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DIRICHLET REGULARITY AND DEGENERATE DIFFUSION

WOLFGANG ARENDT AND MICHAL CHOVANEC

Abstract. Let Ω ⊂ RN be an open and bounded set and let m : Ω → (0,∞)
be measurable and locally bounded. We study a natural realization of the op-
erator m� in C0(Ω) :=

{
u ∈ C(Ω) : u|∂Ω = 0

}
. If Ω is Dirichlet regular, then

the operator generates a positive contraction semigroup on C0(Ω) whenever
1
m

∈ Lp
loc(Ω) for some p > N

2
. If m(x) does not go fast enough to 0 as x → ∂Ω,

then Dirichlet regularity is necessary. However, if |m(x)| ≤ c·dist(x, ∂Ω)2, then
we show that m�0 generates a semigroup on C0(Ω) without any regularity
assumptions on Ω. We show that the condition for degeneration of m near the
boundary is optimal.

1. Introduction

Let Ω ⊂ RN be open and bounded and let m ∈ L∞
loc(Ω) be strictly positive. The

aim of this paper is to investigate when a natural realization of the operator m�
in C0(Ω) :=

{
u ∈ C(Ω) : u�∂Ω= 0

}
generates a C0-semigroup. If Ω is Dirichlet

regular, then it suffices that 1
m ∈ Lp

loc(Ω) for some N
2 < p ≤ ∞. If 1

m ∈ Lp(Ω),
then Dirichlet regularity is a necessary condition. However, if the diffusion is weak
at a point z ∈ ∂Ω in the sense that m(x) ≤ c · dist(x, ∂Ω)2 in a neighbourhood of
z, then Dirichlet regularity is not needed.

In fact, these phenomena are of local nature. Our main result (Theorem 7.1)
says the following. Let m ∈ L∞(Ω) be strictly positive such that 1

m ∈ Lp
loc(Ω) for

some N
2 < p ≤ ∞. Assume that for each z ∈ ∂Ω one of the following conditions is

satisfied:

(a) z is a regular point (in the sense of Wiener) or
(b) the diffusion is weak at z.

Then m�0 generates a positive C0-semigroup on C0(Ω). Here m�0 is the natural
realization of m� in C0(Ω) (see Section 4).

Our notion of weak diffusion is optimal. We show that it does not suffice that
m(x) ≤ c · dist(x, ∂Ω)β for some β < 2 to ensure that m�0 generates a semigroup.

It is much easier to study the operator in the setting of Lp spaces, by which we
also start. However, there are good reasons to consider the operator on the space
C0(Ω). One reason is that we obtain a Feller semigroup in this way with the cor-
responding relations to stochastic processes (see [14], [16], [17] and [33] for the role
of C0(Ω) in the theory of Markov processes). Another reason concerns possible ap-
plications to non-linear problems and dynamical systems. For semilinear problems
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the space C0(Ω) is much better suited than Lp(Ω)-spaces since composition with a
locally Lipschitz continuous function is locally Lipschitz continuous on C0(Ω) but
never on Lp(Ω); see the treatise of Cazenave-Haraux [10], for example. Studying
arbitrary measurable functions m seems to be useful for possible applications to
quasilinear equations.

In the present paper nowhere do we suppose that the function m satisfies any
regularity assumptions other than measurability. Generation results on C0(Ω) for
bounded continuous functions m have been given previously by Lumer [23] (see
also [22]). He uses barriers with respect to the new operator m� (instead of the
Laplacian). The methods we use here are very different from those employed in
[23].

In the case where 1
m ∈ Lp(Ω) for some p > N

2 we use techniques from [2]. The
special case where m is a smooth version of the distance to the boundary had been
considered by Davies [12] and Pang [30]. These results were inspiring for us, and
we use a smooth version of the distance as comparison when the diffusion is weak
at a boundary point.

Our results show in particular that for m larger than a positive constant (even
1
m ∈ Lp(Ω), p > N

2 suffices) the regular points of m� are the same as for �. The
operator m� is a very special kind of elliptic operator in non-divergence form. For
general elliptic operators in non-divergence form this is no longer true in both direc-
tions. In fact Miller [26] showed that there may be regular points for the Laplacian
which are non-regular for a particular elliptic operator in non-divergence form and
vice versa. This is in sharp contrast with the situation for uniformly elliptic op-
erators in divergence form; see the results of Littman, Stampacchia, Weinberger
[21].

The operator m� obtained further attention in the literature. McIntosh and
Nahmod [25] proved H∞-calculus. Duong and Ouhabaz [15] investigated Gauss-
ian estimates for the semigroup generated by this operator. In both results m is
assumed to be larger than a positive constant. We should also point out that non-
divergence operators in one dimension (also degenerate ones) and their probabilistic
interpretation are studied by Mandl [24]. An application to mathematical finance
is contained in Cannarsa et al. [9].

2. Preliminaries

Here we fix some notation and explain arguments which are frequently used. Let
Ω ⊂ RN be open and bounded. We write ω � Ω if ω is an open subset of RN such
that ω ⊂ Ω. The space Cc(Ω) denotes continuous functions on Ω with values in
R having compact support. D(Ω) = C∞

c (Ω) is the space of all test functions and
D(Ω)′ the space of all distributions.

We denote by

H1(Ω) :=
{
u ∈ L2(Ω) : Dju ∈ L2(Ω), j = 1, . . . , d

}
the first Sobolev space and by H1

0 (Ω) the closure of D(Ω) in H1(Ω). We let

Lp
loc(Ω) :=

{
u : Ω → R measurable s.t.

∫
ω

|u(x)|p dx < ∞ whenever ω � Ω

}
,

where 1 ≤ p < ∞. Similarly,

H1
loc(Ω) :=

{
u ∈ L2

loc(Ω) : Dju ∈ L2
loc(Ω) for j = 1, . . . , d

}
.
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We let
C0(Ω) :=

{
u ∈ C(Ω) : u|∂Ω = 0

}
,

where ∂Ω is the boundary of Ω.
Then H1(Ω) ∩ C0(Ω) ⊂ H1

0 (Ω), but

H1
0 (Ω) ∩ C(Ω) ⊂ C0(Ω) if and only if Ω is regular in capacity

(see [8]). The spaces H1
0 (Ω) and H1(Ω) are sublattices of L2(Ω). More precisely,

u ∈ H1(Ω) implies Dju
+ ∈ H1(Ω) and Dju

+ = χ{u>0}Dju, j = 1, ..., d,

where by χA we denote the characteristic function of a set A. If u ∈ H1
0 (Ω), then

also u+ ∈ H1
0 (Ω).

If u ∈ L1
loc(Ω), then the Laplacian �u is a distribution. By

−�u ≤ 0 in D(Ω)′

we mean that
−〈�u, v〉 ≤ 0 whenever 0 ≤ v ∈ D(Ω).

