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Abstract. Given a family A(t) of closed unbounded operators on a UMD

Banach space X with common domain W, we investigate various properties
of the operator DA := d

dt
− A(·) acting from Wp

per := {u ∈ W 1,p(0, 2π; X) ∩

Lp(0, 2π;W ) : u(0) = u(2π)} into X p := Lp(0, 2π;X) when p ∈ (1,∞). The
primary focus is on the Fredholmness and index of DA, but a number of related
issues are also discussed, such as the independence of the index and spectrum
of DA upon p or upon the pair (X, W ) as well as sufficient conditions ensuring
that DA is an isomorphism. Motivated by applications when DA arises as
the linearization of a nonlinear operator, we also address similar questions in
higher order spaces, which amounts to proving (nontrivial) regularity proper-
ties. Since we do not assume that ±A(t) generates any semigroup, approaches
based on evolution systems are ruled out. In particular, we do not make use
of any analog or generalization of Floquet’s theory. Instead, some arguments,
which rely on the autonomous case (for which results have only recently been
made available) and a partition of unity, are more reminiscent of the methods
used in elliptic PDE theory with variable coefficients.

1. Introduction. Throughout this paper, we assume some familiarity with the
concepts of Banach space with UMD (unconditionality of martingale differences)
and of randomized (a.k.a. Rademacher) boundedness, henceforth abbreviated as
r-boundedness. The expositions in the monograph by Denk, Hieber and Prüss [11]
or alternatively in any of the papers [3], [8], [25], [32], are sufficient for our purposes.

If X is a complex Banach space and p ∈ [1,∞], recall that W 1,p(0, 2π;X) is
the subspace of Lp(0, 2π;X) of those functions whose derivatives in the sense of
X-valued distributions are in Lp(0, 2π;X). As is well known, W 1,p(0, 2π;X) →֒
C0([0, 2π], X), so that u(0) and u(2π) are unambiguously defined in X and depend
continuously on u ∈W 1,p(0, 2π;X). Thus, the subspace

W 1,p
per(0, 2π;X) := {u ∈ W 1,p(0, 2π;X) : u(0) = u(2π)}, (1.1)

is well defined and closed in W 1,p(0, 2π;X).
As usual, if L is an unbounded linear operator on a Banach space, σ(L) and

R(λ, L) := (L − λI)−1 denote the spectrum and resolvent of L, respectively and
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ρ(L) := C\σ(L) is the resolvent set of L. Our starting point is the following result
by Arendt and Bu [3, Theorem 2.3] (rephrased):

Theorem 1. Let X be a Banach space with UMD and let A be a closed un-
bounded operator on X with domain W equipped with the graph norm. Then, given
p ∈ (1,∞), the operator DA := d

dt
− A is an isomorphism of W 1,p

per(0, 2π;X) ∩
Lp(0, 2π;W ) onto Lp(0, 2π;X) if and only if σ(A)∩ iZ = ∅ and the set {kR(ik, A) :
k ∈ Z} is r-bounded in L(X).

It is noteworthy that, in Theorem 1, the operator A need not generate a semi-
group. In fact, σ(A) may not even be contained in any half-plane. Nonetheless, the
case when ±A does generate a semigroup is of course important in the applications.

In this paper, we consider the more general case when A = A(t) is 2π -periodic
with t-independent domain W and discuss various extensions and complements of
the “if” part of Theorem 1. If W = X is finite-dimensional, it is an easy by-product
of Floquet’s theory (see for instance Farkas [13]) that the operator DA := d

dt
−A(·)

is similar to an operator with constant coefficients, so that everything boils down
to applying Theorem 1.

On the other hand, if W = X is infinite dimensional, then Floquet’s theory
usually breaks down, even in Hilbert space. Furthermore, its validity depends upon
properties of the monodromy operator which are rarely verifiable in practice, or
place drastic limitations on the size of ||A(t)|| (Massera and Schäffer [22]). See
however Chow, Lu and Mallet-Paret [7] for the case of scalar parabolic equations
in one space variable. We also point out that “obvious” variants of the condition
σ(A) ∩ iZ = ∅ in Theorem 1 do not provide an adequate substitute, even in the
finite dimensional case when the r-boundedness condition is vacuous. This can be
seen on the simple scalar example X = W = C and A(t) = iaeit with a ∈ R\Z.

Clearly, σ(A(t)) ∩ iZ = ∅ for all t, yet kerDA contains u(t) := eae
it

.
We shall follow a much different route and consider the broader issue of finding

sufficient conditions for DA to be a Fredholm operator. Index considerations and
spectral properties are discussed in detail as well. Eventually, isomorphism theorems
will be obtained in the t-dependent case, but not under hypotheses fully generalizing
those of Theorem 1.

We shall always assume that X is a Banach space with UMD, that the operators
A(t) have a common domain W and that the embedding W →֒ X is compact. The
latter is not required in Theorem 1, but it is essential in our approach (see Remark
3). In particular, our assumptions rule out the case W = X when dimX = ∞ but
they are compatible with A(t) being a differential operator acting between Sobolev
spaces. The specific hypotheses are listed in Section 2, where some (mostly known)
preliminary results are also collected for convenience.

A sufficient condition for DA : W 1,p
per(0, 2π;X) ∩ Lp(0, 2π;W ) → Lp(0, 2π;X)

to be semi-Fredholm is given in Section 3 (Theorem 2). Under our assumptions,
both the forward and backward Cauchy problems for DA are ill-posed in general,
so that evolution systems cannot be used and there is no monodromy operator. In
particular, it does not even make sense to ask whether a generalization of Floquet’s
theory is available. Instead, the method consists in obtaining suitable a priori
estimates via Theorem 1 and a partition of unity. This line of arguments follows
Rabier [27], where (0, 2π) is replaced by the whole line, and has further roots in the
work of Robbin and Salamon [29]. As a corollary, we obtain that DA has compact
resolvent and index 0 when σ(DA) 6= C (Corollary 1).
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By reduction to the constant coefficient case, it is easily seen that DA has index 0
when dimX <∞ (see also Remark 7) and we know of no example when σ(DA) = C.
Accordingly, we have no explicit example when indexDA 6= 0, but Theorem 2 does
not rule out their existence and even allows for problems with index −∞. In Section
4, we show, by a duality argument and under the exact same hypotheses, that DA

is actually Fredholm, i.e., of finite index (Theorem 3). Various conditions ensuring
that DA has index 0 without the help of any spectral information are also given.

Section 5 addresses various spectral and related questions. The main results
there are that σ(DA) and indexDA are p-independent (Theorem 5). Corollary 5 is
especially relevant when A(t) is an elliptic operator with boundary conditions on a
bounded domain.

The Fredholmness of linear operators is important in its own right (Fredholm
alternative), but it is also the key to using degree arguments in nonlinear prob-
lems, especially when the index is 0. For such matters, see Benevieri and Furi [6],
Pejsachowicz and Rabier [24] and the references therein. However, there is a tech-
nical difficulty in using the results of Sections 4 and 5 in nonlinear problems, which
is explained at the beginning of Section 6 and motivates studying the operator
DA acting between the higher order spaces W 2,p

per(0, 2π;X) ∩ W 1,p
per(0, 2π;W ) and

W 1,p
per(0, 2π;X).
The problem in higher order spaces is investigated in Sections 6 and 7. In Section

6, we mostly focus on extending many (but not all) results to the new functional
setting by relying on the previously developed theory or by repeating more or less
the same arguments. The purpose of Section 7 is to show that indexDA and σ(DA)
(and even the multiplicity of the isolated eigenvalues) are not affected by passing
to the higher order spaces. This is substantially more demanding and is essentially
done by proving several regularity results forDA. Thus, while higher order spaces are
better suited to nonlinear problems, the verification of the Fredholm and spectral
properties can safely be confined to the simpler original setting. Naturally, no
specific nonlinear application is described in this paper. Also, we did not discuss
the properties of DA from W k+1,p

per (0, 2π;X) ∩ W k,p
per (0, 2π;W ) to W k,p

per (0, 2π;X)
when k > 1, which can be done by the same methods.

In concrete problems, especially those of PDE type, it often happens that the
operators A(t) act between whole families of spaces (W,X) rather than just a single
pair of such spaces (for instance, a differential operator with boundary conditions
acts between many pairs of Sobolev spaces). It makes then sense to ask whether
indexDA and σ(DA) depend upon the pair (W,X). Their independence of (W,X)
is proved in Section 8, under some natural “compatibility” conditions between such
pairs. The main regularity result of Section 7 (Lemma 15) is instrumental in the
proof of the (W,X)-independence.

Unlike the index of Fredholm operators, the compact resolvent property is not
stable by arbitrary compact (or even finite rank) perturbations. Thus, prior to Sec-
tion 9, the only infinite dimensional case when this property is known (t-independent
case; see Theorem 4) is of limited use in other problems. In Section 9, we give a
sufficient condition for D±(A−λI) to be an isomorphism when Reλ is large enough
(Theorem 11). In particular, D±A has compact resolvent. The method of proof
does not reveal what extra condition could ensure the isomorphism property when
λ = 0, that is, for D±A. However, such an extra condition (dissipativity) is given in
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Corollary 10. Then, by using the (W,X)-independence results of Section 8, the iso-

morphism property can next be extended to suitable pairs (W̃ , X̃) without requiring
the dissipativity in that setting.

All the statements regarding Fredholmness, nullity or deficiency (and hence also
index or invertibility) remain true in real Banach spaces, for these concepts are
unaffected by replacing X and W by their complexifications.

The spectral and index independence questions for evolution problems, especially
abstract ones, have been studied little, although partial results (p-independence of
the index) can be found in [27] for problems on the whole line and the half line.
Therefore, it is difficult to put this paper in the perspective of earlier works, which
partly explains its length. On the other hand, spectral independence in elliptic
PDEs has been investigated extensively. It is often a simple corollary to elliptic
regularity on “good” bounded domains, but a more delicate matter on unbounded
ones (see Hempel and Voigt [15], Arendt [1], the survey by Davies [9], Leopold and
Schrohe [19], Hieber and Schrohe [17], among others). Still for elliptic problems,
the index independence goes back to Geymonat [14] when the domain is bounded.
It fails when the domain is RN in the weighted spaces considered by McOwen [23]
and others, but positive results in non-weighted Sobolev spaces can be found in
Rabier [26], [28]. (Much earlier, Seeley [30] proved the index independence for a
class of elliptic singular integral operators on Lp for which ellipticity is equivalent to
Fredholmness, but this requirement is not met by the operators arising from PDEs
on the whole space.)

The notations used throughout are standard. We only mention explicitly that,
as is customary, a “dot” is often used to denote t-differentiation.

2. Preliminaries. From now on, X is a Banach space with UMD, W ⊂ X is a
Banach space and (A(t))t∈[0,2π] ⊂ L(W,X). In particular, A(t) may also be viewed
as an unbounded operator on X with domain W and it thus make sense to refer to
the spectrum resolvent, etc., of A(t).

In the sequel, we shall frequently retain some or all of the following hypotheses.
(H1) The embedding W →֒ X is compact.
(H2) A ∈ C0

per([0, 2π],L(W,X)),

i.e., A ∈ C0([0, 2π],L(W,X)) and A(0) = A(2π).
(H3) For every t ∈ [0, 2π], there is κ(t) ∈ N such that

{kR(ik, A(t)) : k ∈ Z, |k| ≥ κ(t)},

is r-bounded in L(X) when A(t) is viewed as an unbounded operator on X with
domain W.

Remark 1. None of the above hypotheses is affected by changing A(t) into −A(t).

The following preliminary result will be used in various places later on. The
(easy) proof can be found in [27, Theorem 2.1], in a slightly different context.

Lemma 1. Suppose that the embedding W →֒ X is continuous. The following
properties hold for every t ∈ [0, 2π] :
(i) If λ ∈ ρ(A(t)), then, A(t) − λI ∈ GL(W,X).
(ii) If ρ(A(t)) 6= ∅, the norm of W is equivalent 1 to the graph norm of A(t) (hence
A(t) is a closed operator on X with domain W ).

1 If (H2) also holds, it is not difficult to see (by the compactness of [0, 2π]) that the equivalence
of norms is actually uniform in t ∈ [0, 2π].
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(iii) If ρ(A(t)) 6= ∅ and (H1) holds, then A(t) has compact resolvent (hence σ(A(t))
is discrete and consists of isolated eigenvalues of finite algebraic multiplicity).
(iv) W is a Banach space with UMD.

All the conditions required in Lemma 1 are fulfilled if (H1) and (H3) hold. In
particular, from (H3) and Lemma 1 (i), it follows that R(ik, A(t)) ∈ L(X,W ) for
k ∈ Z and |k| ≥ κ(t). This yields an equivalent formulation of (H3) which will be
useful in Section 4:

Lemma 2. Suppose that the embedding W →֒ X is continuous. Condition (H3)
holds if and only if for every t ∈ [0, 2π], there is κ(t) ∈ N such that

{R(ik, A(t)) : k ∈ Z, |k| ≥ κ(t)})

is r-bounded in L(X,W ).

Proof. Suppose first that (H3) holds and let k ∈ Z be such that |k| ≥ κ(t). From
the relation

ikR(ik, A(t)) = I +A(t)R(ik, A(t)), (2.1)

the set {A(t)R(ik, A(t)) : k ∈ Z, |k| ≥ κ(t)} is r-bounded in L(X). On the other
hand, (H3) also implies that {R(ik, A(t)) : k ∈ Z, |k| ≥ κ(t)} is r-bounded in L(X).
Since, by Lemma 1 (ii), the norm of W is equivalent to the graph norm of A(t), it
follows that {R(ik, A(t)) : k ∈ Z, |k| ≥ κ(t)} is r-bounded in L(X,W ).

Conversely, if {R(ik, A(t)) : k ∈ Z, |k| ≥ κ(t)}) is r-bounded in L(X,W ), then
{A(t)R(ik, A(t)) : k ∈ Z, |k| ≥ κ(t)} is r-bounded in L(X) and (2.1) implies that
{kR(ik, A(t)) : k ∈ Z, |k| ≥ κ(t)}) is r-bounded in L(X), so that (H3) holds.

