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1. Introduction

ABSTRACT

Keratin intermediate filament networks are part of the cytoskeleton in epithelial cells. They were found
to regulate viscoelastic properties and motility of cancer cells. Due to unique biochemical properties of
keratin polymers, the knowledge of the mechanisms controlling keratin network formation is
incomplete. A combination of deterministic and stochastic modeling techniques can be a valuable
source of information since they can describe known mechanisms of network evolution while reflecting
the uncertainty with respect to a variety of molecular events. We applied the concept of piecewise-
deterministic Markov processes to the modeling of keratin network formation with high spatiotemporal
resolution. The deterministic component describes the diffusion-driven evolution of a pool of soluble
keratin filament precursors fueling various network formation processes. Instants of network formation
events are determined by a stochastic point process on the time axis. A probability distribution
controlled by model parameters exercises control over the frequency of different mechanisms of
network formation to be triggered. Locations of the network formation events are assigned dependent
on the spatial distribution of the soluble pool of filament precursors. Based on this modeling approach,
simulation studies revealed that the architecture of keratin networks mostly depends on the balance
between filament elongation and branching processes. The spatial distribution of network mesh size,
which strongly influences the mechanical characteristics of filament networks, is modulated by lateral
annealing processes. This mechanism which is a specific feature of intermediate filament networks
appears to be a major and fast regulator of cell mechanics.

© 2008 Elsevier Ltd. All rights reserved.

process for individual IF are now understood (Herrmann et al.,
2007), the mechanisms governing the formation of networks still

The filament scaffold of the cytoskeleton determines the shape
and biophysical properties of eukaryotic cells and, therefore,
participates in the regulation of pivotal biological functions such
as cell migration (Ballestrem et al., 2000). It consists of three
biopolymer systems (actin filaments, microtubules, intermediate
filaments—IF). Each filament system is characterized by specific
biochemical and biophysical features (Wagner et al., 2007) which
in combination with the architecture of the network determine
the mechanical properties of the particular filament system
(Heussinger and Frey, 2007). Although some steps of the assembly
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remain to be investigated (Oshima, 2007). IF assembly does not
depend on ATP or GTP but is modulated by posttranslational
modifications of IF proteins, i.e. phosphorylation or glycosylation,
which influence the solubility of IF oligomers (Coulombe and
Omary, 2002). IF are non-polarized polymers and the addition of
subunits and even filaments can occur at various locations along a
preformed filament (Herrmann and Aebi, 2000; Windoffer et al.,
2004). This extends the set of possibilities for IF network
formation and remodeling in comparison to actin filaments and
microtubules. In contrast to the other filament systems, there are
only very few IF binding proteins known to regulate the network
architecture. Models simulating actin filament or microtubular
network formation are based on anisotropic growth patterns due
to the polarity of these polymers. Thus, these models are not ideal
to study the structural dynamics of IF networks.
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IF monomers represent a heterogenous group of proteins with
a tissue specific expression (Herrmann et al., 2007). Keratins are
the IF proteins expressed in epithelial cells. Keratin filament
networks were shown to be important for cellular mechanics
(Coulombe and Wong, 2004; Magin et al., 2007). Their global
architecture is regulated by phosphorylation and defines the
viscoelastic properties of carcinoma cells at large deformations,
thereby overriding the impact of the actin network (Beil et al.,
2003). A model-based analysis revealed distinct changes of
keratin network architecture in response to a modulation of
keratin solubility by kinases in carcinoma cells (Beil et al., 2005,
2006). Due to the non-linear relationship between the mesh size
of polymer networks and the elastic shear modulus (Morse, 1998),
even small alterations of cytoskeletal network architecture can
significantly change the elasticity of the network and, hence,
the mechanical characteristics of cellular compartments (Fleischer
et al,, 2007). Thus, the analysis of the regulation of keratin network
architecture is essential for an understanding of cell mechanics
which eventually might help to interfere with cancer cell
migration. However, the currently available information on
intracellular keratin networks is insufficient to understand the
spatiotemporal regulation of their architecture. Although mathe-
matical models simulating intracellular processes must frequently
apply hypothetical conditions or deal with uncertainties, they can
nevertheless provide important insights (Mogilner et al., 2006).
A previous model of IF network synthesis focused on the
intracellular distribution of filaments as modulated by external
forces and did not regard particular spatial interactions between
filaments, e.g. branching (Portet et al., 2003). Thus, we developed a
new model which combines deterministic elements with stochas-
tic processes to model distinct network formation events.

The basic subunit of keratin filaments is a heterodimer of a
type I and II keratin (Moll et al., 2008). Filaments are synthesized
through formation of tetra- and larger oligomers which are still
soluble and are, thus, subject to diffusion. These oligomers are
eventually assembled into unit-length filaments (ULFs) which
are the building blocks of longer filaments and networks (Kirmse
et al.,, 2007). Thus, the build-up of keratin networks can be
regarded at different scales as it is the case for many cellular
processes (Mogilner et al., 2006). Our model is focussed on the
level of structurally interacting filaments which is relevant for cell
mechanics (Heussinger and Frey, 2006) and can be monitored by
electron microscopy (Beil et al., 2005). At this level, however, the
number of observable events is by at least a magnitude smaller
than that at the level of biochemical events during oligomer
synthesis and distribution. These events cannot be modeled as a
bulk reaction within the limited space of cells. Thus, our approach
models network growth as a sequence of discrete points in time,
when macromolecular building blocks from a pool of soluble
keratin oligomers are added to the network. These times are
determined by a (continuous time) stochastic point process,
whose inter-occurrence times are chosen as for the stochastic
simulation algorithm for chemical reaction systems, which has
been introduced by Gillespie (1977). At the times of network
growth certain network formation events, whose exact molecular
mechanisms and, hence, regulation are still unknown (Oshima,
2007), are triggered according to a probability distribution
which is controlled by model parameters. A variation of these
parameters allows for studying the effect of particular network
formation mechanisms on structural properties of the network. In
addition, our model has to monitor the system at the scale of
precursor molecules, i.e. diffusion of soluble oligomers, which can
either be described as a set of random walks of individual
molecules or as a bulk process by a partial differential equation
(PDE). In this study, we assume that the number of soluble keratin
subunits is always large enough to be modeled by a deterministic

approach. By using this approach a wide range of subunit
concentrations can be investigated through simulations. The spatial
distribution of soluble oligomers as governed by diffusion eventually
determines the specific locations of network formation events, thus,
functionally interconnecting the two scales of the model. The
specific approach to combine two scale-dependent methods linking
temporal dynamics with a spatial component for simulating keratin
network formation appoints this model to the class of piecewise-
deterministic Markov processes (PDMP—Davis, 1984).

This paper will first present the modeling concept followed by
the description of the implemented algorithms for network
simulations and analysis. These simulations were performed to
investigate the impact of specific structure-defining events on
network architecture, notably on the formation and distribution of
meshes and connectivity, and to analyze the interplay between
these events and diffusion. The results will show that the system
is reaction-limited. Branching is found to be pivotal for modulat-
ing the mesh size and thereby the elasticity of keratin networks
(Morse, 1998) and for generating structural inhomogeneities
within networks, i.e. microgel patterns. This latter process was
recently observed in carcinoma cells (Beil et al., 2005) and might
be responsible for fine-tuning the mechanical properties of
subcellular compartments as required during cell migration
through a physically inhomogeneous environment.