If u ∈ H1
loc(Ω), this is equivalent to

(2.1)

∫
Ω

∇u(x)∇v(x) dx ≤ 0 for 0 ≤ v ∈ D(Ω)

and if u ∈ H1(Ω), both inequalities remain true for all 0 ≤ v ∈ H1
0 (Ω). In fact, the

cone D(Ω)+ of all positive test functions is dense inH1
0 (Ω)+ :=

{
u∈H1

0 (Ω): u ≥ 0
}
.

We frequently use the following maximum principle: Let u ∈ H1(Ω) such
that

−�u ≤ 0.

If u+ ∈ H1
0 (Ω), then u ≤ 0.

In fact, taking v = u in (2.1) we obtain
∫
Ω
|∇u(x)+|2 dx ≤ 0. By Poincaré’s

inequality, this implies that u+ = 0.

3. The semigroup on L2
(
Ω, dx

m(x)

)
Let m : Ω → (0,∞) be measurable such that 1

m ∈ L1
loc(Ω). We consider the

Hilbert space L2
(
Ω, dx

m(x)

)
with the scalar product

〈u|v〉 =
∫
Ω

u(x)v(x)
dx

m(x)
.

On L2
(
Ω, dx

m(x)

)
we define the operator m�2 by

D(m�2) :=

{
u∈H1

0 (Ω) ∩ L2
(
Ω,

dx

m(x)

)
: ∃f ∈L2

(
Ω,

dx

m(x)

)
such that �u =

f

m

}
,

(m�2)u := f.

Note that f
m ∈ L1

loc(Ω) since for ω � Ω∫
ω

|f(x)|
m(x)

dx ≤
(∫

ω

|f(x)|2 dx

m(x)

) 1
2
(∫

ω

dx

m(x)

) 1
2

.

Thus the identity �u = f
m is well defined in D(Ω)′. The expression m�2 is purely

symbolic and has to be understood in the sense of the above definition. In fact, in
general �u is merely in D(Ω)′ and m�u cannot be defined as a distribution.

We will prove the following theorem.
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Theorem 3.1. The operator m�2 is self-adjoint and generates a positive, contrac-
tive C0-semigroup T2 on L2

(
Ω, dx

m(x)

)
. Moreover, the semigroup is submarkovian.

Here, an operator S on L2
(
Ω, dx

m(x)

)
is called submarkovian if f(x) ≤ 1 a.e.

implies Sf(x) ≤ 1 a.e. This is equivalent to saying that S is positive and

‖Sf‖∞ ≤ ‖f‖∞ for all f ∈ L2
(
Ω, dx

m(x)

)
∩ L∞(Ω).

To say that the semigroup T2 is submarkovian means that each T2(t), t ≥ 0, is
submarkovian.

We set V := H1
0 (Ω) ∩ L2

(
Ω, dx

m(x)

)
. Then V is a Hilbert space for the norm

‖u‖2V = ‖u‖2H1(Ω) + ‖u‖2
L2(Ω, dx

m(x) )
.

We let D(Ω)+ := {v ∈ D(Ω): v ≥ 0} and V+ := {u ∈ V : u ≥ 0 a.e.} .

Proposition 3.2. D(Ω) is dense in V and D(Ω)+ is dense in V+.

Proof. We prove the second assertion. The first assertion then follows since V =
V+ − V+.

a) Let u ∈ V+. There exists a sequence ϕn ∈ D(Ω) s.t. ϕn → u in H1(Ω). Let
un := (ϕn ∧ u) ∨ 0. Then 0 ≤ un ≤ u and un → u in H1(Ω). Moreover un → u a.e.
(for a subsequence which we denote also by un). Hence un → u in L2

(
Ω, dx

m(x)

)
by

the dominated convergence theorem. We have shown that V+ ∩ L∞
c (Ω) is dense in

V+, where

L∞
c (Ω) := {u ∈ L∞(Ω) : supp u ⊂ Ω is compact} .

b) Let u ∈ V+ ∩ L∞
c (Ω), un := ρn ∗ u, where ρn is a mollifier. Then un ∈ D(Ω),

supp un ⊂ K � Ω (for n ≥ n0) and ‖un‖∞ ≤ c (for n ≥ n0), un → u in H1(Ω) and
un → u a.e. after choosing a subsequence. Hence un → u in L2

(
Ω, dx

m(x)

)
. �

Proof of Theorem 3.1. Let a : V × V → R be given by

a(u, v) =

∫
Ω

∇u(x)∇v(x) dx.

Then a is continuous, symmetric and bilinear. Moreover, a is accretive, i.e., a(u, u)
≥ 0 for all u ∈ V and elliptic with respect to L2

(
Ω, dx

m(x)

)
, i.e.,

a(u, u) + ω‖u‖2
L2(Ω, dx

m(x) )
≥ α‖u‖2V

for some ω ∈ R and α > 0.

This follows from Poincaré’s inequality, which asserts that
√∫

Ω
|∇u(x)|2 dx de-

fines an equivalent norm on H1
0 (Ω).

Let A be the operator associated with a . Then A is self-adjoint and−A generates
a contractive semigroup T2 on L2

(
Ω, dx

m(x)

)
. We show that −m�2 = A. In fact, for

u, f ∈ L2
(
Ω, dx

m(x)

)
we have by definition,

u ∈ D(A) and −Au = f if and only if

a(u, v) = −
∫
Ω

f(x)v(x)
dx

m(x)
for all v ∈ V.
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Taking v ∈ D(Ω), this implies that �u = f
m . Hence u ∈ D(m�2) and (m�2)u = f.

Conversely, if u ∈ D(m�2) and (m�2)u = f , then �u = f
m in D(Ω)′. Since

u ∈ H1
0 (Ω), this implies that∫

Ω

∇u(x)∇v(x) dx = −〈�u, v〉 = −
∫
Ω

f(x)v(x)
dx

m(x)

for all v ∈ D(Ω). Since D(Ω) is dense in V it follows that u ∈ D(A) and Au = f .
It follows from the Beurling-Deny criterion ([11], Theorem 1.3.3) or ([28], Corol-

lary 2.17) that the semigroup is submarkovian. �

As a consequence we find a consistent family Tp, 1 ≤ p ≤ ∞, of semigroups on

Lp
(
Ω, dx

m(x)

)
, such that T2 is the given semigroup generated by m�2. Here Tp is a

positive, contractive C0-semigroup for 1 ≤ p < ∞ and T∞(t) = T ′
1(t) for all t ≥ 0.

We denote the generator of Tp by m�p. Thus m�∞ = (m�1)
′.

We note that consistency of the semigroups implies consistency of the resolvents.
In particular,

(3.1) R(λ,m�∞)f = R(λ,m�2)f

for all λ > 0, f ∈ L∞(Ω) ∩ L2
(
Ω, dx

m(x)

)
. We also note that

R(λ,m�∞) ≥ 0 for all λ > 0.

Finally, we will frequently use the following local regularity of the Laplacian.
Let N

2 < p ≤ ∞. Then

(3.2) u ∈ L1
loc(Ω), �u ∈ Lp

loc(Ω) implies u ∈ C(Ω).

