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We consider a bounded connected open set Ω ⊂ R
d whose

boundary Γ has a finite (d − 1)-dimensional Hausdorff measure.
Then we define the Dirichlet-to-Neumann operator D0 on L2(Γ )

by form methods. The operator −D0 is self-adjoint and generates
a contractive C0-semigroup S = (St)t>0 on L2(Γ ). We show that
the asymptotic behaviour of St as t → ∞ is related to properties
of the trace of functions in H1(Ω) which Ω may or may not have.
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1. Introduction

Throughout this paper Ω is a bounded, connected, open set in R
d with boundary Γ . We con-

sider the (d − 1)-dimensional Hausdorff measure H on Γ , where d � 2 and assume throughout that
H(Γ ) < ∞. The purpose of this article is to define the Dirichlet-to-Neumann operator D0 on L2(Γ )

under these mild assumptions on Ω and to study the semigroup (St)t>0 generated by −D0 on L2(Γ ).
For this purpose we define at first the trace in the following way. Given u ∈ H1(Ω), a function ϕ ∈

L2(Γ ) is called a trace of u if there exists a sequence (un)n∈N in H1(Ω)∩C(Ω) such that limn→∞ un =
u in H1(Ω) and limn→∞ un|Γ = ϕ in L2(Γ ). If u ∈ H1(Ω) then we say that u has a trace if and only
if there exists a ϕ ∈ L2(Γ ) such that ϕ is a trace of u. Note that we require that a trace is always in
L2(Γ ). If u has a trace, then u ∈ H̃1(Ω), the closure of H1(Ω) ∩ C(Ω) in H1(Ω). In general the space
H̃1(Ω) is a proper subset of H1(Ω). An example is
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{
(x, y) ∈ R

2:
∣∣(x, y)

∣∣ < 1
} \ ([0,1) × {0}),

the unit disc minus a spoke. If, however, Ω has a continuous boundary (in the sense of graphs,
see [11], Definition V.4.1), then H̃1(Ω) = H1(Ω) by the following proposition.

Proposition 1.1. Suppose Ω has a continuous boundary. Then one has the following.

(a) The space H1(Ω) ∩ C∞(Ω) is dense in H1(Ω). So in particular H̃1(Ω) = H1(Ω).
(b) The space H1(Ω) is compactly embedded in L2(Ω).

Proof. Statement (a) is in [18], Theorem 1.1.6/2 and statement (b) is in [11], Theorem V.4.17. �
In general not every u ∈ H̃1(Ω) has a trace (see Example 9.1).
Alternatively, an element of H1(Ω) might have more than one trace (see Example 4.4). This hap-

pens if and only if the vector space {ϕ ∈ L2(Γ ): ϕ is a trace of 0} of degenerate traces is non-trivial.
By [5], Lemma 4.14 there exists a Borel set Γo ⊂ Γ such that{

ϕ ∈ L2(Γ ): ϕ is a trace of 0
} = L2(Γo).

We say that the trace on Ω is unique if the function ϕ = 0 ∈ L2(Γ ) is the only trace of u = 0 ∈ H1(Ω).
This is equivalent with H(Γo) = 0; i.e. if L2(Γo) = {0}. It is also equivalent with the fact that every
element of H1(Ω) has at most one trace. Thus the part Γo is responsible for the obstruction for the
trace to be not unique. We will denote the complement of Γo by Γr = Γ \ Γo , and we call it the
regular part of the boundary.

Next we define the (weak) normal derivative via Green’s formula. Let u ∈ H1(Ω) be such that
�u ∈ L2(Ω) as distribution. We say that u has a normal derivative in L2(Γ ) if there exists a ψ ∈ L2(Γ )

such that ∫
Ω

(�u)v +
∫
Ω

∇u · ∇v =
∫
Γ

ψ v dH

for all v ∈ H1(Ω) ∩ C(Ω). In that case ψ is unique. We set ∂u
∂ν := ψ and call it the normal derivative

of u. Now we define the Dirichlet-to-Neumann operator D0 on L2(Γ ) as follows. Given ϕ,ψ ∈ L2(Γ ),
we say that ϕ ∈ D(D0) and D0ϕ = ψ if there exists a u ∈ H1(Ω) such that �u = 0 as distribution, ϕ
is a trace of u, the function u has a normal derivative in L2(Γ ) and ∂u

∂ν = ψ . Even though the function
u might not have a unique trace, we shall prove in Theorem 3.3 that the operator D0 is well defined.
In fact, D0 is a self-adjoint operator on L2(Γ ) and −D0 generates a positive C0-semigroup S on
L2(Γ ) satisfying St1Γ = 1Γ for all t > 0. This is true without any regularity hypothesis on Ω (besides

H(Γ ) < ∞). One purpose of this paper is to show that diverse properties concerning the asymptotic
behaviour of St as t → ∞ are related to properties of the trace, which in fact are properties of Ω ,
which Ω may or may not have.

Here are our main results.

A. Strong convergence of S. Define P : L2(Γ ) → L2(Γ ) by Pϕ = ( 1
H(Γ )

∫
Γ

ϕ)1Γ . So P is the projection
from L2(Γ ) onto the space of all constant functions.

Theorem 1.2. The following are equivalent.

(i) The trace on Ω is unique.
(ii) H(Γo) = 0.

(iii) dim(ker D0) = 1.
(iv) limt→∞ Stϕ = Pϕ for all ϕ ∈ L2(Γ ).
(v) S is irreducible.
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The irreducibility of S is surprising since the boundary Γ need not be connected (consider an
annulus for example). Thus this result reflects somehow that the operator D0 is not local.

B. Norm convergence of S. We emphasize that in general not every element in H̃1(Ω) has a trace and
if it has a trace, then it might not be unique. We next characterize when both properties are valid,
i.e. every element of H̃1(Ω) has a trace and this trace is unique. This is true for example if Ω has a
Lipschitz boundary.

Theorem 1.3. The following are equivalent.

(i) limt→∞ St = P in L(L2(Γ )).
(ii) There exists a c > 0 such that ∫

Γ

|u|2 � c

∫
Ω

|∇u|2

for all u ∈ H1(Ω) ∩ C(Ω) with
∫
Γ

u = 0.
(iii) There exists a c > 0 such that ∫

Γ

|u|2 � c

(∫
Ω

|∇u|2 +
∫
Ω

|u|2
)

for all u ∈ H1(Ω) ∩ C(Ω).
(iv) Every u ∈ H̃1(Ω) has a unique trace.
(v) 0 /∈ σess(D0).

C. Compactness of the resolvent. We shall show that the operator D0 has compact resolvent if and only
if every u ∈ H̃1(Ω) has a unique trace Tr u and the map Tr : H̃1(Ω) → L2(Γ ) is compact. This implies
that the embedding H̃1(Ω) → L2(Ω) is also compact. We construct, however, a bounded domain
with continuous boundary and with H(Γ ) < ∞, such that D0 does not have compact resolvent (even
though the embedding H1(Ω) = H̃1(Ω) ↪→ L2(Ω) is compact since the boundary is continuous).

The Dirichlet-to-Neumann operator is a well-known object occurring in many applications. In gen-
eral it is considered on domains of class C∞ , though, see e.g. the monograph of Taylor [21], in
particular Section 12C. Then the operator fits into the framework of pseudo-differential operators
and also semigroup properties are studied [13,12]. Our point is the very general variational definition
which allows an easy approach also for rough domains. On the other hand, the questions concerning
trace properties which we investigate here become delicate. They are the main subject of the paper.
Some of the trace properties considered here are related to investigations of the Laplace operator with
Robin boundary conditions on arbitrary domains as in [9], see also [6].

The paper is organized as follows. In Section 2 we consider the asymptotic behaviour of Markovian
semigroups. This section is independent of the Dirichlet-to-Neumann operator. In Section 3 we prove
the existence and uniqueness of the Dirichlet-to-Neumann operator on rough domains and show that
it is a self-adjoint operator which generates a Markovian semigroup. In Section 4 we prove The-
orem 1.2. In addition we give other characterizations of the uniqueness of the trace in terms of the
form associated to the Laplacian with Robin boundary conditions and in terms of the relative capacity.
In Section 5 we define the trace as a mapping and study its properties. In Section 6 we characterize
when every element of H̃1(Ω) has a trace. Moreover, we prove Theorem 1.3. In Section 7 we charac-
terize when the map u 	→ u|Γ from (H1(Ω) ∩ C(Ω),‖ · ‖H1(Ω)) into L2(Γ ) is compact. Theorem 1.3
and the compactness of the trace can be reformulated in terms of the form associated to the Lapla-
cian with Robin boundary conditions. This is done in Section 8. Finally, in Section 9 we present two
striking examples.
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Throughout this paper the field is R and we only consider single valued operators.
A key ingredient in Section 3 is the Maz’ya inequality (5). This remarkable inequality is valid for

any open set Ω ⊂ R
d with finite volume, and involves the (d − 1)-dimensional Hausdorff measure on

the boundary Γ of Ω . This is the reason why we choose the (d − 1)-dimensional Hausdorff measure
on Γ . Many statements in this paper are still valid if one has a Borel regular measure on Γ for
which inequality (5) is still valid. In order not to clutter this paper we provide Γ with the (d − 1)-
dimensional Hausdorff measure.

The conditions that Ω be bounded and H(Γ ) < ∞ are convenient in the definition of the
Dirichlet-to-Neumann operator. Otherwise one may replace the space H1(Ω) ∩ C(Ω) by the space{

u ∈ H1(Ω) ∩ C(Ω): u|Γ ∈ L2(Γ )
}

at many places and require that H(K ) < ∞ for every compact K ⊂ Γ . For simplicity and easy read-
ability of this paper we assume throughout that Ω is bounded and H(Γ ) < ∞. Some statements of
theorems need otherwise obvious modifications. For the same reason we assume that Ω is connected.

