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An ill-posed boundary value problem
for the Helmholtz equation on Lipschitz domains

W. Arendt and T. Regińska

Abstract. The paper is concerned with properties of an ill-posed problem for the Helmholtz equation
when Dirichlet and Neumann conditions are given only on a part Γ of the boundary ∂Ω. We present
an equivalent formulation of this problem in terms of a moment problem defined on the part of
the boundary where no boundary conditions are imposed. Using a weak definition of the normal
derivative, we prove the equivalence between these two problems for an arbitrary Lipschitz domain
in Rd. Moreover, uniqueness of the solution is proved for the general case when Γ is a non-empty
open subset of the Lipschitz boundary.
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1. Introduction

The Helmholtz equation arises naturally in many physical applications, in particular re-
lated to acoustic or electromagnetic wave propagation. Direct problems connected with
this equation are typically defined by Dirichlet or Neumann conditions on a boundary
of the considered domain. The well posedness of the direct problems, i.e., properties
of uniqueness, existence and stability of the solution, are well established. However, in
many engineering problems the boundary conditions are underspecified or overspeci-
fied on different parts of the boundary. Such boundary value problems are in general
ill-posed, which means that at least one of the properties of well-posedness fails to hold
(cf. [9]).

The boundary value problem considered in this paper consists in solving the
Helmholtz equation ∆u + k2u = 0 on an open domain Ω ⊂ Rd with a real wave
number k, under Dirichlet and Neumann conditions posed on Γ, a part of the bound-
ary ∂Ω of Ω. Such a problem is sometimes called a Cauchy problem for the Helmholtz
equation (cf. [8, 6]) and it can be considered as the inverse problem to the Neumann (or
the Dirichlet) problem for the Helmholtz equation on Ω. Some reasons for an investiga-
tion of this inverse problem following from optoelectronics are explained in [10]. One
possibility of solving this ill-posed problem is presented in [11]. The proposed method
is based on an equivalent formulation of the boundary value problem in terms of a
moment problem defined on the part ∂Ω \ Γ of the boundary. A corresponding equiv-
alence theorem is proved there under a strong regularity assumption for the boundary.
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Namely, the property ∂Ω ∈ C1+ε is required. A moment problem formulation was
previously applied in [4] for the boundary value problem for the Laplace equation in
the two-dimensional case.

In the present paper, by using a weak normal derivative introduced in [1] (see
also [3]), we show the corresponding equivalence theorem for arbitrary Lipschitz do-
mains in Rd under the assumption that k2 is not an eigenvalue of Neumann–Laplace
operator −∆N on this domain. Moreover, uniqueness of the solution of the boundary
value problem is shown for the general case when Γ is a non-empty open subset of
the Lipschitz boundary ∂Ω. Such uniqueness result is known for the case of a regular
boundary of the class C2 (cf. [5]).

2. Weak normal derivative and Neumann–Laplace operator

Let V,H be real Hilbert spaces such that V is continuously embedded in H . Assume
furthermore that V is dense in H . Let a : V × V → R be a continuous, symmetric
bilinear form which is H-elliptic; i.e.

a(u, u) + ω‖u‖2
H ≥ α‖u‖2

V (u ∈ V )

where ω ∈ R, α > 0. The associated operator A in H is defined as follows:

D(A) = {u ∈ V : ∃f ∈ H a(u, v) = (f, v)H , ∀v ∈ V } (2.1)

and
Au = f.

Then A is selfadjoint and bounded below by −ω. We consider H as a subspace of V ′

identifying f ∈ H with the linear form jf given by

〈jf , v〉 = (f, v)H for all v ∈ V.

Then we may define the continuous linear mapping Λ : V → V ′ given by

〈Λu, v〉 = a(u, v) (u, v ∈ V ). (2.2)

Considering Λ as an unbounded operator on V ′, the spectrum σ(Λ) is defined as the
complement of the resolvent set

%(Λ) := {λ ∈ R : (λ− Λ) : V → V ′ is bijective }.

From [2], Proposition 3.10.3, we note the following

Corollary 2.1. If A and Λ are the operators defined above, then

σ(A) = σ(Λ).
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Let Ω be a bounded open subset of Rd, with Lipschitz boundary ∂Ω. Then there
exists a linear continuous mapping Tr : H1(Ω) → L2(∂Ω) such that Tr(u) = u|∂Ω

for all u ∈ C(Ω) ∩ H1(Ω). To simplify the notation we frequently write u instead of
u|∂Ω. In [1] the following definition of the weak normal derivative was introduced. It
requires the following usual weak definition of the Laplacian. If w ∈ L2(Ω), then we
say that ∆w ∈ L2(Ω) if there exists f ∈ L2(Ω) such that∫

Ω

∆vw dx =
∫

Ω

vf dx

for all test functions v ∈ D(Ω). Then f is unique and we define f =: ∆w. If in addition
w ∈ H1(Ω), then ∆w = f if and only if

−
∫

Ω

∇v∇w dx =
∫

Ω

vf dx

for all w ∈ D(Ω).