See ([13], II.3 Proposition 6). To avoid confusion in the case N = 1 we shall tacitly
assume p ≥ 1 throughout the paper.

If m ≡ 1, then the operator �p := m�p is just the Dirichlet Laplacian on Lp(Ω).
We need the following properties of this operator.

Proposition 3.3. The operator �p is invertible. Moreover, for N
2 < p ≤ ∞ the

following holds:

(a) D(�p) =
{
u ∈ H1

0 (Ω) : �u ∈ Lp(Ω)
}

and �pu = �u in D(Ω)′ for all
u ∈ D(�p).

(b) D(�p) ⊂ Cb(Ω) := {u : Ω → R : u is bounded and continuous}.

Proof. The invertibility follows from ([11], Theorem 1.6.3), for example. Note that
for N

2 < p ≤ ∞

‖Tp(t)‖L(Lp(Ω),L∞(Ω)) ≤ ct−
N
2p e−ωt (t ≥ 0)

for some c > 0, ω > 0 (see e.g. [28] Lemma 6.5). Thus

R(0,�p) =

∫ ∞

0

Tp(t) dt ∈ L(Lp(Ω), L∞(Ω)).

Let f ∈ Lp(Ω), u = R(0,�p)f . Then u ∈ L∞(Ω). Moreover, −�u = f in D(Ω)′.
In fact, let fk → f in Lp(Ω) where fk ∈ L2(Ω)∩Lp(Ω). Then uk := R(0,�p)fk → u
in L∞(Ω). Moreover, since R(0,�p)fk = R(0,�2)fk, one has uk ∈ H1

0 (Ω) and
−�uk = fk in D(Ω)′. Since uk → u in L∞(Ω) ↪→ D(Ω)′, it follows that �uk → �u
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in D(Ω)′. Thus −�u = f . It follows from (3.2) that u ∈ C(Ω). Finally, by the
definition of �2, one has∫

Ω

|∇uk(x)|2 dx =

∫
Ω

fk(x)uk(x) dx ≤ ‖fk‖Lp(Ω)‖uk‖L∞(Ω)|Ω|
1
p′ ,

where 1
p + 1

p′ = 1. Thus (uk)k∈N is bounded in H1
0 (Ω). Taking a subsequence,

we may assume that uk ⇀ w ∈ H1
0 (Ω). Since uk → u ∈ L∞(Ω), it follows that

u = w ∈ H1
0 (Ω). Thus (b) and one inclusion in (a) are proved.

Let u ∈ H1
0 (Ω) such that f := �u ∈ Lp(Ω). It remains to show that u ∈ D(�p)

and �pu = �u. Let w = R(0,�p)f . Then w ∈ H1
0 (Ω) and −�w = f by what has

been proved above. Thus u + w ∈ H1
0 (Ω) and �(u + w) = 0. By the maximum

principle (see the Introduction) this implies u+ w = 0. �

Now we can add the following local regularity of the Laplacian.
Let N

2 < p ≤ ∞. Then

(3.3) u ∈ L1
loc(Ω), �u ∈ Lp

loc(Ω) implies u ∈ H1
loc(Ω).

In fact, let u ∈ L1
loc(Ω) such that �u ∈ Lp

loc(Ω). Let ω � Ω be arbitrary and
f = �u|ω ∈ Lp(ω). Consider the operator�p on Lp(ω). Then w := �−1

p f ∈ H1
0 (ω)

by Proposition 3.3. Since �w = f = �u in D(Ω)′, the function u− w is harmonic
and hence in C∞(ω). Thus u ∈ H1(ω).

In the following we again consider a function m : Ω → (0,∞) satisfying 1
m ∈

L1
loc(Ω). We first show how m�∞ operates on functions.

Proposition 3.4. (a) Let u ∈ D(m�∞), f = (m�∞)u. Then

�u =
f

m
in D(Ω)′.

(b) If 1
m ∈ Lp

loc(Ω) for some p > N
2 , then

D(m�∞) ⊂ Cb(Ω) ∩H1
loc(Ω).

(c) If m ∈ L∞
loc(Ω), then D(Ω) ⊂ D(m�∞) and (m�∞)u = m · �u for u ∈

D(Ω).

Proof. (a) Let λ > 0. Define g := λu − f ∈ L∞(Ω). Then u = R(λ,m�∞)g. If
g ∈ L∞(Ω)∩L2

(
Ω, dx

m(x)

)
, then the claim follows from the fact that R(λ,m�∞)g =

R(λ,m�2)g. In the general case there exist gk ∈ L∞(Ω) ∩ L2
(
Ω, dx

m(x)

)
such that

gk → g for σ
(
L∞(Ω), L1

(
Ω, dx

m(x)

))
. Let uk = R(λ,m�∞)gk. Then

−�uk =
gk − λuk

m
.

Now we use the fact that R(λ,m�∞) = R(λ,m�1)
′ is continuous for the weak∗-

topology σ
(
L∞(Ω), L1

(
Ω, dx

m(x)

))
. Hence uk → u for σ

(
L∞(Ω), L1

(
Ω, dx

m(x)

))
. Since

D(Ω) ⊂ L1
(
Ω, dx

m(x)

)
we conclude that uk → u in D(Ω)′. Hence �uk → �u

in D(Ω)′. Since gk − λuk → g − λu for σ
(
L∞(Ω), L1

(
Ω, dx

m(x)

))
, it follows that

gk−λuk

m → g−λu
m in D(Ω)′. Thus

−�u =
g − λu

m
= − f

m
.

The proof of (a) is complete.

Licensed to University of Auckland. Prepared on Sun Mar  3 17:17:03 EST 2013 for download from IP 130.216.82.99.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



DIRICHLET REGULARITY AND DEGENERATE DIFFUSION 5867

(b) This follows now from (3.2) and (3.3).
(c) Assume that m ∈ L∞

loc(Ω). Let u ∈ D(Ω), f = m ·�u. Then u ∈ H1
0 (Ω), f ∈

L2
(
Ω, dx

m(x)

)
and �u = f

m . Thus u ∈ D(m�2) and (m�2)u = f . Let λ > 0 and set

g := λu− f . Then g ∈ L∞(Ω)∩L2
(
Ω, dx

m(x)

)
and R(λ,m�∞)g = R(λ,m�2)g = u.

Thus u ∈ D(m�∞) and λu− (m�∞)u = g = λu− f , i.e., (m�∞)u = f. �
In Proposition 3.4, the boundary condition is not incorporated. But if 1

m ∈
L1(Ω), then L∞(Ω) ⊂ L2

(
Ω, dx

m(x)

)
, and the operator m�∞ is just the part of m�2

in L∞(Ω). Thus, if 1
m ∈ L1(Ω), then

D(m�∞) =

{
u ∈ H1

0 (Ω) ∩ L∞(Ω) : ∃f ∈ L∞(Ω) s.t. �u =
f

m

}
(m�∞)u = f.

(3.4)

If 1
m ∈ Lp(Ω) for some ∞ ≥ p > N

2 , we can even assert more.