With the restrictions that we use throughout this paper (Ω bounded and connected, (d − 1)-
dimensional Hausdorff measure H on Γ and H(Γ ) < ∞) we have many interesting domains. For
example, let C = ⋂∞

n=0 Cn ⊂ [0,1] be the generalized Cantor set with C0 = [0,1] and for any n ∈ N0
construct Cn+1 by removing the central open interval of length 2−2n−1 from any interval of Cn . So
C1 = [0, 1

4 ]∪[ 3
4 ,1], etc. Then 0 < H(C ×C) < ∞. Let Ω = ((−1,2)×(−1,2))\(C ×C). Then Ω is open,

bounded, connected and H(∂Ω) < ∞. Nevertheless, Γ = ∂Ω is not rectifiable by [2], Example 2.67.
A slightly simpler example is the set ((−1,2) × (−1,2)) \ (C × {0}).

2. Asymptotic behaviour of Markovian semigroups

In this section we put together some asymptotic properties of Markovian semigroups. At first we
consider a self-adjoint semigroup, i.e. a semigroup consisting of self-adjoint operators.

Proposition 2.1. Let S be a contractive C0-semigroup of self-adjoint operators on a Hilbert space H. Then

P S f = lim
t→∞ St f

exists for all f ∈ H and P S is the orthogonal projection onto ker A, where −A denotes the generator of S.

Proof. By the spectral theorem we may assume that H = L2(Y ), D(A) = { f ∈ L2(Y ): mf ∈ L2(Y )}
and A f = mf for all f ∈ D(A), where (Y ,Σ,μ) is a locally finite measure space and m : Y → [0,∞)

is a measurable function. Then ker A = { f ∈ L2(Y ): f = 0 a.e. on Y \ Y0}, where Y0 = m−1({0}). The
orthogonal projection P S onto ker A is given by P S f = 1Y0 f . Moreover, St f = e−tm f for all t > 0 and
f ∈ L2(Y ). Now the claim follows from the Lebesgue dominated convergence theorem. �

Next we consider a finite measure space (Γ,Σ,μ). A Markov operator T on L2(Γ ) is an operator
satisfying T1Γ = 1Γ and T f � 0 for all f ∈ L2(Γ ) with f � 0. As a consequence T L∞(Γ ) ⊂ L∞(Γ )

and T (∞) := T |L∞(Γ ) is contractive. If T is a self-adjoint Markov operator on L2(Γ ), then T is con-
tractive for the L1-norm. Hence for all p ∈ [1,∞] there exists a unique T (p) ∈ L(L p(Y )) such that
T (p) f = T f for all f ∈ L p(Y ) ∩ L2(Y ). Moreover, ‖T (p)‖L(Lp(Y )) � 1. The operator T (∞) is the adjoint

of the operator T (1) .
A C0-semigroup S on L2(Γ ) is called irreducible if for each Γ1 ∈ Σ with

St L2(Γ1) ⊂ L2(Γ1)

for all t > 0 it follows that μ(Γ1) = 0 or μ(Γ \ Γ1) = 0. Here, and in the sequel, we let L2(Γ1) =
{ f ∈ L2(Y ): f = 0 a.e. on Γ \ Γ1}. A Markov semigroup on L2(Γ ) is a C0-semigroup S on L2(Γ ) such
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that St is a Markov operator for all t > 0. In that case (S(p)
t )t>0 is a positive contractive C0-semigroup

on L p(Γ ) for all p ∈ [1,∞). Moreover, R1Γ ⊂ ker A, where −A is the generator of S .

Proposition 2.2. Let S be a self-adjoint Markov semigroup on L2(Γ ). Then S is irreducible if and only if
ker A = R1Γ , where −A is the generator of S.

Proof. ‘⇒’. This follows from [19], Section C-III, Proposition 3.5(c).
‘⇐’. Let Γ1 ∈ Σ be such that St L2(Γ1) ⊂ L2(Γ1) for all t > 0. Set Γ2 := Γ \ Γ1. Then L2(Γ2) =

L2(Γ1)
⊥ and since St is self-adjoint, it follows that St L2(Γ2) ⊂ L2(Γ2) for all t > 0. Now 1Γ1 + 1Γ2 =

1Γ = St1Γ = St1Γ1 + St1Γ2 by assumption. Moreover, St1Γ j ∈ L2(Γ j) vanishes outside Γ j for all
j ∈ {1,2}. Hence St1Γ1 = 1Γ1 for all t > 0. This implies that 1Γ1 ∈ ker A. Since ker A = R1Γ by as-
sumption, it follows that μ(Γ1) = 0 or μ(Γ2) = 0. �

Next we show that a self-adjoint Markov semigroup is irreducible if and only if it converges to an
equilibrium. For all f ∈ L1(Γ ) define

P f = 1

μ(Γ )

(∫
Γ

f

)
1Γ . (1)

Then P defines a positive contractive projection on L p(Γ ) for all p ∈ [1,∞].

Theorem 2.3. Let S be a self-adjoint Markov semigroup on L2(Γ ). The following are equivalent.

(i) S is irreducible.
(ii) There exists a p ∈ [1,∞) such that limt→∞ S(p)

t f = P f in L p(Γ ) for all f ∈ L p(Γ ).

(iii) For all p ∈ [1,∞) one has limt→∞ S(p)
t f = P f in L p(Γ ) for all f ∈ L p(Γ ).

Proof. ‘(i) ⇒ (ii)’. We prove statement (ii) for p = 2. If S is irreducible, then ker A = R1Γ by Propo-
sition 2.2, where −A is the generator of S . Then the operator P defined in (1) is the orthogonal
projection onto ker A. Then statement (ii) follows from Proposition 2.1.

‘(ii) ⇒ (iii)’. Let p ∈ [1,∞) and suppose that limt→∞ S(p)
t f = P f in L p(Γ ) for all f ∈ L p(Γ ). If

f ∈ L p(Γ ) then ‖S(1)
t f − P f ‖1 � (μ(Γ ))

1
p −1‖S(p)

t f − P f ‖p for all t > 0. Therefore limt→∞ S(1)
t f = P f

in L1(Γ ). Since L p(Γ ) is dense in L1(Γ ) and {P } ∪ {S(1)
t : t > 0} are uniformly bounded in L(L1(Γ ))

it follows that limt→∞ S(1)
t f = P f in L1(Γ ) for all f ∈ L1(Γ ).

Finally, let q ∈ (1,∞). If f ∈ L∞(Γ ) then by interpolation

∥∥S(q)
t f − P f

∥∥
q �

∥∥S(1)
t f − P f

∥∥θ

1

∥∥S(∞)
t f − P f

∥∥1−θ

∞ �
∥∥S(1)

t f − P f
∥∥θ

1

(
2‖ f ‖∞

)1−θ
,

where θ = 1
q . So limt→∞ S(q)

t f = P f in Lq(Γ ). Since L∞(Γ ) is dense in Lq(Γ ) the claim follows as
before.

‘(iii) ⇒ (i)’. Let f ∈ ker A. Then St f = f for all t > 0. Consequently f = P f ∈ R1Γ . We have shown
that ker A = R1Γ . It follows from Proposition 2.2 that S is irreducible and (i) is valid. �

If A is a self-adjoint operator, then 0 /∈ σess(A) means by definition that 0 is not an accumulation
point of σ(A) and ker A is finite dimensional. Thus if S is a self-adjoint irreducible Markov semigroup
with generator −A then it follows from Proposition 2.2 that 0 /∈ σess(A) if and only if there exists
an ε > 0 such that σ(A) ∩ [0, ε) = {0}. In the next theorem we reformulate this by saying that St

converges in the operator norm as t → ∞.
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Theorem 2.4. Let S be a self-adjoint irreducible Markov semigroup on L2(Γ ) with generator −A. The following
are equivalent.

(i) 0 /∈ σess(A).
(ii) limt→∞ St = P in L(L2(Γ )).

(iii) There exists an ε > 0 such that ‖St − P‖L(L2(Γ )) � e−εt for all t > 0.

In that case one also has limt→∞ S(p)
t = P in L(L p(Γ )) for all p ∈ (1,∞).

Proof. ‘(i) ⇒ (iii)’. We consider the situation in the proof of Proposition 2.1, which was obtained via a
unitary transformation. Since S is irreducible one has dim ker A = 1. Then the hypothesis 0 /∈ σess(A)

implies that there exists an ε > 0 such that σ(A) ∩ [0, ε) = {0}. Then m(y) � ε for a.e. y ∈ Y \ Y0.
Thus

‖St − P‖L(L2(Y )) = ‖St − P‖L(L2(Y \Y0)) = ∥∥e−tm
∥∥

L∞(Y \Y0)
� e−εt (2)

for all t > 0.
‘(iii) ⇒ (ii)’. It is trivial.
‘(ii) ⇒ (i)’. The space H1 = (I − P )(L2(Γ )) is invariant under S and limt→∞ ‖St‖L(H1) = 0. By the

spectral theorem, this implies as in (2) that limt→∞ ‖e−tm‖L∞(Y \Y0) = 0. Hence there exists an ε > 0
such that m(y) � ε for a.e. y ∈ Y \ Y0. Again by the spectral theorem this implies (i).

Finally we assume that (ii) is valid. Let p ∈ (1,2). Let θ ∈ (0,1) be such that 1
p = θ

1 + 1−θ
2 . Then

∥∥S(p)
t − P

∥∥
L(L p(Γ ))

�
∥∥S(1)

t − P
∥∥θ

L(L1(Γ ))

∥∥S(2)
t − P

∥∥1−θ

L(L2(Γ ))
� 2θ

∥∥S(2)
t − P

∥∥1−θ

L(L2(Γ ))

for all t > 0 since S(1) is a contraction semigroup. Therefore limt→∞ S(p)
t = P in L(L p(Γ )). The proof

for p ∈ (2,∞) is similar, or follows by a duality argument. �
The harmonic oscillator on a weighted space (see [10], Theorem 4.3.6) shows that the last assertion

is not true, in general, for p = 1 even if A has compact resolvent.

