1. �

Proposition 1.5 implies the ultracontractivity property (1.3) with cν = (
cN ·N

ν
)N/2 since by (1.9) and Lemma 1.4 the

hypotheses (a), (b), (c) in Proposition 1.5 are satisfied for the operator B = A. Thus the proofs of Theorem 1.1 and
Propositions 1.2, 1.3 are complete.

2. Pseudo-Gaussian estimates

Let T be a positive C0-semigroup on L2(RN). We say that T satisfies pseudo-Gaussian estimates of type m � 2 if
there exist real constants c1 > 0, c2 > 0,ω ∈ R and a measurable kernel kt ∈ L∞(RN × R

N) satisfying

0 � kt (x, y) � c1e
ωt t−N/2 exp

(
−c2|x − y|m

t

)1/m−1

(2.1)

x, y-a.e. for all t > 0 such that(
T (t)f

)
(x) =

∫
RN

kt (x, y)f (y) dy (2.2)

x-a.e. for all t > 0, f ∈ L2(RN). If m = 2, then we say that T satisfies Gaussian estimates.
In fact, the Gaussian semigroup satisfies such an estimate for m = 2. It is the best case as the following monotonicity

property shows.

Proposition 2.1. Let b1, b2 > 0 and let m2 > m1 � 2 be real constant. Then there exists ω � 0 such that

exp

(
−b1

( |z|m1

t

)1/(m1−1))
� exp

(
−b2

( |z|m2

t

)1/(m2−1))
eωt (2.3)

for all z ∈ R
N, t > 0.
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Proof. We have to find a constant ω such that

−b1

( |z|m1

t

)1/(m1−1)

� −b2
|z|m2

t−1/(m2−1)
+ ωt.

Let

ft (x) = b2x
m2/(m2−1)t−1/(m2−1) − b1x

m1/(m1−1)t−1/(m1−1) (x � 0),

where t > 0. Since m2
m2−1 < m1

m1−1 , ft (∞) = −∞. Moreover, ft (0) � 0. Let x � 0 such that f ′
t (x) = 0. Then

b2
m2

m2 − 1
x

1
m2−1 t

− 1
m2−1 = b1

m1

m1 − 1
x

1
m1−1 t

− 1
m1−1 .

Hence α2(
x
t
)

1
m2−1 = α1(

x
t
)

1
m1−1 . Thus α2

α1
= ( x

t
)

1
m2−1 − 1

m1−1 . This implies that x = βt for some β > 0 independent of

t > 0. Thus maxy>0 ft (y) = ft (βt) = b̃2t − b̃1t where b̃2, b̃1 ∈ R are constants. Choose ω � b̃2 − b̃1. �
Pseudo-Gaussian estimates can be established with the help of a version of Davies’ trick which goes as follows.

Let

W := {
ψ ∈ C∞(

R
N

) ∩ L∞(
R

N
)
: ‖Djψ‖∞ � 1, ‖DiDjψ‖∞ � 1, i, j = 1, . . . ,N

}
.

Let S be a positive C0-semigroup on L2(RN). For 
 ∈ R,ψ ∈ W we denote by S
 the C0-semigroup given by

S
(t)f = e−
ψS(t)
(
e
ψf

)
. (2.4)

We keep in mind that S
(t) also depends on ψ , but the estimates should not. In fact, we have the following.

Proposition 2.2. Let m � 2 be a real constant. Assume that there exist c > 0,ω ∈ R, such that∥∥S
(t)
∥∥
L(L1,L∞)

� ct−N/2eω(1+
m)t (2.5)

for all 
 ∈ R,ψ ∈W, t > 0. Then S satisfies pseudo-Gaussian estimates of order m.

We recall the Dunford–Pettis criterion which says that an operator B on L2(RN) is given by a measurable kernel
k ∈ L∞(RN × R

N) if and only if ‖B‖L(L1,L∞) < ∞. In that case,

‖k‖L∞(RN×RN) = ‖B‖L(L1,L∞).

