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Abstract. We demonstrate how the Laplace operator can be combined with a stochastic jump
process to describe the evolution of a polymer network. Growth processes in polymer networks can
proceed through the transfer of rather large oligomeric subunits from a pool of soluble molecules
into the filaments forming the network. In such a situation stochastic jump processes are a natural
tool for the description of network formation at the nanometer scale. However, modeling of the
reaction system in high spatiotemporal resolution also needs to capture the evolution of the soluble
filament precursor molecules, which controls local properties of the growth process. We illustrate
how this may be achieved by combining a deterministic diffusion equation with a stochastic jump
process within the setting of a piecewise-deterministic Markov process. Since in many applications
the diffusion equation will be considered with periodic boundary conditions, we apply the theory of
bilinear forms to prove existence and uniqueness of a solution, which is also shown to be positive,
mass-preserving, and convergent to an equilibrium.

1. Introduction and motivation

In less generality and mathematical detail, the model we are going to discuss has been introduced in
[8] in order to study the formation of keratin networks, which are a component of the cytoskeleton of
biological cells. Due to the small diameter of keratin filaments of around 12nm, microscopy techniques
for visualizing single filaments are limited to electron microscopy, which does not allow for the
observation of dynamical processes of network formation. Therefore, we developed a mathematical
model simulating the formation of a keratin network and, in a recent study, were able to relate certain
mechanisms of network growth to specific morphological properties of the network by computer
simulation [8]. Although specifically designed for the application to keratin networks, the modeling
approach is rather generic and lends itself readily to the modeling of other polymerization reactions
in high spatiotemporal resolution. In the following we will motivate the model and discuss the
mathematical framework, which is given by the concept of a piecewise-deterministic Markov process
(PDMP). The key feature of this approach is that a feedback loop is established between a stochastic
process determining locations, times and choices of macromolecular mechanisms of network growth
events on the one hand and a deterministic evolution of a pool of soluble polymers fueling network
growth on the other. The latter being modeled by the Laplace operator with periodic boundary
conditions, we apply the theory of bilinear forms to prove existence and uniqueness of a solution to
the initial value problem arising in the context of our model and prove that the solution is mass-
preserving and positive. We will finally give a brief account on the application of the model to keratin
network formation.

2. Model

Before the model is introduced in a mathematically precise way, we will outline and motivate its
general concept. We consider network formation on a rectangular or cuboidal observation window
W = [0, ℓ1] × . . . × [0, ℓn], where for our applications the dimension n can be chosen as 2 or 3.
Although protein networks in biological cells are generally 3D structures, the 2D case is also of
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practical interest, since in some cellular compartments the networks almost exhibit a 2D structure
[6, 8] and 2D simulation results of the model can be directly related to 2D microscopy data. The state
space is defined as E = L2(intW ) × S(W ), where the first component describes the concentration
fields of soluble polymers fueling the network growth, and the second component S(W ) is the space
of all finite systems of line segments in W , which is used to model the filament network. By choosing
an appropriate representation for a line segment by an initial point and the polar coordinates of its
direction vector, S(W ) can be considered as the state space of an object point process. Therefore,
S(W ) is a complete and separable metric space [18, 22] and E = L2(intW ) × S(W ) inherits these
properties from its factors. Thus, our state space meets the topological requirements of Markov
process theory. The choice to represent the network by a system of line segments was motivated by
our specific biological application, where, given the spatial resolution, network formation proceeds by
the addition of rather large elongated filament precursor molecules to the existing network structure.
As a consequence, at this spatial scale of resolution network growth should not be considered as a
time-continuous process. Instead, it is modeled by a random sequence τ1, τ2, . . . of network formation
times, at which molecular building blocks transfer from the soluble pool of filament precursors into
the filamentous phase. This is represented by the instantaneous addition of a further line segment
to the segment system at the time of the growth event. The intensity of the process of network
formation times varies in time, depending on the total amount of soluble polymers in the system and
is thereby linked to the reaction kinetics of the system. Growth events can be of different type, e.g.
a new filament can be initiated without contact to the existing network (nucleation) (Fig. 1(a)) or
a new line segment can be appended to the end of an existing filament (elongation) (Fig. 1(b)). At
each growth time τk, one of these or similar growth mechanism is chosen at random according to a
probability distribution, which is controlled by model parameters and also depends on the current
state of the system. Variation of these model parameters has been used in [8] in order to investigate
the impact of single growth mechanisms on network architecture. Locations for the growth events in
the observation window W are assigned randomly but the distribution reflects the current state of
the concentration field of soluble polymers. More precisely, the probability of a location to be picked
as a site for network growth depends on the locally available amount of soluble polymers. As soon
as a network growth event takes place, the soluble pool is locally reduced by the amount of polymers
consumed. Between these instantaneous local reductions of the soluble pool at the growth times τk,
k = 1, 2, . . ., the soluble polymers are regarded as permanently subjected to diffusion. Since in our
application the number of soluble filament precursor molecules was relatively large, diffusion is not
modeled by a set of random walks but by the classical diffusion equation

