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Global existence for quasilinear diffusion equations 
in isotropic nondivergence form 
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Abstract. We consider the quasilinear parabolic equation 

lit — x, u, VW)AW = f ( t , x, W, VM) 

in a cylindrical domain, together with initial-boundary conditions, where the 
quasilinearity operates on the diffusion coefficient of the Laplacian. Under suit-
able conditions we prove global existence of a solution in the energy space. Our 
proof depends on maximal regularity of a nonautonomous linear parabolic equa-
tion which we use to provide us with compactness in order to apply Schaefer's 
fixed point theorem. 

Mathematics Subject Classification (2010): 35K15 (primary); 35A05, 35K55 
(secondary). 

1. Introduction 

We prove global existence of a solution of the quasilinear diffusion problem 

ut — /3(t, x, u, Vu)Au = f ( t , x, u, Vw) in (0, oo) x Q, 

u= 0 in (0, oo) x d£2, (1.1) 

w(0, •) = «o(0 in 

where Q c R d is an open set, uo e and 

P : (0, oo) x £2 x -
1 

-s 
(.s e (0, 1) is fixed) and 

/ : (0, oo) x Q x R l + d 

afe measurable functions which are continuous with respect to the last variable, for 
every (t,x) € (0, oo) x Q. The function / satisfies in addition a linear growth 
c°ndition with respect to the last variable. 
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We prove in fact existence of a solution in the space 

H ^ d 0 , oo); L2(C2)) n L2
C([0, oo); D ( A d ) ) n C([0, oo); / / J ^ ) ) , 

where D(A^) is the domain of the Dirichlet-Laplacian in L 2 ( £ 2 ) . 

Note that this existence result is also a maximal regularity result. Maximal 
regularity of the abstract linear inhomogeneous problem 

u(t) + Au(t) = f ( t ) for a.e. t e (0, T), «(0) = 0, 

has obtained much attention in recent years. Given a closed linear operator A on 
L2(£2) (we will only consider the L2 setting here), saying that this problem has 
maximal regularity means that for every / e L2(0, T\ L2(£2)) there exists a unique 
solution in the maximal regularity space 

MR := Hl (0, T\ L 2 (^ ) ) fl L2(0, T; D(A)); 

in particular, the two terms on the left-hand side of the above differential equation 
have the same regularity as the inhomogeneity / . 

It is known that maximal regularity results can be applied to solve non-linear 
problems by using fixed point theorems. Mostly, if some Lipschitz continuity is 
available (for example by making appropriate assumptions on the regularity and the 
growth of the coefficients /3 and / ) , then Banach's fixed point theorem is used to 
establish local existence; see, for example, [1,2,4,5], [12, Chapters 7 and 8], [13]. 
On the other hand, if come compactness is available (for example by assuming that 
£2 is bounded and regular), Schauder's fixed point theorem for continuous map-
pings on Banach spaces can be used in order to establish existence of solutions; 
see [10,11]. 

We follow the second way but we will make no assumptions on boundedness 
or regularity of the set £2, nor will we impose further regularity of the coefficients 
P and / . We will instead use that the injection of M R = H \ 0 , T ; L 2 ( Q ) ) fl 
L2(0, T \ D ( A d ) ) into L2(0, T \ H ^ q c { Q ) ) is compact by local regularity results for 
the Laplace operator, by Rellich's theorem and by a result of Aubin-Lions. This 
will allow us to use versions of Schauder's fixed point theorem in Frechet spaces 
instead of Banach spaces. Most useful for our purposes is Schaefer's fixed point 
theorem which replaces invariance of a convex set by an a priori estimate. Section 
2 is devoted to recalling this fixed point theorem which can be even formulated in 
complete locally convex spaces thanks to Tychonov's version of Schauder's fixed 
point theorem. 

ACKNOWLEDGEMENTS. The authors are most grateful to Eva Fasangova for a 
stimulating discussion on maximal regularity of the nonautonomous linear problem. 
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2. Schaefer's fixed point theorem 

In a short article in Mathematische Annalen from 1955, Schaefer gave an elegant 
proof of a result from Leray-Schauder theory which is most suitable for applications 
in partial differential equations, [14, Satz]. This proof is reproduced in several 
textbooks and frequently cited as Schaefer's Fixed Point Theorem; see, for example, 
[8]. But Schaefer also gave an extension of this fixed point theorem to complete 
locally convex spaces. It turns out that, when proving existence of a solution of 
(1.1), we will encounter a situation where this is useful. The reason is that some 
compact embedding is needed. If £1 C M^ is an open set, then the embedding 
H2(£2) Hl(£2) is compact if £2 is a bounded Lipschitz domain, but in general 
not if £2 is unbounded or the boundary is bad. However, the embedding H^oc(£2) c-» 
H ^ Q ) is compact for arbitrary open sets. 