Proposition 3.5. Assume that 1
m ∈ Lp(Ω), where N

2 < p ≤ ∞. Then m�∞ is
invertible.

Proof. Let f ∈ L∞(Ω). Then f
m ∈ Lp(Ω). Thus by Proposition 3.3 there exists

u ∈ H1
0 (Ω) such that �u = f

m . This shows that m�∞ is surjective. If u ∈
D(m�∞), (m�∞)u = 0, then by (3.4) we have u ∈ H1

0 (Ω) and �u = 0. This
implies that u = 0. Thus (m�∞) is injective. Since the operator is closed, the
proof is finished. �

The positive semigroups Tp generated by m�p on Lp
(
Ω, dx

m(x)

)
have many inter-

esting properties. We just mention that they are always irreducible if Ω is connected
(where we assume only 0 < m, 1

m ∈ L1
loc(Ω) as before). This means that

(et(m�p)f)(x) > 0 a.e. for all 0 ≤ f ∈ Lp
(
Ω,

dx

m(x)

)
, f �= 0, and for all t > 0.

For p = 2 this follows from Ouhabaz’ simple criterion that

χC ·H1
0 (Ω) ⊂ H1

0 (Ω) implies |C| = 0 or |Ω\C)| = 0

for each Borel set C ⊂ Ω (see [28], Section 4.2 or [3]). For another proof of
irreducibility we refer to [18], and for consequences we refer to [4].

4. The operator m�0 on C0(Ω)

Let Ω ⊂ RN be open and bounded. Letm : Ω → (0,∞) be a measurable function
such that m ∈ L∞

loc(Ω) and
1
m ∈ Lp

loc, where p > N
2 . We want to define a maximal

realization of m� in C0(Ω). If u ∈ C0(Ω), then �u ∈ D(Ω)′, but m�u may not be
defined as a distribution. Thus the following definition is natural.

Definition 4.1. We define the operator m�0 on C0(Ω) by

D(m�0) :=

{
u ∈ C0(Ω) : ∃f ∈ C0(Ω) s.t. �u =

f

m

}
,

(m�0)u := f.

Since f
m ∈ L1

loc ⊂ D(Ω)′, this definition makes sense. The notation (m�0)

is purely symbolic. But if u ∈ C0(Ω) ∩ C2(Ω) such that m · �u ∈ C0(Ω), then
u ∈ D(m�0) and (m�0)u = m · �u.
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Proposition 4.2. The operator m�0 is closed and dissipative. Moreover, if

R(λ0,m�∞)C0(Ω) ⊂ C0(Ω)

for some λ0 > 0, then m�0 generates a C0-semigroup of positive contractions on
C0(Ω). In that case

(0,∞) ⊂ ρ(m�0),

R(λ,m�∞)C0(Ω) ⊂ C0(Ω) for all λ > 0 and

R(λ,m�0) = R(λ,m�∞)|C0(Ω).

Note that in general, D(Ω) � D(m�0), since we do not assume that m is con-
tinuous. Thus in Proposition 4.2 density of the domain (which is necessary for the
generation property) needs a separate argument.

Since m�0 is dissipative, it follows in particular that no proper restriction of
m�0 may generate a C0-semigroup on C0(Ω).

We first prove dissipativity.

Lemma 4.3. Let λ > 0, u = D(m�0), and f = λu − (m�0)u. Let c > 0 be such
that

f(x) ≤ c for all x ∈ Ω.

Then λu(x) ≤ c for all x ∈ Ω.

Proof. By the definition of the operator we have

λ
u

m
−�u =

f

m
≤ c

m
.

Since by (3.3) u ∈ H1
loc(Ω), this implies that for 0 ≤ v ∈ D(Ω)

(4.1)

∫
Ω

(λu(x)− c)

m(x)
v(x) dx+

∫
Ω

∇u(x)∇v(x) dx ≤ 0.

Since u ∈ C0(Ω), (λu − c)+ has compact support. Let ω � Ω such that supp
(λu− c)+ ⊂ ω. Then (λu− c)+ ∈ H1

0 (ω) and (λu− c) ∈ H1(ω). Now (4.1) implies
that ∫

ω

(λu(x)− c)

m(x)
v(x) dx+

1

λ

∫
ω

∇(λu(x)− c)∇v(x) dx ≤ 0

for all 0 ≤ v ∈ H1
0 (ω). Taking, in particular, v := (λu− c)+, we see that∫

ω

(λu(x)− c)+
2

m(x)
dx+

1

λ

∫
ω

|∇(λu(x)− c)+|2 dx ≤ 0.

This implies that (λu− c)+ = 0, i.e., λu ≤ c. �

Applying Lemma 4.3 to ±u, we see that

‖λu‖L∞(Ω) ≤ ‖λu− (m�0)u‖∞
for all u ∈ D(m�0), i.e., m�0 is dissipative. But in fact, Lemma 4.3 shows that
the operator m�0 is dispersive. We refer to ([5], [27], Chapter II) for this notion.

Proof of Proposition 4.2. The dissipativity has been proved above, and the closed-
ness is easy to see. Now let R(λ,m�∞)C0(Ω) ⊂ C0(Ω) for some λ > 0. We show
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that λ ∈ ρ(m�0) and R(λ,m�0) = R(λ,m�∞)|C0(Ω). Let f ∈ C0(Ω) and consider
u = R(λ,m�∞)f ∈ C0(Ω). Then (by Proposition 3.4)

λ
u

m
−�u =

f

m
in D(Ω)′.

It follows that u ∈ D(m�0) and (λu−(m�0)u) = f . We have shown that λ−(m�0)
is surjective. Since the injectivity of (λ − m�0) follows from the dissipativity of
m�0, the closed graph theorem now implies that λ ∈ ρ(m�0). The calculation
above also shows that R(λ,m�0)f = u = R(λ,m�∞)f .

By the resolvent identity (see [1], Proposition 3.II.2) for 0 ≤ f ∈ C0(Ω) and
λ > λ0 we have

0 ≤ R(λ,m�∞)f ≤ R(λ0,m�∞)f ∈ C0(Ω).

Since by Proposition 3.3 the function R(λ,m�∞)f is continuous, it follows from the
domination property above that R(λ,m�∞)f ∈ C0(Ω). Thus C0(Ω) is invariant
for all λ ≥ λ0. Hence [λ0,∞) ⊂ ρ(m�0).

Next we show that D(m�0) is dense in C0(Ω). Since m ∈ L∞
loc(Ω), we have

D(Ω) ⊂ D(m�∞) by Proposition 3.4. Hence C0(Ω) ⊂ D(m�∞). Thus, for f ∈
C0(Ω) one has

lim
λ→∞

λR(λ,m�0)f = lim
λ→∞

λR(λ,m�∞)f = f.

Since λR(λ,m�0)f ∈ D(m�0), density of the domain is proved. Now the Lumer-
Phillips theorem implies that m�0 generates a contractive C0-semigroup. Since
the resolvent of m�0 is positive, this semigroup is positive. It also follows that
(0,∞) ⊂ ρ(m�0). �

We will now consider two cases which imply the invariance given in Proposition
4.2, namely that Ω is Dirichlet regular or that the diffusion coefficient m(x) tends
to 0 fast enough as x approaches the boundary. We start by discussing Dirichlet
regularity.