∂c

∂t
= κ△c

for some diffusion coefficient κ > 0, where c(x, t) denotes the concentration of the soluble pool at
location x and time t. Especially at higher concentration levels, this approach is computationally
more efficient than modeling random walks of single molecules. Due to the fact that the model is
designed to simulate network formation within a small compartment of the cytoplasm, which is not
bounded by a membrane, periodic boundary conditions are chosen, thus simulating the interaction
of the observation window with a structurally similar environment.
From a more abstract point of view, the structure of the model outlined above combines a random
sequence of jump times τ1, τ2, . . ., at which the state is randomly and instantaneously changed, with
a deterministic evolution during the time intervals (τk, τk+1), k = 0, 2, . . . (where we set τ0 = 0).
This attributes the model to the class of piecewise-deterministic Markov processes, which has been
introduced by Davis [9]. Although the concept can be further generalized [15, 21] we define a PDMP
{Xt}t≥0 mapping from some probability space into the state space E equipped with its Borel σ-
algebra B(E) by the following four components:

1) an initial distribution α of X0 on (E,B(E)),
2) a C0− semigroup

T : R+ × E −→ E, (t, x) 7→ T (t)x,
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defining the evolution on the deterministic parts of the trajectories, more precisely, for all
t ∈ (τk, τk+1) and given that Xτk = x

Xt = T (t− τk)x,

3) a transition function

Q : E × B(E) −→ [0, 1], (x,B) 7→ Q(x,B),

where Q(x, ·) is a probability measure for all x ∈ E and Q(·, B) is measurable for all B ∈
B(E). Q governs the transition of Xt at the jump times τk by

P(Xτk ∈ B | τk, Xτk−) = Q(Xτk−, B).

4) a jump intensity, which is a measurable function λ : E −→ R+ governing the conditional
distribution of the jump times given the state of the system at the last jump by

(2.1) P(τk+1 − τk ≤ t | Xτk) = 1− exp

(
−

∫ t

0

λ(T (v)Xτk)dv

)
.

Note that by continuity of T (·)x, the left limits Xτk− = limt↑τk Xt are well-defined and the sample
paths of a PDMP are right-continuous. The definition of the distribution of jump times given in
(2.1) ensures that almost surely 0 < τ1 < τ2 < . . ., provided that τ1, τ2, . . . < ∞, otherwise we set
τk =∞ for all k > k0. We will now specify these four components for our model.

2.1. Initial distribution. The initial network configuration can be modeled by any network model
from stochastic geometry such as a random tessellation [7, 22]. For modeling the initial concentration
field of soluble polymers a random field can be used. However, in order to obtain an admissible initial
condition for the diffusion PDE, in view of the theory developed in section 3 the realizations of the
random field must be in L2(intW ) a.s. For applications it may also be desirable to work with an
a.s. bounded random field. In case the model is applied to simulate the de novo formation of a
network, the initial segment system is empty and it may also be plausible to consider a constant
initial concentration field resembling the equilibrium of the soluble pool.

2.2. Jump intensity. By means of the state-dependent jump intensity λ the inter-occurrence times
can be chosen as in the stochastic simulation algorithm for chemical reaction systems, which has been
introduced by Gillespie [11], and thus, λ can be linked to global reaction kinetics. Following this
approach λ, is chosen to be only dependent on the total amounts of the different species reacting. In
our particular application the network formation process could be assumed to be dominated by the
elongation of a roughly constant number of filament ends. As a consequence, the reaction kinetics
was modeled to be of first order, which is reflected by defining

λ((c, s)) = K

∫

intW

c(x)dx

for any state (c, s) ∈ L2(intW ) × S(W ) and a reaction constant K > 0 [11, 12]. Since we will
show later that the total number of soluble molecules is left unchanged by our particular choice of
the semigroup T , the conditional distributions of the inter-occurrence times given the state Xτk =

(X
(1)
τk , X

(2)
τk ) of the system after the last jump are of the form

P(τk+1 − τk ≤ t | Xτk) = 1− exp

(
−tK

∫

intW

X(1)
τk

(x)dx

)
.