The technical property that r-boundedness conditions such as (2.1) are unaffected
by some perturbations will be very useful. Several results of this type are available
in the literature. In particular, by (a straightforward variant of) [25, Theorem 3.5]
and since the relatively compact operators have relative bound2 0, we obtain

Lemma 3. Let X be a Banach space and let A0 be a closed unbounded operator on
X with domain W equipped with the graph norm. Suppose that there is κ0 ∈ N∪{0}
such that {kR(ik, A0) : k ∈ Z, |k| ≥ κ0} is r-bounded in L(X), that is,

rL(X)({kR(ik, A0) : k ∈ Z, |k| ≥ κ0}) <∞. (2.2)

Then, for every K ∈ K(W,X) (compact operators), there is κ ∈ N∪{0} such that

rL(X)({kR(ik, A0 +K) : k ∈ Z, |k| ≥ κ}) <∞.

(Of course, this implies that R(ik, A0 +K) exists if |k| ≥ κ.)

It follows from Lemma 3 that, if (H3) holds, then it also holds when A is replaced
by A+K, provided that K(t) ∈ K(W,X) for every t ∈ [0, 2π]. In particular, if (H1)
and (H3) hold, then (H3) also holds when A is replaced by A − λI for any λ ∈ C.
This will be used repeatedly and often implicitly.

In Section 7, we shall also need the following “stability” result.

Lemma 4. Suppose that A satisfies (H2) and (H3). Then, (H3) also holds for
every B ∈ C0

per([0, 2π],L(W,X)) with supt∈[0,2π] ||B(t) − A(t)||L(W,X) > 0 small
enough.

2 See Hess [16] since X is reflexive.
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Proof. Let t0 ∈ [0, 2π] and ε > 0 be given. If t ∈ [0, 2π] and x ∈W, then

||(B(t) −A(t0))x||X

≤
(
||(B(t) −A(t))||L(W,X) + ||(A(t) −A(t0))||L(W,X)

)
||x||W ≤ ε||x||W ,

if |t− t0| < δ with δ > 0 is small enough and sups∈[0,2π] ||B(s) −A(s)||L(W,X) <
ε
2 .

From the equivalence of the norm of W and the graph norm of A(t0), there is a
constant c0 > 0 depending only upon A(t0) (and the norms of X and W ) such that
||x||W ≤ c0||A(t0)x||X + c0||x||X . Therefore,

||(B(t) −A(t0))x||X ≤ c(t0)ε||A(t0)x||X + c(t0)ε||x||X ,

for every x ∈W and every t ∈ Jt0 := (t0 − δ, t0 + δ) ∩ [0, 2π].
Thus, if ε > 0 is chosen small enough in the first place, it follows from (H3) with

t = t0 and from [25, Theorem 3.5 and Remark 3.5], that there is κ(ε) ∈ N such that
rL(X)({kR(ik, B(t)) : k ∈ Z, |k| ≥ κ(ε)}) < ∞ for every t ∈ Jt0 . The conclusion
follows by covering [0, 2π] with finitely many intervals Jt0 .

The next lemma reveals an important by-product of the hypothesis (H3).

Lemma 5. If A satisfies (H3), then W is dense in X.

Since r-boundedness implies boundedness and Banach spaces with UMD are
reflexive, Lemma 5 follows from the more general result below, presumably not
new but for which we have found no reference in the literature.

Lemma 6. Let Z be a reflexive complex Banach space and let L be an unbounded
linear operator on Z such that there is a sequence (λn) ⊂ C with limn→∞ |λn| = ∞
and supn ||λnR(λn, L)|| <∞. Then, the domain D(L) of L is dense in Z.

Proof. Let µ ∈ ρ(L) be chosen once and for all. Since the hypotheses of the lemma
readily imply limn→∞R(λn, L) = 0 in L(Z), it follows that

λnR(λn, L)R(µ,L) =

λn
λn − µ

(R(µ,L) −R(λn, L)) → R(µ,L) in L(Z) as n→ ∞. (2.3)

Let x ∈ Z be given. By the boundedness of the sequence λnR(λn, L)x and the
reflexivity of Z, we may assume with no loss of generality that there is y ∈ Z such

that λnR(λn, L)x
w
⇀ y. Thus, λnR(λn, L)R(µ,L)x

w
⇀ R(µ,L)y. On the other hand,

by (2.3), λnR(λn, L)R(µ,L)x→ R(µ,L)x in norm, so that R(µ,L)y = R(µ,L)x and

hence y = x. This shows that λnR(λn, L)x
w
⇀ x. Evidently, λnR(λn, L)x ∈ D(L),

whence some convex combination of the points λnR(λn, L)x (also in D(L)) tends
to x in norm by Mazur’s lemma. This completes the proof.

3. Semi-Fredholmness. In Theorem 2 below, we show that if p ∈ (1,∞) and the
hypotheses (H1) to (H3) hold, the operator

DA :=
d

dt
−A(·) : W 1,p

per(0, 2π;X) ∩ Lp(0, 2π;W ) → Lp(0, 2π;X), (3.1)

has closed range and finite dimensional null-space, i.e., is semi-Fredholm of index
ν ∈ Z ∪ {−∞}.

For simplicity of notation, we shall set

Wp
per := W 1,p

per(0, 2π;X) ∩ Lp(0, 2π;W ) and X p := Lp(0, 2π;X), (3.2)
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so that DA does map Wp
per into X p. The (natural) norms on Wp

per and X p will
be denoted by || · ||Wp

per
and || · ||X p , respectively. Both spaces are Banach spaces

for these norms. In addition, by (H1), it follows from Simon [31, Theorem 1] that
the embedding W 1,p(0, 2π;X) ∩ Lp(0, 2π;W ) →֒ Lp(0, 2π;X) is compact (see also
Aubin [5]). As a result, the embedding

Wp
per →֒ X p (3.3)

is compact. As the proof will show, Theorem 2 is then a simple by-product of this
compactness together with the inequality

||u||Wp
per

≤M (||DAu||X p + ||u||X p) , ∀u ∈ Wp
per , (3.4)

where M > 0 is a constant independent of u.
Most of this section is devoted to proving the validity of (3.4), which is done in

Lemma 11. This will follow from the case when u has compact support contained
in (0, 2π) (Lemma 10), although the corresponding subspace is not dense in Wp

per .
In turn, the method of proof of Lemma 10 is loosely inspired by the classical proce-
dure to obtain a priori estimates for elliptic PDEs, by freezing the coefficients and
partition of unity.

Lemma 7. Suppose that (H1) to (H3) hold and that p ∈ (1,∞). Let s0 ∈ [0, 2π] be
given and let λ0 ∈ C be such that σ(A(s0)−λ0I)∩ iZ = ∅. Then, there are an open
interval J0 about s0 and a constant C(s0) > 0 such that DA(s)−λ0I ∈ GL(Wp

per ,X
p)

for every s ∈ J0 ∩ [0, 2π] and that ||D−1
A(s)−λ0I

||L(X p,Wp
per) ≤ C(s0) for every s ∈

J0 ∩ [0, 2π].
Note: Since s is fixed, DA(s)−λ0I above is the operator d

dt
− (A(s) − λ0I), with

constant coefficients.

Proof. By Lemma 1 (ii), the operator A(s0) is a closed unbounded operator on X
with domain W equipped with a norm equivalent to the graph norm of A(s0) and
hence equivalent to the graph norm of A(s0)−λ0I. Next, by (H3), A(s0) satisfies the
condition (2.2) of Lemma 3, so that, by (H1), there is κ ∈ N∪{0} such that the set
{kR(ik, A(s0)− λ0I) : k ∈ Z, |k| ≥ κ} is r-bounded. Since σ(A(s0)− λ0I)∩ iZ = ∅,
the set {kR(ik, A(s0) − λ0I) : k ∈ Z, |k| < κ} is well defined and finite (hence
r-bounded). Therefore, the set {kR(ik, A(s0) − λ0I) : k ∈ Z} is r-bounded (union
of two r-bounded sets). As a result, DA(s0)−λ0I ∈ GL(Wp

per ,X
p) by Theorem 1 for

A(s0) − λ0I.
By (H2), the mapping s ∈ [0, 2π] 7→ DA(s)−λ0I ∈ L(Wp

per ,X
p) is continu-

ous. Since GL(Wp
per,X

p) is open in L(Wp
per ,X

p), it follows that DA(s)−λ0I ∈

GL(Wp
per,X

p) with ||D−1
A(s)−λ0I

||L(X p,Wp
per) bounded by a constant C(s0) > 0 if

s ∈ J0 and J0 is a small enough open interval about s0. This completes the
proof.

Lemma 8. Suppose that (H1) to (H3) hold and that p ∈ (1,∞). There are a
finite set Λ ⊂ [−1, 1] and a constant C > 0 with the following property: For
every s ∈ [0, 2π], there is λ ∈ Λ such that DA(s)−λI ∈ GL(Wp

per ,X
p) and that∥∥∥D−1

A(s)−λI

∥∥∥
L(X p,Wp

per)
≤ C.

Proof. Given s0 ∈ [0, 2π], it follows from Lemma 1 (iii) that σ(A(s0)) is discrete. As
a result, the projection of σ(A(s0)) onto the real axis consists of countably many
points. If λ0 ∈ [−1, 1] is chosen in the complement of this countable set, then
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σ(A(s0)−λ0I)∩ iR = ∅, so that σ(A(s0)−λ0I)∩ iZ = ∅. Thus, by Lemma 7, there
are a constant C(s0) > 0 and an open interval J0 about λ0 such that DA(s)−λ0I ∈

GL(Wp
per,X

p) for every s ∈ J0 ∩ [0, 2π] and that ||D−1
A(s)−λ0I

||L(X p,Wp
per) ≤ C(s0)

for every s ∈ J0 ∩ [0, 2π]. The lemma follows by covering [0, 2π] by finitely many
such intervals Jℓ, 1 ≤ ℓ ≤ N, corresponding to points sℓ ∈ [0, 2π] and values λℓ ∈
[−1, 1]. Clearly, Λ := {λ1, · · · , λN} and C := max1≤ℓ≤N C(sℓ) satisfy the required
conditions.

Lemma 9. Given p ∈ (1,∞), there is ε > 0 such that, for every ψ ∈ C∞
0 (0, 2π)

and every u ∈ Wp
per ,

sup
s,t∈Suppψ

||A(s) −A(t)||L(W,X) ≤ ε⇒

||ψu||Wp
per

≤ ε−1(||ψDAu||X p + ||ψ̇u||X p + ||ψu||X p). (3.5)

Proof. Let u ∈ Wp
per be given and set f := DAu. The multiplication of both sides

by ψ ∈ C∞
0 (0, 2π) yields DA(ψu) = ψ̇u+ψf. Pick s0 ∈ Suppψ and let Λ and λ0 ∈ Λ

be given by Lemma 8. Then,

DA(s0)−λ0I(ψu) = (A−A(s0))ψu + ψf + ψ̇u+ λ0ψu

and hence, by Lemma 8 (see Remark 2 below) and since |λ0| ≤ 1,

||ψu||Wp
per

≤ C(||(A −A(s0))ψu||X p + ||ψf ||X p + ||ψ̇u||X p + ||ψu||X p), (3.6)

where C > 0 is a constant independent of s0, u and ψ. By writing

||(A−A(s0))ψu||X p =

(∫

Suppψ
||(A(t) −A(s0))ψ(t)u(t)||pXdt

) 1

p

,

we obtain the estimate

‖(A−A(s0))ψu‖X p ≤ sup
t∈Suppψ

||A(t) −A(s0)||L(W,X)||ψu||Lp(0,2π;W )

≤ sup
s,t∈Suppψ

||A(s) −A(t)||L(W,X)||ψu||Wp
per
.

By substitution into (3.6), we get

||ψu||Wp
per

≤ C sup
s,t∈Suppψ

||A(s) −A(t)||L(W,X)||ψu||Wp
per

+ C(||ψf ||X p + ||ψ̇u||X p + ||ψu||X p),

which yields (3.5) with ε = 1
2C independent of u and ψ since f := DAu.

Remark 2. It is trivial, yet crucial to the above proof, that ψu ∈ Wp
per because

(ψu)(0) = (ψu)(2π)(= 0). In particular, Lemma 8 cannot be used if ψ is a cut-off
function that does not vanish at t = 0 or t = 2π since the multiplication by ψ does
not preserve periodicity in this case.

We are now in a position to prove the validity of the estimate (3.4). We proceed
in two steps.
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Lemma 10. Suppose that (H1) to (H3) hold. Then, for every compact interval
Q ⊂ (0, 2π), there is a constant M(Q) > 0 such that

||u||Wp
per

≤M(Q) (||DAu||X p + ||u||X p) , (3.7)

for every u ∈ Wp
per with Suppu ⊂ Q.

Proof. Let ε > 0 be given by Lemma 9. By the uniform continuity of A on [0, 2π],
there is δ > 0 such that ||A(s) − A(t)||L(W,X) < ε whenever |s − t| < δ. Cover Q
with finitely many open intervals Ij ⊂ [0, 2π] such that |Ij | < δ, 1 ≤ j ≤ n, and
choose n functions ψj ∈ C∞

0 (0, 2π) such that Suppψj ⊂ Ij and
∑n

j=1 ψj = 1 on Q.

If u is as above, then u =
∑n
j=1 ψju, whence ||u||Wp

per
≤
∑n

j=1 ||ψju||Wp
per

and
so, by Lemma 9,

||u||Wp
per

≤
n∑

j=1

ε−1(||ψjDAu||X p + ||ψ̇ju||X p + ||ψju||X p).

This implies (3.7) with M(Q) := 2ε−1
∑n

j=1(maxt∈[0,2π] |ψj(t)| + |ψ̇j(t)|).

