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Abstract. In the first part of the article we characterize automatic continuity
of positive operators. As a corollary we consider complete norms for which
a given cone E+ in an infinite dimensional Banach space E is closed and we
obtain the following result: every two such norms are equivalent if and only
if E+ ∩ (−E+) = {0} and E+ − E+ has finite codimension.
Without preservation of an order structure, on an infinite dimensional Banach
space one can always construct infinitely many mutually non-equivalent com-
plete norms. We use different techniques to prove this. The most striking is a
set theoretic approach which allows us to construct infinitely many complete
norms such that the resulting Banach spaces are mutually non-isomorphic.
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1. Introduction. Each two norms on a finite dimensional real vector space are
equivalent. Conversely, if (E, ‖ · ‖1) is an infinite dimensional Banach space, then
there exists a discontinuous linear functional ϕ : E → R. Take u ∈ E such that
ϕ(u) = 1. Then Sx := x− 2ϕ(x)u defines a linear, discontinuous map S : E → E,
and S2 = I. Thus ‖x‖2 := ‖Sx‖1 defines a complete norm on E which is not
equivalent to the given norm ‖ · ‖1.

In this article we present several approaches to construct many mutually non-
equivalent, complete norms on a Banach space. An extension of the above
argument is one technique which yields an infinite number of complete, mutually
non-equivalent norms, see Section 4.1. If we want that the resulting Banach spaces
are even mutually non-isomorphic, the task is more difficult. We use set theory
and assume the Generalized Continuum Hypothesis in Section 4.2 to characterize
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those cardinals κ for which there exists a Banach space E such that card(E) = κ.
This answers a question of Laugwitz from 1955. As a corollary, given an arbitrary
infinite dimensional Banach space E, we find mutually non-isomorphic, complete
norms ‖ · ‖p for 1 ≤ p < ∞ on E.

König and Wittstock [14] showed in 1992 by what amount one has to modify the
norm of a Banach space in order to make a discontinuous functional continuous.
Here we prove a somehow dual result, showing how a given set of continuous
functionals can be made non-continuous by changing the norm, see Section 3.
This is an extension of results due to Donoghue and Masani [8] and Alpay and
Mills [2].

We start the article by giving positive results in Section 2. Given an infinite
dimensional Banach space (E, ‖ · ‖) with a closed cone E+, we show that the
following two assertions are equivalent.

(i) Each complete norm for which E+ is closed is equivalent to the given one;
(ii) E+ is proper and E+ − E+ is of finite codimension.

Here E+ is called proper if E+ ∩ (−E+) = {0}. On the way to this result we
characterize under which conditions positive linear maps between ordered Banach
spaces are automatically continuous.

2. Positivity, Automatic Continuity and Equivalence of Norms. In this section
we investigate which additional properties of a norm determine it uniquely (up
to equivalence) among all complete norms, i.e., within which classes of norms
there do not exist non-equivalent complete norms. This question is closely related
to automatic continuity of operators enjoying additional properties. A beautiful
theory exists on automatic continuity of algebra homomorphisms. We will not
discuss this here but refer to [20] and [7], for example.

Instead, we will focus on automatic continuity of positive operators and describe
the precise necessary and sufficient conditions on ordered Banach spaces E and F
such that every positive linear operator T : E → F is continuous. In this section
we restrict ourselves to real vector spaces. Recall that a cone C is a non-empty
subset of a vector space E such that C + C ⊂ C and αC ⊂ C for all α ≥ 0. We
say that C is proper if C ∩ (−C) = {0}. We call C generating if C + (−C) = E.
A pair (E,E+), where E is a Banach space and E+ ⊂ E is a closed cone, is called
an ordered Banach space. We call the elements of E+ positive and write x ≤ y
to express that y − x ∈ E+. For ordered Banach spaces (E,E+) and (F, F+) an
operator T : E → F is called positive if T (E+) ⊂ F+. On the field of scalars R we
always consider the usual positive cone R+ := [0,∞).

It is known that if E+ is closed and generating and F+ is closed and proper, then
every positive linear operator T : E → F is continuous, see Arendt [3, Appendix]
or Aliprantis and Tourky [4, Theorem 2.32]. We will slightly improve this result
to necessary and sufficient conditions for automatic continuity. For the sake of
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completeness, we repeat the proofs of the auxiliary results that we need, despite
the fact that they are well-known.

2.1. Positive Functionals. First we only consider the automatic continuity of posi-
tive linear functionals.

Lemma 2.1. Let E be a Banach space and let F be a subspace of E that has finite
codimension in E. Assume that there exists a complete norm ‖ · ‖F on F and a
constant c > 0 such that ‖x‖E ≤ c‖x‖F for all x ∈ F . Then F is closed in E (with
respect to ‖·‖E).