3. The Dirichlet-to-Neumann operator on arbitrary domains

In this section we will define the Dirichlet-to-Neumann operator D0 on L2(Γ ) as a self-adjoint
operator, and we will show that −D0 generates a Markov semigroup.

Definition 3.1. Let u ∈ H1(Ω) and ϕ ∈ L2(Γ ). We say that ϕ is a trace of u if there exist u1, u2, . . . ∈
H1(Ω) ∩ C(Ω) such that limn→∞ un = u in H1(Ω) and limn→∞ u|Γ = ϕ in L2(Γ ).

It is well possible that there are different elements of L2(Γ ) such that they are both a trace of the
same element of H1(Ω) (see Section 4). Clearly if u ∈ H1(Ω) has a trace then u ∈ H̃1(Ω).

Note that the space {v|Γ : v ∈ D(Rd)} is dense in C(Γ ) by the Stone–Weierstraß theorem for the
uniform norm and therefore it is also in L2(Γ ) since H is Borel regular (see [14], Theorem 2.1.1).
Hence {v|Γ : H1(Ω) ∩ C(Ω)} is dense in L2(Γ ).

Next we define the normal derivative ∂u
∂ν by the Green’s formula as follows (cf. [4,3] for the case

that Ω has a Lipschitz boundary). If u ∈ L1,loc(Ω), then we denote by �u ∈ D(Ω)′ the distributional
Laplacian applied to u.

Definition 3.2. Let u ∈ H1(Ω) be such that �u ∈ L2(Ω). We say that u has a normal derivative in
L2(Γ ) if there exists a ψ ∈ L2(Γ ) such that
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∫
Ω

(�u)v +
∫
Ω

∇u · ∇v =
∫
Γ

ψ v (3)

for all v ∈ H1(Ω) ∩ C(Ω). In that case ψ is uniquely determined by (3), we write ∂u
∂ν := ψ and call ψ

the normal derivative of u.

Now we are able to define the Dirichlet-to-Neumann operator D0 on L2(Γ ). It is part of the
following theorem that the operator D0 is well defined, even though an H1(Ω)-function might have
different functions in L2(Γ ) as a trace.

Theorem 3.3. There exists an operator D0 on L2(Γ ) such that the following holds. Given ϕ,ψ ∈ L2(Γ ) one
has ϕ ∈ D(D0) and D0ϕ = ψ if and only if there exists a u ∈ H1(Ω) satisfying

• �u = 0,
• ϕ is a trace of u, and,
• u has a normal derivative in L2(Γ ) and ∂u

∂ν = ψ .

Moreover, the operator D0 is positive and self-adjoint.

Here and in the sequel we always consider the operator � in the distributional sense.
For the proof of Theorem 3.3 we will need a generation theorem proved recently in [5] which is

valid for arbitrary sectorial forms (without any closability condition). We recall a special case of it.

Theorem 3.4. Let D(a) be a real vector space and let a : D(a) × D(a) → R be bilinear symmetric such that
a(u) := a(u, u) � 0 for all u ∈ D(a). Let H be a (real) Hilbert space and let j : D(a) → H be linear with dense
image. Then there exists an operator A on H such that for all ϕ,ψ ∈ H one has ϕ ∈ D(A) and Aϕ = ψ if and
only if there exists a sequence u1, u2, . . . ∈ D(a) such that

(a) limn,m→∞ a(un − um) = 0,
(b) limn→∞ j(un) = ϕ in H, and,
(c) limn→∞ a(un, v) = (ψ, j(v))H for all v ∈ D(a).

Moreover, A is positive and self-adjoint.

Proof. See [5], Theorem 3.2 and Remark 3.5. �
We call A the operator associated with (a, j). Note that the operator A in Theorem 3.4 is well defined

and it turns out that this will be the reason why the operator D0 is well defined.
Besides Theorem 3.4, for the proof of Theorem 3.3, we need the following remarkable inequality

due to Maz’ya. It was Daners [9] who showed how this inequality can be used efficiently for elliptic
and parabolic problems. It follows from Example 3.6.2/1 and Theorem 3.6.3 in [18] and (24) in [6]
that there exists a constant c′

M > 0 such that

(∫
Ω

|u|q
)2/q

� c′
M

(∫
Ω

|∇u|2 +
∫
Γ

|u|2
)

(4)

for all u ∈ H1(Ω) ∩ C(Ω), where q = 2d
d−1 . Here we use that H is the (d − 1)-dimensional Haus-

dorff measure on Γ and that Ω has finite volume. As a consequence one deduces another Maz’ya
inequality: There exists a constant cM � 0 such that
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∫
Ω

|u|2 � cM

(∫
Ω

|∇u|2 +
∫
Γ

|u|2
)

(5)

for all u ∈ H1(Ω) ∩ C(Ω).
Inequality (4) implies the following important compactness property (see [18], Corollary 4.11.1/3).

It only requires that Ω has finite volume.

Proposition 3.5. The space H1(Ω) ∩ C(Ω) with norm

‖u‖2 =
∫
Ω

|∇u|2 +
∫
Γ

|u|2

is compactly embedded into L2(Ω).

In the proof of Theorem 3.3 we need the form � with form domain D(�) = H1(Ω) ∩ C(Ω) given
by

�(u, v) =
∫
Ω

∇u · ∇v.

The form � is used throughout this paper.

Proof of Theorem 3.3. Let H = L2(Γ ). Let j : D(�) → L2(Γ ) be defined by j(u) = u|Γ . Then clearly j
has dense range. Denote by A the operator associated with (�, j) in the sense of Theorem 3.4. We
shall show that A has the properties of D0.

Let ϕ,ψ ∈ L2(Γ ).
Assume that ϕ ∈ D(A) and Aϕ = ψ . Then there exists a sequence u1, u2, . . . ∈ D(�) such that

limn,m→∞
∫
Ω

|∇(un − um)|2 = 0, limn→∞ un|Γ = ϕ in L2(Γ ) and

lim
n→∞

∫
Ω

∇un · ∇v =
∫
Γ

ψ v (6)

for all v ∈ D(�). It follows from Maz’ya’s inequality (5) that (un)n∈N is a Cauchy sequence in H1(Ω).
Let u := limn→∞ un in H1(Ω). Then ϕ is a trace of u, by definition. Moreover, by (6) we have∫

Ω

∇u · ∇v =
∫
Γ

ψ v

for all v ∈ D(�). Taking v ∈ C∞
c (Ω) we see that �u = 0. Consequently,∫

Ω

(�u)v +
∫
Ω

∇u · ∇v =
∫
Γ

ψ v

for all v ∈ D(�). Therefore u has a normal derivative in L2(Γ ) and ∂u
∂ν = ψ by Definition 3.2.

Conversely, suppose there exists a u ∈ H1(Ω) such that �u = 0, the function ϕ is a trace of u, the
function u has a normal derivative in L2(Γ ) and ∂u

∂ν = ψ . Then there exist u1, u2, . . . ∈ D(�) such that
limn→∞ un = u in H1(Ω) and limn→∞ un|Γ = ϕ in L2(Γ ). It follows that limn,m→∞ �(un − um) = 0
and, since �u = 0,
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lim
n→∞�(un, v) = lim

n→∞

∫
Ω

∇un · ∇v =
∫
Ω

∇u · ∇v =
∫
Ω

∇u · ∇v +
∫
Ω

(�u)v =
∫
Γ

ψ v

for all v ∈ D(�) by the definition of ∂u
∂ν . Hence ϕ ∈ D(A) and Aϕ = ψ .

Therefore the operator with the properties of D0 is well defined and equals A. In particular D0 is
positive and self-adjoint. This completes the proof of Theorem 3.3. �

In the proof of Theorem 3.3 we also proved the following important fact, which will be used later.

Proposition 3.6. If j : D(�) → L2(Γ ) is defined by j(u) = u|Γ , then D0 is the operator associated with (�, j).

We now show that the semigroup generated by −D0 is Markovian.

Proposition 3.7. The C0-semigroup S on L2(Γ ) generated by −D0 is Markovian, i.e. St � 0 and St1Γ = 1Γ

for all t > 0.

Proof. First we prove that S is positive. Let L2(Γ )+ = {ϕ ∈ L2(Γ ): ϕ � 0} be the positive cone in
L2(Γ ). The orthogonal projection from L2(Γ ) onto L2(Γ )+ is given by ϕ 	→ ϕ+ . Let u ∈ H1(Ω) ∩
C(Ω). Then u+ ∈ D(�) and j(u+) = ( j(u))+ . Moreover, �(u+, u − u+) = −�(u+, u−) = − ∫

Ω
∇(u+) ·

∇(u−) = 0 since ∇(u+) = 1[u>0]∇u and ∇(u−) = −1[u<0]∇u by [17], Lemma 7.6. Hence S is positive
by Remark 3.12 in [5].

Since 1Γ ∈ D(D0) and D01Γ = 0 it follows that St1Γ = 1Γ for all t > 0. �
4. Uniqueness of the trace and irreducibility

Recall that

{
ϕ ∈ L2(Γ ): ϕ is a trace of 0

} = L2(Γo).

Note that if H(Γo) > 0 then the space Γo is non-atomic since d � 2 (see [15], Exercise 264Yg). Hence
dim L2(Γo) = ∞ if H(Γo) �= 0.

If ϕ ∈ L2(Γo), then with the choice u = 0 one has �u = 0 as distribution, ϕ is a trace of u and
∂u
∂ν = 0. Therefore it follows from the definition of the operator D0 that ϕ ∈ ker D0. Thus L2(Γo) ⊂
ker D0. We next characterize ker D0. In the proof we use that Ω is connected.