Definition 2.2. Let u ∈ {w ∈ H1(Ω) : ∆w ∈ L2(Ω)}. We say that u has a weak
normal derivative if there exists a function b ∈ L2(∂Ω) such that∫

Ω

∇u∇w dx +
∫

Ω

∆uw dx =
∫

∂Ω

bw dσ ∀w ∈ H1(Ω). (2.3)

Then b is unique and called the weak normal derivative ∂u/∂ν = b.

Now, let V = H1(Ω), H = L2(Ω) and let

a(u, v) :=
∫

Ω

∇u∇v dx, ∀u, v ∈ H1(Ω). (2.4)

The associated operator A : D(A) ⊂ H1(Ω) → L2(Ω) has the domain

D(A) :=
{

u ∈ H1(Ω) : ∃f ∈ L2(Ω)∫
Ω

∇u∇v dx =
∫

Ω

fv dx ∀v ∈ H1(Ω)
}

. (2.5)

The operator Λ : H1(Ω) → H1(Ω)′ is defined by (2.2).

Proposition 2.3. The operator A is the Neumann–Laplace operator A = −∆N with
domain

D(∆N ) =
{

u ∈ H1(Ω) : ∆u ∈ L2(Ω),
∂u

∂ν
= 0 on ∂Ω

}
,

where ∂u/∂ν denotes the weak normal derivative of u according to Definition 2.2.
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Proof. Let u ∈ D(A) and Au = f . Then∫
Ω

∇u∇v dx =
∫

Ω

fv dx ∀v ∈ H1(Ω).

In particular, this holds for all v in the test space D. Hence −∆u = f. Introduce this
into the previous equation:∫

Ω

∇u∇v dx +
∫

Ω

∆uv dx = 0 ∀v ∈ H1(Ω).

It means that ∂u/∂ν = 0, by the definition of a weak normal derivative (2.3). Thus
u ∈ D(∆N ) and Au = −∆Nu.

Conversely, let u ∈ D(∆N ) and −∆Nu = f . From the definition of a weak normal
derivative (2.3), ∀v ∈ H1(Ω)∫

Ω

∇u∇v dx +
∫

Ω

∆uv dx =
∫

∂Ω

∂u

∂ν
v dσ = 0.

That means ∫
Ω

∇u∇v dx =
∫

Ω

fv dx ∀v ∈ H1(Ω).

So, a(u, v) = (f, v) ∀v ∈ H1(Ω), i.e. u ∈ D(A) and Au = f . 2

Now, given h ∈ L2(∂Ω), let us consider a Neumann problem for the Helmholtz
equation: find u in the domain of the normal derivative

D
( ∂

∂ν

)
:=

{
u ∈ H1(Ω) : ∆u ∈ L2(Ω),

∂u

∂ν
∈ L2(∂Ω)

}
(2.6)

such that {
∆u + µu = 0, on Ω,

∂u/∂ν = h, on ∂Ω,
(2.7)

where the normal derivative is understood in a weak sense according to Definition 2.2,
and where µ is a fixed real parameter.

Theorem 2.4. If Ω ⊂ Rd is a bounded open subset with Lipschitz boundary and µ
is not an eigenvalue of the negative Neumann–Laplace operator −∆N , then for any
h ∈ L2(∂Ω) the Neumann problem (2.7) has a unique solution in H1(Ω).

Proof. According to Corollary 2.1, if µ /∈ σ(−∆N ) then µ /∈ σ(Λ). This means that for
any linear continuous functional F on H1(Ω) there exists a unique solution u ∈ H1(Ω)
to the equation∫

Ω

∇u∇v dx− µ(u, v)L2(Ω) = F (v) for all v ∈ H1(Ω). (2.8)
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This holds also for
F (v) :=

∫
∂Ω

hv dσ,

since the trace operator from H1(Ω) into L2(∂Ω) is a linear continuous mapping for
a Lipschitz domain. Applying (2.8) for v ∈ D(Ω) one obtains ∆u + µu = 0. Then
from the definition of the weak normal derivative we deduce that u ∈ D(∂/∂ν) and
∂u/∂ν = h. Uniqueness of the solution of (2.7) follows from the uniqueness of (2.8).2

3. The boundary value problem via a moment problem

Throughout this section Ω is a bounded open set in Rd with Lipschitz boundary ∂Ω.
Moreover, Γ ⊂ ∂Ω is a given Borel set. On ∂Ω we consider the surface measure dσ.
Given f, g ∈ L2(Γ) we consider the boundary value problem

BP(f, g)


u ∈ D(∂/∂ν),
∆u + µu = 0 on Ω,

u = f on Γ,

∂u/∂ν = g on Γ.