5. Regular points

Let Ω ⊂ RN be open, bounded and let N
2 < p ≤ ∞. Let m : Ω → (0,∞) be

measurable such that m ∈ L∞
loc(Ω) and

1
m ∈ Lp

loc(Ω).

Theorem 5.1. If Ω is Dirichlet regular, then m�0 generates a positive contractive
C0-semigroup on C0(Ω).

Thus in the case of a Dirichlet regular set, no condition on m(x) as x approaches
the boundary is needed. We merely impose a (very weak) regularity condition on
m in the interior of Ω.

It will be useful to prove an individual version of Theorem 5.1 first. For this we
have to recall the notion of regular points.

Consider the Dirichlet problem

(5.1)

⎧⎪⎨
⎪⎩

h ∈ C(Ω) ∩ C2(Ω),

�h = 0 in Ω,

h|∂Ω = ϕ,

where ϕ ∈ C(∂Ω) is given. Recall that Ω is called Dirichlet regular if for each ϕ ∈
C(∂Ω) a (necessarily unique) solution of (5.1) exists. If Ω has Lipschitz boundary,
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then Ω is Dirichlet regular. Much weaker geometric properties of the boundary
suffice, though. In dimension N = 1 each bounded open subset Ω of R is Dirichlet
regular. If N = 2, then each simply connected bounded open set is Dirichlet
regular. This is no longer true in R3. The Lebesgue cusp gives an example of a
simply connected domain with continuous boundary, which is not Dirichlet regular
(see [6] for more information).

A function u ∈ C(Ω) is called a subsolution if

−�u ≤ 0 in D(Ω)′ and lim sup
x→z, x∈Ω

u(x) ≤ ϕ(z) for all z ∈ ∂Ω.

A function u ∈ C(Ω) is called a supersolution if

−�u ≥ 0 in D(Ω)′ and lim inf
x→z, x∈Ω

u(x) ≥ ϕ(z) for all z ∈ ∂Ω.

Theorem 5.2 (Perron). Let ϕ ∈ C(∂Ω). Then for all x ∈ Ω

hϕ(x) := sup {u(x) : u is a subsolution}

exists. Moreover,

hϕ(x) = inf {v(x) : v is a supersolution} .

The function hϕ is harmonic and

inf
∂Ω

ϕ ≤ hϕ(x) ≤ sup
∂Ω

ϕ

for all x ∈ Ω. If (5.1) has a solution h, then hϕ = h.

The function hϕ is called the Perron solution of (5.1).
A point z ∈ ∂Ω is called regular if

lim
x→z, x∈Ω

hϕ(x) = ϕ(z)

for all ϕ ∈ C(∂Ω). Thus Ω is Dirichlet regular if and only if each point z ∈ ∂Ω is
regular. It is possible to characterize regular points by the existence of a barrier or
by a capacity condition (Wiener’s theorem). We refer to [20].

Now we can formulate the local version of Theorem 5.1, which we want to prove.

Theorem 5.3. Let Ω be bounded and open. Let z ∈ ∂Ω be a regular point. Let
λ > 0, f ∈ C0(Ω), and u = R(λ,m�∞)f . Then

lim
x→z, x∈Ω

u(x) = 0.

Thus, if Ω is Dirichlet regular, then C0(Ω) is invariant under R(λ,m�∞) and
Theorem 5.1 follows from Proposition 4.2.

For the proof of Theorem 5.3 we use the following variational characterization
of the Perron solution (see [7]).

Theorem 5.4. Let Φ ∈ C(Ω) be such that �Φ ∈ H−1(Ω). Let ϕ = Φ|∂Ω. Let u be
the unique solution of

u ∈ H1
0 (Ω),

−�u = �Φ.

Then hϕ = Φ+ u.
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For our purposes the following consequence is important. Recall that by Propo-
sition 3.3, for all f ∈ Lp(Ω) there exists a unique u ∈ H1

0 (Ω) such that

−�u = f in D(Ω)′.

In fact, u = R(0,�p)f , where �p denotes the Dirichlet Laplacian on Lp(Ω). More-
over, one has u ∈ Cb(Ω).

Corollary 5.5. Let f ∈ Lp(Ω), u = R(0,�p)f . Then

lim
x→z, x∈Ω

u(x) = 0

for each regular point z ∈ ∂Ω. Thus, if Ω is Dirichlet regular, then u ∈ C0(Ω).

Proof. It follows from the Sobolev embedding theorem that Lp(Ω) ⊂ H−1(Ω). Let
f ∈ Lp(Ω). Let Φ = E ∗ f , where E is the Newtonian potential. Then (by [13],
II.3, Proposition 6) Φ ∈ C(RN ), and in D(Ω)′ we have

�Φ = f ∈ Lp(Ω) ⊂ H−1(Ω).

Let u = R(0,�p)f . Then it follows from Theorem 5.4 that hϕ = Φ+ u. Thus

lim
x→z, x∈Ω

hϕ(x) = ϕ(z) if z ∈ ∂Ω is regular.

Consequently,1 limx→z u(x) = 0. �

Remark. a) In [2] a more special case of Corollary 5.5 is proved with the help of
H1-barriers (the proof of Theorem 3.8 in [2]).

b) Special cases of Theorem 5.4 were obtained previously by Hildebrandt [19]
and Simader [31].

Proof of Theorem 5.3. (a) Let λ > 0, 0 ≤ f ∈ Cc(Ω), and u = R(λ,m�∞)f . Then
u ∈ H1

0 (Ω) and

λ
u

m
−�u =

f

m
in D(Ω)′.

Moreover, 0 ≤ u ∈ Cb(Ω). Observe that 0 ≤ f
m ∈ Lp(Ω). Let w = R(0,�p)

f
m .

Then we know that 0 ≤ w ∈ H1
0 (Ω)∩Cb(Ω) and, by Corollary 5.5, limx→z w(x) = 0

for all regular points z ∈ ∂Ω. By definition,

−�w =
f

m
in D(Ω)′.

Thus −�(u − w) ≤ 0 in D(Ω)′. Since u − w ∈ H1(Ω) and (u − w)+ ∈ H1
0 (Ω), it

follows from the maximum principle that u ≤ w. Hence limx→z u(x) = 0 for each
regular point z ∈ ∂Ω.

(b) Let z ∈ ∂Ω be a regular point. Then by (a)

lim
x→z, x∈Ω

(R(λ,m�∞)f)(x) = 0

for each 0 ≤ f ∈ Cc(Ω), hence also for each f ∈ Cc(Ω). Since Cc(Ω) is dense in
C0(Ω), this remains true for all f ∈ C0(Ω). �

Next we show a converse of Theorem 5.1. If the diffusion coefficientm is not weak
enough at the boundary, then Dirichlet regularity is necessary for m�0 to generate
a C0-semigroup. More precisely, the following holds. Recall that N

2 < p ≤ ∞.