Proposition 4.1. One has ker D0 = R1Γ + L2(Γo). Hence if H(Γo) = 0, then 0 ∈ σp(D0) with multiplicity 1
and if H(Γo) > 0, then 0 ∈ σp(D0) with infinite multiplicity.

Proof. Let ϕ ∈ ker D0. By Theorem 3.3 there exists a u ∈ H1(Ω) such that �u = 0, ϕ is a trace of u
and 0 is the normal derivative of u. Then u has a trace, so u ∈ H̃1(Ω). Moreover,

∫
Ω

∇u · ∇v = 0 for
all v ∈ H1(Ω) ∩ C(Ω). Approximating u by elements in H1(Ω) ∩ C(Ω) gives

∫
Ω

|∇u|2 = 0. Since Ω is
connected, one deduces that u is constant. So ker D0 ⊂ R1+ L2(Γo). The reverse inclusion is clear. �
Proof of Theorem 1.2. Theorem 1.2 is a consequence of Theorem 2.3 and Propositions 2.2 and 4.1. �

If Ω is a Lipschitz domain, then H1(Ω) = H̃1(Ω) and there exists a c > 0 such that∫
|u|2 � c‖u‖2

H1(Ω)
Γ
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Fig. 1. An example of a domain where H(Γo) > 0. In fact, the whole gray rectangle belongs to Γo .

for all u ∈ H1(Ω) ∩ C(Ω). This implies in particular that the trace on Ω is unique. For general Ω it
follows immediately from this result that the trace on Ω is unique whenever there exists a Borel set
Λ ⊂ Γ with H(Γ \ Λ) = 0 such that for each point z ∈ Λ there exists an r > 0 such that B(z, r) ∩ Γ

is a Lipschitz graph with B(z, r) ∩ Ω on one side.
There is another characterization for the uniqueness of the trace on Ω which involves the relative

capacity on Ω . If A ⊂ Ω is any set, then the relative capacity of A with respect to Ω is introduced in
[6] by

capΩ A = inf
{‖u‖2

H1(Ω)
: u ∈ H̃1(Ω) and there exists an open V ⊂ R

d such

that A ⊂ V and u � 1 a.e. on Ω ∩ V
}
.

We emphasize that the norm ‖ · ‖H1(Ω) is used in the definition of relative capacity, not merely the
seminorm u 	→ ‖∇u‖L2(Ω) . The usual capacity of the set A is equal to cap

Rd (A), which is a refinement
of the measure of a set. If cap

Rd (A) = 0 then also |A| = 0, but the converse is false. For background
information on cap

Rd , or more general for capacity associated with Dirichlet forms, we refer to [7],
Section I.8. The relative capacity capΩ(A) takes into account the one-sided effect of Ω if A ⊂ ∂Ω .
Obviously capΩ(A) � cap

Rd (A), but surprisingly it is possible that capΩ(A) = 0 whilst cap
Rd (A) > 0.

An example is the grey rectangle in Fig. 1 (see Example 4.4). For more information on relative capacity
we refer to [6], where the first example of this kind was constructed.

Now another characterization for the uniqueness of the trace on Ω can be given in terms of the
Laplacian on Ω with Robin boundary conditions and also in terms of the relative capacity. Define the
form aR with domain D(aR) = H1(Ω) ∩ C(Ω) by

aR(u, v) =
∫
Ω

∇u · ∇v +
∫
Γ

uv.

Then D(aR) is a pre-Hilbert space with norm ‖u‖2
aR

= aR(u) + ‖u‖2
L2(Ω) . Our second characterization

of uniqueness of the trace is as follows.
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Proposition 4.2. The following conditions are equivalent.

(i) The trace on Ω is unique.
(ii) The form aR is closable.

(iii) For every Borel set B ⊂ Γ with capΩ B = 0 one has H(B) = 0.

Proof. ‘(i) ⇒ (ii)’. Let u1, u2, . . . ∈ D(aR) be a Cauchy sequence in D(aR) with lim un = 0 in L2(Ω).
Then u1, u2, . . . is a Cauchy sequence in H1(Ω) and u1|Γ , u2|Γ , . . . is a Cauchy sequence in L2(Γ ).
Hence u := lim un exists in H1(Ω) and ϕ := lim un|Γ exists in L2(Γ ). Then u = 0 since lim un = 0 in
L2(Ω). But the trace on Ω is unique. So ϕ = 0 and consequently lim aR(un) = 0. We have shown that
aR is closable.

‘(ii) ⇒ (i)’. Let u1, u2, . . . ∈ H1(Ω) ∩ C(Ω), ϕ ∈ L2(Γ ) and suppose that lim un = 0 in H1(Ω) and
lim un|Γ = ϕ in L2(Γ ). Then u1, u2, . . . is a Cauchy sequence in D(aR). Moreover, lim un = 0 in L2(Ω)

and aR is closable. Therefore lim aR(un) = 0. This implies that lim un|Γ = 0 in L2(Γ ) and ϕ = 0.
‘(ii) ⇔ (iii)’. This is Theorem 3.3 in [6]. �
The regular part of the boundary Γr can also be described in a different way. One says that H is

admissible if Property (iii) of Proposition 4.2 holds. (In [6] different measures on Γ were considered,
not just the (d − 1)-dimensional Hausdorff measure H as in this paper. For consistency with [6] we
continue to use the phrase ‘H is admissible’.) If H is not necessarily admissible, then there always
exists a maximal admissible subset of Γ . More precisely, the following is valid.

Proposition 4.3. There exists a Borel set S ⊂ Γ such that

(a) capΩ(Γ \ S) = 0 and
(b) if B ⊂ Γ is a Borel set with capΩ B = 0, then H(B ∩ S) = 0.

Proof. See Proposition 3.6 in [6]. �
It follows immediately from these two properties that the set S in Proposition 4.3 is H-unique, i.e.

if S1 is another Borel set satisfying (a) and (b), then H(S1�S) = 0. If follows from the last paragraph
of Section 3 in [6] that the regular part Γr equals S up to H-equivalence, i.e. H(Γr�S) = 0.

In [6], Proposition 5.5 it is shown that always H(Γr) > 0, without any regularity assumption on the
boundary (besides H(Γ ) < ∞). Moreover, in [6], Example 4.3, an example of a bounded connected
open subset Ω ⊂ R

3 is given such that H(Γ ) < ∞ and H(Γo) > 0. A slightly easier example is as
follows, which is a modification of an example at the end of Section 3 in [8]. It also has the property
that H̃1(Ω) = H1(Ω).

Example 4.4. For all (x0, y0) ∈ [0,1] × [0,1] and r > 0 let

C(x0, y0; r) = {
(x, y, z) ∈ R

3:
∣∣(x − x0, y − y0)

∣∣ � r and z ∈ [0,1]}
be the closed cylinder with axis parallel to the z-axis, radius r, height 1 and standing on (x0, y0,0).
Let

Ω = Int

(([0,1] × [0,1] × [−1,0]) ∪
∞⋃

n=1

n−1⋃
k=1

C

(
2−n,

k

n
;4−n

))
.

(See Fig. 1.) Then Ω is bounded, connected and H(Γ ) < ∞. We first show that {0} × [0,1] ×
[0,1] ⊂ Γo , which implies that the trace on Ω is not unique.
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For all m ∈ N define um ∈ H1(Ω) ∩ C(Ω) by

um(x, y, z) = (
0 ∨ (

3mz
) ∧ 1

)
1[0,2−m+4−m](x).

Then ‖um‖2
H1(Ω)

�
∑∞

n=m πn(4−2n + 32m4−2n) for all m ∈ N, so lim um = 0 in H1(Ω). Since 0 �
um � 1 for all m ∈ N it follows from the Lebesgue dominated convergence theorem that lim um|Γ =
1{0}×[0,1]×[0,1] in L2(Γ ). So 1{0}×[0,1]×[0,1] is a trace of 0 and {0} × [0,1] × [0,1] ⊂ Γo , up to H-
equivalence.

Finally we show that H1(Ω) = H̃1(Ω). Let v ∈ H1(Ω) ∩ L∞(Ω). Define vm := v(1 − um) for all
m ∈ N. Then vm has a support in a subdomain of Ω with a Lipschitz boundary. So vm ∈ H̃1(Ω). Clearly
supm ‖vum‖H1(Ω) < ∞. Therefore the sequence v1, v2, . . . has a weakly convergent subsequence in
H̃1(Ω). Moreover, lim vum = 0 in L2(Ω) and therefore lim vm = v weakly in L2(Ω). Hence v ∈ H̃1(Ω).
Since H1(Ω) ∩ L∞(Ω) is dense in H1(Ω) by [16], Theorem 1.4.2(iii), it follows that H1(Ω) ⊂ H̃1(Ω).
Thus H1(Ω) = H̃1(Ω).

In the above example not every element u ∈ H̃1(Ω) has a trace. We do not know whether universal
existence of a trace implies its uniqueness. More precisely, suppose that every element of H̃1(Ω) has
a trace. Does this imply that the trace on Ω is unique?