Lemma 11. Suppose that (H1) to (H3) hold. Then, there is a constant M > 0
such that

||u||Wp
per

≤M (||DAu||X p + ||u||X p) , ∀u ∈ Wp
per . (3.8)

Proof. Extend A to all of R by periodicity and note that (H1) to (H3) are not
affected by changing [0, 2π] into [a, a+ 2π] where a ∈ R is arbitrary. Thus, (3.7) in
Lemma 10 remains true when Q is a compact subinterval of (a, a+ 2π), the spaces
Wp
per and X p are replaced by W 1,p

per(a, a+ 2π;X) ∩ Lp(a, a+ 2π;W ) and Lp(a, a+

2π;X), respectively and Supp u ⊂ Q. Here, membership of u to W 1,p
per(a, a+ 2π;X)

means that u ∈ W 1,p(a, a+ 2π;X) and that u(a) = u(a+ 2π).
Given u ∈ Wp

per , extend u to all of R by periodicity. For j ∈ {−1, 0, 1}, let
ϕj ∈ C∞

0 (R) be such that Suppϕj ⊂ Qj ⊂ (jπ, (j + 2)π) where Qj is a compact

interval, [−1, 2π+1] ⊂ ∪1
j=−1Qj and

∑1
j=−1 ϕj = 1 on [0, 2π]. Then u =

∑1
j=−1 ϕju

on [0, 2π], so that

||u||Wp
per

≤
1∑

j=−1

||ϕju||W 1,p(0,2π;X)∩Lp(0,2π;W ). (3.9)

Now, ||ϕ−1u||W 1,p(0,2π;X)∩Lp(0,2π;W ) = ||ϕ−1u||W 1,p(0,π;X)∩Lp(0,π;W ) since ϕ−1u =
0 in [π, 2π] and ||ϕ−1u||W 1,p(0,π;X)∩Lp(0,π;W ) ≤ ||ϕ−1u||W 1,p(−π,π;X)∩Lp(−π,π;W ).
Therefore,

||ϕ−1u||W 1,p(0,2π;X)∩Lp(0,2π;W ) ≤ ||ϕ−1u||W 1,p(−π,π;X)∩Lp(−π,π;W ). (3.10)

Since Suppϕ−1u ⊂ Q−1, it follows from (3.7) with [0, 2π] replaced by [−π, π] (see
the discussion at the beginning of the proof) that there is M(Q−1) > 0 such that

||ϕ−1u||W 1,p(−π,π;X)∩Lp(−π,π;W ) ≤

M(Q−1)
(
||DA(ϕ−1u)||Lp(−π,π;X) + ||ϕ−1u||Lp(−π,π;X)

)
.

By using DA(ϕ−1u) = ϕ−1DAu+ ϕ̇−1u and (3.10), this yields

||ϕ−1u||W 1,p(0,2π;X)∩Lp(0,2π;W ) ≤

2M(Q−1)(max
t∈R

|ϕ−1(t)| + |ϕ̇−1(t)|)
(
||DAu||Lp(−π,π;X) + ||u||Lp(−π,π;X)

)
.
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By the periodicity of u and A, ||DAu||Lp(−π,π;X) = ||DAu||X p and ||u||Lp(−π,π;X) =
||u||X p, so that

||ϕ−1u||W 1,p(0,2π;X)∩Lp(0,2π;W ) ≤

2M(Q−1)(max
t∈R

|ϕ−1(t)| + |ϕ̇−1(t)|) (||DAu||X p + ||u||X p) .

Similar inequalities hold when j = 0 and j = 1 in (3.9), which yields (3.8) with

M := 2
∑1
j=−1M(Qj)(maxt∈R |ϕj(t)| + |ϕ̇j(t)|).

Theorem 2. Suppose that (H1) to (H3) hold. Then, the operator DA : Wp
per → X p

(see (3.2)) has closed range and finite dimensional null-space for every p ∈ (1,∞).

Proof. By the well known Yood criterion (Deimling [10], Yood [33]), it suffices
to show that DA is proper on the closed bounded subsets of Wp

per , i.e., that if
(un) ⊂ Wp

per is a bounded sequence such that (DAun) converges in X p, then (un)
contains a Wp

per-convergent subsequence.
By the compactness of the embedding (3.3), we may assume that (un) is conver-

gent in X p with no loss of generality. That (un) actually converges in Wp
per thus

follows from (3.7) with u replaced by un − um.

Another way to state Theorem 2 is to say that DA is semi-Fredholm of index in
Z ∪ {−∞}.

Remark 3. In contrast to Theorem 1, Theorem 2 is false if (H1) is dropped. For
instance, if X = W is an infinite dimensional Hilbert space and A = 0, then X has
the UMD property and (H2) and (H3) hold trivially. Yet, kerDA = X (constant
functions) is not finite dimensional. (If (H1) holds, then σ(A(t)) = C when A = 0
has domain W and (H3) fails.)

We now show that under the hypotheses of Theorem 2, DA is a closed operator
on X p with domain Wp

per for every p ∈ (1,∞).

Corollary 1. Suppose that (H1) to (H3) hold. Then, the operator DA is a closed
operator on X p with domain Wp

per for every p ∈ (1,∞). In addition, either σ(DA) =
C or DA has compact resolvent and (hence) indexDA = 0.

Proof. Let (un) ⊂ Wp
per be a sequence such that un → u in X p and DAun → f

in X p. By Theorem 2, dimkerDA < ∞, so that there is a continuous projection
P ∈ L(Wp

per) onto kerDA. Furthermore, still by Theorem 2, rgeDA is closed in X p,
so that DA is an isomorphism of kerP onto rgeDA. By writing un = Pun+(I−P )un
and sinceDA(I−P )un = DAun → fn, it follows that (I−P )un is convergent in Wp

per

and hence also in X p. Since un → u in X p, it follows that Pun = un − (I − P )un
is convergent in X p. Since dimkerDA < ∞, this amounts to saying that Pun is
convergent in Wp

per . Therefore, un is convergent in Wp
per and its limit coincides

with its limit u in X p. This shows that u ∈ Wp
per . Then, by the continuity of

DA : Wp
per → X p, it follows that DAun → DAu in X p, so that DAu = f. This

completes the proof that DA is closed.
Since the embedding Wp

per →֒ X p is compact, DA has compact resolvent if
ρ(DA) 6= ∅. If so, pick λ0 ∈ ρ(DA). The relation DA − λ0I = DA+λ0I shows
that DA+λ0I is an isomorphism of Wp

per onto X p. On the other hand, for every
λ ∈ C, the operator A + λI satisfies (H1) to (H3) (use (H1) and Lemma 3) and
DA+λI ∈ L(Wp

per ,X
p) depends continuously upon λ. Thus, DA+λI is semi-Fredholm
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for every λ ∈ C by Theorem 2 and so its index is independent of λ ∈ C. In particular,
indexDA = indexDA+λ0I = 0.

In Corollary 1, σ(DA) refers to the spectrum of DA as an unbounded operator on
X p with domain Wp

per for the chosen value of p ∈ (1,∞). As we shall see in Section
5, this value may be left unspecified since σ(DA) turns out to be independent of p.

4. Fredholmness. By Corollary 1, DA has index 0 if σ(DA) 6= C. Regardless of
any spectral condition, we now prove that DA is Fredholm and not merely semi-
Fredholm without any additional assumption.

Theorem 3. Suppose that (H1) to (H3) hold. Then, the operator DA := d
dt
−A(·) :

Wp
per → X p (see (3.2)) is Fredholm for every p ∈ (1,∞).

Proof. Call j : W →֒ X the embedding, so that j∗ : X∗ → W ∗ is the mapping
j∗(x∗) = (x∗)|W . By Lemma 5, j∗ is one to one and thus a continuous embedding of
X∗ in W ∗. More specifically, this means that X∗ can be identified with the subset
of W ∗ of those forms that are continuous for the topology of X. Also, j∗ is compact
since j is compact by (H1) and W ∗ is a Banach space with UMD since this is true
of W (Lemma 1 (iv)).

From (H2), A∗ ∈ C0([0, 2π],L(X∗,W ∗)) and A∗(0) = A∗(2π). In addition,
given λ ∈ C, then A∗(t) − λj∗ is invertible if and only if A(t) − λj is invertible,
which shows that R(λ,A∗(t)) = R(λ,A(t))∗. Now, by (H3) and Lemma 2, the set
{R(ik, A(t)), |k| ≥ κ(t)} is r-bounded in L(X,W ) for every t ∈ [0, 2π]. Since X is
a Banach space with UMD, it follows from [25, Lemma 2.3 and Remark 3.1] that
{R(ik, A(t))∗, |k| ≥ κ(t)} = {R(ik, A∗(t)), |k| ≥ κ(t)} is r-bounded in L(W ∗, X∗).
In turn, by another application of Lemma 2 with X and W replaced by W ∗ and
X∗, respectively, it follows that {kR(ik, A∗(t)), |k| ≥ κ(t)} is r-bounded in L(W ∗).

In summary, W ∗ is a Banach space with UMD and the hypotheses (H1) to
(H3) hold with X and W replaced by W ∗ and X∗, respectively and A(t) replaced
by A∗(t), and hence also when replaced by −A∗(t) (Remark 1). As a result, by

Theorem 2, the operator D−A∗ : X p′

∗per → Wp′

∗ has finite dimensional null-space for
every p ∈ (1,∞), where p′ := p

p−1 and (compare with (3.2))

X p′

∗per := W 1,p′

per (0, 2π;W ∗) ∩ Lp
′

(0, 2π;X∗) and Wp′

∗ := Lp
′

(0, 2π;W ∗). (4.1)

Since we already know by Theorem 2 that DA has closed range, the Fredholmness
of DA is equivalent to the finite dimensionality of ker(DA)∗. However, a direct
approach is faced with the difficulty of characterizing (DA)∗ (there is no simple
description of the dual of Wp

per).
Instead, we shall rely on the finite dimensionality of kerD−A∗ just proved above

and show that (rgeDA)⊥ ⊂ kerD−A∗ , so that rgeDA has finite codimension in

Lp(0, 2π;X). Note that (rgeDA)⊥ ⊂ (Lp(0, 2π;X))∗ = Lp
′

(0, 2π;X∗), the latter by

the reflexivity of X (see Edwards [12]), whereas kerD−A∗ ⊂ X p′

∗per  Lp
′

(0, 2π;X∗).
Thus, the claim that (rgeDA)⊥ ⊂ kerD−A∗ is in fact an abstract regularity result
for the members of (rgeDA)⊥.

The precise meaning of the relation (Lp(0, 2π;X))∗ = Lp
′

(0, 2π;X∗) is that every
continuous linear form on Lp(0, 2π;X) is given by

f ∈ Lp(0, 2π;X) 7→

∫ 2π

0

〈f(t), v∗(t)〉X,X∗dt,
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for some v∗ ∈ Lp
′

(0, 2π;X∗). If now v∗ ∈ (rgeDA)⊥, then
∫ 2π

0

〈u̇(t) −A(t)u(t), v∗(t)〉X,X∗ dt = 0, (4.2)

for every u ∈ Wp
per . In particular, given any x ∈ W and any ϕ ∈ C∞

0 (0, 2π), we
may choose u = ϕ⊗ x in (4.2), so that

∫ 2π

0

〈ϕ̇(t)x−A(t)ϕ(t)x, v∗(t)〉X,X∗dt = 0.

This may be rewritten as
∫ 2π

0

〈x, ϕ̇(t)v∗(t)〉X,X∗dt−

∫ 2π

0

〈x, ϕ(t)A∗(t)v∗(t)〉W,W∗dt = 0

and, since the Bochner integral commutes with duality pairings, also as
〈
x,

∫ 2π

0

ϕ̇(t)v∗(t)dt

〉

X,X∗

−

〈
x,

∫ 2π

0

〈x, ϕ(t)A∗(t)v∗(t)dt

〉

W,W∗

= 0. (4.3)

Now, observe that if x∗ ∈ X∗ and x ∈ W, then 〈x, x∗〉X,X∗ = 〈x, x∗〉W,W∗ since
x∗ ∈ X∗ is simply identified with its restriction to W when it is viewed as a member
of W ∗. Thus, (4.3) also reads

〈
x,

∫ 2π

0

ϕ̇(t)v∗(t)dt

〉

W,W∗

−

〈
x,

∫ 2π

0

ϕ(t)A∗(t)v∗(t)dt

〉

W,W∗

= 0.

Since x ∈W is arbitrary, it follows that
∫ 2π

0
ϕ̇(t)v∗(t)dt−

∫ 2π

0
ϕ(t)A∗(t)v∗(t)dt = 0

in W ∗. In turn, because ϕ ∈ C∞
0 is also arbitrary, this means that

v̇∗ +A∗v∗ = 0, (4.4)

as a distribution with values in W ∗. Since A∗ ∈ C0([0, 2π],L(X∗,W ∗)) and v∗ ∈

Lp
′

(0, 2π;X∗) ⊂ Lp
′

(0, 2π;W ∗), it follows that v̇∗ = −A∗v∗ ∈ Lp
′

(0, 2π;W ∗) and

hence that v∗ ∈W 1,p′(0, 2π;W ∗) ∩ Lp
′

(0, 2π;X∗).
To complete the proof it suffices to show that v∗(2π) = v∗(0) (well defined in

W ∗ since v∗ ∈ W 1,p′(0, 2π;W ∗)), for then v∗ ∈ X p′

∗per (see (4.1)) while D−A∗v∗ = 0
by (4.4). To see this, let x ∈ W be given. The constant function u = 1 ⊗ x is in

Wp
per and so, by (4.2),

∫ 2π

0
〈A(t)x, v∗(t)〉X,X∗dt = 0, that is,
∫ 2π

0

〈x,A∗(t)v∗(t)〉W,W∗dt = 0.

By (4.4), this amounts to
∫ 2π

0 〈x, v̇∗(t)〉W,W∗dt = 0, i. e.,
∫ 2π

0
d
dt

(〈x, v∗〉W,W∗)(t)dt =

0. Since 〈x, v∗〉W,W∗ ∈W 1,p′(0, 2π), we infer that 〈x, v∗(2π)〉W,W∗ = 〈x, v∗(0)〉W,W∗

and hence that v∗(2π) = v∗(0) since x ∈W is arbitrary.