The fact that λ is constant between jumps makes the model particularly favorable for computer
simulation, since the inter-occurrence times simply have a conditionally exponential distribution.
Even if in other applications the reaction kinetics should be of different order or dependent on the
concentration of more than one species, this essential property of the model remains unchanged. In
practical applications the network formation is considered to be finished once the total concentration
drops under a certain threshold which does not allow for any more substantial polymerization.
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2.3. Transition at the jump times. In view of Gillespie’s stochastic simulation algorithm for
reaction systems, our model can be regarded as an extension, which copies the time behaviour of
Gillespie’s algorithm but additionally monitors the reaction system in space. The spatial aspect
of the network formation reaction is captured by the after jump distribution Q(x, ·) of the PDMP,
which is defined rather implicitly by a procedure determining a mechanism and a location of network
growth according to a conditional probability distribution given the left limits of the (spatial) system
configuration before the jump. The jump transitions additionally involve the choice of a possibly
random length and orientation for the newly added network segment and consumption of soluble
polymer pool.
In the following Bi, i = 1, . . . , ν, denotes the event that the network growth mechanism i is triggered.
One could for example consider the case ν = 2 and define B1 as the addition of a new line segment
on a location, which is not already occupied by a filament, and B2 as the event that the new line
segment is appended to a filament end. Thus, B1 would correspond to a nucleation of a new filament
and B2 to filament elongation (Fig. 1), but in principle any other growth mechanism arising from a
particular application can be incorporated into the model. At a jump time τk one of the mechanisms
is picked according to the conditional probabilities

pi|(c,ξ) = P(Bi | Xτk− = (c, ξ)), i = 1, . . . , ν,

given the left limitXτk− of the state before the jump is (c, ξ), where
∑ν
i=1 pi|(c,ξ) = 1 for all (c, ξ) ∈ E.

This way, we could for example model the elongation probabilities to be increasing in the number of
possibly elongating filament ends or the nucleation probabilities to be dependent on the total amount
of soluble polymers in the system. Once the mechanism of network growth has been determined,
a location for the growth event is chosen. For this purpose the model exploits the information

on the spatial distribution of the soluble polymer pool contained in the first component X
(1)
t of

the process. More precisely, the concentration field X
(1)
τk−

immediately before the jump is used to
construct a conditional probability distribution P(· | Bi, Xτk− = (c, ξ)) on the Borel sets B(W ) on the
observation window such that locations with high local soluble polymer concentration are preferred
sites of network growth. Notice that we are also conditioning on the network formation mechanism
since the latter determines the set of potential growth locations. Elongation events for instance are
naturally restricted to the set of filament ends s(ξ) and we could e.g. define

(2.2) P(· | B2, Xτk− = (c, ξ)) =
∑

z∈s(ξ)∩A

∫
b(z,ρ)
c(x)dx

∑
y∈s(ξ)

∫
b(y,ρ)

c(x)dx
,

where b(y, ρ) denotes the ball of radius ρ centered at y. Following the concept of periodic boundaries
applied for the diffusion process of the soluble polymers, parts of these balls protruding W are un-
derstood to be shifted to the opposite side. By the transformation of the deterministically evolving
concentration field into a spatial probability distribution the model interprets the solutions of the
diffusion PDE stochastically. This way it is reflected that the diffusion PDE can be viewed as a mean
value approach to random walks of single molecules by its relation to Brownian motion (cf. [16]).
The direction of the line segment added to the network is determined by some probability distribution
on the unit sphere, which may also be conditional on the state of the system, the growth mechanism
and the growth location, since e.g. elongation events may need to respect physical curvature restric-
tions of the filaments.
Depending on the application, the length of the randomly added line segment can either be modeled
as deterministic or as realization of a random variable.
We will now specify the feedback of growth events on the concentration field of soluble polymers.
Before soluble polymers are consumed, a new line segment Sτk has been determined as described
above. The dilation Sτk ⊕ b(0, r) of Sτk denotes all points in the observation window whose distance
to Sτk is no more than r, where parts of the segment dilations protruding the observation window
are shifted to the opposite side. We will show in Section 3 that the solution of the diffusion PDE
yields space-continuous concentration fields c(t, x) for any initial condition in c(0, x) ∈ L2(intW )
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once t > 0. As a consequence, if 0 < τ1 < τ2 < . . ., then there is a well defined dilation Sτk ⊕ b(0, r)
containing exactly the number γ of molecules consumed for network growth, i.e.