5. Mapping properties of the trace

Let H1
H(Ω) be the set of all u ∈ H1(Ω) for which there exists a ϕ ∈ L2(Γ ) such that ϕ is a trace

of u. Obviously, H1(Ω) ∩ C(Ω) ⊂ H1
H(Ω). It follows from the definition of the space H1

H(Ω) and the
set Γr that there exists a unique and well-defined map

Tr : H1
H(Ω) → L2(Γr)

such that Tr u is a trace of u for all u ∈ H1
H(Ω). Then Tr u = u|Γr a.e. for all u ∈ H1(Ω) ∩ C(Ω). We

identify L2(Γr) in a natural way with the subspace of L2(Γ ) of all functions which vanish H-a.e. on
Γo . Let cM > 0 be the constant as in the Maz’ya inequality (5). Let u ∈ H1

H(Ω). Since Tr u is a trace of
u there exists a sequence (un)n∈N in H1(Ω)∩C(Ω) such that lim un = u in H1(Ω) and lim un|Γ = Tr u
in L2(Γ ). Applying (5) to un and taking the limit n → ∞ gives

∫
Ω

|u|2 � cM

(∫
Ω

|∇u|2 +
∫
Γr

|Tr u|2
)

(7)

for all u ∈ H1
H(Ω). Hence one can define the norm ‖ · ‖H1

H(Ω) on H1
H(Ω) by

‖u‖2
H1

H(Ω)
=

∫
Ω

|∇u|2 +
∫
Γr

|Tr u|2.

Obviously Tr : H1
H(Ω) → L2(Γr) is continuous. On the other hand, we emphasize that in general the

map Tr : (H1
H(Ω),‖ · ‖H1(Ω)) → L2(Γr) is not continuous. A counter example is in [9], Remark 3.5(f).

It follows from (7) that the norm ‖ · ‖H1
H(Ω) is equivalent to the norm

u 	→ (‖u‖2
1 + ‖Tr u‖2

L (Γ )

)1/2
.
H (Ω) 2 r
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In particular H1
H(Ω) is a Hilbert space with inner product

(u, v)H1
H(Ω) =

∫
Ω

∇u · ∇v +
∫
Γr

Tr u Tr v

and H1
H(Ω) is continuously embedded in L2(Ω).

The aim of this section is to study the map Tr. Before doing so, in the following remark, we show
how the space H1

H(Ω) can be used to give an alternative description of the Dirichlet-to-Neumann
operator.

Remark 5.1. The space D(�) has the norm

u 	→
(∫

Ω

|∇u|2 +
∫
Γ

|u|2
)1/2

.

First we describe the completion of D(�). Define Φ : D(�) → H1
H(Ω) ⊕ L2(Γo) by Φ(u) = (u, u|Γo ).

Then Φ is an isometry with dense range. Therefore the space H1
H(Ω) ⊕ L2(Γo) is ‘the’ completion of

D(�) and we identify D(�) with Φ(D(�)) in the natural manner. Define the form �̃ with form domain
D(�̃) = H1

H(Ω) ⊕ L2(Γo) by

�̃
(
(u,ϕ), (v,ψ)

) =
∫
Ω

∇u · ∇v (8)

and define the map j̃ : H1
H(Ω) ⊕ L2(Γo) → L2(Γ ) by j̃(u,ϕ) = Tr u + ϕ . Then �̃ and j̃ are the con-

tinuous extensions of � and j, where j : D(�) → L2(Γ ) is defined by j(u) = u|Γ . Therefore D0 is the
operator associated with (�̃, j̃) by [5], Proposition 3.3. Hence if ϕ,ψ ∈ L2(Γ ), then ϕ ∈ D(D0) and
D0ϕ = ψ if and only if there exists a u ∈ H1

H(Ω) ⊕ L2(Γo) such that j̃(u) = ϕ and

�̃(u, v) = (
ψ, j̃(v)

)
L2(Γ )

(9)

for all v ∈ H1
H(Ω) ⊕ L2(Γo). The latter follows from [5], Theorem 2.1. Then it follows immediately

from (9) that the range of D0 is contained in L2(Γr).

We will need the following apparently weaker description of the trace.

Lemma 5.2. Let u ∈ L2(Ω) and ϕ ∈ L2(Γ ). Suppose there exist u1, u2, . . . ∈ H1(Ω) ∩ C(Ω) such that
lim un = u weakly in L2(Ω), lim un|Γr = ϕ|Γr weakly in L2(Γr) and sup‖un‖H1(Ω) < ∞. Then u ∈ H1

H(Ω)

and ϕ is a trace of u. In particular, Tr u = ϕ1Γr .

Proof. The sequence u1, u2, . . . is bounded in H1(Ω) and the sequence u1|Γr , u2|Γr , . . . is bounded
in L2(Γr). Therefore the sequence u1, u2, . . . is bounded in H1

H(Ω). Since the unit ball is weakly
compact it follows that, after passing to a subsequence if necessary, the sequence u1, u2, . . . is weakly
convergent in H1

H(Ω). So u ∈ H1
H(Ω). Since the map Tr is bounded from H1

H(Ω) into L2(Γr), it is
also weakly continuous. Hence Tr u = lim Tr un = lim un|Γr = ϕ|Γr weakly in L2(Γr). So ϕ1Γr = ϕ|Γr is
a trace of u. Moreover, ϕ1Γo is a trace of 0. Then ϕ is a trace of u. �

We collect some algebraic properties of the trace.
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Proposition 5.3.

(a) If u ∈ H1
H(Ω) ∩ L∞(Ω), then Tr u ∈ L∞(Γr) and ‖Tr u‖∞ � ‖u‖∞ . Moreover, there exist u1, u2, . . . ∈

H1(Ω) ∩ C(Ω) such that ‖un‖∞ � ‖u‖∞ for all n ∈ N, lim un = u in H1(Ω) and lim un|Γ = Tr u in
L2(Γ ).

(b) The space H1
H(Ω) ∩ L∞(Ω) is an algebra and Tr(uv) = (Tr u)(Tr v) for all u, v ∈ H1

H(Ω) ∩ L∞(Ω).

Proof. ‘(a)’. There exist u1, u2, . . . ∈ H1(Ω) ∩ C(Ω) such that lim un = u in H1(Ω) and lim un|Γ = Tr u
in L2(Γ ). For all n ∈ N set vn = (−M) ∨ un ∧ M ∈ H1(Ω) ∩ C(Ω), where M = ‖u‖∞ . Then lim vn =
(−M) ∨ u ∧ M = u in H1(Ω). Moreover, lim vn|Γ = (−M) ∨ (Tr u) ∧ M in L2(Γ ). So (−M) ∨ (Tr u) ∧ M
is a trace of u and Tr u = ((−M) ∨ (Tr u) ∧ M)1Γr = (−M) ∨ (Tr u) ∧ M . Then |Tr u| � M a.e. Note that
‖vn‖∞ � ‖u‖∞ for all n ∈ N.

‘(b)’. Let u, v ∈ H1
H(Ω)∩ L∞(Ω). By statement (a) there exist u1, u2, . . . , v1, v2, . . . ∈ H1(Ω)∩C(Ω)

such that lim un = u in H1(Ω), lim un|Γ = Tr u in L2(Γ ), lim vn = v in H1(Ω), lim vn|Γ = Tr v in
L2(Γ ), and, moreover, ‖un‖∞ � ‖u‖∞ and ‖vn‖∞ � ‖v‖∞ for all n ∈ N. Then un vn ∈ H1(Ω) ∩ C(Ω)

for all n ∈ N and

‖un vn‖H1(Ω) � ‖un‖H1(Ω)‖vn‖∞ + ‖un‖∞‖vn‖H1(Ω) � ‖un‖H1(Ω)‖v‖∞ + ‖u‖∞‖vn‖H1(Ω)

for all n ∈ N. So sup ‖un vn‖H1(Ω) < ∞. Moreover, lim un vn = uv in L2(Ω) and lim(un vn)|Γ =
(Tr u)(Tr v) in L2(Γ ). Therefore Lemma 5.2 implies that uv ∈ H1

H(Ω) and Tr(uv) = (Tr u)(Tr v). �
The next lemma is a reformulation of Proposition 3.5.

Lemma 5.4. The space H1
H(Ω) is compactly embedded in L2(Ω).

Proof. Let B = {u ∈ H1(Ω) ∩ C(Ω):
∫
Ω

|∇u|2 + ∫
Γ

|u|2 � 2}. By Proposition 3.5 there exists a set K ⊂
L2(Ω) which is compact in L2(Ω) such that B ⊂ K . Let u ∈ H1

H(Ω) and suppose that ‖u‖H1
H(Ω) � 1.

There are u1, u2, . . . ∈ H1(Ω) ∩ C(Ω) such that lim un = u in H1(Ω) and lim un|Γ = Tr u in L2(Γ ).
Then un ∈ B ⊂ K for large n and lim un = u in L2(Ω). So u ∈ K . �

Clearly H1
0(Ω) ⊂ {u ∈ H1

H(Ω): Tr u = 0}. If Ω is a Lipschitz domain, then the converse is valid
(see [1], Lemma A 6.10). We next give sufficient conditions for the converse inclusion, which allow Ω

to have a cusp.

Proposition 5.5. Suppose there exists a closed subset K of Γ such that capΩ K = 0 and for all z ∈ Γ \ K there
exists an r > 0 such that B(z, r) ∩ Γ is a Lipschitz graph with B(z, r) ∩ Ω on one side. Then{

u ∈ H1
H(Ω): Tr u = 0

} = H1
0(Ω).

Proof. We may assume that K �= ∅. Let u ∈ H1
H(Ω) and suppose that Tr u = 0. We may assume that

u is bounded.
Let ε > 0. We first prove that there exists a ψ ∈ H̃1(Ω) such that 0 � ψ � 1Ω a.e., ‖ψ‖H1(Ω) � ε

and u(1−ψ) ∈ H1
0(Ω). Define the measure μ on the Borel σ -algebra of Ω by μ(A) = |A ∩Ω|. Define

the form h on L2(Ω,μ) with form domain D(h) = H̃1(Ω) and h(v, w) = ∫
Ω

∇v · ∇w . Then h is a
regular Dirichlet form on L2(Ω,μ) and H1(Ω) ∩ C(Ω) is a special standard core for h in the sense
of [16]. Moreover, the relative capacity is just the capacity in [16] with respect to the Dirichlet form
h on L2(Ω,μ). For all m ∈ N let

Km =
{

x ∈ Ω: d(x, K ) � 1

m

}
.
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Then Km is compact, K1 ⊃ K2 ⊃ . . . and
⋂∞

m=1 Km = K . So by [16], Theorem 2.1.1 there exists an
m ∈ N such that capΩ Km < ε. Next, by [16], Lemma 2.2.7(ii) there exists a ψ ∈ H1(Ω) ∩ C(Ω) such
that 1Km � ψ � 1 and ‖ψ‖2

H1(Ω)
� ε. It is an elementary exercise to see that there exists an open set

Ω ′ in R
d with Lipschitz boundary such that Ω \ Km ⊂ Ω ′ ⊂ Ω . Let Γ ′ = ∂(Ω ′). If x ∈ Ω ′ , then x ∈ Ω .