Although the relation (rgeDA)⊥ ⊂ kerD−A∗ suffices in the above proof, it is
easily seen (by reversing the arguments and by the denseness of (C∞

0 (0, 2π)⊕C)⊗W
in Wp

per) that the stronger relation (rgeDA)⊥ = kerD−A∗ holds. As a result, we
obtain

indexDA = dimkerDA − dimkerD−A∗ , (4.5)

under the assumptions of Theorem 3. Note that even though this formula is es-

tablished by viewing DA and D−A∗ acting from Wp to X p and from X p′

∗ to Wp′

∗ ,
respectively, it follows from Theorem 5 in the next section (invariance of the null-
space) that it remains true when DA and D−A∗ act from Wp to X p and from X q

∗ to
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Wq
∗ , respectively, for any choice of p, q ∈ (1,∞) (in particular, when p = q). This

is useful in some arguments.
In its general form, Corollary 2 below does not follow from the well known

property that compact perturbations of Fredholm operators do not affect the index.

Corollary 2. Suppose that (H1) to (H3) hold. If K ∈ C0
per([0, 2π],K(W,X)),

then, DA+K is Fredholm from Wp
per to X p for every p ∈ (1,∞) and indexDA+K =

indexDA.

Proof. For s ∈ [0, 1], set As(t) := A(t) + sK(t), so that A0 = A and A1 = A +K.
For every s ∈ [0, 1], As satisfies (H1) to (H3) (for the latter, see Lemma 3). Thus,
DAs

is Fredholm for every s ∈ [0, 1] by Theorem 3 and indexDA1
= indexDA0

by
the local constancy of the index (Kato [18], Lindenstrauss and Tzafriri [20]).

In Corollary 2, the compactness of K(t) does not suffice to ascertain that DA+K

is a compact perturbation of DA. However, this is true provided that
K ∈ C0([0, 2π],L(Z,X)), where Z is a Banach space such that W ⊂ Z ⊂ X and the
embedding W →֒ Z is compact, for then the embedding Wp

per →֒ Zp := Lp(0, 2π;Z)
is compact by [31] and the multiplication by K is continuous from Zp to X p. In this
case, Corollary 2 remains true even if K(2π) 6= K(0), so that A+K is not periodic
(note that the condition A(0) = A(2π) is not needed for DA to map Wp

per into X p).
The question whether the index of DA is always 0 in Theorem 3 is open (except

in the finite dimensional case). On the other hand, it can be shown that the index
is 0 under various extra conditions. A few are discussed in the remainder of this
section, that are derived from the “basic” case is when A(t) is t-independent:

Theorem 4. Suppose that, in Theorem 3, A(t) = A is t -independent (so that
(H2) is vacuous). Then DA : Wp

per → X p has index 0 and compact resolvent for
every p ∈ (1,∞). Furthermore:
(i) kerDA = ⊕{k∈Z:ik∈σ(A)}ek ⊗ ker(A− ikI), where ek denotes the function eikt.

(ii) rgeDA = {f ∈ X p : f̂(k) := 1
2π

∫ 2π

0
f(t)e−iktdt ∈ rge(A− ikI), ∀k ∈ Z}.

Proof. By Lemma 1 (iii), σ(A) is discrete, so that there is λ ∈ R such that σ(A −
λI) ∩ iZ = ∅. Furthermore, since λI is compact when viewed as an operator from
W to X by (H1), it follows from (H3) and Lemma 3 that there is κ ∈ N such that
the family {kR(ik, A− λI) : k ∈ Z, |k| ≥ κ} is r-bounded. Since {kR(ik, A− λI) :
k ∈ Z, |k| < κn} is finite (and well defined), hence r-bounded, it follows that
{kR(ik, A− λI) : k ∈ Z} is r-bounded. By Theorem 1, the operator DA−λI is an
isomorphism of Wp

per to X p for every p ∈ (1,∞). But DA−λI = DA + λI, which
shows that −λ ∈ ρ(DA). Thus, by Corollary 1, DA has compact resolvent and index
0.

We now prove the characterizations of kerDA and rgeDA given in (i) and (ii) of
the theorem.

(i) It is readily checked that if u :=
∑

{k∈Z,ik∈σ(A)} ek ⊗ xk with xk ∈ ker(A −

ikI) ⊂ W, then u ∈ Wp
per and DAu = 0. Conversely, if u ∈ kerDA, then (A −

ik)û(k) = 0 for every k ∈ Z, where û(k) := 1
2π

∫ 2π

0 u(t)e−iktdt ∈ W (see [3, Lemma
2.1]). Thus, û(k) = 0 if ik ∈ ρ(A), i.e., for all but finitely many indices k by
(H3), and then Fejér’s theorem (see [2] for the vector-valued case) shows that u =∑

{k∈Z,ik∈σ(A)} ek ⊗ û(k) (finite sum). This proves the claim.

(ii) If f ∈ rgeDA, so that DAu = f for some u ∈ Wp, then (A− ikI)û(k) = f̂(k)

for every k ∈ Z, whence f̂(k) ∈ rge(A − ikI) for every k ∈ Z. This is a restriction
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only if ik ∈ σ(A). For every such k, and since A − ikI is Fredholm of index 0, we
have codim rge(A − ikI) = dim ker(A − ikI) := dk. Choose a complement Zk of
rge(A− ikI) in X (so that dimZk = dk) and call Pk ∈ L(X) the projection onto Zk
associated with the direct sum X = rge(A − ikI) ⊕ Zk. Next, define P̂k : X p → X
by

P̂k(f) := Pkf̂(k).

Since f ∈ X p 7→ f̂(k) ∈ X is onto, it follows that rankP̂k = rankPk = dk.

Equivalently, codimker P̂k = dk. With this notation, the necessary condition f̂(k) ∈
rge(A− ikI) whenever ik ∈ σ(A) for f to be in rgeDA reads

rgeDA ⊂ ∩ik∈σ(A) ker P̂k. (4.6)

From part (i) and since DA has index 0, it follows that d := codimrgeDA =∑
ik∈σ(A) dk. On the other hand, if

(
∩ik∈σ(A) ker P̂k

)
∩ Z = {0} for some d-

dimensional subspace Z of X p, then codim ∩ik∈σ(A) ker P̂kf ≥ d . If so, equality

must hold in (4.6), whence rgeDA = {f ∈ X p : f̂(k) ∈ rge(A− ikI), ∀k ∈ Z}.
Now, the space Z :=

⊕
ik∈σ(A) ek⊗Zk has dimension d. If f =

∑
ik∈σ(A) ek⊗zk ∈

Z (zk ∈ Zk), then P̂jf = zj , so that f ∈ ∩ik∈σ(A) ker P̂kf only if zk = 0 for every
ik ∈ σ(A), and then f = 0. This completes the proof.

Remark 4. By replacing A by A+ λI in Theorem 4, it follows that λ ∈ σ(DA) if
and only if λ+ ik ∈ σ(A) for some k ∈ Z. Equivalently, σ(DA) = σ(A) + iZ.

Corollary 3. Suppose that, in Theorem 3, A(t) − A(0) ∈ K(W,X). Then DA :
Wp
per → X p has index 0 for every p ∈ (1,∞).

Proof. Use Theorem 4 and Corollary 2.

From the comments after Corollary 2, if A−A(0) ∈ C0([0, 2π],L(Z,X)) where Z
is a Banach space such that W ⊂ Z ⊂ X and the embedding W →֒ Z is compact,
then Corollary 3 remains true when A(0) 6= A(2π). We complete this section with
the remark that a very different property (symmetry) also implies that the index is
0.

Corollary 4. Suppose that, in Theorem 3, A(2π − t) = A(t) for t ∈ [0, 2π]. Then
DA : Wp

per → X p has index 0 for every p ∈ (1,∞).

Proof. For s ∈ [0, π], set

As(t) :=

{
A(t) if t ∈ [0, s] ∪ [2π − s, 2π],

A(s) if t ∈ (s, 2π − s).

It is obvious that As satisfies (H1) to (H3), so that DAs
: Wp

per → X p is semi-
Fredholm for every p ∈ (1,∞) and every s ∈ [0, π] by Theorem 2. Also, DAs

∈
L(Wp

per ,X
p) depends continuously upon s, so that indexDAπ

= indexDA0
. But

Aπ = A and A0 = A(0). Thus, indexDA = 0 by Theorem 4 for A(0).

More generally, by combining Corollaries 3 and 4, DA has index 0 if A(2π− t)−
A(t) is compact for every t ∈ [0, 2π].
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5. The p-independence of the index and spectrum. In Corollary 1, we proved
that (H1) to (H3) imply that DA is a closed operator on X p with domain Wp

per for
every p ∈ (1,∞). In this section, we show that indexDA and σ(DA) as well as the
multiplicity of the isolated eigenvalues of DA are independent of p. The proof relies
on the following “consistency” property.

Lemma 12. Suppose that (H1) to (H3) hold. If p, q ∈ (1,∞) and f ∈ X p ∩ X q,
every u ∈ Wp

per such that DAu = f is in Wp
per ∩Wq

per.

Proof. Since the result is obvious if p ≥ q, we assume p < q. By an argument similar
to the one used in the proof of Lemma 11 (extension of A, u and f by periodicity),
and by noticing that Wp

per ⊂ X p ∩X q, it suffices to prove the result when Suppu is
contained in a compact subinterval Q of (0, 2π).

Let t0 ∈ Q be given. Since σ(A(t0)) 6= C by (H3), choose λ0 ∈ C such that
A(t0)− λ0I ∈ GL(W,X), so that DA(t0)−λ0I is an isomorphism of Wp

per to X p and
of Wq

per to X q by Theorem 1. For ε > 0, define Aε(t) by

Aε(t) :=





A(t0 − ε) if t ∈ [0, t0 − ε),
A(t) if t ∈ [t0 − ε, t0 + ε],
A(t0 + ε) if t ∈ (t0 − ε, 2π].

Clearly, Aε ∈ C0([0, 2π],L(W,X)) and limε→0 supt∈[0,2π] ||Aε(t)−A(t0)||L(W,X) = 0.

As a result, DAε−λ0I → DA(t0)−λ0I in L(Wp
per ,X

p) and in L(Wq
per ,X

q), so that
DAε−λ0I is an isomorphism of Wp

per to X p and of Wq
per to X q if ε > 0 is small

enough. (Aε(0) need not equal Aε(2π), but this is irrelevant since DAε−λ0I still
maps Wp

per into X p.)
Now, let ψ ∈ C∞

0 be such that Suppψ ⊂ (t0−ε, t0 +ε). Since DAu = f, it follows
that DA−λ0Iu = f + λ0u and so

DA−λ0I(ψu) = ψf + λ0ψu− ψ̇u.

Observe that DA−λ0I(ψu) = DAε−λ0I(ψu) since Suppψ ⊂ (t0 − ε, t0 + ε) and since
Aε(t) coincides with A(t) for t ∈ [t0 − ε, t0 + ε]. Therefore,

DAε−λ0I(ψu) = ψf + λ0ψu− ψ̇u.

Above, the right-hand side is in X p ∩ X q since f ∈ X p ∩ X q by hypothesis and
since u ∈ Wp

per ⊂ X p ∩ X q. From the above, ψu is the unique solution v ∈ Wp
per

of the equation DAε−λ0Iv = ψf + λ0ψu − ψ̇u. But this equation also has a unique
solution in Wq

per. Since Wq
per ⊂ Wp

per (because p < q), its solutions in Wp
per and

Wq
per coincide. This shows that ψu ∈ Wp

per ∩Wq
per .

That u (with Suppu ⊂ Q ⊂ (0, 2π)) is in Wp
per ∩Wq

per follows easily by covering
Q by finitely many intervals (t0 − ε, t0 + ε) as above and using a partition of unity
on Q (as in the proof of Lemma 10).

Theorem 5. Suppose that (H1) to (H3) hold and, for p ∈ (1,∞), view DA as a
closed unbounded operator on X p with domain Wp

per (Corollary 1). Then, kerDA,
indexDA (see Theorem 3) and σ(DA) are independent of p ∈ (1,∞). Moreover,
if σ(DA) 6= C, every λ ∈ σ(DA) is an isolated eigenvalue whose multiplicity is
independent of p ∈ (1,∞).

Proof. First, it follows at once from Lemma 12 that kerDA is independent of p.
Thus, the injectivity of DA is independent of p. Below, we show that, given p, q ∈
(1,∞) and k ∈ N ∪ {0}, the condition codimrgeDA ≥ k when DA : Wp

per →
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X p implies codim rgeDA ≥ k when DA : Wq
per → X q, so that codimrgeDA is

independent of p. In particular, whether DA is onto X p is independent of p. Thus,
the index of DA and its invertibility are independent of p. Upon replacing A by
A− λI in the last statement, it follows that σ(DA) is independent of p.

Suppose then that codimrgeDA ≥ k when DA : Wp
per → X p. There is a k

-dimensional subspace Zk of X p such that Zk ∩DA(Wp
per) = {0}. Since Zk is finite-

dimensional and DA(Wp
per) ⊂ X p is closed, the condition Zk ∩DA(Wp

per) = {0} is
unaffected by small enough perturbations of Zk. In particular, by the denseness of
C∞

0 (0, 2π)⊗X in X p, it is not restrictive to assume Zk ⊂ C∞
0 (0, 2π)⊗X (if k > 0,

just approximate a basis of Zk by members of C∞
0 (0, 2π)⊗X). If so, Zk ⊂ X p∩X q

and if g ∈ Zk and DAu = g for some u ∈ Wq
per, then u ∈ Wp

per by Lemma 12. It
follows that g ∈ Zk ∩ DA(Wp

per) = {0}, i.e., g = 0. Thus, Zk ∩ DA(Wq
per) = {0},

so that codimrgeDA ≥ k when DA : Wq
per → X q. This completes the proof that

indexDA and σ(DA) are independent of p.
If σ(DA) 6= C, every λ ∈ σ(DA) is an isolated eigenvalue of finite multiplicity

(Corollary 1). Given p ∈ (1,∞), the multiplicity mp of λ when DA : Wp
per → X pis

the (finite) dimension of the space Pp(X p), where

Pp := −
1

2πi

∫

Γ

Rp(ζ,DA)dζ,

Rp(ζ,DA) := (DA−ζI)
−1 ∈ L(X p) and Γ is a small circle around λ lying entirely in

ρ(DA) (independent of p from the above). By the denseness of X p ∩X q in X p and
the finite dimensionality of P (X p), it follows that mp = dimPp(X p∩X q). Likewise,
mq = dimPq(X p ∩ X q). But, by Lemma 12, Rp(ζ,DA) and Rq(ζ,DA) coincide in
X p ∩ X q, so that Pp(X p ∩ X q) = Pq(X p ∩ X q) and hence mp = mq.