Schaefer deduces by a simple argument his fixed point theorem from Schau-
der's fixed point theorem in the case of a Banach space, and from Tychonov's fixed 
point theorem [16] in the case of a complete locally convex space. 

We take the opportunity to reformulate Schaefer's fixed point theorem in such 
generality, choosing a formulation which makes it directly applicable in our context. 
This result is the precise setting where the philosophy that an a priori bound of the 
solution implies the existence of the solution becomes truth. It is a consequence of 
the following extension of Schauder's fixed point theorem due to Tychonov. 

Theorem 2.1. (Schauder's fixed point theorem in locally convex vector space, 
[16]). Let E be a complete locally convex vector space, C a nonempty, convex subset 
of E and T : C -» C a continuous mapping. IfTC is contained in a compact subset 
ofC, then T has a fixed point. 

Theorem 2.2 (Schaefer's fixed point theorem). Let E be a complete locally con-
vex vector space and let T : E -> E be a continuous mapping. Assume that there 
exist a continuous seminorm p : E -> R+, a constant R > 0 and a compact set 
K>C E such that the Schaefer set 

S := [u e E : u = XTu for some X e [0, 1]} 

is included in 
C:={u e E : p(u) < R] 

and such that TC C /C. Then T has a fixed point. 

Proof Define T :C^C(C being the closure of C) by 

Tu if p(Tu)<R, 

Tu if p{Tu) > R. 
p(Tu) 

Then T is continuous and TC c [0, 1] • /C. The set [0, 1] x /C is compact by Ty-
chonov's theorem and thus [0, 1]-/C is compact as the continuous image of [0, 1] x/C 
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for the mapping (A, u) X ju. It follows from Theorem 2.1 that T has a fixed 
point u e C. By definition of T,u = Tu = XTu for some k e [0, 1], thaUs u e S. 

Note that X < 1 if and only if p(Tu) R, and in that case p(Tu) = R 
However, since S is included in C, we have p{Tu) = p(u) < R. Hence, A, = 1 and 
u is a fixed point of T. • 

3. The linear problem 

Let £2 c W1 be an open set. Let V be a Hilbert space which embeds densely and 
continuously into L2(Q) (we write V ^ L2(£2)) and let a : V x V K be a 
bilinear, symmetric form. We assume throughout that a is bounded and L2(£2)-
elliptic, which means, respectively, 

|a(u, u)| < M \\u\\y \\v\\y for some M > 0 and all u, v e V, and (3.1) 

a(u) + co \\u\\2
L2 > r] \\u\\y for some co > 0, rj > 0 and all u e V. (3.2) 

Here and in the following we shortly write a(u) for a(u, u). 
Denote by A the operator associated with a on L2(Q), that is, for w, / e L2 

one has u € D(A) and Au = f if and only if u e V and a(u, v) = ( / , v)L2 for 
every v e V. The operator A is closed and D(A), when equipped with the graph 
norm, is a Banach space. 

Then the following maximal regularity result is well known: for all / e 
L2(0, T\ L2(Q)), UQ e V, there exists a unique solution of the autonomous problem 

u e H\0, T\ L2(^2)) n L2(0, T\ D(A)), 
u{t) + Au(t) = / ( 0 for almost every f g (0, 7), (3.3) 

w(0) = UQ. 

Recall that the maximal regularity space 

MR := / / J(0, T; L2(tt)) fl L2(0, T; Z)(A)) 

which is equipped with the norm 

II«ii mr •= [ t m o \ \ 2
l 2 + [ t \ m ) \ \ 2

l 2 + [ t \\au(o\\2
2 

J 0 Jo Jo 

is continuously embedded in C([0, T]\ V), [7, Exemple 1, page 577]. We will need 
the following product rule; see [7, Theoreme 2, page 575] for a similar result. 