Proof. Let G be a subspace of E such that F + G = E and F ∩ G = {0}. By
assumption, G is finite dimensional and hence closed in E. Thus the vector space
V := F × G is a Banach space for the two norms ‖(y, z)‖1 := ‖y + z‖E and
‖(y, z)‖2 := ‖y‖F + ‖z‖E . Obviously we have ‖(y, z)‖1 ≤ max{1, c}‖(y, z)‖2 for
all (y, z) ∈ V . Hence by the open mapping theorem the two norms are equivalent.
Since F is closed in (V, ‖ · ‖2) by construction, it is closed also in (V, ‖ · ‖1) =
(E, ‖·‖E). �

Lemma 2.2. Let (E,E+) be an ordered Banach space, F := E+ − E+. Then

‖x‖F := inf{‖y‖E + ‖z‖E : y, z ∈ E+, x = y − z}
defines a complete norm on F . Moreover, F ↪→ E, and E+ is closed in F .

Proof. It is easily checked that ‖·‖F is a norm on F and ‖x‖E ≤ ‖x‖F for all
x ∈ F . Hence it suffices to show that (F, ‖·‖F ) is complete. This is equivalent to
the fact that every absolutely convergent series is convergent. So let (xn) be a
sequence in F such that

∑∞
n=1 ‖xn‖F < ∞. By definition there exist sequences

(yn) and (zn) in E+ such that xn = yn − zn and ‖yn‖E + ‖zn‖E ≤ ‖xn‖F + 2−n.
Thus

∑∞
n=1 ‖yn‖E < ∞ and

∑∞
n=1 ‖zn‖E < ∞. Since E is complete, the limits

y :=
∑∞

n=1 yn and z :=
∑∞

n=1 zn exist in E, and since E+ is closed, y, z ∈ E+. Let
x := y − z ∈ F . Then

∥∥∥x−
N−1∑
n=1

xn

∥∥∥
F

=
∥∥∥

∞∑
n=N

yn −
∞∑

n=N

zn

∥∥∥
F

≤
∞∑

n=N

‖yn‖E +
∞∑

n=N

‖zn‖E → 0

as N → ∞. Hence
∑∞

n=1 xn converges in (F, ‖·‖F ). �

Lemma 2.3. Let (E,E+) be an ordered Banach space with generating cone. Then
every positive linear functional on E is continuous.

Proof. Let ϕ be a positive linear functional. We claim that there exists c > 0
such that ϕ(x) ≤ c‖x‖ for all x ∈ E+. In fact, otherwise there exists a sequence
(xn) in E+ such that ‖xn‖ ≤ 2−n and ϕ(xn) ≥ n. Since E is complete and E+ is
closed, x :=

∑∞
n=1 xn exists and satisfies x ≥ xm for every m ∈ N. This implies

ϕ(x) ≥ ϕ(xm) ≥ m for every m ∈ N, which is absurd.
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Now let ‖x‖+ := inf{‖y‖+‖z‖ : y, z ∈ E+, x = y−z}. According to Lemma 2.2,
(E, ‖·‖+) is a Banach space. Since ‖x‖ ≤ ‖x‖+ for every x ∈ E, the open mapping
theorem implies that ‖ · ‖ and ‖ · ‖+ are equivalent. Let α > 0 be such that
‖x‖+ ≤ α‖x‖ for all x ∈ E.

Let x ∈ E be arbitrary. There exist y, z ∈ E+ such that x = y − z. Thus

|ϕ(x)| ≤ |ϕ(y)| + |ϕ(z)| ≤ c(‖y‖ + ‖z‖)

by what we have already proved. Taking the infimum over all all choices of y and
z, we obtain |ϕ(x)| ≤ c‖x‖+ ≤ cα‖x‖. We have proved that ϕ is continuous. �
Theorem 2.4. Let (E,E+) be an ordered Banach space. The following assertions
are equivalent.

(i) codimE(E+ − E+) < ∞;
(ii) each positive linear functional on E is continuous.

In this case, E+ − E+ is a closed subspace of E.

Proof. “(i) ⇒ (ii)” According to Lemma 2.2, F := E+ − E+ equipped with the
norm ‖ · ‖F defined in the lemma is a Banach space. Since ‖x‖E ≤ ‖x‖F for every
x ∈ F , Lemma 2.1 shows that F is closed in E. As F has finite codimension, this
implies that F is complemented, i.e., there exists a bounded linear projection P
from E onto F . Moreover, F+ := E+ is a closed, generating cone of F .

Now let ϕ be any positive linear functional on E. Then ϕ|F is continuous accord-
ing to Lemma 2.3, and ϕ|Ker P is continuous because KerP is finite dimensional.
Thus ϕ = ϕ ◦ I = ϕ|F ◦ P + ϕ|Ker P ◦ (I − P ) is continuous.