In the above proof, the result that kerDA is independent of p is also true when
A is replaced by A − λI with λ ∈ C. Therefore, all the eigenspaces of DA are
p-independent (irrespective of σ(DA) being the whole plane or not).

Remark 5. It is readily checked that σ(DA) is invariant by iZ translations, i.e.,
σ(DA) = σ(DA) + iZ. This is obvious if σ(DA) = C. Otherwise, every λ ∈ σ(DA)
is an eigenvalue of DA. If u is a corresponding eigenfunction and k ∈ Z, then λ+ ik
is an eigenvalue associated with the eigenfunction v := eiktu.

The next corollary is especially relevant when ±A(t) is a differential operator.
Recall that a closed operator A0 on X with domain W is said to be sectorial if both
W and A0(W ) are dense in X and if (−∞, 0) ⊂ ρ(A0) with {ζR(−ζ, A0) : ζ > 0}
bounded in L(X). If the set {ζR(−ζ, A0) : ζ > 0} is not only bounded but also
r-bounded in L(X), then A0 is said to be r-sectorial.

If A0 is an r-sectorial operator, then for θ > 0 small enough, the set {ζR(−ζ, A0) :
| arg ζ| ≤ θ} is r-bounded in L(X) (see for instance [11, p. 43]). The r-angle φrA0

of
A0 is the infimum of those θ ∈ (0, π) such that the set {ζR(−ζ, A0) : | arg ζ| ≤ π−θ}
is r-bounded. The value of Corollary 5 below when ±A(t) is an elliptic operator -
possibly a system- associated with suitable homogeneous boundary conditions3 on a
domain with compact boundary, is that there are known sufficient conditions about
the coefficients ensuring that A(t) + µtI is r-sectorial with r-angle φr

A(t)+µtI
< π

2

3 In practice, the boundary conditions are incorporated to the definition of W, so that these
boundary conditions must be t-independent; this is one of the limitations induced by the hypothesis
that the domain W of A(t) is t-independent.
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for some µt ≥ 0 ([11, Theorem 8.2, p. 102]). As the proof of Corollary 5 will show,
this condition is stronger than (H3).

Corollary 5. Suppose that (H1) and (H2) hold and that, for every t ∈ [0, 2π], there
is µt ≥ 0 such that A(t)+µtI is r-sectorial with r-angle φr

A(t)+µtI
< π

2 . Then, D±A :

Wp
per → X p is Fredholm for every p ∈ (1,∞) and its index is independent of p.

Note: We shall prove later (Corollary 10) that, among other things, indexD±A = 0.

Proof. Upon increasing µt by any amount, it is not restrictive to assume that A(t)+
µtI is invertible. This does not affect r-sectoriality and does not increase the r-
angle (see for instance Proposition 4.3 in [11] with B = 0 and α = β = 0 in that
proposition). Then, since φrA(t)+µtI

< π
2 , it follows that {ξR(−iξ, A(t) + µtI) :

ξ ∈ R} is r-bounded in L(X). Since this set is invariant upon changing ξ into −ξ,
this amounts to saying that {ξR(iξ, A(t) + µtI) : ξ ∈ R} is r-bounded in L(X). In
particular, {kR(ik, A(t)+µtI) : k ∈ Z} is r-bounded in L(X). By (H1) and Lemma
3, it follows that there is κ(t) ∈ N such that {kR(ik, A(t)) : k ∈ Z, |k| ≥ κ(t)} is
r-bounded, so that (H3) holds. Thus, the conclusion for DA follows from Theorem
3.

Next, observe that the hypotheses of the corollary are unchanged by changing
A(t) into B(t) := A(2π − t). Thus, DB : Wp

per → X p is Fredholm from the above.
Now, the change of variable t = 2π−s changes DB into −D−A, so that −D−A, and
hence also D−A, is Fredholm from Wp

per to X p (with p-independent index).

6. Higher order spaces I. This section is motivated by the applications of the
Fredholm theory for DA to nonlinear problems, notably in PDEs. Typically, such
applications involve a nonlinear mapping F : Wp → X p. Since Wp and X p are
spaces of functions on (0, 2π) with values in W and X, respectively, many such
mappings arise from some F : [0, 2π]×W → X via substitution, that is, defined by
F(u)(t) := F (t, u(t)) where u ∈ Wp. (Incidentally, the part −A(t)u in DA is also of
this form.) Of course, the properties of F must ensure that F(u) ∈ X p whenever
u ∈ Wp.

Now, it is intuitively clear and widely corroborated by numerous examples, that
there are many more nonlinear mappings (and with better properties) defined on a
Banach algebra rather than just on a Banach space. Since Wp ⊂ W 1,p(0, 2π;X) ∩
Lp(0, 2π;W ), the only obvious way for Wp to embed in a Banach algebra4 is when
either W 1,p(0, 2π;X) or Lp(0, 2π;W ) is contained in such an algebra. The case
W = C already shows that this is hopeless for the latter space, so that the only
option is that W 1,p(0, 2π;X) is contained in a Banach algebra. This will indeed
happen when X is contained in a Banach algebra. However, keeping in mind that
X must also be UMD, hence reflexive, the most useful case in PDE applications is
when X is a (closed subspace of a) Lebesgue space Lq(Ω) where Ω is an open subset
of RN . Unfortunately, Lq(Ω) is a Banach algebra only when q = ∞, a case ruled
out in virtually all PDE applications.

On the other hand, it is typical that W is a closed subspace of some Sobolev
space Wm,q(Ω) with m ≥ 1, which is a Banach algebra when mq > N. If so,
W 1,p(0, 2π;W ) →֒ W 1,p(0, 2π;Wm,q(Ω)) and the latter space is then a Banach
algebra for all p ≥ 1. This provides a motivation to look into the Fredholm properties

4 There may be nonobvious ways, depending upon X and W. For example, if X = Lp(0, 1) and
W = W 2,p(0, 1), then Wp ⊂ W 1,p((0, 2π) × (0, 1)), which is a Banach algebra when p > 2.
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of DA now acting from the space

W1,p
per := W 2,p

per(0, 2π;X) ∩W 1,p
per(0, 2π;W ), (6.1)

where

W 2,p
per(0, 2π;X) := {u ∈ W 2,p(0, 2π;X) : u(0) = u(2π), u̇(0) = u̇(2π)}, (6.2)

into the space

X 1,p
per := W 1,p

per(0, 2π;X). (6.3)

It will be useful to notice that an equivalent definition of W1,p
per is

W1,p
per := {u ∈ Wp

per : u̇ ∈ Wp
per}. (6.4)

As we shall see in this section and the next one, the Fredholm and spectral
properties of DA in the above setting can be obtained by using a combination of
the previous results or arguments together with “regularity” properties that we shall
establish along the way. The first one is a variant of Theorem 1 (t-independent case)
in this new functional framework.

Theorem 6. Let A be a closed unbounded operator on5 X with domain W equipped
with the graph norm. If σ(A)∩ iZ = ∅ and the set {kR(ik, A) : k ∈ Z} is r-bounded
in L(X), then, given p ∈ (1,∞), the operator DA := d

dt
− A is an isomorphism of

W1,p
per onto X 1,p

per .

Proof. Clearly, DA is one to one on W1,p
per since it is already one to one on Wp

per by

Theorem 1. To prove the surjectivity ofDA, let f ∈ X 1,p
per be given. Since f ∈ X p and

ḟ ∈ X p, it follows from Theorem 1 that there are u, v ∈ Wp
per such thatDAu = f and

DAv = ḟ . Thus, by (6.4), it suffices to show that v = u̇. This is obvious if f is an X-

valued trigonometric polynomial, for then f =
∑n

k=−n ek⊗f̂(k) for some n ∈ N∪{0}

(where, as before, ek is the function eikt ) and u = −
∑n
k=−n ek ⊗ R(ik, A)f̂(k), so

that u̇ ∈ Wp
per and DAu̇ = ü−Au̇ = ḟ .

In general, that v = u̇ follows from the above and the denseness of the X-valued
trigonometric polynomials in X 1,p

per (see below). Indeed, if (fn) is a sequence of such

polynomials such that fn → f in X 1,p
per and if un := (DA)−1fn, then un → u in Wp

per

and u̇n = (DA)−1ḟn → v in Wp
per. Since also u̇n tends to u̇ as a distribution with

values in X, it follows that u̇ = v.
The proof of the denseness claim is the same as in the familiar scalar case: Given

m,n ∈ N ∪ {0}, set

gm :=
m∑

k=−m

ek ⊗ f̂(k), g̃m :=
m∑

k=−m

ek ⊗ (ikf̂(k))

and

fn :=
1

n+ 1

n∑

m=0

gm, f̃n :=
1

n+ 1

n∑

m=0

g̃m.

By Fejér’s theorem, fn → f in X p and f̃n → ḟ in X p (the latter since the Fourier

coefficients of ḟ are (ikf̂(k)) by the periodicity of f). On the other hand, it is

obvious that g̃m = ġm, so that f̃n = ḟn. Therefore, fn → f in X 1,p
per .

5 Recall that in this paper, X has the UMD property.
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In what follows, we shall use the notation

A ∈ C1
per([0, 2π],L(W,X)) (6.5)

when A, Ȧ ∈ C0
per([0, 2π],L(W,X)). Thus, (6.5) is a strengthening of (H2). This

will be used repeatedly without further mention.
By using Theorem 6 instead of Theorem 1, we obtain the following variant of

Theorem 2:

Theorem 7. Suppose that (H1) and (H3) hold and that A ∈ C1
per([0, 2π],L(W,X)).

Then, for every p ∈ (1,∞), the operator DA := d
dt

−A(·) : W1,p
per → X 1,p

per (see (6.1)
and (6.3)) is well defined and has closed range and finite dimensional null-space.

Proof. If u ∈ W1,p
per ⊂ Wp

per , then DAu ∈ X p and d
dt

(DAu) = ü−Ȧu−Au̇ ∈ X p since

ü ∈ X p, Au̇ ∈ X p and Ȧu ∈ X p (from the assumption that A is C1). Thus, DAu ∈
W 1,p(0, 2π;X). Furthermore, DAu(0) = u̇(0) − A(0)u(0) = u̇(2π) − A(2π)u(2π),
whence DAu ∈ X 1,p

per (see (6.3)). This shows that DA maps W1,p
per into X 1,p

per .
The remainder of the proof follows the proof of Theorem 2: Lemma 7 remains true

with Wp
per and X p replaced by W1,p

per and X 1,p
per , respectively, upon using Theorem 6

instead of Theorem 1 and the proof of Lemma 8 can be repeated verbatim.
The generalization of Lemma 9 with the new spaces W1,p

per and X 1,p
per is slightly

more delicate and requires the condition sup
s,t∈Suppψ ||A(s) −A(t)||L(W,X) ≤ ε in

(3.5) to be replaced by the stronger requirement

sup
s,t∈Suppψ

||A(s) −A(t)||L(W,X) + sup
s,t∈Suppψ

||Ȧ(s) − Ȧ(t)||L(W,X) ≤ ε.

However, by the uniform continuity of A and Ȧ on [0, 2π], this is not an obstacle
to reproducing the proof of Lemma 10 with obvious modifications and Lemma 11
remains valid because of the assumptions made about A (in particular, Ȧ(0) =

Ȧ(2π) ensures that the periodic extension of A is C1). Then, the argument used
in proof of Theorem 2 yields the desired result. Observe that the repetition of this
argument makes use of the compactness of the embedding

W1,p
per →֒ X 1,p

per , (6.6)

which follows at once from (6.4) and the compactness of the embedding Wp
per →֒

X p.

It is readily checked that Corollary 1 is still true in the W1,p
per - X 1,p

per setting,

provided that A ∈ C1
per([0, 2π],L(W,X)).

Because the proof of Theorem 3 relies heavily on the fact that the dual of
Lp(0, 2π;X) is Lp

′

(0, 2π;X∗), it cannot be repeated when Wp
per and X p are replaced

by W1,p
per and X 1,p

per , respectively. This is a serious difficulty. To prove the validity of

Theorem 3 in this setting, we shall show in the next section that DA : W1,p
per → X 1,p

per

has the same index as DA : Wp
per → X p (Theorem 8 ), so that the Fredholm prop-

erty follows from Theorem 3 itself. In fact, the material developed to prove this
property will yield much more than the W1,p

per - X 1,p
per variant of Theorem 3: It will

also enable us to show that the spectrum of DA : W1,p
per → X 1,p

per coincides with
the spectrum of DA : Wp

per → X p
per and, under suitable additional conditions, that

kerDA is the same in both functional settings (Lemma 15 and Corollary 8).
After the Fredholm property has been established in the W1,p

per-X
1,p
per setting, a

routine check reveals that Corollary 2 remains true in that setting if it is also
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assumed that A ∈ C1
per([0, 2π],L(W,X)) and K ∈ C1

per([0, 2π],K(W,X)). (In fact,

the multiplication by K ∈ C0
per([0, 2π],L(W,Z))∩ C1([0, 2π],L(W,Z)) is compact

from W1,p
per to X 1,p

per if Z ⊂ X is a Banach space such that the embedding Z →֒ X is

compact. Thus, the condition K̇(0) = K̇(2π) is not needed in this case.). Likewise,
Theorem 4 (constant A) as well as Corollaries 3 and 4 are still valid, provided that
A ∈ C1

per([0, 2π],L(W,X)) in the latter two.
Lemma 12 remains true as well, but the (simple) proof must be given. This is

done below.

Lemma 13. Suppose that (H1) and (H3) hold and that A ∈ C1
per([0, 2π],L(W,X)).

If p, q ∈ (1,∞) and f ∈ X 1,p
per ∩ X 1,q

per , then every u ∈ W1,p
per such that DAu = f is in

W1,p
per ∩W1,q

per .

Proof. Since the result is trivial if p ≥ q, it suffices to consider the case p < q. By
Lemma 12, we already have that u ∈ Wq

per . Thus, by (6.4), it remains to show that
u̇ ∈ Wq

per.

By differentiation of the relation DAu := u̇ − Au = f, we get ü − Au̇ = ḟ + Ȧu
as distributions. Since ḟ ∈ X q and u ∈ Wq

per, the right-hand side is in X p ∩ X q, so
that u̇ ∈ Wq

per by another application of Lemma 12.