2. Model

A detailed analysis of network architecture requires high spatial
resolution of the simulation results. Thus, the model has been
designed for small observation windows. In our previous studies,
we investigated two-dimensional electron microscopy images of
keratin networks taken from peripheral cytoplasmatic compart-
ments (Beil et al., 2005, 2006) which are pivotal for keratin network
dynamics (Windoffer et al., 2004). These compartments are very
thin and contain mostly a single layer of keratin filaments. Thus,
network formation in this study is simulated on a planar square
observation window W = [0, []> c R? for some [>0. To avoid any
bias caused by specific configurations of preexisting filament
systems, our model is designed to study the de novo formation of
a keratin network within this observation window. The initial
concentration of soluble oligomers was estimated from the total
length of the filament system observed in electron microscopy
images of carcinoma cells (Beil et al., 2005, 2006).

The model is based on a Markovian sequence of random
network formation times, which are determined as by the
Gillespie algorithm. Whereas the classical Gillespie algorithm
assumes a spatially homogeneous reaction system, the model in
this study focusses on the spatial distribution of events, since it is
crucial for network morphology. Therefore, the model comple-
ments the global reaction kinetics given by the Gillespie algorithm
by a mechanism controlling the spatial distribution of locations
for network growth. Since network formation is fueled by the pool
of soluble filament precursors, locations for filament assembly are
picked based on the spatial distribution of soluble precursors. The
latter is modeled as a concentration field, which, in order to
determine growth locations, is interpreted as a probability field.
Apart from local consumption due to filament assembly, the
distribution of soluble precursor molecules is governed by a
diffusion process proceeding between network formation events
and described by a deterministic PDE.

2.1. Soluble and filamentous keratin pool

Assembly of IF proceeds from a pool of soluble keratin
tetramers. Since IF are highly insoluble in physiological buffers
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(Kirmse et al.,, 2007) we assume that no disassembly occurs.
Filaments are the result of a longitudinal annealing process
involving a variety of oligomeric subunits, which are formed
through various stages of lateral annealing. Phosphorylation
of monomers is a crucial mechanism regulating the transfer of
keratin oligomers between the soluble and the filamentous pool.
Whereas in a dephosphorylated state, keratins tend to assemble to
filamentous structures (Strnad et al., 2002), phosphorylation
induces dissolution of keratin filaments (Strnad et al., 2002;
Omary et al., 2006). In the dephosophorylated configuration,
keratin dimers exhibit a strong tendency to form tetramers of
~45nm length (Geisler et al., 1998). During filament assembly,
lateral aggregation of 8 tetramers results in a filament subunit
referred to as a ULF which has a length of about 60 nm (Herrmann
et al., 1999). However, it is not yet fully understood which of the
various oligomeric subunits contribute most substantially to the
annealing process of filament formation in vivo (Herrmann et al.,
2002; Herrmann and Aebi, 2004). We assume that the transition
from the soluble pool to the filamentous compartment is initiated
by dephosphorylation events starting with a pool of fully
solubilized keratin oligomers. The resulting keratin filaments are
represented by a track of connected line segments. Since each of
the line segments models a filament building block consisting of 8
tetramers, the segment length is chosen as 45 nm. This length is
approximately gained when a 60nm long ULF is added to a
filament end, taking into account that longitudinal annealing
involves an overlap of the ULFs participating. The intracellular
distribution of soluble keratins is assumed to be governed by
diffusion (Portet et al., 2003). The soluble pool is regarded as a
concentration field on the observation window W. Keratin
molecules transfer from the soluble into the filamentous pool
during the course of network formation. Besides soluble pool
consumption by network growth, the model assumes time
evolution of the soluble pool to be controlled by a diffusion
process, which is described by the following PDE:

d o? o?
&C(t, X)=D (E)x% C(t,x) + aX%C(t,x)>,

where C(t,x) denotes the soluble pool concentration at time t>0
and at the location x = (x;,x;) in the interior intW of the
observation window; the diffusion constant D>0 determines
the velocity of the diffusion process. Keratin molecules may leave
as well as enter the observation window. Assuming a homo-
geneous soluble keratin concentration outside the observation
window, this is reflected by imposing periodic boundary condi-
tions for the diffusion PDE. These boundary conditions force
keratin molecules which are leaving the observation window at a
particular boundary location to reenter on the opposite side.
Mathematically, by imposing periodic boundary conditions the
solutions of the above PDE are required to satisfy

C(t,(r,0)) = C(t,(r,1)) and C(t,(0,s)) = C(t,(,s))
for all r,s € [0,1].

It can be shown that the above PDE with periodic boundary
conditions has a unique solution for all of the bounded initial
conditions C(0,x), x € int W, arising in the context of our model.
Moreover, the solution of the initial value problem is mass-
preserving, i.e. the total amount of soluble keratin remains
constant in time. Numerical solutions may be obtained by means
of standard techniques such as finite difference schemes.

The initial state of the soluble pool is modeled as a constant
tetramer concentration field on the observation window W.
The total amount of soluble keratin at t=0 is given by
Jw C(0,x)dx = cl’.

For the configuration of the soluble and the filamentous pool at
time t>0 we introduce the notations X!" and X\?, respectively.
These random variables specify the state X, = (X{V,X?) of the
model at time t>0.

2.2. Process of network formation

2.2.1. Mechanisms of network formation

A first mechanism of network formation is filament nucleation,
meaning the aggregation and annealing of small granule-like
keratin particles, followed by an elongation process forming a new
filament (Fig. 1A). Windoffer et al. (2004) report the observation
of nucleation phenomena by means of fluorescence microscopy.
In our model, we assume the elongation of keratin filaments to be
caused by longitudinal annealing of filament building blocks at
the filament ends (Fig. 1B). Filament elongation has been studied
in vitro by Herrmann and Aebi (2000) and Kirmse et al. (2007).

For the formation of the inter-filament connections, i.e. the
nodes of the network, the model allows for simulating different
mechanisms. Firstly, we consider the possibility of lateral
annealing of soluble keratin along the existing filaments. Thus,
it is assumed that network building blocks such as keratin
tetramers are able to attach laterally along filamentous structures,
thereby initiating a new network branch at the lateral annealing
site (Fig. 1C). The corresponding vertex in the network graph is of
degree 3, which means that three network segments emerge from
this node, thus forming a Y-junction.

A second mechanism generating Y-junctions in the network is
end-on integration of filament tips into the network, also referred
to as merging (Fig. 1D). Merging has been observed in vivo by
Windoffer et al. (2004). In electron microscopy images of keratin
networks, a certain fraction of the inter-filament connections are
of degree 4. Therefore, once the growth trajectories of two
filaments intersect, our model decides with a fixed merging
probability g whether merging occurs and a node of degree 3 is
formed or a node of degree 4 is generated. In the sequel the latter
event will be referred to as crossing (Fig. 1E). The parameter g was
chosen in a way that the relative frequencies of vertex degrees in
the final network graphs were close to the values from our
experimental data (Beil et al., 2005, 2006).