If x /∈ ∂Ω ∪ Km then x ∈ Ω \ Km ⊂ Ω ′ . So Γ ′ ⊂ Γ ∪ Km . By Proposition 5.3(a) there exist u1, u2, . . . ∈
H1(Ω) ∩ C(Ω) such that ‖un‖∞ � ‖u‖∞ for all n ∈ N, lim un = u in H1(Ω) and lim un|Γ = Tr u = 0 in
L2(Γ ). For all n ∈ N define vn = (un(1− ψ))|

Ω ′ ∈ H1(Ω ′) ∩ C(Ω ′) and define v = (u(1− ψ))|
Ω ′ . Then

∫
Γ ′

|vn|2 =
∫
Γ ′

∣∣un(1 − ψ)
∣∣2 �

∫
Γ

∣∣un(1 − ψ)
∣∣2 +

∫
Km

∣∣un(1 − ψ)
∣∣2 �

∫
Γ

|un|2.

So lim vn|Γ ′ = 0 in L2(Γ
′). Moreover, lim vn = v in L2(Ω

′) and sup ‖vn‖H1(Ω ′) �
sup ‖un(1 − ψ)‖H1(Ω) < ∞. So by Lemma 5.2 it follows that TrΩ ′ v = 0. Since Ω ′ has a Lipschitz
boundary it follows that v ∈ H1

0(Ω ′) ⊂ H1
0(Ω). Then u(1 − ψ) ∈ H1

0(Ω).
Let n ∈ N. By the above there exists a ψn ∈ H̃1(Ω) such that 0 � ψn � 1 a.e., ‖ψn‖H1(Ω) � 1

n and
u(1 − ψn) ∈ H1

0(Ω). Then sup ‖u(1 − ψn)‖H1
0(Ω) � sup‖u(1 − ψn)‖H1(Ω) < ∞. So n 	→ u(1 − ψn) has

a weakly convergent subsequence in H1
0(Ω). Alternatively,

‖uψn‖2 � ‖u‖∞‖ψn‖H1(Ω) � 1

n
‖u‖∞

for all n ∈ N, so lim u(1 − ψn) = u in L2(Ω). Therefore u ∈ H1
0(Ω). �

6. Existence of a trace on ˜H 1(Ω)

Recall that the trace Tr is defined on the subspace H1
H(Ω) of H̃1(Ω) and that in general the

norm on H1
H(Ω) is strictly larger than the norm induced from H̃1(Ω). In this section we characterize

whether every element of H̃1(Ω) has a trace.
We say that Ω has property (P) if there exists a c > 0 such that

∫
Ω

∣∣u − 〈u〉Ω
∣∣2 � c

∫
Ω

|∇u|2

for all u ∈ H1(Ω) ∩ C(Ω), where 〈u〉Ω = 1
|Ω|

∫
Ω

u is the average of u on Ω .

Let D̂0 be the part of the operator D0 in the space L2(Γr). Then D̂0 is a positive self-adjoint
operator on L2(Γr).

Theorem 6.1. The following conditions are equivalent.

(i) H1
H(Ω) = H̃1(Ω) as sets, i.e. every element of H̃1(Ω) has a trace.

(ii) There exists a c > 0 such that
∫
Γr

|u|2 � c
∫
Ω

|∇u|2 for all u ∈ H1(Ω) ∩ C(Ω) with
∫
Γr

u = 0.

(iii) There exists a c > 0 such that
∫
Γr

|u|2 � c(
∫
Ω

|∇u|2 + ∫
Ω

|u|2) for all u ∈ H1(Ω) ∩ C(Ω).

(iv) 0 /∈ σess(D̂0).

Moreover, if one of these equivalent conditions holds, the space H̃1(Ω) is compactly embedded in L2(Ω) and
Ω has property (P).
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Proof. ‘(i) ⇒ (iii)’. If (i) is valid, then the norms on the spaces H1
H(Ω) and H̃1(Ω) are equivalent by

the closed graph theorem. Since Tr is continuous on H1
H(Ω) this implies that (iii) is valid.

‘(iii) ⇒ (i)’. One always has H1
H(Ω) ⊂ H̃1(Ω). Therefore the implication follows from Lemma 5.2.

‘(ii) ⇒ (iii)’. Define F : (D(�),‖ · ‖H1(Ω)) → R by

F (u) =
∫
Γr

u.

We first prove that F is continuous. In order to prove this, it suffices to show that ker F is closed in
(D(�),‖ · ‖H1(Ω)). Let u1, u2, . . . ∈ ker F , u ∈ D(�) and suppose that lim un = u in H1(Ω). Then for all
ε > 0 there exists an N ∈ N such that

∫
Ω

|∇(un − um)|2 � ε for all n,m � N . If c > 0 is as in (ii), it
follows that

∫
Γr

|un − um|2 � cε for all n,m � N , where we used that
∫
Γr

(un − um) = F (un − um) = 0
for all n,m ∈ N. So the sequence u1|Γr , u2|Γr , . . . is a Cauchy sequence in L2(Γr). Hence u1, u2, . . .

is Cauchy sequence in H1
H(Ω). Since the space H1

H(Ω) is a Hilbert space, the Cauchy sequence con-
verges. Therefore there exists a ũ ∈ H1

H(Ω) such that lim un = ũ in H1
H(Ω). Then lim un = ũ in L2(Ω),

so u = ũ ∈ H1
H(Ω). But Tr is continuous on H1

H(Γ ). So lim Tr un = Tr u in L2(Γr). Then∫
Γr

u = (Tr u,1Γr )L2(Γr) = lim(Tr un,1Γr )L2(Γr) = lim F (un) = 0.

So ker F is closed and F is continuous. Hence there is a c′ > 0 such that |〈u|Γr 〉Γr |2 � c′‖u‖2
H1(Ω)

for

all u ∈ H1(Ω) ∩ C(Ω), where 〈ϕ〉Γr = 1
H(Γr )

∫
Γr

ϕ denote the average of ϕ for all ϕ ∈ L1(Γr). Finally,

let u ∈ H1(Ω) ∩ C(Ω). Then∫
Γr

|u|2 =
∫
Γr

∣∣u − 〈u|Γr 〉Γr

∣∣2 +
∫
Γr

∣∣〈u|Γr 〉Γr

∣∣2

� c

∫
Ω

|∇u|2 + ∣∣〈u|Γr 〉Γr

∣∣2 H(Γr) �
(
c + c′H(Γr)

)(∫
Ω

|∇u|2 +
∫
Ω

|u|2
)

and (iii) is valid.
If (i) is valid, then H̃1(Ω) is compactly embedded in L2(Ω) by Lemma 5.4. Since Ω is connected,

it follows that Ω has property (P).
‘(iii) ⇒ (ii)’. If c > 0 is as in (iii), then∫

Γr

∣∣u − 〈u|Γr 〉Γr

∣∣2 �
∫
Γr

∣∣u − 〈u〉Ω
∣∣2 � c

(∫
Ω

|∇u|2 +
∫
Ω

∣∣u − 〈u〉Ω
∣∣2

)

for all u ∈ H1(Ω) ∩ C(Ω). Since Ω has property (P), the implication (iii) ⇒ (ii) follows.
‘(ii) ⇒ (iv)’. Suppose (iv) is not valid. Then 0 ∈ σess(D̂0). It follows from Proposition 4.1 that

for all n ∈ N there exists a ϕn ∈ D(D̂0) such that
∫
Γr

ϕn = 0 and 0 < (D̂0ϕn,ϕn)L2(Γr ) � 1
n

∫
Γr

|ϕn|2.

Next there exists a unique un ∈ H1
H(Ω) such that Tr un = ϕn and

∫
Ω

∇un · ∇v = (D0ϕn,Tr v)L2(Γ ) =
(D̂0ϕn,Tr v)L2(Γr ) for all v ∈ H1

H(Ω). Therefore
∫
Ω

|∇un|2 = (D̂0ϕn,ϕn)L2(Γr ) � 1
n

∫
Γr

|Tr un|2. So (ii) is
not valid. Therefore (ii) ⇒ (iv).

‘(iv) ⇒ (ii)’. Let �c and �̂c be the closed positive symmetric forms associated with D0 and D̂0. Since
0 /∈ σess(D̂0) it follows from Proposition 4.1 that there is a μ > 0 such that �̂c(ϕ) � μ

∫
Γr

|ϕ|2 for all

ϕ ∈ D(�̂c) with
∫
Γ

ϕ = 0. So by [5], Theorem 2.5 it follows that �̃(u) = �c(Tr u) = �̂c(Tr u) � μ
∫
Γ

|Tr u|2

r r
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for all u ∈ (ker Tr)⊥ ⊂ H1
H(Ω), where the orthoplement is in the Hilbert space H1

H(Ω) and �̃ is as
in (8). Now let u ∈ H1

H(Ω) with
∫
Γr

Tr u = 0. Write u = u1 + u2 with u1 ∈ (ker Tr)⊥ and u2 ∈ ker Tr.