1We will sometimes use the notation limx→z f(x) := limx→z, x∈Ω f(x) for f : Ω → R.
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Theorem 5.6. Assume that 1
m ∈ Lp(Ω). Then m�0 generates a C0-semigroup if

and only if Ω is Dirichlet regular.

For the proof we need the following.

Proposition 5.7. Let u ∈ C0(Ω) be such that −�u = f ∈ Lp(Ω) for some p > N
2 .

Then u ∈ H1
0 (Ω), hence u = R(0,�p)f .

This follows from [6], Corollary 1.4, since Lp(Ω) ⊂ H−1(Ω).

Proof of Theorem 5.6. Assume that m�0 generates a C0-semigroup. Since 1
m ∈

Lp(Ω), we know from Proposition 3.5 that [0,∞) ⊂ ρ(m�∞) and R(λ,m�∞) ≥ 0
for all λ ≥ 0.

We now claim R(λ,m�∞)C0(Ω) ⊂ C0(Ω) and R(λ,m�0) = R(λ,m�∞)|C0(Ω)

for any λ > 0. Let f ∈ C0(Ω) and u = R(λ,m�0)f . Then

−�u =
f

m
− λ

u

m
∈ Lp(Ω).

Since u ∈ C0(Ω), it follows from Proposition 5.7 that u ∈ H1
0 (Ω). Since 1

m ∈
Lp(Ω) we have L∞(Ω) ⊂ L2

(
Ω, dx

m(x)

)
. Thus by (3.4) we have u ∈ D(m�∞) and

λu− (m�∞)u = f . Hence u = R(λ,m�∞)f . This proves the claim.
Since 0 ∈ ρ(m�∞), the claim implies that

lim sup
λ→0

‖R(λ,m�0)‖L(C0(Ω)) < ∞,

hence 0 ∈ ρ(m�0) and R(0,m�0) ≥ 0.
Let 0 ≤ f ∈ C0(Ω) and f(x) > 0 for all x ∈ Ω and u = R(0,m�0)f . Then

u ∈ C0(Ω) and −�u = f
m in D(Ω)′. Hence R(0,�p)

f
m = u ∈ C0(Ω) by Proposition

5.7. We deduce that R(0,�p)g ∈ C0(Ω) for all g ∈ Lp(Ω) such that |g| ≤ f
m for

some 0 ≤ f ∈ C0(Ω). The space of all such functions g is dense in Lp(Ω). Thus
R(0,�p)L

p(Ω) ⊂ C0(Ω). Now it follows from [2], Theorem 2.4, that Ω is Dirichlet
regular. �

6. Points of weak diffusion

Let Ω ⊂ RN be open and bounded and let m : Ω → (0,∞) be a bounded mea-
surable function such that 1

m ∈ Lp
loc(Ω) for some N

2 < p ≤ ∞. Instead of regularity
we may assume that m is small in a neighbourhood of a boundary point. We say
that z ∈ ∂Ω is a point of weak diffusion (for the operator m�) if there exist r > 0
and c > 0 such that

(6.1) m(x) ≤ c · dist(x, ∂Ω)2

for all x ∈ Ω ∩B(z, r). If z ∈ ∂Ω is a point of weak diffusion, then we show that

(6.2) lim
x→z, x∈Ω

(R(λ,m�∞)f)(x) = 0

for all f ∈ C0(Ω). We will also show that condition (6.1) is optimal in the sense
that

m(x) ≤ c · dist(x, ∂Ω)α

for some 0 < α < 2 does not suffice to enforce (6.2).
We need the notion of a regularized distance function.
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Lemma 6.1. There exist a function σ : Ω → (0,+∞), which is of class C∞(Ω),
and a constant cσ > 0 such that

c−1
σ d(x) ≤σ(x) ≤ cσd(x),

|∇σ|2 ≤ cσ,

|σ�σ| ≤ cσ

for all x ∈ Ω, where d(x) := inf
{
‖x− y‖, y ∈ Rd\Ω

}
.

See [32], Chapter 6, for a proof based on the Whitney decomposition of Ω.
Since σ ∈ C0(Ω), it follows in particular that σ ∈ H1

0 (Ω). First we consider the
case m(x) := σ(x)2.

Proposition 6.2. The operator σ2�0 generates a strongly continuous semigroup
of positive contractions on C0(Ω).

Proof. Let λ ≥ cσ+1, where cσ is a constant from Lemma 6.1. Set u=R(λ, σ2�∞)σ.
Since σ ∈ L2

(
Ω, dx

σ(x)2

)
, it follows from (3.1) that 0 ≤ u ∈ H1

0 (Ω)∩L2
(
Ω, dx

σ(x)2

)
and

λ
u

σ2
−�u =

σ

σ2
in D(Ω)′.

Since σ�σ ≤ cσ, it follows that σ ≤ λσ − cσσ ≤ λσ − σ2�σ. Thus

λ
u

σ2
−�u =

1

σ2
σ ≤ λ

σ

σ2
−�σ in D(Ω)′.

Hence

λ
(u− σ)

σ2
−�(u− σ) ≤ 0 in D(Ω)′.

Since u− σ ∈ H1(Ω) and (u−σ)+ ≤ u ∈ H1
0 (Ω), it follows that (u− σ)+ ∈ H1

0 (Ω).
Now the maximum principle (see Section 2) implies that (u− σ)+ ≤ 0, i.e., u ≤ σ.

We have shown that

(6.3) R(λ, σ2�∞)σ ≤ σ (λ ≥ λ0 := 1 + cσ).

Thus, for f ∈ C0(Ω) such that |f | ≤ cσ, one has

|R(λ, σ2�∞)f | ≤ cR(λ, σ2�∞)σ ≤ cσ.

Consequently, R(λ, σ2�∞)f ∈ C0(Ω) for λ ≥ λ0. Since functions satisfying |f | ≤ cσ
for some c ≥ 0 are dense in C0(Ω), we deduce that R(λ, σ2�∞)C0(Ω) ⊂ C0(Ω) for
λ ≥ λ0. Now the claim follows from Proposition 4.2. �

We comment that the result of Proposition 6.2 may be alternatively deduced
from [12], Theorem 5.4. However, our argument given here is quite different from
[12].

We need a local extension of the resolvents of σ2�. Recall that N
2 < p ≤ ∞.

Lemma 6.3. Let ω � Ω, λ > 0. There exists an operator

Q(λ, ω) ∈ L(Lp(ω), C0(Ω))

such that

Q(λ, ω)f = R(λ, σ2�0)f for all f ∈ Lp(ω) ∩ C0(Ω).
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For f ∈ Lp(ω) the function u = Q(λ, ω)f is the unique solution of

u ∈ C0(Ω),

λ
u

σ2
−�u =

f

σ2
in D(Ω)′.(6.4)

Moreover, u ∈ H1
0 (Ω).

Here we consider Lp(ω) as a subspace of Lp(Ω) extending functions by 0 outside
ω. Similarly, we consider Cc(ω) ⊂ C0(ω) ⊂ C0(Ω).