2.2.2. Time evolution of the network formation process

The approach chosen to model the time evolution of the
network is adapted to the high spatial resolution of the
simulations. At high resolution, filament building blocks such as
keratin tetramers and ULFs are rather large elongated objects.
Network formation occurs whenever those elongated building
blocks attach to the filament network. Times of network
formation are described as a stochastic point process {7y, k =
1,2,...} on the positive real line. The random variables 7, describe
random times of network formation events, i.e. at these points in
time filament building blocks transfer from the soluble pool into
the filamentous pool by annealing. Keratin annealing is repre-
sented by the instantaneous addition of a new line segment to the
segment system characterizing the network at the corresponding
network formation time. Simultaneously, the soluble pool con-
centration is locally reduced by the amount consumed by network
growth. Apart from these instantaneous local reductions of the
soluble pool, the concentration fields of soluble keratin are
regarded as permanently subjected to diffusion. Technically
speaking, during the time intervals (t,_1,7y), k = 1,2,..., defining
79 = 0, the diffusion PDE is applied to the initial concentration
field X' . For k>2, the latter describes the soluble pool
distribution right after the last network formation event, i.e.
soluble pool consumption has already been incorporated. For
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Fig. 1. Mechanisms of network formation. (A) Nucleation of a filament. (B) Elongation of a filament. (C) Lateral keratin annealing. (D) Merging of a filament end with the

network. (E) Crossing of two filaments.

k>1, the distribution of the k-th network formation time 7
is determined by the distribution of the inter-occurrence times
T1 —T0,... For the random variable 7, —1,_; we
assume a conditionally exponential distribution, given the state
of the concentration field at time 7,_; is X(lef] =C, ie.

> Tk — T—1-

P(Tk — Tk-1 <t|X(])

w, =0 =1-—exp(-tAC)) forall t>0.

This definition follows both, the Gillespie algorithm and the
definition of a PDMP. By the properties of the exponential
distribution, the state-dependent parameter A(C)>0 describes
the momentarily expected number of network formation events
per unit time, given that the soluble pool is in state C = {C(x),x €
W} (note that in contrast to C(t,x) we only consider a particular
spatial concentration field without time evolution). Since network
formation is dominated by the elongation of a relatively small
number of filament ends within the soluble keratin pool, we
assume the reaction kinetics to be close to first order. Taking into
account that 8 keratin tetramers are consumed for the formation
of a single new filament segment, the following choice of A(C)
ensures that the reaction follows a first order kinetics (Gillespie,
1977,1992):

2C) = ga

where the reaction constant k governs the velocity of the reaction
and C = f,, C(x)dx denotes the total amount of keratin in the
concentration field C.

2.2.3. Choice of the mechanism for network formation

At any time 71, of network formation, which has been
determined by the stochastic point process {t,} introduced in
Section 2.2.2, the mechanism of network formation needs to be
specified. This is done in a two-step procedure that is illustrated
in Fig. 2, part 1. First of all, based on certain conditional
probabilities it is decided whether a new filament is initiated
(event A1) or an existing one elongates (event A;). This step of the

random decision process will be referred to as choice of the
basic network growth type. Given that immediately before the
event the soluble pool concentration field is C and the set of
filament ends of the current network configuration ¢ possibly
elongating is s(¢), the following conditional probabilities are
assigned to A; and A;:

M;C
PA;1Xs- = (C, &) = ——=—"—,
(A1l (&%) MiC 1 50)
Is()
PAyXr,— = (C, &) = ——2t
(Az] (&%) MiC + 5O

where |s(¢)| denotes the finite number of elements in s(¢). Note
that by the notation t,— we refer to left limits of the state at the
time 7. The constant M; >0 is a model parameter controlling the
likelihood of those network formation events that are initiations
of new filaments. By the above definition, the conditional
probability of A,, i.e. of a network formation event being filament
elongation, is modeled to be increasing in the number [s(&)
of filament ends possibly attracting filament building blocks for
longitudinal annealing. Filament initiation (event A;) includes
nucleation as well as lateral annealing. Observations by Windoffer
et al. (2004) suggest that the initiation of new filaments is
preceded by the formation of small keratin clusters. Therefore,
this event is assumed to require high levels of soluble keratin
concentration. Consequently, the probability of A; is modeled to
be decreasing with reduction of the amount C of soluble pool. In
case the above random experiment has classified the basic
growth type as filament initiation, a second random experiment
determines whether nucleation (event B;) or lateral annealing
(event B;) occurs. Lateral annealing is more likely to occur
when the more potential annealing sites are available. Therefore,
the probability of lateral annealing is modeled to be increasing in
the total length of the filament network. This is reflected by the
following definition of the conditional probabilities, given the
length |&| of the network ¢ immediately before the network
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Network formation event at time 7},
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Fig. 2. Illustration of model behavior at a network formation time 7. Definitions:
A; initiation of a new filament; A, elongation of a filament; B; free nucleation of a
filament; B, lateral annealing; x location in the observation window W, X‘ka and
s(Xg[) network and filament ends before the formation event, respectively; My,
M;, g model parameters determining the probabilities of filament initiation vs.
elongation, nucleation vs. lateral annealing and merging of a filament end with
other network parts vs. crossing, respectively.

formation time 71y,

1
PO X = C D=y
p M
Pl X = C0) = ﬁ'ﬁ'\a

where the constant M, >0 is a model parameter. Note that by
means of the model parameters M; and M, the frequency of the
single network formation mechanisms to occur can be controlled.
In particular, it is possible to simulate scenarios without any
lateral annealing by setting M, = 0.

2.2.4. Choice of the location for network formation

Once the mechanism of network formation has been deter-
mined, a location for keratin annealing, i.e. network building,
needs to be specified (Fig. 2, part 2). This is done according to a
probability distribution of locations, which is based on the
momentary distribution of soluble pool in the observation

window. For this purpose, spatial probability fields are con-
structed such that potential network formation locations which
are equipped with high local soluble pool concentrations are
preferred sites of keratin annealing in comparison to those whose
local concentrations are rather low. In the following let b(z, p)
denote the circle with radius p centered at z. In case of an
elongation (event A,), and given the state of the system is (C, £), a
filament end z € s(¢) is picked from the set s(¢) of all filament ends
according to the following conditional probability:

fb(z,p) C(X) dX
Z}’ES(E) fb(y,p) C(x)dx ’

In case of a nucleation (event B;), the random location z e W is
modeled to be distributed according to the conditional density

.]b(z,p) C(X) dX
Jw ﬁ?(y,ﬂ) Cx)dxdy’

The set of potential locations for lateral annealing (event B,) is the
filament network & at the given network formation time. Thus, for
determining a random site z € £ for network formation given B,
we introduce the following conditional density concentrated on
the segment system ¢ representing the network:

ﬁ;(z, 0 C(x)dx
f 4 f b(y.p) Clodxdy’

The parameter p defines the circular zone influencing the local
probability of keratin annealing. Note that, following our periodic
boundary approach, subsets of the circles b(y, p) protruding the
observation window are understood to be shifted to the opposite
side of the window.

P(zlA2, Xr,- = (C,0) =

f@B1. Xy - = (C.Q) =

f@B2, Xe - = (C,) =

2.2.5. Filament growth and soluble pool consumption

Network growth is modeled as the instantaneous addition of
small line segments to the existing network at the network
formation times. A quantitative investigation of keratin network
morphology has been performed in electron microscopy images
from the cortex of human cancer cells. The filaments in these
compartments exhibited almost straight shapes (Beil et al., 2005).
Bearing in mind the small persistence length of IF, filament
growth processes cannot be expected to directly account for this
absence of curvature. However, to relate simulation results to real
image data, we assumed straight filament elongation for our
simulations, i.e. whenever a filament elongates there is no
orientational deviation between the new line segment and the
filament end it is appended to. Since electron microscopy data do
not suggest the existence of preferred filament directions in
keratin networks (Beil et al., 2005), the orientation of new line
segments resulting from lateral annealing and nucleation is
picked randomly according to the uniform distribution on [0, 27).