“(ii) ⇒ (i)” Set F := E+ − E+ and assume codimE(F ) = ∞. Fix a subspace
G of E such that E = F + G and F ∩ G = {0}, and let P be the (possibly
unbounded) linear projection of E along F onto G. Since G is infinite dimensional
by assumption, there exists an unbounded linear functional ψ on G. Define ϕ :=
ψ ◦ P . Then ϕ|F = 0, whence ϕ is positive. But ϕ is unbounded on the subspace
G, so it cannot be continuous. �
Remark 2.5. One cannot drop the condition that E+ be closed. In fact, let E+
equal Kerϕ for some discontinuous linear functional ϕ on E. Then E+ −E+ = E+
has codimension 1 and ϕ is a positive, yet discontinuous linear functional on E.

The following example shows that, if condition (i) is not satisfied, E+ − E+
may fail to be closed even if E+ is closed.

Example 2.6. For x ∈ �2 define

‖x‖s :=
∞∑

n=1

n2|x2n + x2n+1|2,

which may be infinite. Then E := {x ∈ �2 : ‖x‖s < ∞} is a Hilbert space for the
norm ‖x‖E := ‖x‖�2 + ‖x‖s, the canonical unit vectors (en) are total in E, and
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E+ := {x ∈ E : xn ≥ 0 for n ∈ N} is a closed proper cone in E. Since all en are
in F := E+ − E+, F is a dense subspace of E. If x ∈ E+, then

∑∞
n=1 n

2x2
n < ∞,

as can be seen from the definition. Hence
∑∞

n=1 n
2|xn|2 < ∞ for all x ∈ F . Thus

u := (un) with un := (−1)n/n is in E, but not in F . This shows that F �= F = E,
i.e., F is not closed even though E+ is a closed cone.

2.2. Positive Operators. Now we are ready to apply the results of the previous
section to obtain automatic continuity of positive linear operators.

Lemma 2.7. Let (E,E+) be an ordered Banach space. Denote by E′
+ the cone of

all positive, continuous linear functionals on E. Then E+ is proper if and only if
E′

+ − E′
+ is σ(E′, E)-dense in E′.

Proof. For U ⊂ E we denote by U◦ := {x′ ∈ E′ : 〈x′, u〉 ≤ 1 for all u ∈ U} the
polar set of U . Since E+ and −E+ are closed, convex sets, they are weakly closed.
Thus (E+ ∩ −E+)◦ is the σ(E′, E)-closure of the convex hull of (E+)◦ ∪ (−E+)◦,
see [19, IV.1.5, Corollary 2]. Since

(E+)◦ = {x′ ∈ E′ : 〈x′, x〉 ≤ 0 for all x ∈ E+},
we see that (E+)◦ = −E′

+ and (−E+)◦ = E′
+. Because E′

+ and −E′
+ are convex

cones, the convex hull of E′
+ ∪ −E′

+ equals E′
+ + (−E′

+). Thus we have shown the
identity

(E+ ∩ −E+)◦ = cloσ(E′,E)(E′
+ − E′

+).

Hence, if E+ is proper, E′
+ − E′

+ is σ(E′, E)-dense, since {0}◦ = E′. If, on the
other hand, E′

+ − E′
+ is σ(E′, E)-dense in E′, then (E+ ∩ −E+)◦ = E′, whence

E+ ∩ −E+ ⊂ {0} by [19, IV.1.5, Theorem], which shows that E+ is proper. �

Theorem 2.8. Let (E,E+) and (F, F+) be ordered Banach spaces. The following
assertions are equivalent.

(i) At least one of the following conditions is fulfilled.
(1) E is finite dimensional;
(2) F+ = {0};
(3) codimE(E+ − E+) < ∞ and F+ is proper.

(ii) Every positive linear operator from E to F is continuous.

Proof. “(i) ⇒ (ii)” If one of the first two conditions is fulfilled, the automatic
continuity is trivial. So assume (3) and let T : E → F be a positive linear operator.
It suffices to show that T is closed. For this, let (xn) be a sequence in E such that
xn → x and Txn → y. Let y′ ∈ F ′

+. Then y′ ◦ T is a positive linear functional
on E, hence continuous by Theorem 2.4, and thus 〈y′, Txn〉 → 〈y′, Tx〉. Since
Txn → y, this shows that 〈y′, y〉 = 〈y′, Tx〉 for all y′ ∈ F ′

+ and thus for all y′ in
the σ(F ′, F )-closure of F ′

+ − F ′
+, which is F ′ according to Lemma 2.7. Since F ′

separates the points of F , we obtain Tx = y. Thus T is closed.
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“(ii) ⇒ (i)” We may assume that neither E is finite dimensional nor F+ = {0};
otherwise there is nothing to show. Fix f ∈ F+, f �= 0, and choose f ′ ∈ F ′ such
that 〈f ′, f〉 = 1. Let ϕ be any positive linear functional on E. Then Tx := ϕ(x)f
is a positive linear operator from E to F , hence continuous, which implies that
ϕ = f ′ ◦ T is continuous. We have shown that any positive linear functional on E
is continuous. This implies codimE(E+ − E+) < ∞ according to Theorem 2.4.