Proof of Proposition 2.2. This is a modification of [4, Proposition 3.3]. It follows from the Dunford–Pettis criterion
applied to the operator S(t) that S(t) is given by a measurable kernel k. Consequently, S
(t) is given by the kernel

k
(t, x, y) = k(t, x, y)e
(ψ(y)−ψ(x)).

Since by the Dunford–Pettis criterion again one has

k
(t, x, y) � ct−N/2eω(1+
m)t ,

it follows that

k(t, x, y) � ct−N/2eωteω
mt±
(ψ(y)−ψ(x))

for all 
 ∈ R. Now, d(x, y) = sup{ψ(x) − ψ(y): ψ ∈ W } defines a metric on R
N which is equivalent to the given

metric, see [17, pp. 200–202]. Hence d(x, y) � β|x − y| for all x, y ∈ R
N and some β > 0. Thus

k(t, x, y) � ct−N/2eωteω
mt−
β|y−x|

a.e. Choosing


 =
(

β|x − y|) 1
m−1
tωm
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we obtain

k(t, x, y) � ct−N/2eωt exp

{
−c2|y − x|m

t

} 1
m−1

where c2 = β
m

m−1 (m− 1
m−1 − m− m

m−1 ). �
Now we have to consider a stronger hypothesis than (H0), namely

divb � βV, div c � βV (H1)

for some constant 0 < β < 1. We also need a condition on the growth of the drift terms b and c with respect to V

(assumed nonnegative), namely

V � 0, |b| � k1V
α + k2, |c| � k1V

α + k2, (H2)

where 1
2 � α < 1, k1, k2 � 0, as well as some more regularity on the diffusion coefficients:

aij ∈ C1
b

(
R

N
)
. (H3)

The following result extends [2, Theorem 5.2] from the case α = 1
2 (i.e., m = 2) to 1

2 � α < 1. Note however, that in
contrast to the situation when α = 1

2 , if α > 1
2 then the operator −A is not associated with a form and the semigroup

T may not be holomorphic (see [2, Section 6] and Section 3 below).

Theorem 2.3. Let A be the minimal realization of the elliptic operator whose coefficients satisfy (1.1), (H1), (H2)

and (H3). Let T be the semigroup generated by A. Then T satisfies a pseudo-Gaussian estimate of order m = 1
1−α

.

Proof. Let 
 ∈ R,ψ ∈ W . It is obvious that

T 
(t)f = lim
r↑∞T



r (t)f.

Thus the generator A
 of T 
 is the minimal realization of the elliptic operator A
 with coefficients

a



ij = aij ,

b



i = bi − 


N∑
j=1

aijψj ,

c



i = ci + 


N∑
i,j=1

akiψk,

V 
 = V − 
2
N∑

i,j=1

aijψiψj + 


N∑
i=1

biψi − 


N∑
i=1

ciψi,

where ψi = Diψ , cf. [4, Lemma 3.6]. We will find ω ∈ R such that for

W
 = V 
 + (
1 + 
m

)
ω

one has

divb
 � W
, div c
 � W
, (2.6)

where ω is independent of 
 ∈ R and ψ ∈W . Then Proposition 1.3 applied to A
 − (1 + 
m)ω implies that∥∥T (t)
∥∥
L(L1,L∞)

� cνt
−N/2eω(1+
m)t (t > 0). (2.7)

Then Proposition 2.2 proves the claim. In order to prove (2.6) we proceed in several steps. We first show that


V α � ε1/ααV + (1 − α)ε−m
m (2.8)
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for all ε > 0. In fact, let q = 1
α
, 1

p
= 1 − 1

q
and recall that m = 1

1−α
= p. Then by Hölder’s inequality


V α = 1

ε

V αε � 1

p

1

εp

p + 1

q
V αqεq = (1 − α)ε−m
m + αV ε1/α.