Then
∫
Γr

Tr u1 = 0. Moreover, �̃(u1, u2) = (u1, u2)H1
H(Ω) = 0. Therefore

�̃(u) = �̃(u1) + �̃(u2) � �̃(u1) � μ

∫
Γr

|Tr u1|2 = μ

∫
Γr

|Tr u|2.

So (ii) is valid. This completes the proof of the theorem. �
Theorem 1.3 characterizes when every element of H̃1(Ω) has a unique trace.

Proof of Theorem 1.3. If (i) or (v) is valid then the semigroup S is irreducible by Theorem 1.2 and
Proposition 4.1. Therefore (i) ⇔ (v) follows from Theorem 2.4.

‘(v) ⇒ (ii)’. If (v) is valid, then the trace on Ω is unique. Then (ii) follows from Theorem 6.1.
‘(ii) ⇒ (iii)’. This is similar to the proof of (ii) ⇒ (iii) in the proof of Theorem 6.1.
‘(iii) ⇒ (iv)’. This is trivial.
‘(iv) ⇒ (v)’. If (iv) is valid, then the trace on Ω is unique. Then (v) follows from Theorem 6.1. �

7. Compact trace

In the previous section we investigated when the trace is bounded from H̃1(Ω) into L2(Γ ). Now
we want to characterize when the trace is compact.

Proposition 7.1. The following are equivalent.

(i) The Dirichlet-to-Neumann operator D0 has a compact resolvent.
(ii) The map j : D(�) → L2(Γ ) defined by j(u) = u|Γ is compact, where D(�) carries the H1-norm.

(iii) The trace on Ω is unique and the map Tr is compact (from H1
H(Ω) into L2(Γ )).

(iv) Every element in H̃1(Ω) has a unique trace and the map Tr : H̃1(Ω) → L2(Γ ) is compact.

Proof. ‘(i) ⇔ (ii)’. Let �c be the closed positive symmetric form on L2(Γ ) associated with D0. Then
D0 has compact resolvent if and only if the embedding from D(�c) into L2(Γ ) is compact. Let V be
the completion of D(�), where D(�) has the (usual) norm u 	→ (

∫
Ω

|∇u|2 + ∫
Γ

|u|2)1/2. Let j̃ : V →
L2(Γ ) be the continuous extension of the map j. Then D(�c) = j̃((ker j̃)⊥), with the quotient norm of
(ker j̃)⊥ by [5], Theorem 2.5. Therefore the embedding from D(�c) into L2(Γ ) is compact if and only
if j̃|

(ker j̃)⊥ : (ker j̃)⊥ → L2(Γ ) is compact. The latter map is compact if and only if j̃ is compact and
clearly that is equivalent with the compactness of the map j.

‘(i) ⇒ (iv)’. If D0 has compact resolvent then 0 /∈ σess(D0). Hence every element of H̃1(Ω) has a
unique trace by Theorem 1.3. Moreover, the norms on H̃1(Ω) and H1

H(Ω) are equivalent. So by (ii)
the map Tr |H1(Ω)∩C(Ω) : (H1(Ω) ∩ C(Ω),‖ · ‖H̃1(Ω)) → L2(Γ ) is compact. Then (iii) follows by density.

‘(iv) ⇒ (iii) ⇒ (ii)’. This is trivial. �
Corollary 7.2. If the Dirichlet-to-Neumann operator D0 has compact resolvent, then H̃1(Ω) is compactly em-
bedded in L2(Ω).

We will see in Example 9.4 that the compactness of the embedding of H1(Ω) in L2(Ω) does not
suffice to ensure that the Dirichlet-to-Neumann operator has compact resolvent.
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8. Robin boundary conditions for the Laplacian

Finally we wish to consider Robin boundary conditions with a possibly negative measure. For all
β ∈ R define the symmetric densely defined form aβ by

aβ(u, v) =
∫
Ω

∇u · ∇v − β

∫
Γ

uv

with form domain D(aβ) = H1(Ω) ∩ C(Ω).

Proposition 8.1.

(a) Every element of H̃1(Ω) has a unique trace if and only if there exists a β > 0 such that the form aβ is
lower bounded.

(b) The map Tr is compact if and only if for all β > 0 the form aβ is lower bounded.

Proof. Statement (a) is easy, by Theorem 1.3(iii) ⇔ (iv), so it remains to prove statement (b). ‘ ⇒ ’.
This is as in [3], Proposition 2.2. ‘⇐’. Let u1, u2, . . . ∈ H1

H(Ω) and suppose that lim un = 0 weakly
in H1

H(Ω). We shall show that lim Tr un = 0 in L2(Γ ). Let ε > 0. There exists an M � 0 such that∫
Ω

|∇un|2 � M for all n ∈ N. Note that H̃1(Ω) = H1
H(Ω), with equivalent norms, by statement (a) and

Theorem 6.1. Choosing β = M
ε , it follows from the assumption that there exists a c > 0 such that

∫
Γ

|Tr u|2 � ε

M

∫
Ω

|∇u|2 + c

∫
Ω

|u|2

first for all u ∈ H1(Ω) ∩ C(Ω) and then by continuity for all u ∈ H̃1(Ω). Then∫
Γ

|Tr un|2 � ε + c‖un‖2
L2(Ω) (10)

for all n ∈ N. Since the embedding of the space H1
H(Ω) into L2(Ω) is compact by Lemma 5.4, one de-

duces that lim un = 0 strongly in L2(Ω). Therefore one deduces from (10) that lim sup ‖Tr un‖2
L2(Γ ) � ε

and the proposition follows. �
We suppose for the remaining part of this section that every element of H̃1(Ω) has a unique trace.

Let

β0 = sup{β > 0: the form aβ is lower bounded} ∈ (0,∞].

One has β0 = ∞ if Ω is a Lipschitz domain, but in general β0 < ∞, see Example 9.4. It follows that
aβ is lower bounded for all β ∈ (−∞, β0). Let R(β) be the associated operator.

Proposition 8.2. Let β ∈ (−∞, β0) and u, f ∈ L2(Ω). Then u ∈ D(R(β)) and R(β)u = f if and only if u ∈
H̃1(Ω), −�u = f , u has a normal derivative in L2(Γ ) and ∂u

∂ν = β Tr u.

Proof. ‘ ⇒ ’. Let β1 ∈ (β,β0). Then aβ1 is lower bounded, so there exists a γ1 > 0 such that aβ1 (u) �
−γ1‖u‖2

L (Ω) for all u ∈ H1(Ω) ∩ C(Ω). Then β1
∫
Γ

|u|2 �
∫
Ω

|∇u|2 + γ1
∫
Ω

|u|2 and

2
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(β1 − β)

∫
Γ

|u|2 �
∫
Ω

|∇u|2 − β

∫
Γ

|u|2 + γ1

∫
Ω

|u|2 = aβ(u) + γ1

∫
Ω

|u|2 (11)

for all u ∈ H1(Ω) ∩ C(Ω). There exists a Cauchy sequence u1, u2, . . . in D(aβ) such that lim un = u
in L2(Ω) and lim aβ(un, v) = ( f , v)L2(Ω) for all v ∈ H1(Ω) ∩ C(Ω). Then sup aβ(un) < ∞ and
sup

∫
Ω

|un|2 < ∞. So by (11) also sup
∫
Γ

|un|2 < ∞ and subsequently sup
∫
Ω

|∇un|2 < ∞. So (un)n∈N

is bounded in H1(Ω) and (un|Γ )n∈N is bounded in L2(Γ ). Without loss of generality we may assume
that the sequence (un)n∈N is weakly convergent in H1(Ω) and (un|Γ )n∈N is weakly convergent in
L2(Γ ). Since lim un = u in L2(Ω) it follows that u ∈ H1(Ω). Then u ∈ H1

H(Ω) by Lemma 5.2. There-
fore u ∈ H̃1(Ω) by Proposition 8.1(a) and Theorem 6.1. Then

∫
Ω

∇u · ∇v − β

∫
Γ

(Tr u)v = lim
n→∞aβ(un, v) =

∫
Ω

f v

for all v ∈ H1(Ω) ∩ C(Ω). Therefore −�u = f , u has a normal derivative in L2(Γ ) and ∂u
∂ν = β Tr u.

‘⇐’. There exist u1, u2, . . . ∈ H1(Ω) ∩ C(Ω) such that lim un = u in H1(Ω) and lim un|Γ = Tr u in
L2(Γ ). It follows from the definition of ∂u

∂ν that

lim
n→∞aβ(un, v) =

∫
Ω

∇u · ∇v − β

∫
Γ

(Tr u)v =
∫
Ω

f v

for all v ∈ H1(Ω) ∩ C(Ω). Moreover, lim un = u in L2(Ω) and u1, u2, . . . is a Cauchy sequence in
D(aβ). So u ∈ D(R(β)) and R(β)u = f . �

If β ∈ (−∞, β0) then R(β) has compact resolvent by Lemma 5.4 and [5], Lemma 2.7. This has
consequences for the Dirichlet-to-Neumann operator.

Proposition 8.3. If β ∈ (0, β0), then dim ker(D0 − β I) < ∞ and σp(D0) ∩ [0, β] is finite.

Proof. Let N ∈ N, β1, . . . , βN ∈ (0, β] and ϕ1, . . . , ϕN be an orthonormal system in L2(Γ ) such that
D0ϕn = βnϕn for all n ∈ {1, . . . , N}. Then ϕn ∈ L2(Γr) since βn �= 0. For all n ∈ {1, . . . , N} let un ∈
H1

H(Ω) be the unique element such that Tr un = ϕn and

∫
Ω

∇un · ∇v = βn

∫
Γ

ϕn Tr v

for all v ∈ H1
H(Ω). Then

∫
Ω

∇un · ∇um = βn

∫
Γ

ϕnϕm = βnδnm

and

(un, um)H1 (Ω) = (βn + 1)δnm
H
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for all n,m ∈ {1, . . . , N}. Therefore u1, . . . , uN is linearly independent in H1
H(Ω). Let α1, . . . ,αN ∈ R.