∫

Sτk⊕b(0,r)

c(x)dx = γ.

Notice however, that this dilation only exists if the total number of soluble molecules is high
enough, which does not pose a problem in applications, since concentration levels of soluble polymers
would be so low that they would not allow for substantially more polymerization. We define the
concentration field immediately after network formation by

X(1)
τk

(x) =

{
0 if x ∈ Sτk ⊕ b(0, r),

X
(1)
τk−

(x) else.

Note that this concentration field serves as the initial condition for soluble pool diffusion after time
τk.

2.4. The semigroup. During the time intervals (τk, τk+1), k = 0, 1, . . . the network configuration
is constant, whereas the soluble pool is subjected to diffusion. In many applications the reaction
is observed on a window which is not physically bounded (e.g. by a membrane) and it can be
assumed that the diffusion process interacts with a structurally similar environment. This situation
is reflected by considering periodic boundary conditions for the diffusion PDE. In the next section
we will construct the Laplace operator with periodic boundary conditions and see that it generates
a semigroup T (t) on L2(intW ), which yields the unique solution to the diffusion PDE for any of the
bounded initial conditions arising in the context of our model. The semigroup acting on both factors
of the state space of our PDMP is then given by

T̃ (t)(c, ξ) = (T (t)c, ξ), for all (c, ξ) ∈ E.

3. The Laplace operator with periodic boundary conditions

Since in stochastic geometry W usually denotes a closed observation window and the Laplace
operator we are going to construct is defined on a subspace of the L2 functions on some open
domain, for ease of notation, we will not denote this domain by intW but by Ω. In the following, Ω
will be of the form Ω = (0, ℓ1)× . . .× (0, ℓn) and we will construct the Laplace operator with periodic
boundaries as the associated operator of a bilinear form on some appropriately chosen function space
V ⊂ L2(Ω), which is defined via the trace operator. We will see that the Laplace operator on V
generates a C0-semigroup on L2(Ω), which serves to obtain a solution c(t, x) of the initial value
problem

(3.3)
∂c

∂t
= κ△c, for t > 0 and c(0, x) = f(x),

where c(t, x) is in V for all t > 0 and, as a consequence, c(t, x) has a periodic boundary for all t > 0.
The constant κ > 0 is the diffusion coefficient. We will prove that the solution is positive once f > 0
and preserves the total number of particles in the system.

As mentioned above, the construction of V is based on the following trace theorem [1].

Theorem 3.1. Let Ω ⊂ R
n be open and bounded with Lipschitz-boundary. Then there exists a unique

continuous linear operator S : H1(Ω) −→ L2(∂Ω), such that

Su = u|∂(Ω) for u ∈ H1(Ω) ∩ C0(Ω).

By convention, the set H1(Ω) ∩ C0(Ω) denotes the collection of all functions in the first Sobolev
space H1(Ω) := {u ∈ L2(Ω) : Dju ∈ L

2(Ω), j = 1, . . . , n} which are continuous up to the boundary.
The image of such a function under the trace operator is obtained by considering its continuous
extension to the closure of Ω and then taking the restriction of this extension to the boundary.
An open and bounded subset Ω ⊂ R

n has a Lipschitz boundary, if ∂Ω can be covered by finitely
many open sets U1, . . . , Um such that ∂Ω ∩ Uj , j = 1, . . . ,m, is the graph of a Lipschitz continuous
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function and each set Ω ∩ Uj lies on one side of this graph (for a mathematically precise definition
see [1]). In particular, every cuboid in R

n has a Lipschitz boundary. Therefore, for our particular
case Ω = (0, ℓ1)× . . .× (0, ℓn) we may define the function space V ⊂ H1(Ω) as

V = {u ∈ H1(Ω) : Su((x1, . . . , xi−1, 0, xi+1, . . . , xn)) = Su((x1, . . . , xi−1, ℓi, xi+1, . . . , xn)),
where (x1, . . . , xi−1, xi+1, . . . , xn) ∈ (0, ℓ1)× . . .× (0, ℓi−1)× (0, ℓi+1)× . . .× (0, ℓn),
i = 1, . . . , n}.