Now assume that F+ is not proper. This means that G := F+ ∩ −F+ is a non-
trivial subspace of F . Fix g ∈ G, g �= 0. Since E is infinite dimensional there exists
a discontinuous linear functional ϕ on E. Then Tx := ϕ(x)g defines a discontinuous
positive linear operator, contradicting our assumption. Hence F+ is proper. �

2.3. Examples. We list some spaces which satisfy the assumptions of Theorem 2.8.

(a) In Banach lattices the positive cone is closed, proper and generating.
(b) Let A be a C∗-algebra and E := {x ∈ A : x = x∗} be the (closed) subspace

of all selfadjoint elements. Then E+ := {x∗x : x ∈ A} is a closed, proper,
generating cone of E.

(c) Let Ω ⊂ R
d be a non-empty open set, 1 ≤ p ≤ ∞. The first Sobolev space

E := W 1,p(Ω) :=
{
u ∈ Lp(Ω) :

∂u

∂xi
∈ Lp(Ω) for i = 1, . . . , d

}

is a Banach space and E+ := {u ∈ E : u ≥ 0 almost everywhere} is a closed,
proper, generating cone. In fact, E is a sublattice of Lp(Ω). Note that E+ is
not normal, i.e., there exist unbounded order intervals.

(d) Let Ω ⊂ R
d be a non-empty, open, bounded set, 1 ≤ p ≤ ∞ and k ≥ 2. The

higher order Sobolev space

E := W k,p(Ω) :=
{
u ∈ W 1,p(Ω) :

∂u

∂xi
∈ W k−1,p(Ω) for i = 1, . . . , d

}

is a Banach space and E+ := {u ∈ E : u ≥ 0 almost everywhere} is a
closed, proper cone. Note that W k,p(Ω) is not a lattice. In fact, pick x0 ∈ R

d

and r > 0 such that B(x0, 2r) ⊂ Ω, and define u(x) := |x − x0|2 − r2 and
v(x) := max{u(x), 0}. Then u ∈ C∞(Ω) ⊂ E. Assume that u+ ∈ W k,p(Ω)
exists in the sense of vector lattices. There exists a sequence of functions un

in E such that un converges to v pointwise from above. Thus u+ ≤ v. But
u+ ≥ v by definition. Hence u+ = v. On the other hand, every representative
of ∇v is discontinuous on the sphere ∂B(x0, r), which is a set of positive
1-capacity [10, §5.6.3]. This shows that v �∈ W 2,1(Ω) ⊃ W k,p(Ω), see [10,
§4.8]. This contradicts v = u+ ∈ W k,p(Ω).

But even though the space is not a lattice, the cone is generating
for kp ≥ d if Ω has sufficiently regular boundary, for example Lipschitz
regular boundary. In fact, if kp > d or p = 1, then W k,p(Ω) ⊂ L∞(Ω)
[5.4, Theorem 5.4]. Hence we can write u = (u+ c1lΩ) − c1lΩ ∈ E+ − E+ for
u ∈ W k,p(Ω), where c is an arbitrary constant larger than ‖u‖∞.
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The case kp = d and p �= 1 is a little bit more challenging. Let ϕ : R → R

be a monotonic, non-negative C∞-function such that ϕ(x) = x for x ≥ 1 and
ϕ(x) = 0 for x ≤ 0. Such a function can be constructed as the antiderivative
of a mollification of the function c1l( 1

4 , 3
4 ) + 1l( 3

4 ,∞) for an adequate choice of
c > 0. Let u be in E and α be a multiindex. The Sobolev embeddings [1,
Theorem 5.4] show that Dαu ∈ Ld/|α|(Ω) for |α| ≤ k. Using the chain rule

Dα(ϕ ◦ u) =
|α|∑
i=1

(ϕ(i) ◦ u)
∑

α1+···+αi=α

i∏
j=1

Dαju,

which holds in the sense of distributions, we see that Dα(ϕ◦u) lies in Ld/|α| ⊂
Lp for |α| ≤ k, since ϕ(i) is bounded. Thus the functions v := ϕ ◦ u + 1 and
w := ϕ ◦ u− u+ 1 are elements of E+, hence u = v − w ∈ E+ − E+.

(e) Let Ω ⊂ R
d be a non-empty, open, bounded set, and k ≥ 0. Then E := Ck(Ω)

is a Banach space and E+ := {u ∈ E : u ≥ 0 on Ω} is a closed, proper,
generating cone. In fact, since functions in E are bounded, a similar argument
as for W k,p(Ω) applies here.