Next we show that there exists ω1 ∈ R such that

βV � V 
 + ω1
(
1 + 
m

)
(2.9)

for all 
 ∈ R,ψ ∈ W , where β ∈ (0,1) is the constant in (H1). In fact, by (H2) and (2.8),

V 
 � V − k3

2 − k3
V α − k4


� V − k3

2 − k3ε

1/ααV − k3(1 − α)ε−m
m − k4


� βV − ω1
(
1 + 
m

)
for suitable constants k3, k4ω1 where ε > 0 is chosen such that β = 1−k3ε

1/αα. Now we show (2.6). One has by (2.9),

divb
 = divb − 


N∑
i,j=1

Di(aijψj )

� βV + k4


� V 
 + ω1
(
1 + 
m

) + k5


� V 
 + ω
(
1 + 
m

)
for all 
 ∈ R,ψ ∈ W where k5,ω are suitable constants. The estimate for div c
 is the same. �
Remark 2.4. It is obvious from the definition that a semigroup S satisfies (pseudo-) Gaussian estimates if and only if
(eωtS(t))t�0 does so for some ω ∈ R. Thus in Theorem 2.3 we may replace condition (H1) by the weaker condition

divb � βV + β ′, div c � βV + β ′ (H ′
1)

where 0 < β < 1, β ′ ∈ R and the result remains valid.

As application we obtain a result on p-independence of the spectrum. Assume that assumptions (1.1) and (H1)

are satisfied. Let A be the minimal realization of the elliptic operator A. Then A generates a C0-semigroup T on
L2(RN) and T as well as T ∗ are submarkovian. As a consequence there exists a consistent family Tp = (Tp(t))t�0 of
semigroups on Lp(RN) such that T2 = T . Here Tp is a C0-semigroup if 1 � p < ∞ and T∞ is a dual C0-semigroup.
We denote by Ap the generator of Tp,1 � p � ∞.

Corollary 2.5. Assume that (1.1), (H1), (H2) and (H3) are satisfied. Assume that α < N+2
2N

. Then σ(Ap) = σ(A) for

all p ∈ [1,∞]. Here 1
2 � α < 1 is the constant occurring in hypothesis (H2).

Proof. This follows from a result of Karrmann [9, Corollary 6.2] which in turn is a consequence of a result of
Kunstmann [10, Theorem 1.1]. �

The restriction

α <
N + 2

2N

is due to the fact that Karrmann proves spectral p-independence in the case of quasi-Gaussian estimates of order m if
m < 2N . We do not know whether these conditions are optimal.
N−2
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3. An example

In order to show that Theorem 2.3 is optimal we consider the one-dimensional example

Au = u′′ − x3u′ + |x|γ u,

where γ > 2. Then condition (H ′
1) is satisfied (see Remark 2.4). Let A be the minimal realization of A in L2(R) and

let T be the semigroup generated by A. If γ � 6, then it follows from Theorem 2.3 that T satisfies Gaussian estimates.
If 6 > γ > 3, then Theorem 2.3 says that T satisfies pseudo-Gaussian estimates of order m = γ

γ−3 . We show that T

does not satisfy Gaussian estimates in that case.

Proposition 3.1. Let 3 < γ < 6. Then T does not satisfy Gaussian estimates.

Proof. Assume that T (t) is given by a kernel kt satisfying

0 � kt (x, y) � c1e
ωt 1√

t
e−c2|x−y|2/t . (3.1)

Consider the operator In ∈ L(L2) given by

(Inu)(x) = u

(
x − n

λn

)
,

where λn = n3−β, γ < β < 6. Then

‖Inu‖2 = √
λn‖u‖2

(
u ∈ L2(R)

)
and (I−1

n u)(x) = u(λnx + n). Define the semigroup Tn on L2(R) by

Tn(t) = I−1
n T (rnt)In,

where rn = n−β . It follows from the Trotter–Kato Theorem that

lim
n→∞Tn(t)f = S(t)f (3.2)

for all f ∈ L2(R) where S is the shift semigroup given by (S(t)u)(x) = u(x − t) (see [2, Proposition 6.4]) One has
for f ∈ L2(R)

Tn(t)f (x) = (
T (rnt)(Inf )

)
(n + λnx)

=
∫
R

krnt (n + λnx, y)f

(
y − n

λn

)
dy

=
∫
R

λnkrnt (n + λnx,n + λny)f (y) dy

=
∫
R

kn
t (x, y)f (y) dy

where kn
t (x, y) = λnkrnt (n + λnx,n + λny). By (3.1) we obtain

kn
t (x, y) � n3−βc1e

ωtrn
1√
rnt

e−c2λ
2
n|x−y|2/n−β t

= n3−β/2c1e
ωtrn

1√
t
e−c2n

6−β |x−y|2/t .