By using Lemma 13 instead of Lemma 12 in the proof of Theorem 5, it follows
that the null-space, index and spectrum of DA : W1,p

per → X 1,p
per are independent of

p ∈ (1,∞) if (H1) to (H3) hold and A ∈ C1
per([0, 2π],L(W,X)).

7. Higher order spaces II. We begin with another regularity property (see also
Corollary 7.5 later). The question is simple: If u ∈ Wp

per and DAu = f ∈ X 1,p
per , is it

true that u ∈ W1,p
per ? Unlike in the ODE case, this does not follow by differentiating

DAu = f, because the term Au̇ makes no sense if u is only in Wp
per and so the

product rule cannot be used with Au. The answer to this question is more involved
than one might perhaps expect. In a first step, we resolve the issue under an extra
condition about A.

Lemma 14. Suppose that (H1) and (H3) hold and that A ∈ C1
per([0, 2π],L(W,X))∩

W 2,∞(0, 2π;L(W,X)). Given p ∈ (1,∞), let f ∈ X 1,p
per and u ∈ Wp

per be such that

DAu = f. Then, u ∈ W1,p
per .

Proof. It follows easily from (H3) and the continuity of A that if k ∈ Z and |k| is
large enough, then A(t) − ikI is invertible for every t ∈ [0, 2π]. Since DAu = f,
we have DA−ikIu = DAu + iku = f + iku ∈ X 1,p

per since Wp
per ⊂ X 1,p

per . Thus,
upon replacing A by A − ikI, we may and shall assume that A(t) is invertible for
every t ∈ [0, 2π]. By setting B := A−1 for simplicity of notation and observing
that B ∈ C1

per([0, 2π],L(X,W )) ∩W 2,∞(0, 2π;L(X,W )), this makes it possible to

rewrite DAu = f in the form6

u = B(u̇− f) =
d

dt
(Bu) + Ḃu−Bf. (7.1)

Let ω ∈ C∞
0 be such that ω ≥ 0, Suppω ⊂ (−1, 1) and

∫
R
ω = 1. For ε > 0, set

ωε(t) := ε−1ω(ε−1t). By extending (7.1) to all of R by periodicity and convolving
with ωε, we infer that

ωε ∗ u = ω̇ε ∗ (Bu) + ωε ∗ (Ḃu−Bf). (7.2)

6 Note that in contrast with Au, the product rule is valid with Bu.
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In the right-hand side, Bu ∈ W 1,p(0, 2π;W ) and Ḃu − Bf ∈ W 1,p(0, 2π;W )

since u, f ∈ W 1,p(0, 2π;X) and Ḃ ∈ W 1,∞(0, 2π;L(X,W )). As a result, ωε ∗ u ∈
W 2,p(0, 2π;W ) and, in fact, ωε ∗ u ∈ W 2,p

per(0, 2π;W ) since convolution does not

affect periodicity. In particular, ωε ∗ u ∈ W1,p
per.

To complete the proof, it suffices to show that DA(ωε ∗ u) is bounded in X 1,p
per as

ε → 0. Indeed, ωε ∗ u → u in W 1,p(0, 2π;X), hence in X 1,p
per , so that it is bounded

in X 1,p
per . Therefore, by the analog of Lemma 11 in the W1,p

per - X 1,p
per setting (whose

validity under the assumptions of the lemma was noticed in the proof of The-
orem 7), the boundedness of both ωε ∗ u and DA(ωε ∗ u) in X 1,p

per implies that

ωε ∗ u is bounded in W1,p
per , that is, in W 2,p

per(0, 2π;X) and in W 1,p
per(0, 2π;W ). By

the reflexivity of these spaces7, there is a sequence εn → 0 such that ωεn
∗ u

is weakly convergent in W 2,p
per(0, 2π;X) and in W 1,p

per(0, 2π;W ). The continuity of

the embeddings W 2,p
per(0, 2π;X) →֒ X 1,p

per and W 1,p
per(0, 2π;W ) →֒ X 1,p

per shows that

both weak limits coincide with the (strong) limit u of ωεn
∗ u in X 1,p

per , so that

u ∈ W 2,p
per(0, 2π;X) ∩W 1,p

per(0, 2π;W ) = W1,p
per .

Accordingly, the remaining step is to prove the boundedness of DA(ωε∗u) in X 1,p
per

as ε→ 0, which is the same as boundedness in W 1,p(0, 2π;X). First, DA(ωε ∗ u) =
ω̇ε ∗ u−A(ωε ∗ u), so that, by (7.2),

DA(ωε ∗ u) = ω̇ε ∗ u−A[ω̇ε ∗ (Bu) + ωε ∗ (Ḃu−Bf)]

= A[B(ω̇ε ∗ u) − ω̇ε ∗ (Bu)] −A[ωε ∗ (Ḃu−Bf)]. (7.3)

Since Ḃu − Bf ∈ W 1,p(0, 2π;W ), it follows that ωε ∗ (Ḃu − Bf) → Ḃu − Bf

in W 1,p(0, 2π;W ), whence A[ωε ∗ (Ḃu − Bf)] → A(Ḃu − Bf) in W 1,p(0, 2π;X).

Thus, the term A[ωε ∗ (Ḃu−Bf)] in (7.3) is bounded in W 1,p(0, 2π;X) and it only
remains to show that A[B(ω̇ε ∗ u) − ω̇ε ∗ (Bu)] is bounded as well. In turn, this
reduces to showing that

(i) A[B(ω̇ε ∗ u) − ω̇ε ∗ (Bu)] is bounded in Lp(0, 2π;X),

(ii) Ȧ[B(ω̇ε ∗ u) − ω̇ε ∗ (Bu)] is bounded in Lp(0, 2π;X),
(iii) A d

dt
[B(ω̇ε ∗ u) − ω̇ε ∗ (Bu)] is bounded in Lp(0, 2π;X).

Both (i) and (ii) follow at once from the boundedness of B(ω̇ε ∗ u) − ω̇ε ∗ (Bu)
in Lp(0, 2π;W ), proved below.

Write

B(t)(ω̇ε ∗ u)(t) − (ω̇ε ∗ (Bu))(t) =

∫ t+ε

t−ε

ω̇ε(t− s)(B(t) −B(s))u(s)ds.

Since B is C1 and periodic on R, there is a constant c > 0 such that ||B(t) −
B(s)||L(X,W ) ≤ c|t− s|. Therefore,

||B(t)(ω̇ε ∗ u)(t) − (ω̇ε ∗ (Bu))(t)||W ≤ c

∫ t+ε

t−ε

|t− s| |ω̇ε(t− s)| ||u(s)||Xds

≤ c

∫ t+ε

t−ε

ε |ω̇ε(t− s)| ||u(s)||Xds. (7.4)

7 Recall that X is UMD and so is W by Lemma 1 (iv).
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If t ∈ [0, 2π] and ε > 0 is small enough, then χ[−2π,4π](s) = 1 whenever s ∈
[t− ε, t+ ε], so that (7.4) also reads

||B(t)(ω̇ε ∗ u)(t) − (ω̇ε ∗ (Bu))(t)||W ≤ c

∫ t+ε

t−ε

ε |ω̇ε(t− s)| ||u(s)||Xχ[−2π,4π](s)ds.

Hence, for every t ∈ R,

||B(t)(ω̇ε ∗ u)(t) − (ω̇ε ∗ (Bu))(t)||Wχ[0,2π](t)

≤ c

∫ t+ε

t−ε

ε |ω̇ε(t− s)| ||u(s)||Xχ[−2π,4π](s)ds. (7.5)

Now, |ω̇ε(t)| = ε−2|ω̇(ε−1t)|, so that ε|ω̇ε(t)| = ηε(t) with η := |ω̇| and (7.5) becomes

||B(t)(ω̇ε ∗ u)(t) − (ω̇ε ∗ (Bu))(t)||Wχ[0,2π](t) ≤ cηε ∗
(
||u||Xχ[−2π,4π]

)
(t)

and so, by Young’s inequality,

||B(ω̇ε ∗ u) − (ω̇ε ∗ (Bu))||Lp(0,2π;W ) ≤ c||ηε||L1(R)||u||Lp(−2π,4π;X).

Since ||ηε||L1(R) = ||η||L1(R) and ||u||Lp(−2π,4π;X) = 3
1

p ||u||Lp(0,2π;X) by periodicity,
we find

||B(ω̇ε ∗ u) − (ω̇ε ∗ (Bu))||Lp(0,2π;W ) ≤ 3
1

p c||η||L1(R)||u||Lp(0,2π;X),

which proves the boundedness of B(ω̇ε ∗ u)− (ω̇ε ∗ (Bu)) in Lp(0, 2π;W ) as ε→ 0.

In the above arguments, we may replace u by u̇ or B by Ḃ (even though Ḃ
is not C1, it is C0,1 and this is the property of B actually used to obtain (7.4)).

Thus, both B(ω̇ε ∗ u̇) − (ω̇ε ∗ (Bu̇)) and Ḃ(ω̇ε ∗ u) − (ω̇ε ∗ (Ḃu)) are bounded in
Lp(0, 2π;W ) as ε → 0, which implies that d

dt
[B(ω̇ε ∗ u) − ω̇ε ∗ (Bu)] is bounded in

Lp(0, 2π;W ). But then, A d
dt

[B(ω̇ε ∗u)− ω̇ε ∗ (Bu)] is bounded in Lp(0, 2π;X). This
is the requirement (iii) and the proof is complete.

The method of proof of Lemma 14, by mollification and a priori estimates, is
a standard way to establish elliptic regularity in PDEs. In evolution problems, it
was also used by Robbin and Salamon [29] in a special case (p = 2, X Hilbert, A(t)
selfadjoint) for related but different purposes and in a different spirit.

With the help of Lemma 14, we can now show that, under the additional condition
A ∈ W 2,∞(0, 2π;L(W,X)), then kerDA, indexDA and σ(DA) do not change when
Wp
per and X p are replaced by W1,p

per and X 1,p
per , respectively. The extra condition

about A will be removed later.

Lemma 15. Suppose that (H1) and (H3) hold and that A ∈ C1
per([0, 2π],L(W,X))∩

W 2,∞(0, 2π;L(W,X)). Then, for every p ∈ (1,∞), the operators DA : Wp
per → X p

and DA : W1,p
per → X 1,p

per are Fredholm and kerDA, indexDA and σ(DA) are the same
in both settings (and independent of p).

Proof. The semi-Fredholm property is just Theorems 2 and 7. That kerDA is the
same follows from W1,p

per ⊂ Wp
per and Lemma 14. If f ∈ X 1,p

per and f /∈ DA(W1,p
per),

then f /∈ DA(Wp
per) by Lemma 14. Thus, if Z ⊂ X 1,p

per is a finite dimensional

subspace such that Z ∩ DA(W1,p
per) = {0}, then also Z ∩ DA(Wp

per) = {0}. This
shows that the codimension (finite or infinite) of DA(Wp

per) in X p is no less than

the codimension of DA(W1,p
per) in X 1,p

per .
To prove the converse, let now Z ⊂ X p be a finite dimensional subspace such

that Z ∩DA(Wp
per) = {0}. By the denseness of C∞

0 (0, 2π) ⊗X and the closedness
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of DA(Wp
per) in X p, it is not restrictive to assume that Z ⊂ X 1,p

per . Then, since

DA(W1,p
per) ⊂ DA(Wp

per), it is obvious that Z ∩ DA(W1,p
per) = {0}. This proves that

the codimension of DA(W1,p
per) in X 1,p

per is no less than (and hence equal to) the
codimension of DA(Wp

per) in X p. In particular, by Theorem 3, DA is Fredholm and
indexDA is the same in both settings.

By (H1) (and Lemma 3), A + λI satisfies the same hypotheses as A in Lemma
15 for every λ ∈ C. Therefore, from the above, DA − λI : Wp

per → X p and DA −

λI : W1,p
per → X 1,p

per have closed range and fail simultaneously to be one to one or
onto, which shows that σ(DA) is the same in both cases. The p -independence
of kerDA, indexDA and σ(DA) was observed earlier in both settings, under more
general assumptions about A.

Theorem 8 below is the variant of Theorem 3 announced earlier.

Theorem 8. Suppose that (H1) and (H3) hold and that A ∈ C1
per([0, 2π],L(W,X)).

Then, the operators DA : Wp
per → X pand DA : W1,p

per → X 1,p
per are Fredholm and have

the same p-independent index for every p ∈ (1,∞).

Proof. By Theorems 2 and 7, indexDA ∈ Z ∪ {−∞} is well defined in both cases
and, if also A is in W 2,∞(0, 2π;L(W,X)), the result follows from Lemma 15.

If A is only in C1
per([0, 2π],L(W,X)), approximate A in C1 norm by a sequence

An ∈ C∞
per([0, 2π], L(W,X)) (this can be done by extending A to all of R by pe-

riodicity and convolving by a sequence of mollifiers). Then, DAn
→ DA in both

L(Wp
per ,X

p) and L(W1,p
per ,X

1,p
per), so that the local constancy of the index shows that

indexDA = indexDAn
for n large enough, in both the Wp

per - X p and W1,p
per - X 1,p

per

settings.
Thus, it suffices to show that An satisfies (H1) to (H3) (for n large enough), for

then the finiteness and independence of indexDAn
upon the functional setting - and

then those of indexDA as well - follow from the first part of the proof. But (H1)
and (H2) are not an issue and, if n is large enough, the validity of (H3) is ensured
by Lemma 4.

For example, Theorem 8 yields at once a W1,p
per - X 1,p

per variant of Corollary 5.
Note however that its proof does not show that kerDA is the same in both cases
(compare with Lemma 15). In that regard, see Corollary 8 below.

Our next task will be to prove that σ(DA) is independent of the functional setting
when A is only C1 (if A is W 2,∞, this was shown in Lemma 15). To do this, we
need the following abstract lemma; see [28, Lemma 4.3] for a proof.