(f) Let (Ω, d) be a metric space and α ∈ (0, 1]. For f : Ω → R, set

[f ]α := inf
{
c ≥ 0 : |f(x) − f(y)| ≤ c d(x, y)α for all x, y ∈ Ω

}

and E := Cα(Ω) := {f : Ω → R : [f ]α < ∞}. Fix an arbitrary x0 ∈ Ω. Then
‖f‖α := [f ]α + |f(x0)| defines a complete norm on E. The space E is a lattice
for the pointwise ordering. In fact, for f ∈ Cα(Ω),

∣∣∣|f(x)| − |f(y)|
∣∣∣ ≤ |f(x) − f(y)| ≤ [f ]α d(x, y)α

for all x, y ∈ Ω, hence |f | ∈ E. Thus

E+ := {f ∈ E : f(x) ≥ 0 for all x ∈ Ω}
is a closed, proper, generating cone. But for example for a non-empty open
set Ω ⊂ R

d and d(x, y) := |x− y|, E+ is not normal.
(g) Let E = W 1,p(0, 1) (1 ≤ p ≤ ∞) or E = Cα[0, 1] (0 < α ≤ 1). Let E0 be

the subspace of functions in E that vanish at 0 and 1, and let E+ denote the
elements of E0 that are pointwise positive. Then E+ is a closed, proper cone
of finite codimension. More precisely, E+ −E+ = E0 has codimension 2 in E.

It is a consequence of Theorem 2.8 that in all the above examples there is a
unique complete norm on E (up to equivalence) such that E+ is closed. We make
this precise in the following theorem.

Theorem 2.9. Let (E,E+) be an ordered, infinite dimensional Banach space. The
following assertions are equivalent.

(i) E+ is proper and E+ − E+ has finite codimension;
(ii) each complete norm for which E+ is closed is equivalent to the given one.
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Proof.“(i) ⇒ (ii)” Let ||| · ||| be a second complete norm for which E+ is closed.
Then the assumptions of Theorem 2.8 are fulfilled for the identity mapping I from
(E, ‖ · ‖) to (E, ||| · |||). According to the open mapping theorem, this implies that
‖ · ‖ and ||| · ||| are equivalent.

“(ii) ⇒ (i)” If ϕ is a linear, discontinuous functional on E, u ∈ E, ϕ(u) = 1,
then Sx := x−2ϕ(x)u defines a discontinuous linear mapping S : E → E such that
S2 = I. Thus |||x||| := ‖Sx‖ defines a complete norm on E which is not equivalent
to ‖ · ‖.

a) Assume that F := E+ − E+ has infinite codimension. Then there exists an
infinite dimensional subspace G of E such that F ∩G = {0} and F +G = E.
Fix any discontinuous linear functional ψ on G, let u ∈ G be such that
ψ(u) = 1, and extend ψ to a linear functional ϕ on E such that ϕ|F = 0.
Define S as above. Then Sx = x for x ∈ E+ ⊂ F . Hence S is positive and
‖x‖ = |||x||| for x ∈ F . This shows that E+ is closed for the norm ||| · |||. But
||| · ||| is not equivalent to ‖ · ‖. This contradicts our assumption.

b) Assume that F := E+ ∩ (−E+) �= {0}. Pick u ∈ F , u �= 0, let ϕ be a dis-
continuous linear functional on E, and define S as above. Then S is positive.
Since S = S−1, we have even SE+ = E+. Since S is an isometry between
(E, ||| · |||) and (E, ‖ · ‖), it follows that E+ is closed for ||| · |||. But ||| · ||| is
not equivalent to ‖ · ‖. This is a contradiction. �

3. Discontinuous Linear Functionals. In this short section we generalize a result
due to Donoghue and Masani [8]. For the proof, we generalize a technique used
by Alpay and Mills [2]. We consider a problem which is in some sense dual to the
considerations in [14]. There, the authors change the topology in order to make
given functionals continuous. Here, we ask conversely whether it is possible to
make given functionals discontinuous.

Theorem 3.1. Let (E, ‖ · ‖) be an infinite dimensional normed space with Hamel
basis B and let A be a subset of (E, ‖ · ‖)′ which is of strictly smaller cardinality
than B. Then there exists a norm ||| · ||| on E such that (E, ‖ ·‖) and (E, ||| · |||) are
isometrically isomorphic and none of the non-zero functionals in A is continuous,
i.e., A ∩ (E, ||| · |||)′ ⊂ {0}.

Proof. Without loss of generality let 0 �∈ A = {ϕα : α ∈ I}, where ϕα �= ϕβ

for α �= β. For every α ∈ I there exists a vector vα ∈ E such that ϕα(vα) �= 0.
Let V := span{vα : α ∈ I}. Then dimV < dimE by assumption (in the sense
of cardinal numbers). Pick an arbitrary subspace U such that V + U = E and
V ∩ U = {0}. Then

dimU = dimE ≥ max{ℵ0, card(I)} = card(N × I).