Corresponding to the periodic boundary conditions imposed
on the soluble pool diffusion, for each filament leaving the
observation window a new one is generated at the opposite side of
the observation window. Orientations of the newly initiated
filaments are assigned randomly. This boundary behavior of the
filaments reflects the interaction of the observed part of the
network with a homogenous environment.

End-on integration of a filament into the network (Fig. 1D) is
modeled to occur with probability q, whenever the new segment
intersects parts of the already existing network.

We will now specify the consumption of soluble keratin pool
resulting from keratin annealing. Before soluble pool is consumed,
a new line segment ¢;, has been determined as described above.
In the following, the dilation ¢;, & b(0,r) of £;, denotes all points in
the observation window whose distance to ¢;, is no more than r.
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Parts of the segment dilations protruding the observation window
are shifted to the opposite side.

Given that C is the concentration field at a network
reorganization time t,—, there is a well defined dilation ¢;, &
b(0,r) of the new line segment ¢, containing exactly the 8
tetramers that are assumed to form the new filament part.
Technically speaking, given C there is a dilation radius r>0
satisfying

/ C(x)dx = 8,
£, ®b(0,r)

provided that C>8. Note however, that in our simulations the
pathological case C<38, i.e. of concentration fields not containing
enough tetramers to find these dilation radii, did not occur and
was therefore neglected. We define the concentration field
immediately after network formation by

N 0 if x € £, ® b0, 1),
X ) = {X‘Ilk)_(x) else.

Note that this concentration field serves as the initial condition for
soluble pool diffusion after time t.

Since protein synthesis is neglected, and phosphorylation
events are not modeled, network formation is considered to be
complete when the soluble pool concentration has fallen below a
critical level that does not allow for any more substantial
polymerization.

For investigations of network architecture concerning the
mean number of network vertices and edges it must be taken
into account that keratin filaments have a certain width, whereas
their model representation as line segments reduces them to their
longitudinal axis. For this reason, vertices located closely to each
other (<20nm) should not be interpreted as distinct, i.e. they
have to be contracted. A recursive procedure is applied for this
task, which has been established in Beil et al. (2005).

3. Simulations and analysis of network architecture

The aim of this study was to investigate the effects of distinct
network formation mechanisms as controlled by model para-
meters (Table 1) on the morphology of keratin networks. For this
purpose a simulation algorithm was implemented in Java within
the GeoStoch software library (Mayer et al., 2004).

3.1. Settings

The observation window was discretized by a grid of 500 x 500
pixels with a spatial resolution of 5.3 nm per pixel length. Given
this grid, the solution of the diffusion PDE was numerically
approximated by means of a finite difference scheme.

The simulation outputs, i.e. the final states of the network,
were given as binary images.

Table 1
Model parameters.

l Length of the observation window

D Diffusion constant

k Reaction constant for keratin annealing

P Radius of the circle whose soluble pool determines the probability of
local keratin annealing

q Probability for end-on integration

[4 Background concentration in keratin tetramers per pum?

M; Controls the probability of filament initiation in comparison to filament
elongation

M, Controls the probability of lateral annealing in comparison to free

filament nucleation

Table 2
Standard settings for the simulations.

I Length of the observation window 2.65 um (500
pixels)
D Diffusion constant 0.0005 pm? s~!
k  Reaction constant for keratin annealing 0.004/(tetramer s)
p Radius of the circle whose soluble pool determines the 25nm
probability of local keratin annealing
q Probability for end-on integration 0.8

Due to the transformation of the tetramer concentration fields
representing the soluble pool into spatial probability fields at each
time of network formation, simulations were computationally
demanding. Simulation times totaled around 1.5h per run on an
AMD Opteron 252 processor (2.6 GHz, 8 GB RAM). For each
parameter constellation considered, we conducted 30 simulation
runs in order to control for stochastic variability between different
runs.

Standard settings were chosen as depicted in Table 2. Based on
this standard scenario model parameters were varied in order to
investigate their effects on network morphology. The reaction
constant k was chosen such that the whole network formation
process was finished after around 15 min, which is a time span
found to separate the time of maximal keratin phosphoryla-
tion and reestablishment of the network when keratin networks
are exposed to a phosphorylation pulse (Beil et al., 2005).
Network formation was considered to be finished as soon as the
mean soluble pool concentration had fallen below 150 tetramers
per um>.

3.2. Model parameters to be varied

Apart from the concentration ¢ of the initial soluble pool,
which determines the amount of building material for the
network and was estimated from the mean network length per
unit area in images of cancer cells (Beil et al., 2006), the key
parameters M; and M,, which control the likelihood of specific
network formation mechanisms, were varied. Note that M affects
the choice of the basic network growth type, i.e. the probability
of a network formation event being a filament initiation rather
than the elongation of an existing filament. In case of a filament
initiation, the parameter M, controls the probability of this
initiation being a lateral annealing event rather than a free
nucleation. Whenever one of the above parameters was varied,
the others remained fixed, their values being set to ¢ = 6200,
M; = 0.002 and M, = 0.22.

3.3. Statistical analysis of network characteristics

First order characteristics such as the mean number of network
nodes (i.e. vertices whose degree was at least 3), the mean
number of edges and the mean number of meshes were
considered. Each of these quantities was estimated with respect
to the unit area. We also considered features of network
connectivity and second order characteristics to evaluate cluster-
ing tendencies of the network meshes.

3.3.1. Connectivity

One of the objectives of our statistical analysis was the
assessment of the efficiency of a network formation scenario in
establishing inter-filament connectivity, which is a pertinent
feature of networks that determines their mechanics (Blumenfeld,
2006; Huisman et al., 2007). To obtain a measure for connectivity,
a Euclidean minimum spanning tree (MST) was computed for
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Fig. 3. Sample simulation outputs for different initial concentrations c of soluble keratins.

each connected component of the network graph using Prim'’s
algorithm (Jungnickel, 1999). A MST of a fully connected graph is a
subgraph with the same set of vertices where the latter are
connected by line segments from the original graph’s edge set in
such a way that the total length of all the edges is minimal while
any vertex can still be reached from any other by following the
edges. After the MSTs had been constructed for each connectivity
component, their lengths were added and divided by the length of
the entire graph. This quotient will be referred to as the relative
MST-length. It is a measure for redundancy in the network graph.
Highly connected networks exhibit a low relative MST-length
since a high percentage of their edges can be discarded without
destroying the connectivity of the graph. On the other hand, in
networks with low connectivity many of the edges could only be
removed at the cost of disconnecting the network. Therefore a
high percentage of the original edges is still contained in the MST
and hence the relative MST-length is relatively large.