Here ∂u/∂ν ∈ L2(∂Ω) has to be understood in the sense of Definition 2.2. Moreover,
µ ∈ R is a given parameter. In applications µ = k2 for some k > 0. We will always
assume that µ /∈ σ(−∆N ). Then, given ϕ ∈ L2(∂Ω \ Γ), by Theorem 2.4 there exists a
unique solution of the Neumann Problem

NP(g, ϕ)


u ∈ D(∂/∂ν),
∆u + µu = 0 on Ω,

∂u/∂ν = ϕ on ∂Ω \ Γ,

∂u/∂ν = g on Γ.

Thus BP(f, g) has a solution if and only if there exists ϕ ∈ L2(∂Ω \Γ) such that the
solution of NP(g, ϕ) satisfies u = f on Γ (by which we mean more precisely Tr(u) = f
dσ-a.a on Γ).

This in turn can be described by the following moment problem.

Theorem 3.1. Assume that µ /∈ σ(−∆N ). Let ϕ ∈ L2(∂Ω\Γ) and let u be the solution
of NP(g, ϕ). Then u = f on Γ if and only if

MP(f, g)
∫

∂Ω\Γ

ϕv dσ =
∫

Γ

[
f

∂v

∂ν
− gv

]
dσ for all v ∈ V (µ, Γ).

Here V (µ, Γ) consists of all µ-harmonic functions in D(∂/∂ν) whose normal derivative
vanishes on ∂Ω \ Γ, i.e.,

V (µ, Γ) :=
{

v ∈ D
( ∂

∂ν

)
: ∆v + µv = 0 in Ω, and

∂v

∂ν
= 0 on ∂Ω \ Γ

}
,
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Of course, to say that v ∈ D(∂/∂ν) is µ-harmonic means that ∆v+µv = 0 in the sense
of distributions, or equivalently, since v ∈ H1(Ω),

∫
Ω

∇v∇w = µ

∫
Ω

vw for all w ∈ H1
0 (Ω).

Proof of Theorem 3.1.
a) First of all we note that for µ-harmonic functions v1, v2 ∈ D(∂/∂ν) one has

∫
∂Ω

∂v1

∂ν
v2 dσ =

∫
∂Ω

v1
∂v2

∂ν
dσ. (3.1)

In fact, since ∆vj = −µvj , by the definition of the normal derivative

∫
Ω

∇vj∇v dx− µ

∫
Ω

vjv dx =
∫

∂Ω

∂vj

∂ν
v dσ

for all v ∈ H1(Ω). Thus taking j = 1, v = v2 and j = 2, v = v1 gives the same
expression on the left hand side. This proves (3.1)

b) Now, let ϕ ∈ L2(∂Ω \ Γ) and let u be the solution of NP(g, ϕ). Then, since
∂u/∂ν = g on Γ and by a), for all v ∈ V (µ, Γ) we have

∫
∂Ω\Γ

ϕv dσ =
∫

∂Ω\Γ

∂u

∂ν
v dσ =

∫
∂Ω

∂u

∂ν
v dσ −

∫
Γ

gv dσ

=
∫

∂Ω

u
∂v

∂ν
dσ −

∫
Γ

gv dσ =
∫

Γ

(
u

∂v

∂ν
− gv

)
dσ.

Thus, if u
∣∣
Γ

= f then ϕ satisfies MP(f, g). Conversely, if ϕ satisfies MP(f, g), then
it follows from the identity above that

∫
Γ

u
∂v

∂ν
dσ =

∫
Γ

f
∂v

∂ν
dσ

for all v ∈ V (µ, Γ). By Theorem 2.4 there exists v ∈ V (µ, Γ) such that ∂v/∂ν = u− f
on Γ. Hence ∫

Γ

(u− f)2 dσ =
∫

(u− f)
∂v

∂ν
dσ = 0

and thus u = f on Γ. 2
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Concerning existence we now have the following characterization.

Corollary 3.2. Assume that µ /∈ σ(−∆N ). Let f, g ∈ L2(Γ). Then the problem
B(f, g) has a solution if and only if the moment problem MP(f, g) has a solution
ϕ ∈ L2(∂Ω \ Γ).

Concerning uniqueness we obtain the following result.