Proposition 3.1. The function space V is a Hilbert space. Moreover, V
d
→֒ L2(Ω), i.e., V is

continuously and densely injected in L2(Ω).

Proof.

(i) S is continuous and V is the pre-image of the elements in L2(∂Ω) having a periodic boundary,
which form a closed set in L2(∂Ω). Thus, V is closed in the Hilbert space H1(Ω) and,
consequently, a Hilbert space itself with the inner product

(u, v)V = (u, v)H1 = (u, v)L2 +

∫

Ω

∇v∇udx,

where gradients are defined in the weak sense.
(ii) The space of test functions C∞c (Ω) is dense in L2(Ω) [23]. Moreover, C∞c (Ω) ⊂ V by the

properties of S. Consequently, V is dense in L2(Ω).
(iii) The injection is continuous since

‖f‖2V = ‖f‖2H1 = ‖f‖2L2 +

∫

Ω

∇f∇fdx ≥ ‖f‖2L2 . �

As we will see below, the Laplace operator on V can be obtained as the associated operator of the
bilinear form a : V × V → R defined as

a(u, v) = κ

∫

Ω

∇u∇vdx,

where we consider weak gradients.

Proposition 3.2. The bilinear form a(·, ·) is continuous and L2(Ω)-elliptic, i.e., there exist w ∈ R

and α > 0 such that a(u, u) + w‖u‖2L2 ≥ α‖u‖2V for all u ∈ V .

Proof.

1. Continuity follows by the Cauchy-Schwarz inequality, since

|a(u, v)| =
∣∣∣κ
∫

Ω

∇u∇vdx
∣∣∣ = κ
∣∣∣
∫

Ω

uv dx+

∫

Ω

∇u∇vdx−

∫

Ω

uv dx
∣∣∣

≤ κ|(u, v)V |+ κ|(u, v)L2 | ≤ κ‖u‖V ‖v‖V + κ‖u‖L2‖v‖L2 ≤ 2κ‖u‖V ‖v‖V .

2. By Proposition 3.1 V
d
→֒ L2(Ω), thus for proving ellipticity it suffices to note that

a(u, u) + κ‖u‖2L2 = κ

∫

Ω

∇u∇udx+ κ

∫

Ω

u2dx = κ‖u‖2V . �

As a consequence of being elliptic and continuous a(·, ·) has a densely defined associated operator
Aa with domain D(Aa) [20], where

D(Aa) = {u ∈ V : a(u, v) = (f, v)L2(Ω) for some f ∈ L2(Ω) and for all v ∈ V },
Aa(u) = f.

For u ∈ L2(Ω) we define △u ∈ L2(Ω) if there exists g ∈ L2(Ω) such that
∫

Ω

u△ϕdx =

∫

Ω

gϕdx for allϕ ∈ C∞c (Ω).

In that case g is unique and we write △u := g (the weak Laplacian of u).
Our next observation is that −Aa is a realization of κ△ with periodic boundary conditions.
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Proposition 3.3. The operator Aa is selfadjoint and given by

Aau = −κ△u for u ∈ D(Aa) ⊂ {u ∈ V : △u ∈ L2(Ω)}.

Proof. Since the form a(·, ·) is symmetric, the associated operator Aa is selfadjoint. Let u ∈ D(Aa),
Aau = f . Then u ∈ V and in particular u ∈ H1(Ω). Hence, for all ϕ ∈ C∞c (Ω) one has

〈−κ△u, ϕ〉 = −κ

∫

Ω

u△ϕdx = κ

∫

Ω

∇u∇ϕdx = a(u, ϕ) =

∫

Ω

fϕdx.

This shows that −κ△u = f in the sense of distributions and we have shown that

D(Aa) ⊂ {u ∈ V : △u ∈ L2(Ω)}. �

The semigroup {T (t)}t≥0 generated by −Aa governs the parabolic initial value problem on Ω. The
properties of the solution are described in the following result (cf. [2], Theorem 1.1).