3.3.2. Pair-correlation function of mesh centers

Network clustering was studied by considering second order
statistics of network meshes. First, a center point was attributed
to each mesh by taking the center of a circle with maximum
possible radius to be inscribed into this mesh. The in-circles were
determined after truncation of all dead ends in the network graph,

since the latter do not contribute to the constitution of the meshes
and are mechanically not relevant. Mesh clustering was quantified
by the analysis of clustering effects in the point patterns of mesh
centers. For this purpose we determined the empirical pair-
correlation function g(r), r>0 of the mesh centers (Stoyan and
Stoyan, 1994). Note that the theoretical pair-correlation function
of a homogeneous Poisson-type point pattern, which is a model
for complete spatial randomness (without clustering), is constant
and equals 1. Values of g(r) greater than 1 indicate that point
pairs of distance r occur rather frequently, whereas values of
g(r) smaller than 1 occur if point pairs with this distance are
relatively rare. Networks exhibiting clusters of small meshes will
thus show a peak of their empirical pair correlation function at
small distances r. Given a point pattern {Sy,..., Sy}, the definition
of g(r) is as follows:

K(lISn, = Sny Il = D Twsw(Sn, 5 Sny)
2nrWn (W + (Sp, — Sl

N 1
80 = Wi 2

where |x — y| is the distance between mesh centers x and y, and
W + x denotes the observation window shifted by the vector x and
|B| the area of a set B c R%. K denotes the Epanechnikov kernel
(Stoyan_and Stoyan, 1994). The bandwidth for K was chosen as
0.15/\/:1, where Z is the mean number of mesh centers per unit
area. The empirical pair-correlation functions for the simulated
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data were obtained by distance-wise averaging of the estimators
over all 30 simulation runs that were performed for each of the
scenarios.

4. Simulation results

For each parameter constellation, the results of the 30
simulation runs performed were visualized by boxplots. Regres-
sion lines and curves were fitted to the mean values.

All sample images displayed were randomly selected from the
simulation runs.
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4.1. Role of the initial soluble pool concentration c for network
architecture

Figs. 3, 4A and B show the response of the network
morphology if the concentration ¢ of soluble keratin at the
beginning of the simulation was varied in steps of 500 tetramers
per um? over the interval [1500, 7500].

Note that the mean number of edges, meshes and network
nodes increased with c. Network connectivity increased with the
background concentration since the relative MST-length decayed
exponentially (Fig. 4B). As a consequence, the efficiency in
establishing network connectivity was almost unaffected by
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Fig. 4. (A, B) Response of the network morphology to variations of c in tetramers per wm?2. The mean number of vertices of degree more than 2, the mean number of edges
and the mean number of meshes per um? grew almost linearly in c. The exponential decay of the relative MST-length indicates that network connectivity increased in ¢ and
showed a stabilizing tendency above a critical level of ¢ = 3500 tetramers per pm?2. (C, D) Response of the mean-value characteristics to variations of the parameter M,
controlling the likelihood of lateral keratin annealing vs. free nucleation. Neither the mean-value characteristics nor the network connectivity were substantially affected by
variations of M. (E, F) Response of the mean-value characteristics to variations of the parameter M; controlling the likelihood of filament initiation in comparison to
elongation. For M; >0.006 there was a substantial decay of the mean number of meshes in M;, whereas the other mean-value characteristics were hardly affected. The
increasing relative MST-length indicated a loss of network connectivity if by increasing M; filament initiation was favored in comparison to filament elongation.
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variations of ¢ as soon as a critical level of 3500 tetramers per um?
was exceeded.

The pair-correlation function did not indicate a major effect of
c on the clustering tendency of network meshes (Fig. 9A). Note
that for c <3500 the point pattern of mesh centers did not contain
enough points for a reliable estimation of the pair-correlation
function.

4.2. Role of filament initiation type for network architecture

In our model, initiation of new filaments during network
formation could either occur as a nucleation in free space or as
lateral keratin annealing at an existing filament (Figs. 1A and C).
The probability of the latter was controlled by the model
parameter M,. Sample images of simulations for different values
of M, can be seen in Fig. 5.

Fig. 4C shows that increasing the probability of lateral
annealing hardly changed the mean-value characteristics of the
network. Furthermore, the efficiency in establishing network
connectivity was also almost unaffected by variations of M,
(Fig. 4D).

The main effect of lateral annealing was an increased tendency
of the network to form microgel structures, i.e. clusters of small
network meshes. If M, was increased, the empirical pair
correlation function g(r) indicated a substantial rise in likelihood
of mesh center distances between 50 and 150 nm (Fig. 9B). Even
without any lateral annealing, i.e. in case M, = 0, the peak of g(r)

indicated a small clustering effect of the meshes. Once M, >1.0,
the effect of further increases of M, on mesh clustering subsided
(besides Fig. 9B see also the simulation results in Fig. 5).

4.3. Role of basic growth type for network architecture

By construction of our model, at each network formation time
the outcome of a Bernoulli experiment determined the basic
type of network growth, i.e. whether a new filament was initiated
or an existing one elongated. Increasing the parameter M,
resulted in a higher probability for filament initiation in relation
to the elongation probability of the existing filaments. Sample
simulation results are displayed in Fig. 6. The mean numbers
of edges and network vertices were hardly affected by variations
of M; (Fig. 4E).

However, network connectivity was harmed if by an increase of
M, the elongation tendency of the filaments was diminished. This
was indicated by the linear growth behavior of the relative MST-
length (Fig. 4F). Furthermore, the mean number of network
meshes substantially decreased with growing M; (Fig. 4E). Thus,
the ability of the filaments to form meshes was reduced if the
elongation tendency of the filaments was diminished in favor of
more filament initiations. Considering Fig. 7, which displays
simulated networks for large values of M;, namely M; = 0.016
and 0.032, the negative impact of decreased filament elongation
tendencies on network connectivity becomes obvious, since in
these cases the keratin tended to form filament clusters rather
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than a homogeneous network. Notice that both the mean number
of network meshes and the relative MST-length appeared to
be hardly affected if small values of M; were considered,
i.e. My €[0.004,0.0055]. A substantial linear growth behavior

occurred only for M; >0.006.

Besides its effect on network connectivity, M; also affected
mesh clustering. If M; was increased, the empirical pair
correlation function g(r) indicated a substantial rise in
likelihood of mesh center distances between 50 and 150nm
(Fig. 9Q).
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4.4. Interaction of parameters My and M,

As soon as a network formation event had been classified as
filament initiation, it was decided according to a state-dependent
discrete distribution if the new filament was initiated by lateral
annealing or by free nucleation in the cytoplasm. Given a filament
initiation event, the conditional probability for lateral annealing
was controlled by the parameter M,. As a consequence of this
modeling approach, not only an increase of the parameter M, but
also an increase of M, resulted in a higher mean number of lateral
annealing events as soon as M, >0. Therefore, simulations were
performed in order to clarify the impact of lateral annealing on
mesh clustering as well as network connectivity. More precisely,
we compared the above simulations for variations of M1, which
included lateral annealing since M, = 0.22 >0, to the case where
lateral annealing was excluded by setting M, = 0. Sample
simulation outputs can be found in Fig. 8.

The response of network connectivity to variations of M;
occurred independently of lateral annealing; if lateral annealing
was excluded by setting M, = 0, the relative MST-length behaved
similarly to the standard scenario.

The impact of M; on mesh clustering was however sensitive to
the choice of M,. Fig. 9D shows that in case M, = 0, clustering
effects were not only less pronounced but unaffected by variations
of My, i.e. of the nucleation intensity (see also Fig. 8). Thus, in our
simulations the network formation mechanism of lateral anneal-
ing solely accounted for pronounced mesh clustering, i.e. the
formation of microgel structures.