This shows that there exists an injective mapping from N×I into a Hamel basis of
U , i.e., we can find a linearly independent family (un,α)n∈N,α∈I in U . By rescaling
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we can arrange that ‖un,α‖ = 1
n for all n in N and all α ∈ I. It is not difficult to see

that the vectors vn,α := vα+un,α are linearly independent. Extend (vn,α)n∈N,α∈I to
a Hamel basis of E, so that (vβ)β∈J is a Hamel basis of E, where N×I ⊂ J . Define
the linear operator T on E by Tvn,α := nvn,α and Tvβ := vβ for β ∈ J \ (N × I).
It is obvious that T is a vector space automorphism. Defining |||Tx||| := ‖x‖, T is
an isometric isomorphism from (E, ‖ · ‖) to (E, ||| · |||).

We claim that none of the ϕα is continuous with respect to ||| · |||. Fix α ∈ I.
By construction, vn,α → vα in ‖ ·‖ as n → ∞. By the choice of vα this implies that
there exists µ > 0 such that eventually |ϕα(vn,α)| ≥ µ. In particular, ϕα(vn,α) �→ 0.
Moreover, vn,α → vα implies that (vn,α)n∈N is bounded in ‖ · ‖, say ‖vn,α‖ ≤ M .
Thus |||vn,α||| = ‖T−1vn,α‖ ≤ M/n for all n ∈ N, which shows vn,α → 0 in ||| · |||
as n → ∞. This proves that ϕα is not continuous on (E, ||| · |||). �

4. Construction of Non-equivalent norms.

4.1. Analytic Approach. Let (E, ‖ · ‖) be an infinite dimensional Banach space.
We are going to construct a large number of mutually non-equivalent norms on E
such that all the corresponding spaces are isometrically isomorphic to the original
one.

Let (uα)α∈I be a Hamel basis of E. Then every vector x ∈ E has a unique
representation x =

∑
α∈I λα(x)uα where only finitely many λα(x) do not vanish.

Proposition 4.1. At most finitely many coordinate functionals λα : E → K are
continuous. Moreover, there exists a Hamel basis (ũα) such that none of the cor-
responding coordinate functionals λ̃α is continuous.

Proof. Assume that we can find an infinite subset J of I such that λα is continuous
for all α ∈ J . We can choose J to be countable, say J = {α1, α2, . . . }. Let

xn :=
n∑

k=1

uαk

‖uαk
‖ · k2 .

Since the corresponding series converges absolutely, its partial sums (xn) con-
verge to some x ∈ E. We can write x =

∑
α∈I λα(x)uα, where λα(x) = 0

for all but finitely many α ∈ I. On the other hand, since λαk
is continuous,

λαk
(x) = 1/(‖uαk

‖k2) for all k ∈ N. This is a contradiction. Thus we have proved
the first claim.

For the second claim, let uβ be a basis vector with continuous coordinate func-
tional λβ . By the above argument, there exists a basis vector uγ such that λγ is
not continuous. Define ũα := uα for α �= γ and ũγ := uβ + uγ . It is easy to check
that (ũα)α∈I is linearly independent. From

x =
∑
α∈I

λα(x)uα =
∑
α�=γ

λα(x)ũα + λγ(x)ũγ − λγ(x)ũβ
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we see that (ũα)α∈I is a Hamel basis and λ̃α = λα for α �= β, whereas λ̃β = λβ−λγ .
In particular, λ̃β is not continuous. Thus for the Hamel basis (ũα)α∈I , the number
of continuous coordinate functionals is reduced by one compared to the original
Hamel basis (uα)α∈I . We have already seen that only finitely many coordinate
functionals of (uα)α∈I are continuous. So we obtain a Hamel basis without con-
tinuous coordinate functionals by successively applying the above argument. �

According to the preceding proposition, we can find a Hamel basis (uα)α∈I of
E such that no coordinate functional λα is continuous. For A ⊂ I we consider the
operator SA defined by

SAx :=
∑

α∈I\A

λα(x)uα −
∑
α∈A

λα(x)uα

Then S2
A = I for all A ⊂ I. Thus SA is a vector space automorphism of E and

S−1
A = SA. We introduce the norms ‖x‖A := ‖SAx‖. Note that ‖ · ‖∅ = ‖ · ‖.

By definition, SA is an isometry from (E, ‖ · ‖A) onto (E, ‖ · ‖), so all the spaces
(E, ‖ · ‖A), A ⊂ I, are isometrically isomorphic.

Let J be the collection of all finite subsets of I. We claim that SA is discontin-
uous for A ∈ J , A �= ∅. In fact, let A ∈ J and α ∈ A. By Hahn-Banach’s theorem
there exists ϕ ∈ E′ such that ϕ(uα) = 1 and ϕ(uβ) = 0 for all β ∈ A, β �= α. Note
that

ϕ(SAx) = ϕ


x− 2

∑
β∈A

λβ(x)uβ


 = ϕ(x) − 2λα(x).

So if SA was continuous, then also ϕ ◦ SA and λα, contradicting the choice of the
Hamel basis.