Theorem 3.2. Let f ∈ L2(Ω) be given. Then T (t)f ∈ C∞(Ω) and letting c(t, x) = (T (t)f)(x) we

obtain the unique solution of 



c ∈ C∞(0,∞)× Ω,
∂
∂t
c = κ△c on (0,∞)× Ω,

limt↓0 c(t, ·) = f in L2(Ω),
c(t, ·) ∈ V.

Now it follows from [2], Theorem 1.5, that the semigroup is strictly positive, i.e.,

(T (t)f)(x) > 0 for all x ∈ Ω, t > 0

whenever f ∈ L2(Ω) such that f ≥ 0 a.e. and f does not vanish almost everywhere.
From [3](3.5.1) it can be deduced that the semigroup converges to an equilibrium. More precisely,
let

Pf =
1

|Ω|

∫

Ω

f(x)dx1IΩ.

Then P is an orthogonal projection of rank 1.

Proposition 3.4. One has limt→∞ T (t) = P in L(L2(Ω)).

Proof. Since the injection H1(Ω) →֒ L2(Ω) is compact by Rellich’s Theorem, and the semigroup T
is holomorphic, it follows that T (t) is compact for t > 0. Since a(u, u) ≥ 0 for all u ∈ V it follows
that ‖T (t)‖L(L2(Ω)) ≤ 1. Thus the spectrum of −Aa is included in (−∞, 0].

Let e1 = 1
|Ω|1IΩ. Then e1 ∈ D(Aa) and Aae1 = 0. Since the semigroup is strictly positive it follows

from the Krein-Rutman Theorem that the first eigenvalue 0 of Aa is simple. Now the claim follows
from the spectral theorem. �

From Proposition 3.4 we deduce that the solution is mass-preserving, i.e., it preserves the number
of particles in the system.

Proposition 3.5. Let f ∈ L2(Ω). Then

∫

Ω

T (t)fdx =

∫

Ω

fdx for all t ≥ 0.

Proof. Since T (t)P = lims→∞ T (s)T (t) = lims→∞ T (t + s) = P , one has T (t)P = P for all t ≥ 0.
By using that T (t) is selfadjoint it follows that

∫
Ω
T (t)fdx = (T (t)f, P1IΩ)L2 = (f, T (t)P1IΩ)L2 = (f, P1IΩ)L2 =

∫
Ω
fdx. �
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4. Aspects of an application to the modeling of keratin networks