4.5. Role of diffusion

Visualizations of concentration fields of soluble oligomers as
presented in Fig. 10 illustrate that low diffusion coefficients can
lead to a localized depletion of the soluble pool. For these
simulations parameter values were selected in a way, which
promoted mesh clustering and a high network connectivity
(M; = 0.012, M, = 0.22). Both scenarios are associated with a fast
soluble pool consumption at a local level and, thus, were expected
to result in a maximum depletion of soluble oligomers. However,
depletion zones and thus diffusion limitations disappeared for a
diffusion coefficient D>8 x 10~* pms~!, which is still a magni-
tude smaller than theoretical values calculated by Portet et al.
(2003). Thus, under these conditions the system can be regarded
as reaction-limited.

The density of nodes, meshes and edges did not change if D
was varied between 5 x 10> and 3.2 x 10~ ums~!. In contrast,
clustering was influenced by very small values for D, which,
however, are more than a magnitude smaller than the values
estimated by Portet et al. (2003) (Fig. 11).

5. Discussion

Whereas many details of the filament assembly and network
formation processes for the actin and microtubular cytoskeleton
are now well understood (Raynaud-Messina and Merdes, 2007;
Schaus et al., 2007) most of the mechanisms involved in the
synthesis of keratin IF networks still remain elusive. Thus,
quantitative models can be useful to identify and characterize
mechanisms which determine the architecture of these networks.
The comparison of keratin networks simulated in this study with
such from electron microscopy images of cancer cells emphasizes
this fact (Fig. 12). Models developed to investigate the formation
of networks of actin filaments or microtubules are based on the
specific biochemical properties of these filament systems. Due to
the polarity of filament growth and restrictions for the angle of
filament branching, such models are anisotropic in nature (Maly
and Borisy, 2001; Haviv et al., 2006). A recent paper by Fass et al.
(2008) presented a Gillespie-like model to investigate actin
filament fragmentation and annealing, but did not analyze these
issues in the context of network architecture. Although actin
filament dynamics are well studied it still appears to be difficult to
address the issue of actin network architecture at all necessary
scales (Mogilner et al., 2006). Nevertheless, several aspects of our
model can be regarded as simplifications of existing models for
actin networks. Apart from the lack of filament polarity, there is
no restriction for the angles of filament branching or interactions
as observed by Windoffer et al. (2004) in living cells. Conse-
quently, keratin networks can be isotropic and fill the cytoplasm
without the need to align with the other (polarized) networks. IF
networks can thereby fulfill their fundamental role as integrators
of cells in a mostly independent way (Lazarides, 1980). Moreover,
since new building blocks can be added at any place along existing
filaments, mesh clusters can easily be produced. Thus, keratin
networks could represent a fast and energy-efficient buffer
system for mechanical stress regardless of its direction and
location.

The new approach to model the spatiotemporal distribution of
the molecular events of keratin network assembly reflects both,
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Fig. 9. (A) Clustering tendency of network meshes in response to variations of c. The pair-correlation function was hardly affected by variations of c. (B) Clustering tendency
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150 nm increased in M, indicating the formation of mesh clusters. (C, D) Clustering tendency of meshes in response to the parameter M, controlling the likelihood of
filament initiation in comparison to filament elongation. In the standard scenario, which included lateral keratin annealing, clustering effects increased in M. If lateral
annealing was excluded (M, = 0) and all new filaments were initiated by free nucleation, M; did not affect the pair-correlation function.

the incomplete understanding of the biological mechanisms
involved and the probabilistic nature of a spatiotemporal reaction
system at different scales, i.e. the scale of soluble keratin
oligomers and of filaments. Although the number of soluble
keratin oligomers is large enough to use a PDE to model diffusion,
this process is also stochastic and could be modeled as a set of
random walks. However, the latter approach is computationally
not feasible for higher concentrations. The timing of network
growth events, which are infrequent compared to oligomer
movements, was modeled by a time-continuous Markov process.
This method is well established to model chemical reactions
(Gillespie, 1977) and favorable in situations where the number of
molecules involved is rather small for some of the reacting species
and deterministic approaches become questionable (Gillespie,
1977,1992; Cao et al., 2005). Gillespie’s algorithm is based on the
assumption that the distribution of the inter-occurrence times
between single reactions only depends on the state of the system
immediately after the last reaction event. The design of a
piecewise-deterministic Markov process leaves this essential
property unchanged. This approach makes these models particu-
larly efficient for computer simulation and is an essential
advantage in comparison to other stochastic processes such as
general Lévy processes or stochastic differential equations whose
simulation is usually based on interpolation of discrete skeletons
and thus requires analysis of approximation errors (Asmussen and
Glynn, 2007).

For investigating the formation of keratin networks, the spatial
structure of the reaction system was at least as important as

global reaction kinetics, the latter being modeled as being first
order, since the dominant component of the reaction was given by
the elongating filament ends. Consequently, the state space of our
stochastic process was chosen as a hybrid of a geometric space,
namely the family of line segment systems, and a function space,
modeling concentration fields of soluble keratin oligomers in the
observation window. Thus, the model differs from classical
Gillespie-type processes, whose states simply describe the
numbers of molecules for all species in the systems at a given
time instead of monitoring the spatial configuration of the system.
Moreover, whereas the Gillespie algorithm leaves the state of the
system unchanged between reaction events, our model also
captures the spatial evolution of the soluble pool between
network formation events. The Gillespie-type component was
solely used to determine the times of network formation.
Locations of network formation were assigned based on the
spatial distribution of the soluble keratin pool fueling network
growth. The time evolution of the soluble pool between network
growth events, which consume soluble oligomers, was modeled
by a deterministic diffusion equation. This model component
constitutes a mean-value approach to what would have been
obtained by modeling Brownian-type movements of single
molecules in the soluble pool. For the choice of network formation
locations, the concentration fields were interpreted as spatial
probability fields. This approach takes into account uncertainty
about the spatial distribution of the soluble keratin pool and
reflects the stochastic nature of the underlying physical process.
Investigation of the concentration fields during simulations allows
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Fig. 11. Mesh clustering in response to variations of the diffusion coefficient D.
Very small diffusion coefficients interfered with the formation of mesh clusters,
whereas mesh clustering was enhanced by rapid diffusion of filament precursor
molecules.

for an easy assessment of diffusion limitations arising for net-
work formation scenarios of interest. This way, the model
provides the opportunity to study the interplay between diffusion,
network growth events and the resulting network morpho-
logy, but requires a more complex structure than simple
Monte Carlo methods. Other situations where stochastic models
for chemical reaction systems have been combined with determi-
nistic components are discussed in Haseltine and Rawlings
(2002).

Fig. 12. Comparison of simulated keratin networks (upper row) with intracellular
keratin networks visualized by scanning electron microscopy (lower row) for two
scenarios: preference of filament elongation (left) and branching (right).