Now we show that no pair of the norms ‖ · ‖A, A ⊂ J is equivalent. To this
end, let A,B ∈ J , A �= B, and assume that ‖ · ‖A ∼ ‖ · ‖B . Then in particular
‖SAx‖ ≤ c‖SBx‖ for some c > 0, and hence ‖SASBx‖ ≤ c‖x‖, for all x ∈ E. Thus
SASB = SA∆B is a bounded operator. Since A∆B ∈ J , this contradicts our last
result.

The following theorem summarizes our observations.

Theorem 4.2. Let E be an infinite dimensional Banach space. There exist mutually
non-equivalent norms on E all making the space into an isometric copy of the
original one. More precisely, the cardinality of such a set of norms can be chosen
to be as large as the dimension of E.

However, this result is not optimal. One can construct an even larger set of
norms which still have the mentioned properties, namely as large as the power set
of a Hamel basis. Moreover, every set of mutually non-equivalent complete norms
has at most the cardinality of the power set of a Hamel basis. This result is due
to Laugwitz [15].
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4.2. Set-Theoretic Approach. We now take a different route towards the construc-
tion of non-equivalent norms in Banach spaces. Recall that the previous approach
was based on the construction of discontinuous vector space automorphisms. Using
this idea, however, one can only obtain isometric copies of the original space.

In this section we construct our Banach spaces directly and transfer the norms
onto a common underlying vector space. We have to make sure, however, that
there are sufficiently many Banach spaces for which the underlying vector spaces
are isomorphic. In order to achieve this we characterize those cardinalities which
may occur as the cardinality of a Banach space. This answers a question of
Laugwitz [15].

First we recall a few definitions and facts from set theory. Proofs can be found
in [12, Chapter 5]. Unless otherwise stated, we assume only (ZFC), i.e., the axioms
of Zermelo–Fraenkel set theory, including the axiom of choice.

We denote the cardinality of a set A by card(A), and we write c := card(R)
for the cardinality of the continuum. For an infinite limit ordinal α we define the
cofinality cf(α) of α to be the least limit ordinal β such that there is a monotonic
function f : β → α satisfying supγ∈β f(γ) = α. An infinite cardinal κ is called
regular if cf(κ) = κ; otherwise it is called singular. It can be shown that cf(α) is
a regular infinite cardinal.

For this section we need an additional set-theoretic assumption, which we call
Hypothesis (H).

Hypothesis (Hypothesis (H)). Let κ be a cardinal number, κ > c.

a) If cf(κ) > ℵ0, then κℵ0 = κ.
b) If cf(κ) = ℵ0, then µℵ0 < κ for every cardinal µ < κ.

We remark that the first part of the hypothesis is always true for κ = c, i.e.,
cℵ0 = c. This follows from cℵ0 = (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 = c.

The authors do not know whether Hypothesis (H) can be deduced from (ZFC).
Nevertheless, Hypothesis (H) holds if we add the Singular Cardinal Hypothe-
sis (SCH), an axiom which is strictly weaker than the Generalized Continuum
Hypothesis (GCH). We mention that it is customary to accept at least the Con-
tinuum Hypothesis (CH) in the context of automatic continuity results. More pre-
cisely, the construction of discontinuous operators often depends on (CH), for
example the celebrated result due to Esterle [11] and Dales [6] saying that for
every infinite compact space Ω there exists a discontinuous unital algebra homo-
morphism from C(Ω) into some Banach algebra. In fact, the existence of such a
homomorphism is independent of (ZFC), cf. [9]. Thus one requires an additional
axiom like for example (CH) to prove its existence. Since we treat spaces of ar-
bitrary cardinality, it is only natural that an axiom regarding large cardinals, for
example (GCH) or (SCH), comes in.

Proposition 4.3. In (ZFC) + (SCH), Hypothesis (H) is fulfilled.
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Proof. Let κ > c. If cf(κ) > ℵ0, then κℵ0 = κ according to [12, Theorem 5.22].

Now let cf(κ) = ℵ0 and µ < κ. Then κ is singular and hence a limit cardinal [12,
Corollary 5.3]. If µ ≤ c, then µℵ0 ≤ cℵ0 = c < κ. If, on the other hand, µ > c, then
either µℵ0 = µ or µℵ0 = µ+, where µ+ denotes the successor cardinal of µ [12,
Theorem 5.22]. Then also µℵ0 < κ since κ is a limit cardinal. �

Finally, we provide some information about the cardinality of a Banach space.
Let B be a Hamel basis of a vector space E. Then card(E) = max{card(B), c},
see Löwig [16]. If E is an infinite dimensional Banach space, then card(B) ≥ c.
Of course, the latter result is a direct consequence of Baire’s theorem if we accept
(CH), but it is true already in (ZFC) by a result of Mackey [17, Theorem I-1]. The
following fact is an immediate consequence.

Theorem 4.4. Let E be an infinite dimensional Banach space and B be a Hamel
basis of E. Then card(E) = card(B).