Corollary 3.3. Let µ ∈ R \ σ(−∆N ). The following assertions are equivalent:

(i) The space {v
∣∣
∂Ω\Γ

: v ∈ V (µ, Γ)} is dense in L2(∂Ω \ Γ);

(ii) if u ∈ D(∂/∂ν) such that ∆u + µu = 0, u
∣∣
Γ

= 0 and (∂u/∂ν)
∣∣
Γ

= 0, then u = 0;

(iii) for all f, g ∈ L2(Γ) the problem BP(f, g) has at most one solution.

Proof. The equivalence of (ii) and (iii) is obvious by linearity.
(i) ⇒ (ii). Let u ∈ D(∂/∂ν) such that u

∣∣
Γ

= 0 and (∂u/∂ν)
∣∣
Γ

= 0. Let ϕ =
(∂u/∂ν)

∣∣
∂Ω\Γ

. Then ϕ satisfies MP(0, 0), i.e.
∫

∂Ω\Γ
φv dσ = 0 for all v ∈ V (µ, Γ). By

assumption (i) this implies that ϕ = 0. Hence u = 0 since µ /∈ σ(−∆N ).
(ii) ⇒ (i). Let ϕ ∈ L2(∂Ω \ Γ) such that

∫
∂Ω\Γ

ϕv dσ = 0 for all v ∈ V (µ, Γ).
Then ϕ satisfies MP(f, g) for f = g = 0. Let u be the solution of NP(0, ϕ). Then
u
∣∣
Γ

= 0 by assumption. Hence ϕ = (∂u/∂ν)
∣∣
∂Ω\Γ

= 0. This proves the density
assertion (i). 2

Here Γ ⊂ ∂Ω is an arbitrary Borel set. If Γ has non-empty interior with respect
to the topology relative to ∂Ω, then we will see in the next section that the equivalent
conditions of Corollary 3.3 are satisfied.

Finally we add some remarks concerning the regularity assumptions.

1. If Γ is the entire boundary ∂Ω, then for each g ∈ L2(∂Ω) there is a unique solution
u ∈ D(∂/∂µ) which is µ-harmonic such that ∂u/∂ν = g on ∂Ω. Thus BP(f, g) has a
solution if and only if f = u

∣∣
Γ
.

2. Also if Γ is different from the entire boundary, some regularity on f is needed in
order a solution to exist. In fact, f is the trace of an H1-function on Γ.
3. Theorem 3.1 depends crucially on the fact that we require the solution u of BP(f, g)
to lie in D(∂/∂ν), i. e., the normal derivative of u has to exist on the entire boundary.
One might also investigate a weaker assumption, namely that ∂u/∂ν exists merely on Γ

in some appropriate sense.

4. Uniqueness of the inverse problem

Let Ω ⊂ Rd be an open, connected, bounded set with Lipschitz boundary ∂Ω. Let
Γ ⊂ ∂Ω. Assume that there exist z ∈ ∂Ω, r > 0 such that

B(z, r) ∩ ∂Ω ⊂ Γ,

where B(z, r) = {x ∈ Rd, |x− z| < r}.
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Theorem 4.1. Let µ ∈ R, u ∈ H1(Ω) such that −∆u = µu in D(Ω)′. If Tr(u) = 0
on Γ and ∂u/∂ν ∈ L2(∂Ω) such that ∂u/∂ν = 0 on Γ, then u = 0.

Proof. Let
Ω̃ = Ω ∪B(z, r),

ũ =

{
u on Ω,

0 on B(z, r) \Ω.

We show that
−∆ũ = µũ

in D′(Ω̃). This implies that ũ is analytic in Ω̃. Since Ω̃ is connected, it follows that
ũ ≡ 0 (because ũ ≡ 0 on an open set), cf. [7], Corollary 4.4.4.

Let v ∈ D(Ω̃). We have to show that

−
∫

Ω̃

ũ∆v dx = µ

∫
Ω̃

ũv dx.

Since (∂u/∂ν)
∣∣
Γ

= 0 and v
∣∣
∂Ω\Γ

= 0, we have

µ

∫
Ω̃

ũv dx =
∫

Ω

µuv dx = −
∫

Ω

∆uv dx =
∫

Ω

∇u∇v dx−
∫

∂Ω

∂u

∂ν
v dσ

=
∫

Ω

∇u∇v dx = −
∫

Ω

u∆v dx +
∫

∂Ω

u
∂v

∂ν
dσ = −

∫
Ω̃

ũ∆v dx,

since u = 0 on Γ and ∂v/∂ν = 0 on ∂Ω \ Γ. This proves the claim. 2

For the case when ∂Ω is of class C2, the uniqueness result is shown in [5], Corol-
lary 4.4.
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10. T. Regińska and K. Regiński, Approximate solution of a Cauchy problem for the Helmholtz
equation. Inverse Problems 22 (2006), 975–989.
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