Since the information about keratin network formation is
scarce we restricted the set of possible network formation
mechanisms in our model to processes that can be verified in
experiments. It includes filament nucleation and elongation,
lateral annealing and merging of filaments. Some of these
processes were already observed in vitro or in vivo (Windoffer
et al., 2004; Kirmse et al., 2007). These processes represent
discrete events in space and time at the scales regarded in our
simulations. The mathematical model for the built up of the
network was designed in a way that permitted one event per
time point, the latter being determined by a point process on the
positive real line. The selection of network formation mechanisms
for the events was controlled by only two parameters of the
model, namely M; and M,. In the simulation studies, we
investigated the impact of these two parameters and the initial
background concentration ¢ on network morphology. Simulation
outputs suggest that the background concentration may be
viewed as a scaling parameter of network mean value character-
istics, which grew almost linearly. The relative MST-length
decayed exponentially, thus, well connected networks were
established once a concentration of 3500 tetramers per pm?
was exceeded. Network connectivity was not influenced by the
parameter M, controlling the frequency of lateral annealing
events (Fig. 4D), whereas it seems to be substantially dependent
on the relation between filament elongation and initiation events,
which was determined by M; (Fig. 4F). High network connectivity
seems to be favored by rapid elongation of the filaments once they
have been initiated. Rapid filament elongation has also been
observed in vivo by Windoffer et al. (2004) and may thus be a key
factor for the high degree of connectivity found in image data of
keratin networks. This process, however, might be restricted by
the diffusion-limited supply with soluble Kkeratin oligomers.
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However, the diffusion coefficient for soluble oligomers has to be
very small to create a system which is diffusion-limited. Even in
the absence of experimental data for intracellular keratin
diffusion coefficients, theoretical values estimated by Portet et
al. (2003) are much greater than the threshold for the switch from
a reaction- to a diffusion-limited system. Thus, it is fair to assume
that keratin network synthesis is reaction-limited. However,
experimental studies investigating the intracellular diffusion of
keratin oligomers are required to verify this hypothesis.

Our simulation experiments revealed lateral annealing to be a
mechanism that controls the formation of mesh clusters. Cluster-
ing tendencies of network meshes can also be observed in
electron microscopy data of keratin networks (Beil et al., 2005).
In order to explain the impact of lateral annealing on clustering
effects, series of images displaying the network at different times
throughout its formation process were generated. These show that
enhancing the likelihood of lateral annealing in comparison to
free nucleation favored the formation of several spatially
segregated centers of keratin annealing activity. This was due to
the fact that the frequently occurring lateral annealing events
were confined to those locations already occupied by filaments.
By the end of network formation, these annealing centers
exhibited a microgel structure. On the other hand, if the likelihood
of lateral annealing was reduced in favor of free nucleation, new
filaments were initiated evenly spread out over the observation
window. As a consequence, neither preferred sites of network
formation nor pronounced microgel structures emerged.

In the standard setting of parameters the pair-correlation
function also indicated pronounced mesh clustering when the
parameter M; controlling the frequency of filament initiations
was increased. This is plausible since for each filament initiation
the model decided randomly if the new filament was initiated by
lateral annealing or by free nucleation in the cytoplasm. Since the
standard setting of parameters allowed for lateral annealing
(M; = 0.22), an increase of M; resulted in a higher mean number
of lateral annealing events. Having identified lateral annealing as a
mechanism controlling mesh clustering, the similar effect of the
parameters M; and M, on the pair-correlation function (Figs. 9C
and B) was predictable. On the other hand, simulations without
lateral annealing (M, = 0) revealed that free nucleation events did
not affect the pair-correlation function (Fig. 9D). Thus, in the
simulations mesh clustering was purely a contribution of lateral
annealing.

The architecture of the keratin cytoskeleton plays a pivotal role
for cell migration by regulating cell viscoelasticity (Beil et al.,
2003). The classical models for determining mechanical proper-
ties of biopolymer networks relate the mean mesh size to the
elastic shear modulus (MacKintosh et al, 1995). Structural
homogeneity and isotropy constitutes prerequisites for this
approach (Storm et al.,, 2005). Since these conditions do not
appear to be applicable to intracellular keratin filament networks,
our model is not restricted to produce this type of networks.
Consequently, we did not focus our descriptive analysis on mean
mesh sizes but on complex structural features such as connectiv-
ity and clustering processes. By modulating connectivity cells may
control the transduction of forces and information (Blumenfeld,
2006). Clustering processes within the non-polar network, as
regulated by branching, provide cells with the opportunity to
adapt to local demands without changing the total amount of
keratin proteins. Finite element modeling may be applied to
establish a relationship between these features and network
mechanics by determining global as well as local mechanical
properties of simulated networks (Heussinger and Frey,
2006). This way, molecular events which govern the biophysical
features of the cytoskeleton can be identified in simulation
experiments.

Acknowledgments

This work was supported by grants from Deutsche Forschungs-
gemeinschaft to MB and VS (SFB 518 projects B21 and B22).
SP was supported by NSERC Discovery Grant. We thank
Stefan Funken for his help in numerically solving the diffusion
PDE.

References

Asmussen, S., Glynn, PW., 2007. Stochastic Simulation. Algorithms and Analysis.
Springer, New York.

Ballestrem, C., Wehrle-Haller, B., Imhof, B.A., 2000. Actin-dependent lamellipodia
formation and microtubule-dependent tail retraction control directed cell
migration. Mol. Biol. Cell 11, 2999-3012.

Beil, M., Micoulet, A., von Wichert, G., Paschke, S., Walther, P., Walther, P., Omary,
M.B., Van Veldhoven, PP, Gern, U., Wolff-Hieber, E., Eggermann, J., Walten-
berger, J., Adler, G., Spatz, ]., Seufferlein, T., 2003. Sphingosylphosphorycholine
regulates keratin network architecture and visco-elastic properties of human
cancer cells. Nat. Cell Biol. 5, 803-811.

Beil, M., Braxmeier, H., Fleischer, F., Schmidt, V., Walther, P.,, 2005. Quantitative
analysis of keratin filament networks in scanning electron microsopy images of
cancer cells. J. Microsc. 220, 84-95.

Beil, M., Eckel, S., Fleischer, F., Schmidt, H., Schmidt, V., Walther, P., 2006. Fitting of
random tessellation models to keratin filament networks. J. Theor. Biol. 241 (1),
62-72.

Blumenfeld, R. 2006. Isostaticity and controlled force transmission in the
cytoskeleton: a model awaiting experimental evidence. Biophys. J. 91,1970-1983.

Cao, Y., Gillespie, D.T, Petzold, L.R, 2005. The slow-scale stochastic simulation
algorithm. J. Chem. Phys. 122, 014116.

Coulombe, P.A., Omary, M.B, 2002. ‘Hard’ and ‘soft’ principles defining the
structure, function and regulation of keratin intermediate filaments. Curr.
Opin. Cell Biol. 14 (1), 110-122.

Coulombe, P.A., Wong, P., 2004. Cytoplasmic intermediate filaments revealed as
dynamic and multipurpose scaffolds. Nat. Cell Biol. 6 (8), 699-706.

Davis, M.H.A., 1984. Piecewise-deterministic Markov processes: a general class of
non-diffusion stochastic models. J. R. Stat. Soc. B 46 (3), 353-388.

Fass, J., Pak, C., Bamburg, J., Mogilner, A., 2008. Stochastic simulation of actin
dynamics reveals the role of annealing and fragmentation. J. Theor. Biol. 252
(1), 173-183.

Fleischer, F., Ananthakrishnan, R., Eckel, S., Schmidt, H., Kds, ]., Svitkina, T., Schmidt,
V., Beil, M., 2007. Actin network architecture and elasticity in lamellipodia of
melanoma cells. New J. Phys. 9, 420.