Lemma 16. Let E and F be complex Banach spaces and let T ∈ L(E,F ) be
Fredholm of index 0 and not invertible. There is an open ball B(0, ρ) ⊂ L(E,F )
with the following property: Given H ∈ B(0, ρ) such that T +H is invertible and
ε > 0, there is δ ∈ (0, ε] such that if S ∈ B(T, δ) ⊂ L(E,F ), then S + zH is not
invertible for some z ∈ C with |z| < ε.

Since the meaning of Lemma 16 may be somewhat cryptic on a first reading, it
may help to notice that, when E = F and 0 is an isolated eigenvalue of T, then H
may be chosen to be a multiple of I. If so, Lemma 16 asserts that every operator
S ∈ L(E) close enough to T has an eigenvalue arbitrarily close to 0. This is of course
well known. Lemma 16 is a generalization of this property when either E 6= F or 0
is not necessarily an isolated eigenvalue of T. In [28], Lemma 16 was already used
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in connection with spectral independence, but of a different nature and for very
different problems (elliptic systems on RN ).

Theorem 9. Suppose that (H1) and (H3) hold and that A ∈ C1
per([0, 2π],L(W,X)).

Then, for every p ∈ (1,∞), the operators DA : Wp
per → X p and DA : W1,p

per → X 1,p
per

are simultaneously invertible.

Proof. In this proof, it will be convenient to use different notations for the two
operators DA. Accordingly, we set

D0
A := DA : Wp

per → X p and D1
A := DA : W1,p

per → X 1,p
per . (7.6)

Suppose first that D0
A is invertible. In particular, D0

A is Fredholm of index 0 and
so D1

A is Fredholm of index 0 by Theorem 8. Since also kerD1
A ⊂ kerD0

A = {0}, it
follows that D1

A is invertible.
Conversely, suppose that D1

A is invertible and, by contradiction, assume that D0
A

is not invertible. Given B ∈ C1
per([0, 2π],L(W,X)), the operators D0

B and D1
B are

well defined and it is readily checked that ifB and A are close in C1([0, 2π],L(W,X)),
then D1

B is close to D1
A and D0

B is close to D0
A.

In particular, by the openness of linear isomorphisms in L(W1,p
per ,X

1,p
per) there

is R > 0 such that D1
B is invertible whenever B ∈ C1

per([0, 2π],L(W,X)) and
||B − A||C1 < 2R, where we used the abbreviation ||B − A||C1 for the norm of
B −A in C1([0, 2π],L(W,X)). By Lemma 15,

{B ∈ C∞
per([0, 2π],L(W,X)) and ||B −A||C1 < 2R} ⇒ D0

B invertible. (7.7)

To get a contradiction, choose E := Wp
per, F := X p and T := D0

A in Lemma
16 and let ρ > 0 be given by that lemma. Upon shrinking R > 0 above, we may
assume that

||B −A||C1 < 2R ⇒ ||D0
B −D0

A||L(Wp
per,X p) < ρ. (7.8)

Choose A† ∈ C∞
per([0, 2π],L(W,X)) such that ||A† − A||C1 < R, which is possible

by the denseness of C∞
per([0, 2π],L(W,X)) in C1

per([0, 2π],L(W,X)). By (7.7), D0
A†

is invertible and, by (7.8), ||D0
A† −D0

A||L(Wp
per ,X p) < ρ.

Now, A† = A+(A†−A) and, by using once again the openness of linear isomor-
phisms (but now in L(Wp

per ,X
p)) we can approximateA†−A ∈ C1

per([0, 2π],L(W,X))

by C ∈ C∞
per([0, 2π],L(W,X)), in such a way that ||C||C1 < R (so that ||D0

A+C −

D0
A||L(Wp

per ,X p) < ρ by (7.8)) and that D0
A+C is invertible.

At this point, let H := D0
A+C − D0

A and ε = 1 in Lemma 16. With δ > 0
given by that lemma, use once again the denseness of C∞

per([0, 2π],L(W,X)) in

C1
per([0, 2π],L(W,X)) to find A‡ ∈ C∞

per([0, 2π],L(W,X)) such that ||A‡−A||C1 < R

and that ||D0
A‡ − D0

A||L(Wp
per ,X p) < δ. Then, Lemma 16 with ε = 1 and S = D0

A‡

asserts that there is z ∈ C with |z| < 1 such that D0
A‡ +z(D0

A+C−D
0
A) = D0

A‡+zC is

not invertible. But A‡+zC ∈ C∞
per([0, 2π],L(W,X)) while ||A‡+zC−A||C1 ≤ ||A‡−

A||C1 + |z| ||C||C1 < 2R. Thus, by (7.7), D0
A‡+zC is invertible. This contradiction

completes the proof.

By simply replacing A by A−λI in Theorem 9 (recall that A−λI satisfies (H3)
by (H1) and Lemma 3), it follows at once that

Corollary 6. Suppose that (H1) and (H3) hold and that A ∈ C1
per([0, 2π],L(W,X)).

Then, for every p ∈ (1,∞), the operators DA : Wp
per → X p and DA : W1,p

per → X 1,p
per ,
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viewed as closed unbounded operators on the target space with domain the source
space, have the same p-independent spectrum σ(DA).

If σ(DA) 6= C, we can now improve upon the regularity result of Lemma 14.

Corollary 7. Suppose that (H1) and (H3) hold and that A ∈ C1
per([0, 2π],L(W,X)).

Suppose also that σ(DA) 6= C when DA is viewed as a closed unbounded operator on
X q (or X 1,q

per) with domain Wq
per (or W1,q

per) for some q ∈ (1,∞). Given p ∈ (1,∞),

let f ∈ X 1,p
per and u ∈ Wp

per be such that DAu = f. Then, u ∈ W1,p
per .

Proof. From Corollary 6, there is no loss of generality in assuming that q = p. Let
then λ ∈ C be such that DA−λI is (simultaneously, by Corollary 6) an isomorphism
of Wp

per onto X p and an isomorphism of W1,p
per onto X 1,p

per . Since DAu = f amounts

to (DA − λI)u = f − λu ∈ X 1,p
per (recall Wp

per ⊂ X 1,p
per) and since the equation

(DA− λI)v = f −λu has a unique solution in Wp
per and in W1,p

per ⊂ Wp
per , it follows

that this solution is the same in both spaces and thus coincides with u.

We do not know whether Corollary 7 is still true when σ(DA) = C and A is not
better than C1 (if also A ∈W 2,∞(0, 2π;L(W,X)), this is settled in Lemma 14).

By using Corollary 7, we obtain in turn a refinement of Corollary 6:

Corollary 8. Suppose that (H1) and (H3) hold and that A ∈ C1
per([0, 2π],L(W,X)).

If σ(DA) 6= C, every λ ∈ σ(DA) is an isolated eigenvalue of finite multiplicity of
DA : Wp

per → X p and of DA : W1,p
per → X 1,p

per . Furthermore, ker(DA − λI) and the
multiplicity of λ are the same in both cases. (By Theorem 5, this multiplicity is
also independent of p ∈ (1,∞).)

Proof. In this proof, it will be convenient to use once again the notation (7.6 ).
If σ(DA) 6= C, it follows from Corollary 6 and from Corollary 1 and its analog in
the W1,p

per - X 1,p
per setting (see Section 6) that if λ ∈ σ(DA), then λ is an isolated

eigenvalue of finite multiplicity of D0
A and of D1

A.
Since it is clear that ker(D1

A − λI) ⊂ ker(D0
A − λI), it suffices to prove that the

converse is true. Let u ∈ ker(D0
A − λI) ⊂ Wp

per , so that DAu = λu ∈ Wp
per ⊂ X 1,p

per .

Since σ(DA) 6= C, Corollary 7 ensures that u ∈ W1,p
per and so u ∈ ker(D1

A − λI).

Thus, ker(D0
A − λI) = ker(D1

A − λI).
Now, call m0 and m1 the (finite) multiplicities of λ as an eigenvalue of D0

A and
D1
A, respectively. Then, m0 = dimP 0(X p) and m1 = dimP 1(X 1,p

per) where for
ℓ = 0, 1,

P ℓ := −
1

2πi

∫

Γ

R(ζ,Dℓ
A)dζ

and Γ is a small circle around λ contained in ρ(D0
A) = ρ(D1

A). By the dense-
ness of X 1,p

per in X p
per and the finite dimensionality of dimP 0(X p), it follows that

P 0(X p) = P 0(X 1,p
per). But P 0(X 1,p

per) = P 1(X 1,p
per) since R(ζ,D0

A) = R(ζ,D1
A) on X 1,p

per

by Corollary 7, so that m0 = m1.

8. The (W,X)-independence of the index and spectrum. In this section, X̃

and W̃ denote new Banach spaces such that

W̃ →֒W →֒ X̃ →֒ X. (8.1)

A typical example of (8.1) arises when Ω is a bounded open subset of RN and

X := Lq(Ω),W := W 2,q(Ω) ∩W 1,q
0 (Ω) for some q ∈ (1,∞) and X̃ := Lq̃(Ω), W̃ :=

W 2,q̃(Ω) ∩W 1,q̃
0 (Ω) and either q̃ > q ≥ N

2 or q < N
2 and q < q̃ ≤ Nq

N−2q .



30 WOLFGANG ARENDT AND PATRICK J. RABIER

We also assume that (just like X) X̃ has the UMD property and denote by

(H̃1), (H̃2) and (H̃3) the hypotheses (H1), (H2) and (H3) when X and W are

replaced by X̃ and W̃ , respectively. Naturally, these hypotheses make sense only

when A(t) ∈ L(W,X) ∩ L(W̃ , X̃) for every t ∈ [0, 2π], which is implicitly assumed

in the sequel. Likewise, the spaces W̃p
per and X̃ p refer to the spaces Wp

per and X p,
respectively, after the same substitution is performed. It is our goal here to show
that, under reasonable compatibility conditions, indexDA and σ(DA) are unchanged

upon replacing X and W by X̃ and W̃ , respectively.

Lemma 17. Suppose that (H1) to (H3) and (H1) to (H3) hold. Suppose also that
A ∈ C1

per([0, 2π],L(W,X)) ∩ W 2,∞(0, 2π;L(W,X)). Then, given p ∈ (1,∞), the
operator DA is Fredholm with the same null-space, the same index and the same

spectrum when acting from Wp
per to X p and when acting from W̃p

per to X̃ p.

Proof. In this proof, it is convenient to agree that DA acts only from Wp
per to X p

and to use the notation D̃A when the action is from W̃p
per to X̃ p.

By (8.1), it is obvious that W̃p
per ⊂ Wp

per , so that ker D̃A ⊂ kerDA. To prove the

equality of the null-spaces, it remains to show that if u ∈ kerDA, then u ∈ W̃p
per .

By Lemma 15, u ∈ W1,p
per . In particular, u ∈ W 1,p

per(0, 2π;W ) ⊂ W 1,p
per(0, 2π; X̃) by

(8.1). Thus, u, u̇ ∈ Lp(0, 2π; X̃) and so u̇− iku ∈ Lp(0, 2π; X̃) for every k ∈ Z. On

the other hand, it easily follows from (H̃2) and (H̃3) that, if |k| is large enough,

then A(t)− ikI ∈ L(W̃ , X̃) is invertible for every t ∈ [0, 2π]. Since DAu = 0 entails

u̇ − iku = (A − ikI)u, it follows that u = (A − ikI)−1(u̇ − iku) ∈ Lp(0, 2π; W̃ ).

Thus, in summary, u ∈ W 1,p
per(0, 2π; X̃) ∩ Lp(0, 2π; W̃ ) = W̃p

per .

Next, we prove that codimrgeDA = codimrgeD̃A. To see this, let Z ⊂ X be a
finite dimensional subspace such that rgeDA ∩ Z = {0}. Since rgeDA is closed in

X p and since C∞
0 (0, 2π) ⊗ X̃ is dense in X p by the denseness of X̃ in X (by (8.1)

and the denseness of W in X ; see Lemma 5), it is not restrictive to assume -without

changing dimZ- that Z ⊂ C∞
0 (0, 2π) ⊗ X̃ ⊂ X̃ p. But then, since rgeD̃A ⊂ rgeDA,

it is obvious that rgeD̃A ∩Z = {0}. This shows that codim rgeD̃A ≥ codimrgeDA.

To prove the reverse inequality, let Z̃ ⊂ X̃ p be a finite dimensional space such

that rgeD̃A ∩ Z̃ = {0}. Since rgeD̃A is closed in X̃ p (because D̃A is Fredholm by

Theorem 3) and C∞
0 (0, 2π) ⊗ X̃ is dense in X̃ p, it is once again not restrictive to

assume -without changing dim Z̃- that Z̃ ⊂ C∞
0 (0, 2π) ⊗ X̃ ⊂ C∞

0 (0, 2π) ⊗ X ⊂

X 1,p
per . Therefore, it follows from Lemma 14 that if u ∈ Wp

per and DAu = f̃ ∈ Z̃,

then u ∈ W1,p
per. In particular, u ∈ W 1,p

per(0, 2π;W ) ⊂ W 1,p
per(0, 2π; X̃) by (8.1) and

u̇ − iku − f̃ ∈ Lp(0, 2π; X̃) for every k ∈ Z. By choosing k as in the first part of

the proof and rewriting DAu = f̃ as u̇− iku− f̃ = (A− ikI)u, we obtain u = (A−

ikI)−1(u̇− iku− f̃) ∈ Lp(0, 2π; W̃ ). Thus, u ∈ W̃p
per, so that f̃ ∈ Z̃ ∩ rgeD̃A = {0}.

This shows that rgeDA ∩ Z̃ = {0} and, hence, that codimrgeDA ≥ codimrgeD̃A.

This completes the proof of the equality codimrgeDA = codimrgeD̃A.

Together with the relation kerDA = ker D̃A, this proves that indexD̃A = indexDA

and that D̃A and DA are simultaneously invertible. Upon replacing A by A−λI in

the latter property, we find that D̃A and DA have the same spectrum.

We now remove the extra smoothness requirements about A in Lemma 17 .
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Theorem 10. Suppose that (H1) to (H3) and (H1) to (H3) hold. Then, given
p ∈ (1,∞), the operator DA is Fredholm when acting from Wp

per to X p and when

acting from W̃p
per to X̃ p. Furthermore, kerDA, indexDA and σ(DA) are the same

in both cases. (By Theorem 5, kerDA, indexDA and σ(DA) are also independent
of p.)