Lemma 3.1. Let u e MR. Thena(u{-)) e Wl*l(0, T) and 

d 
—a{u(t)) = 2(Au(t), u(t))L2 for almost every t e (0, T). 
dt 
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Proof. For u e C^fO, T\, D(A)), the assertion is a consequence of the product 
rule, the symmetry of the form a, and the definition of the operator A: 

-r-a(u(t)) = 2a(u ( t ) , u(t)) = 2 (Au(t), u(t))L2. 
dt 

For arbitrary u e MR, the assertion follows from this and an approximation by 
functions in C\[0, T]; D(A)). The fact that C l([0, T]\ D(A)) is dense in MR fol-
lows from classical techniques using regularization; compare with [7, Lem-
me 4, page 586]. • 

Now we consider a new problem, obtained by a multiplicative perturbation. 

Theorem 3.2 (Linear, nonautonomous problem). Letm : (0, ^e, ^J be 

a measurable function, where s £ (0, 1) is fixed. Then, for every f e L2(0, T; L2(£2)), 
WO G V there exists a unique solution of the problem 

ue MR = H\0, T\ L 2 (^ ) ) fl L2(0, T; D(A)) 
u(t) + , = / ( 0 for almost every t e (0, 7), (3.4) 
w(0) = wo-

Moreover; r/iere emto a constant c — c(s, M , rj, to, c\, T,) > 0 (ci fcemg //ze 
embedding constant of the embedding V L2(£2)j independent of f and UQ such 
that 

\W \ \MR < c(||/| |L2 (0,r;L2(n)) + H"ollv), (3.5) 

/or eac/i solution u of (3.4). 

Remark 3.3. The constant c in (3.5) depends on the constants s, M, r\, 00, c\ and the 
time T, but it does not depend on other properties of the form a or the function m. 

Remark 3.4. For many concrete operators A, problem (3.4) is a particular case of 
the parabolic equation 

ut — x)d\jU = f{t,x) in (0, T) x 
i j 

equipped with initial-boundary conditions, where the coefficients aij belong to 
L°°((0, T) x Q). For this equation and if £2 satisfies a weak regularity condi-
tion, it might be possible to prove existence of weak and bounded solutions for 
bounded initial data and right-hand sides / 6 Ld+1 

((0, T) x £2) by means of a 
general parabolic maximum principle [17] (see [3] for the elliptic version). This 
method would be completely different from ours, but it is not clear whether one can 
obtain L2-maximal regularity in L2(£2) in this way. The problem of Lq-maximal 
regularity in LP(Q) is, to our knowledge, open. 
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Proof of Theorem 3.2. We use the method of continuity. For every s € [0, 1], con-
sider the function 

ms := (l-s)+sm: (0, T) x Q 
' 1 
e, -

£ 

and the bounded operator 

Bs : MR —> Lz(0, T; L z (^ ) ) x V 

given by 
= (w + msAu, u(0)). 

Then 5 : [0, 1] C(MR, L2(0, 7; L 2 (^) ) x V) is continuous and £ 0 is invertible 
by the maximal regularity result for the autonomous problem (3.3). Thus, in order 
to prove the theorem, by [9, Theorem 5.2], it suffices to prove the a priori estimate 

M l M R < C \\BSU\\ = C(\\U + MsAu\\L2(0/r.L2(Q)) + ||k(0)||v) 
for all s G [0, 1] and all u e MR, (3.6) 

which, for s = 1, is exactly the estimate (3.5) to be proved. 
Let s E [0, 1]. Let u e MR be such that 

ii + ms Au = f and u(0) = wo-

Then, for almost every t e [0, T], 

[ u(f)2—+ [ Au(t)u(t)dx = f f(t)u(t) —. 
J q m s J n J q m s 

We recall from Lemma 3.1 thata(w(-)) e W1*1 and ± $ja(u(t)) = (Au(t), u(t))Li 
for almost every t e (0, T). This identity and the Cauchy-Schwarz inequality ap-
plied to the term on the right-hand side of the above equality imply that, for almost 
every t e [0, T], 

1 f . 0 dx Id 1 f 0 dx / u(t)2 — + - - a m ) ) < ~ / f i t ) 2 —. 2 JQ ms 2 dt 2 J n ms 

Integrating this inequality on (0, t) and using the estimate e < < it follows 
that t T 