Denoting by G = (G(t))t�0 the Gaussian semigroup, this implies that for 0 � f ∈ L2(RN),(
Tn(t)f

)
(x) � ceωtrn

(
G

(
t/4c2n

6−β
)
f

)
(x).
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Thus

S(t)f = lim
n→∞Tn(t)f � lim

n→∞ ceωtrnG
(
t/4c2n

6−β
)
f = c1f.

This is a contradiction. �
Remark 3.2. It was shown in [2, Proposition 6.4] that for 2 � γ < 6, the semigroup T is not holomorphic. It seems not
to be known whether Gaussian estimates for positive semigroups imply holomorphy. They do not without positivity
assumption as Voigt’s example

Au = u′′ + ix

on L2(R) shows (see Liskevich and Manavi [11] for more details).

References

[1] W. Arendt, C.J.K. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monogr. Math., Birkhäuser,
Basel, 2001.

[2] W. Arendt, G. Metafune, D. Pallara, Schrödinger operators with unbounded drift, J. Operator Theory 55 (2006) 185–211.
[3] W. Arendt, Semigroups and evolution equations: Functional calculus, regularity and kernel estimates, in: C.M. Dafermos, E. Feireisl (Eds.),

Handbook of Differential Equations: Evolutionary Equations, vol. I, Elsevier, Amsterdam, 2004, pp. 1–85.
[4] W. Arendt, A.F.M. ter Elst, Gaussian estimates for second order elliptic operators with boundary conditions, J. Operator Theory 38 (1997)

87–130.
[5] H. Brézis, Analyse Fonctionelle, Masson, Paris, 1983.
[6] T. Coulhon, Dimension à l’infini d’un semi-groupe analytique, Bull. Sci. Math. 114 (1990) 485–500.
[7] D. Daners, Heat kernel estimates for operators with boundary conditions, Math. Nachr. 217 (2000) 13–41.
[8] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1989.
[9] S. Karrmann, Gaussian estimates for second-order operators with unbounded coefficients, J. Math. Anal. Appl. 258 (2001) 320–348.

[10] P.C. Kunstmann, Kernel estimates and Lp-spectral independence of differential and integral operators, in: Proceedings of the 7th OT Confer-
ence, Theta, 2000.

[11] V. Liskevich, A. Manavi, Dominated semigroups with singular complex potentials, J. Funct. Anal. 151 (1997) 281–305.
[12] V. Liskevich, Z. Sobol, Estimates of integral kernels for semigroups associated with second-order elliptic operators with singular coefficients,

Potential Anal. 18 (2003) 359–390.
[13] V. Liskevich, Z. Sobol, H. Vogt, On the Lp-theory of C0-semigroups associated with second-order elliptic operators II, J. Funct. Anal. 193

(2002) 55–76.
[14] G. Metafune, E. Priola, Some classes of nonanalytic Markov semigroups, J. Math. Anal. Appl. 294 (2004) 596–613.
[15] G. Metafune, J. Prüss, A. Rhandi, R. Schnaubelt, Lp-regularity for elliptic operators with unbounded coefficients, Adv. Difference Equ. 10

(2005) 1131–1164.
[16] E. Ouhabaz, Analysis of Heat Equations on Domains, Princeton Univ. Press, Oxford, 2005.
[17] D.W. Robinson, Elliptic Operators on Lie Groups, Oxford Univ. Press, 1991.
[18] Z. Sobol, H. Vogt, Lp-theory of C0-semigroups associated with second-order elliptic operators, J. Funct. Anal. 193 (2002) 24–54.
[19] N. Varopoulos, L. Saloff-Coste, T. Coulhon, Geometry and Analysis on Groups, Cambridge Univ. Press, 1993.