Proof. After extendingA by periodicity and convolving with a sequence of mollifiers,

we obtain a sequence An ∈ C∞
per([0, 2π],L(W,X))∩C∞

per([0, 2π],L(W̃ , X̃)) such that

An → A in C0
per([0, 2π],L(W,X)) and in C0

per([0, 2π],L(W̃ , X̃)). Note that this

implies that DAn
→ DA in both L(W,X) and L(W̃ , X̃).

By Lemma 4, An also satisfies (H1) to (H3) and (H̃1) to (H̃3) for n large enough.

Thus, for such indices n, Lemma 17 ensures that8 D̃An
and DAn

have the same
index.

By Theorem 3, D̃A andDA are Fredholm , and indexD̃A = indexD̃An
, indexDA =

indexDAn
for n large enough by the local constancy of the index. This shows that

indexD̃A = indexDA.
The equality of the indexes means that

dimker D̃A − codimrgeD̃A = dim kerDA − codimrgeDA. (8.2)

Now, the arguments in the proof of Lemma 17 showing that ker D̃A ⊂ kerDA (hence

dimker D̃A ≤ dimkerDA) and that codimrgeD̃A ≥ codimrgeDA do not require any
smoothness of A and therefore remain valid under the weaker assumptions of this
theorem. Therefore, since the index is finite, (8.2) shows that

dimker D̃A = dimkerDA and codimrgeD̃A = codimrgeDA. (8.3)

. In particular, ker D̃A = kerDA and D̃A and DA are simultaneously isomorphisms.
By replacing A by A− λI in this statement (which is legitimate by (H̃1)/(H1) and

Lemma 3), it follows that the spectra of D̃A and DA coincide.

A simpler proof of Theorem 10, independent of Lemma 17, can be given under
the additional assumption that DA has compact resolvent as a closed unbounded

operator on X p with domain Wp
per and as a closed unbounded operator on X̃ p

with domain W̃p
per. But these are crucial extra hypotheses which, up to this point

of our exposition, are only known to be true in the t-independent case (Theorem
4), even though this limitation will be substantially reduced in the next section.
Nonetheless, part of the value of Theorem 10 is that it can be used to prove the

compact resolvent property with some pair (W̃ , X̃) after the same property has
been established for another pair (W,X).

Remark 6. In Theorem 10, the equality of the spectra implies that if DA -or

equivalently D̃A- is invertible and if f̃ ∈ X̃ p and u ∈ Wp
per are such that DAu =

f̃ , then u ∈ W̃p
per. This follows at once from X̃ p ⊂ X p, W̃p

per ⊂ Wp
per and the

uniqueness of a solution in both W̃p
per and Wp

per .

Corollary 9. Suppose that (H1) to (H3) and (H1) to (H3) hold and let p ∈ (1,∞).
If σ(DA) 6= C, every λ ∈ σ(DA) is an eigenvalue of finite multiplicity of DA when
DA is viewed as a closed unbounded operator on X p with domain Wp

per , or as a

closed unbounded operator on X̃ p with domain W̃p
per . Moreover, the multiplicity of

8 Here and in what follows, we use the notation introduced in the proof of Lemma 17.
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λ is the same in both cases. (By Theorem 5, this multiplicity is also independent
of p.)

Proof. We continue to use the notation introduced in the proof of Lemma 17. Since

the (finite) indexes and spectra of D̃A and DA are the same by Theorem 10, it
follows from Corollary 1 and the assumption σ(DA) 6= C that λ ∈ σ(DA) is an

eigenvalue of D̃A and of DA of finite multiplicity. It remains to show that this
multiplicity is the same in both cases.

Call m̃ and m the corresponding multiplicities of λ, so that m̃ = dim P̃ (X̃ p) and
m = dimP (X p) and

P̃ := −
1

2πi

∫

Γ

R(ζ, D̃A)dζ and P := −
1

2πi

∫

Γ

R(ζ,DA)dζ,

where Γ is a small circle around λ contained in ρ(D̃A) = ρ(DA). By the finite

dimensionality of P (X p) and the denseness of X̃ p in X p (by Lemma 5 and (8.1)),

it follows that P (X p) = P (X̃ p). But P (X̃ p) = P̃ (X̃ p) since R(ζ, D̃A) and R(ζ,DA)

coincide on X̃ p by Remark 6 for A− ζI. This shows that m̃ = m.

By combining the above with Sections 6 and 7 (with (W,X) replaced by (W̃ , X̃)),

it is straightforward to obtain corresponding theorems in the spaces W̃1,p
per and X̃ 1,p.

It is also worth pointing out that the results of this section can be extended to

spaces Ŵp
per and X̂ p associated with spaces X̂ and Ŵ such that

Ŵ →֒ W̃ →֒ X̂ →֒ X̃. (8.4)

The point here is that (8.1) and (8.4) do not imply Ŵ →֒ W →֒ X̂ →֒ X (the
example of Sobolev spaces given earlier shows that the second embedding may fail).

If so, the results of this section may still be true when (W̃ , X̃) is replaced by (Ŵ , X̂),
even though the proofs requires two consecutive applications of the theorems. Of
course, even more general results follow by using the theorems any finite number of
times (abstract “bootstrapping”).

9. Isomorphism theorems. For the definition of an r-sectorial operator and re-
lated concepts (r-angle) used below, see Section 5. If A0 is an r-sectorial operator on
X with domain W and r-angle φrA0

< π
2 , it is by now well-known that the Cauchy

problem {
DA0

u = f,
u(0) = 0,

has a unique solution u ∈ Wp := W 1,p(0, 2π;X)∩Lp(0, 2π;W ) for every f ∈ X p =
Lp(0, 2π;X) and every p ∈ (1,∞). For instance, this follows at once from [11,
Theorem 4.4], where (0, 2π) is replaced by (0,∞). Since the multiplication by eµt is
an isomorphism of both the spaces X p and Wp, it follows that the same uniqueness
property holds when it is only assumed that A0 + µI is r-sectorial with r-angle
φrA0+µI

< π
2 for some µ ≥ 0. This will be used in the proof of Lemma 18.

Now, let

T p := {u(0) : u ∈ Wp} ⊂ X,

denote the space of traces of elements of Wp. It is readily checked that T p is a
Banach space for the norm

||x||T p := inf
u∈Wp,u(0)=x

||u||Wp .
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For future use, note that u(2π) ∈ T p for every u ∈ Wp since v(t) := u(2π − t) is
also in Wp.

Lemma 18. Suppose that (H2) holds and that, for every t ∈ [0, 2π], there is µt ≥ 0
such that A(t) + µtI is r-sectorial with r-angle φr

A(t)+µtI
< π

2 . Then, for every

p ∈ (1,∞), there is a constant Cp > 0 such that ||u(2π)||T p ≤ Cp||u(0)||T p for
every u ∈ Wp such that DAu = 0.

Proof. Obviously, Kp := {u ∈ Wp : DAu = 0} is a closed subspace of Wp and the
mapping u ∈ Kp 7→ u(0) ∈ T p is linear and continuous. We claim that it is in
fact bijective, which in turn follows from the existence and uniqueness of a solution
u ∈ Wp of the Cauchy problem

{
DAu = 0 in (0, 2π),
u(0) = x ∈ T p.

This is a special case of Arendt et al. [4, Theorem 2.7]. Both (H2) and the prelim-
inary discussion at the beginning of this section with A0 = A(t) and t ∈ [0, 2π] are
relevant to the applicability of this result. The fact that T p coincides with the real
interpolation space (X,W ) 1

p′ ,p
(Lunardi [21, Chapter 1]) must also be used.

Therefore, by the open mapping theorem, there is a constant Cp > 0 such that
||u||Wp ≤ Cp||u(0)||T p for every u ∈ Kp. Since the mapping u ∈ Wp 7→ u(2π) ∈ T p

is continuous with norm 1, the inequality ||u(2π)||T p ≤ Cp||u(0)||T p follows.

Theorem 11. Suppose that (H1) and (H2) hold and that, for every t ∈ [0, 2π],
there is µt ≥ 0 such that A(t)+µtI is r-sectorial with r-angle φr

A(t)+µtI
< π

2 . Then,

there is c > 0 such that D±(A−λI) is an isomorphism of Wp
per onto X p for every

p ∈ (1,∞) if Reλ > c. In particular, D±A has compact resolvent and (hence) index
0.

Proof. By Corollary 5, DA is Fredholm, so that DA−λI = DA + λI is Fredholm
for every λ ∈ C. In a first step, we show that DA−λI is one to one if Reλ is large
enough.

To see this, let u ∈ Wp
per be such that DAu + λu = 0 and set v(t) := eλtu(t).

Then, v ∈ Wp and DAv = 0 (obviously, v is not periodic), so that ||v(2π)||T p ≤
Cp||v(0)||T p by Lemma 18. But v(2π) = e2λπu(2π) = e2λπu(0) = e2λπv(0) by

the periodicity of u. Hence, e2Reλ||v(0)||T p ≤ Cp||v(0)||T p , so that v(0) = 0 if
2Reλ > lnCp. If so, v = 0 by [4, Theorem 2.7], already used in the proof of Lemma
18, whence u = 0.

Next, the hypotheses of the theorem are unchanged after replacing A(t) by
Ǎ(t) := A(2π − t), so that DǍ−λI is one to one if Reλ is large enough. Since
the change of variable t 7→ 2π − t induces isomorphisms of Wp

per and X p, it follows
that D−A+λI is also one to one if Reλ is large enough.

We now claim that the hypotheses of the theorem are also unchanged upon
replacing A by A∗ and exchanging the roles of X and W ∗ and of W and X∗,
respectively. In Section 4, we already noticed that (H1) and (H2) (and even (H3))
are unchanged. It remains only to check that the r-sectoriality condition still holds.
For simplicity of notation, we assume µt = 0, which merely amounts to replacing
A(t) by A(t) + µtI everywhere.

First, by the argument of Lemma 2, the r-boundedness of {ζR(−ζ, A(t)) : | arg ζ| ≤
θ} in L(X) for some θ ∈ (0, π) is equivalent to the r-boundedness of {R(−ζ, A(t)) :
| arg ζ| ≤ θ} in L(W,X). That A(t) is invertible (so that no problem arises for ζ near
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0) is important for this point and is part of the sectoriality assumption. In turn, by
[25, Lemma 2.3 and Remark 3.1], this implies that {R(−ζ, A(t))∗ : | arg ζ| ≤ θ} =
{R(−ζ, A∗(t)) : | arg ζ| ≤ θ} is r-bounded in L(X∗,W ∗). By the equivalence noted
above, this amounts to saying that {ζR(−ζ, A∗(t)) : | arg ζ| ≤ θ} is r-bounded in
L(W ∗), so that indeed A(t) and A∗(t) have the same r-angle. This completes the
verification of the hypotheses of the theorem for A∗. Accordingly, from the above,
D−A∗+λI is one to one if Reλ is large enough. In this statement, D−A∗+λI acts
between the spaces X q

∗per and Wq
∗ for any q ∈ (1,∞); see (4.1) and the comments

following (4.5).
At this stage, observe that the formula (4.5) for the index yields

indexDA−λI = dimkerDA−λI − dim kerD−A∗+λI .

Thus, if Reλ is large enough, DA−λI is one to one with index 0 and hence an
isomorphism. Note that in the above arguments, “large enough” depends upon p.
However, Theorem 5 (p-independence of σ(DA)) shows that this is not the case.

That DA has compact resolvent now follows from Corollary 1 and the corre-
sponding properties for D−A are obtained by first changing A into Ǎ ant then t into
2π − t, as was done earlier in the proof.

Under an additional condition, we obtain an isomorphism theorem for D±A :

Corollary 10. In Theorem 11, assume also that A(t)+ ε(t)I is dissipative for a.e.

t ∈ [0, 2π], where ε ∈ Lq(0, 2π) for some q > 1 and
∫ 2π

0
ε(s)ds > 0. Then, D±A is

an isomorphism of Wp
per onto X p for every p ∈ (1,∞).

Proof. By Theorem 11, DA has index 0, so that it suffices to prove that DA is one
to one and, by the p-independence of σ(DA) (Theorem 5), it suffices to consider the
case p = q.

Let u ∈ Wq
per be such that DAu = 0 and set v(t) := e

∫
t

0
ε(s)dsu(t). Then

v ∈ Wq and D(A+εI)v = 0. Now, since A(t) + ε(t)I is dissipative, it follows from9

[4, Proposition 3.2] that ||v(·)||X is nonincreasing. In particular, ||v(2π)||X =

e
∫

2π

0
ε(s)ds||u(2π)||X ≤ ||v(0)||X = ||u(0)||X . Since u(2π) = u(0), this shows that

e
∫

2π

0
ε(s)ds||u(0)||X ≤ ||u(0)||X , whence u(0) = 0 since e

∫
2π

0
ε(s)ds > 1. Thus, u = 0

follows once again from [4, Theorem 2.7].
The analogous result for D−A follows by first replacing A and ε by Ǎ(t) :=

A(2π − t) and ε̌(t) := ε(2π − t), respectively and next changing t into 2π − t.

Remark 7. When dimX < ∞, it is an easy by-product of Floquet’s theory that
σ(DA) 6= C and even that D±A has compact resolvent. To put Corollary 10 in
perspective, note that this also follows from part (ii) of that corollary, whose as-
sumptions are always satisfied in the finite dimensional case.

By using Section 7, the results of this section yield similar properties in the W1,p
per

- X 1,p
per setting under suitable smoothness and periodicity assumptions about A.

Also, if X̃ and W̃ are Banach spaces satisfying (8.1) and if, in addition, (H1)

to (H3) (i. e., (H1) to (H3) for X̃ and W̃ ) hold, it follows from Theorem 10 that

the results of this section remain valid with the spaces W̃p
per and X̃ p obtained by

replacing W and X by W̃ and X̃, respectively, in the definitions of Wp
per and X p.

9 Even though A + εI is not continuous on [0, 2π], it does satisfy the hypotheses required in
[4].
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In practice, it is important to notice that the r-sectoriality or the dissipativity (in

Corollary 10) needs to be retained in either (i.e. (W,X) or (W̃ , X̃)) setting, but is
not needed in both.
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