EF^ \\U(S)\\2
l2 ds + a(u(t)) <fl(Mo) + i j f ||/(s)||2

2 

Thus, by boundedness and ellipticity of the form a, 
f r 1 

t/0 £ 
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This estimate and the estimate 

umli= \\uo\\2
L2+f ^Ms)\\l2ds = \\uo\\2

L2-h2^ (u(s),u(s))Lids 

9 2co r f
 9 e r f

 9 
<\\uo\\L2 + — J \\u(s)\\\2 ds + — J \\u(s)rLlds% 

(3.7) 

£ JO ZA) JO 

yield the estimate 

T \\U(S)\\2
L2 ds + RJ \\u(t)\\2 < (M + coc2) \\uo\\2

v 
Jo 

1 2 o)2c2 ff (3.8) 

where c\ is the embedding constant of the embedding V L2(£2). From this 
inequality and Gronwall's lemma it follows that there is a constant c — c(s, M, rj, 
CD,C\,T) > 0 such that 

sup \\u(t)\\2Y < C (\\uoW2 + 11/11^2/0 T-L2(Q)))' 
re[0,r] 

Inserting this estimate into (3.8), we find that there exists a constant c = c(s, M, 
r j j C D , C \ , T ) > 0 (possibly different from the preceding one) such that 

RT 

/ \\U(S)\\2
L2 ds < c (INII2 + l l / l l ^2 ( 0 f T- ,MA)) ) ' 

J 0 

This gives the estimate (3.6) for the second part of the MR norm of u. Since 
u(t) = u(0) + /0

r U(S) ds, it follows that 

j T II "(011*2 dt < c (\\u0\\2 + jf \\u(t)fL2 dt), 

for some c = c(ci, T) > 0. This gives the estimate for the first part of the MR 
norm of u. Since 

j \\Au(t)\\2
L2 dt jf ||m5Aw(0II^2 dt 

and msAu(t) = -u(t) + / ( f ) , also the third term of the MR norm of u can be 
estimated, and the proof of (3.6) is complete. • 
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4. The nonlinear problem 

Let £2 e Rd be an open set. Let V be a closed subspace of H{ (£2) which is dense 
in L2(£2). We assume for simplicity that V is equipped with the Hl norm. 

Let a : V x V ^ M b e a bilinear, symmetric, bounded, L2-elliptic form, and 
denote by A the operator associated with a on L2(Q). We assume that 

D{A) C H2
C(Q). (4.1) 

Below, in Section 5, we will give several concrete examples for which this condition 
is satisfied. We consider D(A) with the graph norm and let MR = Hl(0,T\L\n)) 
H L2(0, T\ D(A)), as in Section 3. 

Theorem 4.1. Let s £ (0, 1) and let 

f3 : (0, T) x £2 x ĵ e, ^J be a measurable function such that 

fi(t, x, •) : -> w continuous for almost every (t,x). 

Let moreover 

/ : (0 J ) x fi x R be a measurable function such that 
f(t,x,-) : -> M is continuous for almost every (t, x) and 
| f(t,x, u, p)I < g(t,x) + L (\u\ + \p\) for every (t,x, u, /?), and some 
g e L2(0, T\ L2(£2)) and L > 0 . 

Then, for every uo e V there exists a solution of the problem 

u e MR = H\0, T; L2(i2)) n L2(0, T; D(A)) 
£ ( * ) + £ ( * , x, m, Vm)Am(0 = / ( * , Vm) for almost every t e (0 , T), (4.2) 
w(0) = UQ. 

Moreover; J/ZERE exists A constant c = c(e, M, rj, a>, L, T) > 0 SMC/I that for every 
solution u of (4.2) has 

\MMR < C (\\U0\\v + \\8\\L2(0,T-,L2(Q))) • ( 4 - 3 ) 

Remark 4.2. Under the hypotheses of Theorem 4.1, one may in general not expect 
uniqueness of solutions. A simple counterexample is given in Example 5.2 below. 