In particular, it follows that the Hamel basis of an infinite dimensional, separa-
ble Banach space E is of cardinality c. In fact, let X be a dense, countable subset
of E. Then there is a surjection from the set of sequences in X to the elements
of E, hence card(E) ≤ card(X)ℵ0 = ℵℵ0

0 = c. More is true. In fact, all separable
Banach spaces are mutually homeomorphic by a result due to Kadec, cf. [5, III.§8].

Even the Hamel bases of �∞ are of cardinality c, since �∞ is a subspace of the
space of all scalar sequences, which has cardinality cℵ0 = c. Since �∞ and L∞(0, 1)
are isomorphic as Banach spaces according to a result of Pe�lczyński [18], also each
Hamel basis of L∞(0, 1) is of cardinality c. Altogether, almost all Banach spaces
occurring in applications can be considered to share the same underlying vector
space.

Proposition 4.5. Assume Hypothesis (H). Let (E, ‖ · ‖) be an infinite dimensional
Banach space, κ := card(E). Then κ ≥ c and cf(κ) > ℵ0.

Proof. We already know that κ ≥ c. If κ = c, then cf(κ) > ℵ0 by [12, Corol-
lary 5.12]. Now let κ > c and assume that cf(κ) = ℵ0. Then there exists an in-
creasing sequence (αn)n∈N of ordinals in κ such that supn αn = κ, i.e.,

⋃
n αn = κ.

Of course, µi := card(αi) < κ for all i ∈ N.

Let B be a Hamel basis of E. Then card(B) = κ by Theorem 4.4, so that we can
write B = (vβ)β∈κ. Let Ui := span{vβ : β ∈ αi} and Vi := U i. By construction,⋃∞

i=1 Ui = E. Since every element of Vi is the limit of a sequence in Ui,

card(Vi) ≤ card(Ui)ℵ0 = max{µi, c}ℵ0 = max{µℵ0
i , cℵ0} < κ = card(E),

where we have used Hypothesis (H). Thus Vi �= E for every i ∈ N. This shows
that E is the union of countably many nowhere dense subspaces. This contradicts
Baire’s theorem and thus proves that the assumption cf(κ) = ℵ0 is false. �
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Proposition 4.6. Assume Hypothesis (H). Let κ ≥ c be a cardinal such that cf(κ) >
ℵ0, let I be a set of cardinality κ, and let p ∈ [1,∞). Define �p(I) to be the
Banach space of all x = (xα)α∈I such that ‖x‖p

p :=
∑

α |xα|p is finite. Then
card(�p(I)) = κ.

Proof. Since elements of �p(I) are functions from I to K with at most countable
support, we obtain that κ ≤ card(�p(I)) ≤ κℵ0 · cℵ0 = κ. �

Combining these two results, we obtain a characterization of the possible car-
dinalities for a Banach space, thus answering Laugwitz’s question [15, p. 131].

Theorem 4.7. Assume Hypothesis (H). There exists an infinite dimensional
Banach space E with card(E) = κ if and only if κ ≥ c and cf(κ) > ℵ0.

This shows that, assuming Hypothesis (H), there is no Banach space of cardinal-
ity ℵω. The cardinals for which there is no Banach space even form a proper class.
In fact, if µ is an arbitrary cardinal, then the cardinal κ := sup{µ, 2µ, 22µ

, . . . } has
cofinality cf(κ) = ℵ0, compare [12, p. 58].

Another consequence of our considerations is that every Banach space can
be equipped with completely different norms, i.e., norms such that the resulting
spaces are mutually non-isomorphic. In particular, the norms are mutually non-
equivalent, so at most one of them is equivalent to the original one.

Theorem 4.8. Assume Hypothesis (H). Let (E, ‖ · ‖) be an infinite dimensional
Banach space. Then there exist norms ‖ · ‖p, p ∈ [1,∞), on the vector space E
such that (E, ‖ · ‖p) is a Banach space and the spaces (E, ‖ · ‖p) and (E, ‖ · ‖q) are
non-isomorphic for p �= q.

Proof. Let B be a Hamel basis of E and let κ := card(B) = card(E). Then
κ = card(�p(B)) for every p ∈ [1,∞) by Propositions 4.5 and 4.6. Since each Hamel
basis of �p(B) has cardinality κ, too, there exists a vector space isomorphism Tp

from E onto �p(B) for every p. Defining ‖x‖p := ‖Tpx‖p on E, the space (E, ‖ · ‖p)
is isometrically isomorphic to �p(B). It is a consequence of Pitt’s Theorem [13,
§42.3.(10)] that, if p < q, then every bounded operator T from (E, ‖ · ‖q) to
(E, ‖ · ‖p) is compact. In particular, the spaces are not isomorphic. �
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[17] G. W. Mackey, On Infinite-Dimensional Linear Spaces, Transactions of the Amer-
ican Mathematical Society 57, 155–207 (1945).
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