Proof. (a) Let 0 ≤ f ∈ Cc(ω). There exists δ > 0 such that σ2 ≥ δ on ω. Let
u = R(λ, σ2�0)f = R(λ, σ2�2)f. Then 0 ≤ u ∈ H1

0 (Ω) and

λ
u

σ2
−�u =

f

σ2
≤ 1

δ
f.

Let w := 1
δR(0,�p)f , where �p denotes the Dirichlet Laplacian on Lp(Ω). Then

w ∈ H1
0 (Ω) ∩ L∞(Ω) and

−�w =
1

δ
f in D(Ω)′.

Moreover, ‖w‖L∞(Ω) ≤ c1‖f‖Lp(ω), where c1 = 1
δ‖R(0,�p)‖L(Lp(Ω),L∞(Ω)) (see

Proposition 3.3 (b)). We show that u ≤ w. In fact, we have

−�u ≤ λ
u

σ2
−�u ≤ 1

δ
f and

−�w =
1

δ
f,

hence −�(u − w) ≤ 0 in D(Ω)′. Consequently, by the maximum principle (see
Section 2), u ≤ w. Thus

‖u‖L∞(Ω) ≤ ‖w‖L∞(Ω) ≤ c1‖f‖Lp(ω).

We have shown that

(6.5) ‖R(λ, σ2�0)f‖L∞(Ω) ≤ c1‖f‖Lp(ω)

for 0 ≤ f ∈ Cc(ω). Since for arbitrary f ∈ Cc(ω),

|R(λ, σ2�0)f | ≤ R(λ, σ2�0)|f |,
the estimate (6.5) remains true for all f ∈ Cc(ω). By the density of Cc(ω) in Lp(ω),
the first claim is proved.

(b) In order to prove the second claim, let f ∈ Lp(ω), u = Q(λ, ω)f . Let
fk ∈ Cc(ω) be such that fk → f in Lp(ω). Then uk := Q(λ, ω)fk → u in C0(Ω).
We have uk ∈ H1

0 (Ω) ∩ C0(Ω) and

(6.6) λ
uk

σ2
−�uk =

fk
σ2

in D(Ω)′.

Passing to the limit as k → ∞ shows that (6.4) holds.
It remains to show that u ∈ H1

0 (Ω). Multiplying (6.6) by uk and integrating
yields

λ

∫
Ω

uk(x)
2

σ(x)2
dx+

∫
Ω

|∇uk(x)|2 dx =

∫
Ω

fk(x)uk(x)

σ(x)2
dx

≤ ‖uk‖L∞(Ω)
1

δ2
· |Ω|

1
p′ ‖fk‖Lp(Ω).
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This shows that (uk)k∈N is bounded in H1
0 (Ω). Thus, passing to a subsequence

we may assume that uk ⇀ w ∈ H1
0 (Ω). Since uk → u in C0(Ω), it follows that

u = w ∈ H1
0 (Ω). �

Now we consider a more general function m satisfying the hypothesis formulated
in the beginning of this section. We prove regularity of m�∞ at points of weak
diffusion.

Theorem 6.4. Let z ∈ ∂Ω be a point of weak diffusion (in the sense of (6.1)). Let
f ∈ C0(Ω), λ > 0, and u = R(λ,m�∞)f . Then

lim
x→z, x∈Ω

u(x) = 0.

Proof. Let r1 > 0 be a large radius such that Ω +B(0, r) ⊂ B(0, r1). Consider the
open set

Ω̃ := (Ω ∩B(z, r)) ∪ (B(0, r1)\B(z,
r

2
)).

Then Ω ⊂ Ω̃ and B(z, r
2 )∩ ∂Ω ⊂ ∂Ω̃. In particular, z ∈ ∂Ω̃. Consider a regularized

distance σ̃ with respect to Ω̃. Then there exists a constant c > 0 such that

(6.7) m(x) ≤ cσ̃(x)2 for all x ∈ Ω.

In fact, for x ∈ B(z, r)∩Ω this follows from (6.1). But for x ∈ Ω\B(z, 3
4r), one has

dist(x, ∂Ω̃) ≥ r
4 . Since m is bounded, it follows that

m(x) ≤ c2(
r

4
)2 ≤ c2 dist(x, ∂Ω̃)

2

for all x ∈ Ω\B(z, 3
4r). This shows that (6.7) is valid for a suitable constant c > 0.

Now let λ > 0. Let 0 ≤ f ∈ Cc(Ω) and u = R(λ,m�∞)f . Then u ∈ Cb(Ω) ∩
H1

0 (Ω) and

λ
u

m
−�u =

f

m
in D(Ω)′.

Let ρ := m
σ̃2 . Then 0 < ρ ≤ c on Ω and

1

c
≤ 1

ρ
=

σ̃2

m
∈ Lp

loc(Ω).

Hence
λ

c

u

σ̃2
≤ λ

ρ

u

σ̃2
=

λu

m
.

Thus
λ

c

u

σ̃2
−�u ≤ f

m
=

1

σ̃2

f

ρ
.

Let ω � Ω be such that supp f ⊂ ω. Consider Q(λ, ω) ∈ L(Lp(ω), C0(Ω̃)) of

Lemma 6.3 defined with respect to σ̃. Let w = Q(λc , ω)
f
ρ . Note that w is well

defined, since f
ρ ∈ Lp(ω). Then 0 ≤ w ∈ C0(Ω̃) ∩H1

0 (Ω̃) and, by (6.4),

λ

c

w

σ̃2
−�w =

1

σ̃2

f

ρ
in D(Ω̃)′

and hence also in D(Ω)′. Thus

λ

c

(u− w)

σ̃2
−�(u− w) ≤ 0 in D(Ω)′.
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Recall that u ∈ H1
0 (Ω) ∩ Cb(Ω). Thus (u− w) ∈ H1(Ω). Hence

(6.8)
λ

c

∫
Ω

(u(x)− w(x))

σ̃(x)2
v(x) dx+

∫
Ω

∇(u(x)− w(x))∇v(x) dx ≤ 0

for all 0 ≤ v ∈ D(Ω). Since (u − w)+ ∈ H1(Ω) and (u − w)+ ≤ u ∈ H1
0 (Ω), it

follows that (u− w)+ ∈ H1
0 (Ω).

Since u = R(λ,m�∞)f = R(λ,m�2)f , it follows that

u ∈ L2
(
Ω,

dx

m(x)

)
⊂ L2

(
Ω,

dx

σ̃(x)2

)
because of (6.7). It follows (since also w ∈ L2

(
Ω, dx

σ̃(x)2

)
) that

v1 := (u− w)+ ∈ V := L2
(
Ω,

dx

σ̃(x)2

)
∩H1

0 (Ω).

Since D(Ω)+ is dense in V+ by Proposition 3.2, (6.8) remains true for v := v1. This
means that

λ

c

∫
Ω

(u(x)− w(x))+
2

σ̃(x)2
dx+

∫
Ω

|∇(u(x)− w(x))+|2 dx ≤ 0.