Let (£2k)k be an increasing sequence of open, bounded subsets of R d which 
are of class C°° and such that £2̂  C £2 and IJ&eN = Such a sequence (£2k)k 
exists for every open set £2 c compare with [6, Lemma 1, page 409]. We 
consider the space 

E := L2(0, T; ^(£2)) 

:= {u 6 Lfoc((0, T) x fl) : « | (o,r)x^ e L2(0, 7; Hx{tok)) for every k € N}, 
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which is a Frechet space for the sequence (pk) of seminorms given by 

Pk(")2 : = / / {Wit, * ) l 2 + I V a ( f , x ) | 2 ) J x rff = 
Jo 

w 2 
L W ; " 1 ^ * ) ) ' 

We recall that for an open, bounded set U C Rd of class C°° the injection of H2(U) 
into Hl (U) is compact by Rellich's theorem. As a consequence, the embedding 

is compact by a result of Lions-Aubin (see [15, III. 1, Proposition 1.3, page 106]). 
Since D ( A ) c H 2

q c ( Q ) by our standing assumption (4.1), and since this embedding 
is continuous by the closed graph theorem, it follows from the preceding that the 
embedding 

MR = Hl (0, T\ L2(<3)) H L2(0, T\ D(A)) L2(0, T\ HL(Q)) = E (4.4) 

is compact, too. 

Remark 4.3. Following the above arguments, it turns out that, in fact, the embed-
ding (4.4) is compact as soon as the embedding 

is compact. Compactness of this embedding is ensured by the assumption (4.1), but 
we do not know whether it is true in general. 

Proof of Theorem 4.1. Fix wo e V. 
In the first step of the proof we show that for every k the problem 

w e MR = Hl(0, T\ L2(£2)) n L2(0, T\ D(A)) 
u(t)+fi(t, x, w, Vu)Au(t) = f(t,x,u, Vw) lnk(x) for a .e. te( 0, T), (4.5) 
u(0) = wo 

admits a solution and that there exists a constant c — c(M, e, rj, co, L, T) > 0 
independent of k (!) such that for every solution of this problem one has 

H\0, T\ L2{U)) H L2(0, T\ H2(U)) ^ L2(0, T; HX(U)) 

D(A) //^(tt) 

(4.6) 

Fix k g N. For every v e E we put 

mv(t,x) := /3(r, x, x), Vi)(r, *)) and 
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Then mv and f v j are measurable functions on (0, T) x Q, mv takes values in [s, 

2 I 
^Jv'kh2(o,T-L2(Q)) - c f f |~g(f, x)2 + (|v|2 + | V d | 2 ) 1 

Jo JQ.k L J 

^ c ( l I s f e o . r ^ f l H + ttW2) < 0 ° 

for some constant c = c(L) > 0. 
Hence, by Theorem 3.2, there exists a unique solution u =: T^v e MR of the 

problem 

u(t) + mv(t, •)Au(t) = fv,k(t) for almost every t e (0, T), and 
u{ 0) = 

and there exists a constant c — c(s, M, rj, co, T) > 0 (depending also on the em-
bedding constant of the embedding V ^ L2(£2), which is now equal to 1) such 
that 

M L MR < c (LLWOLLV + \\fvM2
L2i0J;L2(Q))) 

< c (\\uo\\2
v + \\8\\2

L2(0J.L2(Q)) + I N I h o m H * ) ) ) ' ( 4 - 7 ) 

In this way, we defined an operator 7* : E —> E. 

(a) We show that 7* is continuous. Let vn —> v in E, and let un = TkVn and 
w = 7ii>. We have to show that un w in E. 

Since a sequence in a metric space converges to a certain limit if and only if 
each subsequence has a subsequence which converges to that same limit, it suffices 
to prove un —> u for a subsequence. 

Since (un) is bounded in MR by the estimate (4.7), and since MR is a Hilbert 
space, we may assume (after passing to a subsequence) that un —̂  w in MR. For a 
subsequence, we may in addition assume that 

iin —̂  w in L2(0, T\ L2(tt)), and 

Aw/Z -- Aw in L2(0, T; L 2 (^) ) . 

We show that w = u. Since vn —> v in E, we may assume (after passing to a 
subsequence again) that there exists a function hk 6 L2((0, T) x f2jt) such that 

(i>„, VD„) —>• (t>, Vi>) almost everywhere on (0, T) x Q, and 
I + | VUH | < ft* almost everywhere on (0, 7) x for every n e N. 

The almost everywhere convergence on (0, T) x £2 is established by using a diag-
onalization argument. 
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Then, by the continuity of /3 and / , 

mvn(t,x) := P(t,x, vn, Vv„) jS(t,x, v, Vv) =: mv(t,x) and 
fvn%k(t,x) := f(t,x,v„,Vv„)lnk(x) -> f(t,x, vtVv)lak(x) =:fv,k(t,x) 

almost everywhere on (0, T) x Q. 