In order to illustrate the relevance of the model for applications we will briefly summarize, how it
was used to investigate the formation process of a keratin network in [8]. The description given here
will only emphasize structural aspects of the model and provide an idea of the type of questions that
may be investigated by means of this modeling approach. For more details we refer to [8].
Due to specific biochemical properties of the keratin polymers forming the filaments of the network,
network architecture defines the viscoelastic properties of the cell at large deformations [5]. It has
been demonstrated that even small alterations of network architecture can significantly change the
elasticity of polymer networks networks in biological cells and, hence, the mechanical properties of
cellular compartments and the entire cell [10]. Changes in network morphology such as investigated
in [6, 7] have therefore been linked to regulation of cell motility and migration [4]. Mathemati-
cal modeling of network assembly processes can thus contribute to a better understanding of these
phenomena. For the formation of keratin networks the very thin peripheral compartments of a cell
are particularly relevant [24]. In these areas keratin networks exhibit an almost planar structure
[6, 7] and therefore we considered a 2D observation window. The set of network formation mech-
anisms incorporated into the model was motivated by particular biochemical properties of keratin
oligomers and experimental data [13, 24]. All growth mechanisms were represented by the addition
of a line segment of deterministic length to the network. The segment length was chosen as the
size of a so-called unit-length filament (ULF). ULFs are the basic macromolecular building blocks of
keratin filaments [17]. As a first mechanism we considered filament nucleation (Fig. 1(a)), which, in
terms of the model, is the addition of a line segment whose location is selected independently of the
current network configuration. In contrast, new filaments could also be initiated by lateral anneal-
ing of keratin oligomers at a preexisting filament, thus forming a Y-junction in the network graph
(Fig. 1(c)). Once a filament had been initiated either by means of nucleation or lateral annealing
it started an elongation process, i.e. new line segments were possibly appended to the free filament
ends (Fig. 1(b)). For the definitions of the probability distributions governing the choice of growth
locations in dependency of the concentration fields of soluble oligomers we refer to [8]. The definition
for the case of an elongation event is given in (2.2).
Specifically for the 2D case, the model behavior at the times of network growth was extended by the
mechanism of filament merging. This means that once a filament intersected the preexisting network
as the result of a growth event, the model decided at random whether the filaments entangled and
a network node of degree 3 was formed (Fig. 1(d)) or the filaments were only crossing each other
yielding a node of degree 4 (Fig. 1(e)). The merging probability was a fixed model parameter, which
could be used to control the distribution of node degrees.
Since on electron microscopy images keratin filaments exhibit only marginal curvature, we only con-
sidered straight filament elongations [6, 7]. Directions of newly initiated filaments by nucleation or
lateral annealing were modeled as uniformly distributed on the unit sphere, since there are no sta-
tistically significant indications of preferred filament orientations on electron microscopy data [6]).
By variation of the rates at which the different growth mechanisms were triggered, these could be
related to morphological properties of the networks, the latter being quantified by tools from spatial
statistics and graph theory. One of the most interesting findings was that the mechanism of lateral
annealing accounted for the formation of mesh clusters (Fig. 2), which can also be found on mi-
croscopy data of keratin networks. Thus, regulation of lateral annealing events may enable the cell
to modify local as well as global mechanical properties by changing the network configuration from a
spatially homogeneous to a clustered state at constant total network length. Finite element modeling
as applied in [14] may be used to link network morphology and cell mechanics and scrutinize this
hypothesis.
Even if transport of molecules within the cytoplasm is in general a process of substantially higher
complexity than simple diffusion, modeling of the soluble filament precursor molecules by the diffu-
sion PDE allowed us to study network formation in dependency of the spatiotemporal distribution
of the soluble filament precursor molecules. Monitoring of the concentration fields could be used
to check whether zones of soluble pool depletion occurred, which indicated diffusion limitations of
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(a) Nucleation of a filament (b) Elongation of a filament

(c) Lateral keratin annealing (d) Merging of a filament end with the net-
work

(e) Crossing of two filaments

Figure 1. Mechanisms of network formation

the network formation scenario under consideration (Fig. 3). Scenarios leading to mesh clustering
for instance, resulted in high local consumption of soluble polymers around the emerging clusters.
As a consequence, mesh clustering was even suppressed if the diffusion coefficient was not chosen
high enough to rapidly compensate for the local loss of soluble pool triggered by filament growth.
Nevertheless, under realistic diffusion coefficients [19] the reaction system was not diffusion limited
for all scenarios of network growth we considered.

5. Concluding remarks

Using the modeling approach of a PDMP, we were able to add a spatial resolution to the estab-
lished stochastic simulation algorithm for chemical reactions by integrating elements from stochastic
geometry and the deterministic diffusion PDE with periodic boundary conditions. This yielded a
mathematically consistent model, which is particularly appropriate for computer simulation and may
be adapted easily to a variety of other applications than keratin network formation. Diffusion equa-
tions with periodic boundary conditions naturally arise in the modeling of spatiotemporal reaction
systems, whenever the observation window is surrounded by a structurally similar environment but
not bounded. The theory of bilinear forms lends itself readily to the mathematical investigation
of the diffusion PDE with these boundary conditions by considering an appropriate function space.
The diffusion PDE does not reflect transport processes in biological cells in their entire complexity.
Nevertheless, once the reacting species are present in a certain abundance, integration of the PDE
into the model allows to elucidate principle spatiotemporal aspects of a reaction in a computationally
efficient way. Combining a PDE with stochastic modeling of rare events, PDMPs are a flexible class
of models capturing spatial and temporal aspects of biochemical reaction systems in high resolution.
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(a) (b)

Figure 2. Response of network morphology to the frequency of lateral annealing
events. A high rate of lateral annealing events caused the formation of mesh clusters
(a), whereas simulations without lateral annealing events yielded spatially homoge-
neous networks (b).

(a) (b)

Figure 3. Concentration fields of soluble filament precursor molecules during net-
work formation. Very small diffusion coefficients resulted in depletion zones (darkest
areas) (a), whereas at higher diffusion coefficients (b) the soluble pool was evenly
spread over the observation window.
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