This implies that (u− w)+ = 0. Hence 0 ≤ u ≤ w.
Since

lim
x→z, x∈Ω̃

w(x) = 0,

it follows that

lim
x→z, x∈Ω

u(x) = 0.

We have proved the theorem for the case when 0 ≤ f ∈ Cc(Ω). Hence it is also
true for arbitrary f ∈ Cc(Ω). Since R(λ,m�∞) ∈ L(L∞(Ω)), and Cc(Ω) is dense
in C0(Ω), it follows that

lim
x→z, x∈Ω

(R(λ,m�∞)f)(x) = 0

for all f ∈ C0(Ω). �

Corollary 6.5. Assume that each z ∈ ∂Ω is a point of weak diffusion (in the sense
of (6.1)). Then m�0 generates a positive, contractive C0-semigroup on C0(Ω).

7. Conclusion

We may now formulate the following general generation theorem. Let Ω ⊂ RN

be bounded, open and N
2 < p ≤ ∞. Let m : Ω → (0,∞) be bounded and such that

1
m ∈ Lp

loc(Ω).

Theorem 7.1. Assume that for each point z ∈ ∂Ω one of the following conditions
is satisfied:

(a) z is a regular point or
(b) z is a point of weak diffusion (in the sense of (6.1)).

Then m�0 generates a positive, contractive C0-semigroup on C0(Ω).

Proof. Theorem 5.3 and Theorem 6.4 show that C0(Ω) is invariant. Thus the claim
follows from Proposition 4.2. �
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Finally, we show that the condition (6.1) of being a point of weak diffusion is
optimal.

Let N = 2 and Ω =
{
x ∈ R2 : 0 < |x| < 2

}
. Then ∂Ω = T ∪ {0}, where T ={

x ∈ R2 : |x| = 2
}
. The points in T are regular, but 0 is not regular.

Consider the function d given by d(x) = |x|, x ∈ Ω. Thus d(x) = dist(x, ∂Ω)
for 0 < |x| < 1

2 . Then 1
d ∈ Lq(Ω) if and only if q < 2. Now let 0 < β < 2. Then

1
dβ ∈ Lp(Ω) for some p > 1 = N

2 . Since Ω is not Dirichlet regular, it follows from

Theorem 5.6 that dβ�0 is not a generator.
On the other hand, if β ≥ 2, then for m = dβ , the point 0 is of weak diffusion.

Since the other boundary points are regular, it follows from Theorem 7.1 that dβ�0

generates a C0-semigroup on C0(Ω).
An interesting open set in R3 with continuous boundary and exactly one singular

point is the Lebesgue cusp (see e.g. [7] for a detailed investigation).
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[23] G. Lumer, Problème de Cauchy pour opérateurs locaux et ‘changement de temps’, Ann. Inst.
Fourier 25 (1975), 409–446. MR0420039 (54:8056)

[24] P. Mandl, Analytical Treatment of One-dimensional Markov Processes, Academia-Springer,
Berlin-Prague, 1968. MR0247667 (40:930)

[25] A. McIntosh, A. Nahmod, Heat Kernel Estimates and Functional Calculi of −b(x)Δ in Rn,
Math. Scand. 87 (2000), 287–319. MR1795749 (2001k:47072)

[26] K. Miller, Exceptional boundary points for the nondivergence equation which are regular
for the Laplace equation and vice versa, Ann. Scu. Norm. Sup. Pisa 22 (1968), 315–330.
MR0229961 (37:5527)

[27] R. Nagel (ed.), One-parameter Semigroups of Positive Operators, Springer LN 1184, Berlin,
1986. MR839450 (88i:47022)

[28] E. M. Ouhabaz, Analysis of Heat Equations on Domains, Princeton University Press, Prince-
ton, NJ, 2005. MR2124040 (2005m:35001)

[29] E. M. Ouhabaz, Invariance of closed convex sets and domination criteria for semigroups,
Potential Analysis 5 (1996), 611–625. MR1437587 (98a:47041)

[30] M. M. H. Pang, L1 properties of two classes of singular second order elliptic operators, J.
London Math. Soc. 38 (1988), 525–543. MR972136 (90b:35168)

[31] C. G. Simader, Equivalence of weak Dirichlet’s principle, the method of weak solutions and
Perron’s method towards classical solutions of Dirichlet’s problem for harmonic functions,
Math. Nachr. 279 (2006), 415–430. MR2205830 (2006j:31004)

[32] E. Stein, Singular integrals and differentiability properties of functions, Princeton University
Press, Princeton, NJ, 1970. MR0290095 (44:7280)

[33] J. van Casteren, Generators of Strongly Continuous Semigroups, Research Notes in Mathe-

matics 115, Pitman, Boston, 1985.

Institute of Applied Analysis, University of Ulm, 89069 Ulm, Germany

E-mail address: wolfgang.arendt@uni-ulm.de

Institute of Applied Analysis, University of Ulm, 89069 Ulm, Germany

E-mail address: michal.chovanec@uni-ulm.de

Licensed to University of Auckland. Prepared on Sun Mar  3 17:17:03 EST 2013 for download from IP 130.216.82.99.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=0350027
http://www.ams.org/mathscinet-getitem?mr=0350027
http://www.ams.org/mathscinet-getitem?mr=0161019
http://www.ams.org/mathscinet-getitem?mr=0161019
http://www.ams.org/mathscinet-getitem?mr=0338832
http://www.ams.org/mathscinet-getitem?mr=0338832
http://www.ams.org/mathscinet-getitem?mr=0420039
http://www.ams.org/mathscinet-getitem?mr=0420039
http://www.ams.org/mathscinet-getitem?mr=0247667
http://www.ams.org/mathscinet-getitem?mr=0247667
http://www.ams.org/mathscinet-getitem?mr=1795749
http://www.ams.org/mathscinet-getitem?mr=1795749
http://www.ams.org/mathscinet-getitem?mr=0229961
http://www.ams.org/mathscinet-getitem?mr=0229961
http://www.ams.org/mathscinet-getitem?mr=839450
http://www.ams.org/mathscinet-getitem?mr=839450
http://www.ams.org/mathscinet-getitem?mr=2124040
http://www.ams.org/mathscinet-getitem?mr=2124040
http://www.ams.org/mathscinet-getitem?mr=1437587
http://www.ams.org/mathscinet-getitem?mr=1437587
http://www.ams.org/mathscinet-getitem?mr=972136
http://www.ams.org/mathscinet-getitem?mr=972136
http://www.ams.org/mathscinet-getitem?mr=2205830
http://www.ams.org/mathscinet-getitem?mr=2205830
http://www.ams.org/mathscinet-getitem?mr=0290095
http://www.ams.org/mathscinet-getitem?mr=0290095

	1. Introduction
	2. Preliminaries
	3. The semigroup on L2(to.,dxm(x))to.
	4. The operator m 0 on C0()
	5. Regular points
	6. Points of weak diffusion
	7. Conclusion
	References