Moreover, by the growth assumption on / and the uniform domination of vn, we 
have 

\fv»,k\ < g + L hk almost everywhere on (0, T) x £2*, for every n e N. 

Recall that, for every n e N, 

un + mVnAun = fVntk. (4.8) 

By the dominated convergence theorem, fVtuk -> strongly (and weakly) in 
L2(0, 7; L2(£2)). Moreover, by the dominated convergence theorem, for every cp e 
L2(0, T\ L 2 (^) ) , 

—̂  in L ((0, T) x fi). 

Since Aw in L2(0, 71; L 2 (^) ) , it follows that for every <peL2(0, T\L2(Sl)) 

/ / mVnAu„<p -> / / mvAwcp, 
Jo Jo J Q 

or, in other words, 

mVnAun mvAw in L2((0, T) x fi). (4.9) 

Thus, letting /? oo in (4.8) shows that 

+ mvAw(t) = fv,k(t) for almost every t e (0, T). 

Since MR ^ C([0, 71]; V), we have also u„ w in C([0, T]\ V) and in par-
ticular w(0) = w — lim„_^oo un(0) = wo- Since also u is solution of the problem 
u(t) + mvAu(t) — fVtk(t) and w(0) = uo, a n d since the solution of this problem is 
unique by Theorem 3.2, this shows that w = u. 

We have shown that un u in MR. Since the embedding MR ^ E is 
compact, this implies that, after passing to a subsequence again, un -» u in E. 
Therefore, 7* is continuous. 

(b) We prove that there exists a constant c = c(e, M, r), co, L, T) > 0 independent 
of k such that for every element u in the Schaefer set 

Sfc = [u e E : u = XT^u for some X e [0, 1]} 

the estimate (4.6) holds. 
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Assume that u = XTku for some X e [0, 1]. Note that u = XTku if and only if 

u{t) + m{t, w, Vu)Au{t) = Xf(t, •, w, Vw) 1Q^ for a.e. t e (0, 7), 
m(0) = wo-

By multiplying the differential equation by and integrating over £2, we obtain 

f 9 dx f f . dx 
/ u(ty hi Au(t) u(t) dx = X / f(t,x,u,Vu)u — 

JQ rnu J Q JQk mu 

I f 9 dx 1 f . 9 dx 
< - / V W ) I 2 — + - / — 

2 Jq mM 2 JQ mu 

<[ g(tf — +2L2 

JQ 
I (\u{t)\2 + \Vu{t)\2)— + }- [ ii(t)2~. 

Jq V / mu 2 Jn mu 

Using the estimate s < ^j- < j and the equality = (Au(t), u(t))Li, we 
thus obtain, for almost every t e [0, T], 

£ f 9 1 d I f 9 2 L 2 9 

J Q 2 dt £ J Q £ 2 

We integrate this inequality on (0, use the boundedness and the ellipticity of the 
form a, and we obtain 

j f | | ^ ) | | 2
2 + | ||W(0ll2

v < M IIWoIIy + ^ j f ||gWII22 ^ 

w 9 2L2 f{
 9 

+ — II "(Oil 7,2 + / | |M(j)|lvrfj. 
2 L s Jo 

As in (3.7), we can estimate the third term on the right-hand side of this inequality. 
It follows that 

£ 
4 

j f | | " ( 5 ) | | 2
2 ^ + | II"(0IIV < ( M + | ) IIKOIIv + ; l l«ft2 ( P f 7 . ; L2 ( 0 ) ) 

a;2 2 L 2 
— + — 
£ £ 

+ [ — + — ) f^Ms)\\2ds. 

This estimate is similar to the estimate (3.8) from the proof of Theorem 3.2. As in 
the proof of Theorem 3.2 we can now continue to estimate, and we see that there 
exists a constant c = c(e, M, r], co, L, T) > 0 such that the estimate (4.6) is true for 
every u e 

(c) In particular, the set Sk is bounded in MR. By continuity of the embedding (4.4) 
(or just a simple direct estimate of the corresponding norms), this implies that there 
exists R > 0 such that Sk is included in 

Ck:={veE: pk(v) < R). 
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It follows from the definition of and the estimate (4.7) that TkCk is contained in 
a bounded subset of MR. By compactness of the embedding (4.4), this implies that 
TjcCk is contained in a compact subset of E. 