Geisler, N., Schunemann, ]J., Weber, K., Haner, M., Aebi, U., 1998. Assembly and
architecture of invertebrate cytoplasmic intermediate filaments reconcile
features of vertebrate cytoplasmic and nuclear lamine-type intermediate
filaments. J. Mol. Biol. 282, 601-617.

Gillespie, D.T., 1977. Exact stochastic simulation of coupled chemical reactions.
J. Phys. Chem. 81 (25), 2340-2361.

Gillespie, D.T., 1992. A rigorous derivation of the chemical master equation. Physica
A 188, 404-425.

Haseltine, E.L., Rawlings, ]J.B., 2002. Approximate simulation of coupled fast and
slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117 (15),
6959-6969.

Haviy, L., Brill-Karniely, Y., Mahaffy, R., Backouche, F., Ben-Shaul, A., Pollard, T.D.,
Bernheim-Groswasser, A., 2006. Reconstitution of the transition from lamelli-
podium to filopodium in a membrane-free system. Proc. Natl. Acad. Sci. USA
103 (13), 4906-4911.

Herrmann, H., Aebi, U., 2000. Intermediate filaments and their associates: multi-
talented structural elements specifying cytoarchitecture and cytodynamics.
Curr. Opin. Cell Biol. 12, 79-90.

Herrmann, H., Aebi, U, 2004. Intermediate filaments: molecular structure,
assembly mechanism, and integration into functionally distinct intracellular
scaffolds. Annu. Rev. Biochem. 73, 749-789.

Herrmann, H., Haner, M., Brettel, M., Ku, N.O., Aebi, U., 1999. Characterization of
distinct early assembly units of different intermediate filament proteins. J. Mol.
Biol. 286 (5), 1403-1420.

Herrmann, H., Wedig, T., Porter, R.M., Lane, E.B., Aebi, U., 2002. Characterization of
early assembly intermediates of recombinant human keratins. J. Struct. Biol.
137 (1-2), 82-96.

Herrmann, H., Bdr, H., Kreplak, L., Strelkov, S.V., Aebi, U., 2007. Intermediate
filaments: from cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol. 8
(7), 562-573.

Heussinger, C., Frey, E., 2006. Stiff polymers, foams, and fiber networks. Phys. Rev.
Lett. 96, 017802.

Heussinger, C., Frey, E., 2007. Role of architecture in the elastic response of
semiflexible polymer and fiber networks. Phys. Rev. E Stat. Nonlin. Soft. Matter.
Phys. 75, 011917.

Huisman, E.M., van Dillen, T., Onck, PR, van der Giessen, E., 2007. Three-
dimensional cross-linked F-actin networks: relation between network archi-
tecture and mechanical behavior. Phys. Rev. Lett. 99, 208103.

Jungnickel, D., 1999. Graphs, Networks and Algorithms. Springer, Berlin.



532 M. Beil et al. / Journal of Theoretical Biology 256 (2009) 518-532

Kirmse, R., Portet, S., Mucke, N., Aebi, U., Herrmann, H., Langowski, J., 2007. A
quantitative kinetic model for the in vitro assembly of intermediate filaments
from tetrameric vimentin. J. Biol. Chem. 282, 18563-18572.

Lazarides, E., 1980. Intermediate filaments as mechanical integrators of cellular
space. Nature 283, 249-255.

MacKintosh, F., Kdis, ], Janmey, P., 1995. Elasticity of semiflexible polymer
networks. Phys. Rev. Lett. 75, 4425-4428.

Magin, T.M, Vijayaraj, P, Leube, RE, 2007. Abstract structural and regulatory
functions of keratins. Exp. Cell Res. 313 (10), 2021-2032.

Maly, LV., Borisy, G.G., 2001. Self-organization of a propulsive actin network as an
evolutionary process. Proc. Natl. Acad. Sci. USA 98 (20), 11324-11329.

Mayer, J., Schmidt, V., Schweiggert, F., 2004. A unified simulation framework for
spatial stochastic models. Simul. Model. Pract. Theor. 12, 307-326.

Mogilner, A., Wollman, R., Marshall, W.F,, 2006. Quantitative modeling in cell
biology: what is it good for? Dev. Cell 11, 279-287.

Moll, R., Divo, M., Langbein, L., 2008. The human keratins: biology and pathology.
Histochem. Cell Biol. 129 (6), 705-733.

Morse, D.C., 1998. Viscoelasticity of concentrated isotropic solutions of semiflex-
ible polymers: 1. Model and stress tensors. Macromolecules 31, 7030-7043.

Omary, M.B., Ku, N., Tao, G., Toivola, D.M., Liao, J., 2006. ‘Heads and tails’ of
intermediate filament phosphorylation: multiple sites and functional insights.
Trends Biochem. Sci. 31 (7), 383-394.

Oshima, R.G., 2007. Intermediate filaments: a historical perspective. Exp. Cell Res.
313, 1981-1994.

Portet, S., Arino, O., Vassy, ]., Schoevaert, D., 2003. Organization of the cytokeratin
network in an epithelial cell. J. Theor. Biol. 223, 313-333.

Raynaud-Messina, B., Merdes, A., 2007. y-Tubulin complexes and microtubule
organization. Curr. Opin. Cell Biol. 19 (1), 24-30.

Schaus, T.E., Taylor, E.W., Borisy, G.G., 2007. Self-organization of actin filament
orientation in the dendritic-nucleation/array-treadmilling model. Proc. Natl.
Acad. Sci. USA 104 (17), 7086-7091.

Storm, C., Pastore, ]J.,, MacKintosh, F.C., Lubensky, T.C., Janmey, P.A., 2005.
Nonlinear elasticity in biological gels. Nature 435, 191-194.

Stoyan, D., Stoyan, H., 1994. Fractals, Random Shapes and Point Fields. Methods of
Geometrical Statistics. Wiley, Chichester.

Strnad, P., Windoffer, R., Leube, R.E., 2002. Induction of rapid and reversible
cytokeratin network remodeling by inhibition of tyrosine phosphatases. ]. Cell
Sci. 115, 4133-4148.

Wagner, 0.1, Rammensee, S., Korde, N., Wen, Q., Leterrier, J.F., Janmey, P.A., 2007.
Abstract softness, strength and self-repair in intermediate filament networks.
Exp. Cell Res. 313 (10), 2228-2235.

Windoffer, R, Woll, S., Strnad, P, Leube, R.E., 2004. Identification of novel
principles of keratin filament network turnover in living cells. Mol. Biol. Cell
15, 2436-2448.



	Simulating the formation of keratin filament networks by a piecewise-deterministic Markov process
	Introduction
	Model
	Soluble and filamentous keratin pool
	Process of network formation
	Mechanisms of network formation
	Time evolution of the network formation process
	Choice of the mechanism for network formation
	Choice of the location for network formation
	Filament growth and soluble pool consumption


	Simulations and analysis of network architecture
	Settings
	Model parameters to be varied
	Statistical analysis of network characteristics
	Connectivity
	Pair-correlation function of mesh centers


	Simulation results
	Role of the initial soluble pool concentration c for network architecture
	Role of filament initiation type for network architecture
	Role of basic growth type for network architecture
	Interaction of parameters M1 and M2
	Role of diffusion

	Discussion
	Acknowledgments
	References