Hence, by Schaefer's fixed point theorem (Theorem 2.2), the mapping ad-
mits a fixed point u e MR. By the definition of 7*, this element w is a solution 
of the problem (4.5) which, being an element of satisfies the claimed estimate 
(4.6). 

In the second step of the proof, we show that the problem (4.2) admits a solu-
tion. For every k e N, we choose a solution uk of the problem (4.5). Since every 
solution of the problem (4.5) is an element of S\ and satisfies the estimate (4.6) 
(which is independent of k), the sequence (uk) remains bounded in MR. Since MR 
is a Hilbert space, we may therefore assume (after passing to a subsequence) that 
Uk u in MR. Using the compactness of the embedding (4.4) and after passing 
to a subsequence again, if necessary, we may in addition assume that 

iik u in L2(0, T\ L 2 (^ ) ) , 
Auk Au in L2(0, T\ L2(£2)), 
(uk, VUk) —> (w, VW) almost everywhere on (0, T) x Q and 
\u/i\ + |Vw*| < h almost every where on (0, T) x for every k e N, 

where h e L2
OC((0, T) x Q). The almost everywhere convergence and the domina-

tion may be proved by using a diagonalization argument. 
By continuity of /? and / , and since is increasing to Q, this implies 

/3(t, x, Uk, Vw*) /3(t, x, w, Vw) and 
/(£, x, Uk, Vw*) —> / ( / , x, u, Vw) almost everywhere on (0, T) x Q. 

By the growth assumption on / and the domination of Uk, we have 

I f(t,x, Uk, Vw*)1QJ < g+Lh almost everywhere on (0, T) x for every keN. 

As in (4.9), this implies that 

P(t, x, Uk, Vuk)Auk x, w, Vw)Aw in L2(0, 7; L2(£2)). 

As a consequence, we obtain that f ( t , x, w*, Vw*)1^ = w* + /3(r, x, Uk, Vw*)Aw* 
converges weakly in L2(0, T7; L2(Q)). On the other hand, for every (p e L2(0, T; 

with compact support in (0, T) x we have 

/ / / / f(t,x,u,Vu)<p 
Jo JQ JO Jn 

by the dominated convergence theorem. Since the compactly supported functions 
are dense in L2(0, 7; L2(Q)), we thus obtain 

/ ( f , x, w*, Vw*)l^ / ( f , x, w, Vw) in L2(0, J ; L2(£2)). 
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Letting k oo in the problem (4.5), we therefore find that 

w + fi(t, x, u, Vw)Aw = f(t, x, u, Vw) for a.e. f € (0, T). 

We recall that uk u in MR C([0, 71]; V) implies uk(0) M(0) in V, and 
therefore w(0) = UQ. Hence, w is a solution to the problem (4.2). The estimate (4.3) 
for a solution of (4.2) is proved in a similar way than the a priori estimate of the 
setS*. • 

5. Examples 

We now give several concrete examples. 
Let £2 C R d be an open set. We denote by Amax the maximal Laplacian on 

L2(£2), that is, 

£>(Amax) := {u G L2(£2) : Au e L2(£3)}, 

Thus, condition (4.1) is satisfied whenever A C Amax, that is, whenever A is a 
realization of the Laplacian with boundary conditions or, more generally, supple-
mentary conditions. In order to apply Theorem 4.1, we also need to know that A is 
selfadjoint and nonnegative. We give three examples of this type. 
Example 5.1 (The Dirichlet-Laplacian). Let V=//0

1(f2) and a(u, v) = f<J?uVv. 
Let A be the associated operator. Then Z)(A) = H^ (£2)DD(A max) and An = — Aw 
for every u e D(A). 

6 and f : (0, oo) x £2 x Rl+d R are measurable functions satisfying 
(5.2) 

the hypotheses of Theorem 4.1 on (0, T) x Q x for every T > 0 

then, by Theorem 4.1, for every wo e H^ (£2) the problem (1.1) from the Introduc-
tion admits a global solution 

u e Hloc([0, oo); L2(£2)) n L2
OC([0, oo); D(A)) n C([0, oo); //J (£2)). 

Example 5.2 (The Neumann-Laplacian). Let u e Hl(Q) D D(Amax). We say 
that = 0 weakly if VwVv + fQ Auv = 0 for every u e H{(Q). This is 
motivated by Green's formula 

which is valid for u e C2(£2), v e Cl(Q) and if £2 is bounded and of class C1 . 

Amax" •= Aw. 

Then, by local regularity of the Laplacian, one has 

D(Amax) C H2
c(Q). (5.1) 

Hence, if 
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Let V = Hl(Q) and a{u, v) = f^ VuVv. Then the associated operator A is 
given by 

D(A) = J« 6 i f 1 (£2) H D(Amax) : ^ = 0 weaklyj , 

Au — —Au. 

Using this operator A with the above interpretation of the homogeneous Neumann 
boundary condition, and if /3 and / are as in (5.2), then, by Theorem 4.1, for every 
«o £ H l (£2), the problem 

ut — x, Vw)Aw = f i t , x, u, Vw) in (0, oo) x £2, 
d u 
— = 0 in (0, oo) x 9£2, (5-3) 
dv 
u(0, •) = uo(-) in £2, 

admits a global solution 

u G 0, oo); L2(£2)) n L2
C([0, oo); D(A)) fl C([0, oo); H 1 (£2)). 

In this example, it is easy to see that one may in general not expect uniqueness of 
solutions. If Q is bounded, and if one considers solutions u which depend only on 
t (that is, u(t, •) is constant on £2), then the problem (5.3) reduces essentially to 
an ordinary differential equation for which nonuniqueness is known. For example, 
if f{t, x, u, p) = 2 <s/\u\ and if the initial value uo = 0, then uit, x) = 0 and 
uit, JC) = t2 are two solutions of (5.3). 

Example 5.3 (The Robin-Laplacian). Let £2 be bounded with Lipschitz bound-
ary, and let b e C(3£2) be positive. Let V = and a : V x V -> R be given 
by 

aiu, v) = I VwVt> + I buv da, 
Jan 

where w and i> on the boundary are given by the trace operator, and a is the sur-
face measure on 3£2. Then a is continuous, symmetric and L2 (£2)-elliptic. The 
associated operator A is given by 

DiA) = J a € H\Sl) H Di Amax) : ^ + bu = 0 j , 

Aw = Aw. 

Here we use the following weak normal derivative. Let h e L2(3£2), u e Hl (£2) fl 
du 
dv ^(Am a x) . We say that = h if 

/ VwVv + / Awi; = / Au da for all v e 7/1 (£2). 
JQ Jq JdQ 
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Hence, if the functions and / are as in (5.2), then, by Theorem 4.1, for every 
wo e Hl(£2), the problem 

ut — x, w, Vw) Aw = f ( t , x, w, Vw) in (0, oo) x £2, 
du /C h x 
— +bu=0 in (0, oo) x 9^2, (5.4) 
dv 
w(0, •) = wo(-) in Q, 

admits a global solution 

w G H^d 0, oo); L2(£2)) n L 2
c ( [ 0, oo); D(A)) D C([0, oo); Hx (£2)). 

Example 5.4 (Elliptic operators). Let a\j e C1 (£2) n L°°(£2) such that = 
and 

- a l^l2 f o r every £ e * e fi. 
Uj 

Let V be a closed subspace of 7/1 (£2) which is dense in L2(t2). Define a : V xV 
Mby 

a(u,v)= / y aijdjudjV. 
JQ u 

Then a is symmetric, continuous and L2(£2)-elliptic. Let A be the operator associ-
ated with a on L2(Q). Then for w e D(A) one has 

Au = Y j dj (djj djw) 
i j 

in the sense of distributions. Hence, D(A) C H2
QC(£2) by [8, 6.3.1, Theorem 1] 

or [9, Theorem 8.9]. 
If we consider homogeneous Dirichlet boundary conditions (so that V^H q CO)) , 

and if the functions /3 and / are as in (5.2), then Theorem 4.1 implies that, for every 
WO 6 //J (£2), the problem 

ut — /3(t,x,u, Vw) T ^ dj(djjdju) = f(t,x,u, Vw) in (0, oo) x ^2, 
i,j 

u= 0 in (0, oo) x d£2, (5-5) 

w(0, •) = uo(-) in £2, 

admits a global solution 

u e H,j,c([0, oo); L2(tt)) n L?oc([0, oo); D(A)) D C([0, oo); H^Q)). 
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