Then

aβ

( N∑
n=1

αnun

)
=

N∑
n,m=1

αnαm

(∫
Ω

∇un · ∇um − β

∫
Γ

ϕnϕm

)
=

N∑
n=1

|αn|2(βn − β) � 0.

Therefore

span{u1, . . . , uN} ⊂ {
u ∈ H1

H(Ω): aβ(u) � 0
}
.

Since R(β) has a compact resolvent, the right hand space is finite dimensional. This proves the propo-
sition. �
9. Examples

In this section we give two striking examples of connected bounded open sets with a continuous
boundary such that the Dirichlet-to-Neumann operator does not have compact resolvent. In both ex-
amples the trace on Ω is unique. In one example every element of H̃1(Ω) has a trace, in the other
one not. If Ω has a continuous boundary, then the space H1(Ω) is compactly embedded in L2(Ω)

by Proposition 1.1(b). Therefore Ω has the (Neumann type) Poincaré property, which is in this case
property (P).

We do not know, however, whether the trace on Ω is unique if Ω has continuous boundary.
In the first example we explicitly give an element of H̃1(Ω) which does not have a trace.

Example 9.1. Let

Ω = {
(x, y) ∈ R

2: 0 < x < 1 and − x4 < y < x4}.
Clearly the set Ω is open, connected and the 1-dimensional Hausdorff measure of the boundary of
Ω is finite. Also Ω has a continuous boundary. Therefore H̃1(Ω) = H1(Ω) and H1(Ω) is compactly
embedded in L2(Ω) by Proposition 1.1. Moreover, the trace on Ω is unique since Γ \ {(0,0)} is locally
Lipschitz. Define u : Ω → R by u(x, y) = 1

x . Then u ∈ H1(Ω). Since

1∫
0

∣∣u(
x, x4)∣∣2

√
1 + (

4x3
)2

dx = ∞,

it follows that u does not have a trace. In particular the Dirichlet-to-Neumann operator does not have
compact resolvent by Proposition 7.1.

It follows that the semigroup S generated by −D0 is not compact. Therefore St does not have a
bounded kernel for all t > 0. Hence St does not map L2(Γ ) into L∞(Γ ). Since S is submarkovian, this
implies that S is not ultracontractive.

The next estimate is used in Example 9.4, but is also of independent interest.

Lemma 9.2. Let e1, e2 ∈ R
2 with ‖e1‖ = ‖e2‖ = 1 and |(e1, e2)| �= 1. Let a,b > 0 and set

Ω = {
se1 + te2: s ∈ (0,a) and t ∈ (0,b)

}
.
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Then

a∫
0

∣∣u(se1)
∣∣2

ds � 1√
1 − |(e1, e2)|2

(
2

b

∫
Ω

|u|2 + b

∫
Ω

|∇u|2
)

for all u ∈ H1(Ω) ∩ C(Ω).

Proof. Let s ∈ (0,a) and t ∈ (0,b). Then

u(se1) = u(se1 + te2) −
t∫

0

e2 · (∇u)(se1 + re2)dr

and therefore

∣∣u(se1)
∣∣2 � 2

∣∣u(se1 + te2)
∣∣2 + 2t

b∫
0

∣∣(∇u)(se1 + re2)
∣∣2

dr.

Hence integrating with respect to t over (0,b) and dividing by b yields

∣∣u(se1)
∣∣2 � 2

b

b∫
0

∣∣u(se1 + te2)
∣∣2

dt + b

b∫
0

∣∣(∇u)(se1 + re2)
∣∣2

dr

and

a∫
0

∣∣u(se1)
∣∣2

ds � 2

b

a∫
0

b∫
0

∣∣u(se1 + te2)
∣∣2

dt ds + b

a∫
0

b∫
0

∣∣(∇u)(se1 + re2)
∣∣2

dr ds

= 1√
1 − |(e1, e2)|2

(
2

b

∫
Ω

|u|2 + b

∫
Ω

|∇u|2
)

by a change of variables. �
Lemma 9.3. Let a ∈ (0,1]. Define

Ω = {
(x, y) ∈ R

2: 0 < y < a and |x| < a2 − ay
}
.

Let V = {u ∈ H1(Ω) ∩ C(Ω) : u|[−a2,a2]×{0} = 0}. Then

1

3
� sup

{‖Tr u‖2
L2(Γ )

‖u‖2
H1(Ω)

: u ∈ V \ {0}
}

� 2.
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Proof. Define u : Ω → [0,∞) by u(x, y) = y. Then u ∈ V . Moreover,
∫
Ω

|u|2 = a5

6 ,
∫
Ω

|∇u|2 = a3 and∫
Γ

|Tr u|2 = 2
3 a3

√
1 + a2. Therefore ‖Tr u‖2

L2(Γ ) � 1
3 ‖u‖2

H1(Ω)
. This proves the first inequality.

Next let u ∈ V and t ∈ [0,a]. Then u(a2 − at, t) = ∫ t
0 u y(a2 − at, s)ds. So

∣∣u(
a2 − at, t

)∣∣2 � t

t∫
0

∣∣(∇u)
(
a2 − at, s

)∣∣2
ds � a

t∫
0

∣∣(∇u)
(
a2 − at, s

)∣∣2
ds.

Hence

√
1 + a2

a∫
0

∣∣u(
a2 − at, t

)∣∣2
dt � a

√
1 + a2

a∫
0

t∫
0

∣∣(∇u)
(
a2 − at, s

)∣∣2
ds dt

=
√

1 + a2

∫
Ω+

|∇u|2,

where Ω+ = Ω ∩ ((0,∞) × R). So
∫
Γ

|Tr u|2 �
√

1 + a2
∫
Ω

|∇u|2, and the lemma follows. �
We next give an example of an open connected bounded set Ω in R

2 with continuous boundary,
such that every element of H1(Ω) has a unique trace, H1(Ω) is compactly embedded in L2(Ω), but
the Dirichlet-to-Neumann operator does not have compact resolvent.

Example 9.4. Let Ω0 = (−1,1) × (−1,0) and for all n ∈ N let

Ωn = {
(x, y) ∈ R

2: 0 < y < an and
∣∣x − 2−n

∣∣ < a2
n − an y

}
,

where an = 4−n . Let Ω =
◦⋃∞

n=0 Ωn . (See Fig. 2.) Then Ω is open, connected, the boundary is continu-
ous and H(Γ ) < ∞.

We show that every element of H̃1(Ω) has a unique trace by showing that Condition (iii) of
Theorem 1.3 is valid. Since the set Ω0 is Lipschitz, it has the extension property. Therefore there exists
a linear map E : H1(Ω0)∩ C(Ω0) → H1(R2)∩ C(R2) and a constant cE > 0 such that (Eu)|Ω0 = u and
‖Eu‖2

H1(R2)
� cE‖u‖2

H1(Ω0)
for all u ∈ H1(Ω0) ∩ C(Ω0).

Let u ∈ H1(Ω) ∩ C(Ω). Set v = u|Ω0
and w = E v . Then w ∈ H1(R2) ∩ C(R2) and (u − w)|Ωn

∈
H1(Ωn) ∩ C(Ωn) with (u − w)|[2−n−a2

n,2−n+a2
n]×{0} = 0 for all n ∈ N. Then

∫
Γ

|u|2 �
∫

∂Ω0

|u|2 +
∫

Γ \∂Ω0

|u|2 �
∫

∂Ω0

|u|2 + 2
∫

Γ \∂Ω0

|u − w|2 + 2
∫

Γ \∂Ω0

|w|2. (12)

We estimate the three terms in (12).
First, it follows from Lemma 9.2 that

∫
∂Ω

|u|2 � 8‖u‖2
H1(Ω0)

� 8‖u‖2
H1(Ω)

.

0



2122 W. Arendt, A.F.M. ter Elst / J. Differential Equations 251 (2011) 2100–2124
Fig. 2. The domain in Example 9.4.

Secondly, by Lemma 9.3 one deduces that

2
∫

Γ \∂Ω0

|u − w|2 � 2
∞∑

n=1

∫
∂Ωn

|u − w|2 � 4
∞∑

n=1

‖u − w‖2
H1(Ωn)

� 4‖u − w‖2
H1(Ω)

� 8‖u‖2
H1(Ω)

+ 8‖w‖2
H1(Ω)

.

But

‖w‖2
H1(Ω)

� ‖w‖2
H1(R2)

� cE‖v‖2
H1(Ω0)

� cE‖u‖2
H1(Ω)

.

So

2
∫

Γ \∂Ω0

|u − w|2 � 8(1 + cE)‖u‖2
H1(Ω)

.

Therefore it remains to estimate the last term
∫
Γ \∂Ω0

|w|2 in (12). Let n ∈ N and set

Ω ′
n =

{(
2−n − a2

n,0
) + s

1√
1 + a2

n

(an,1) + t
1√
2
(1,−1): s ∈ (

0,an

√
1 + a2

n
)

and t ∈ (0,1)

}
.

Let Γ
(l)

n = ∂Ωn ∩ ((−∞,2−n) × (0,∞)). Then Γ
(l)

n = ∂Ω ′
n ∩ ((−∞,2−n) × (0,∞)) and it follows from

Lemma 9.2 that ∫
Γ

(l)

|w|2 � 4‖w‖2
H1(Ω ′

n)
n
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and therefore, again by disjointness,

∞∑
n=1

∫
Γ

(l)
n

|w|2 � 4‖w‖2
H1(R2)

� 4cE‖u‖2
H1(Ω)

.

A similar estimate is valid on the right top boundary of ∂Ωn . Combining these partial estimates with
(12) one deduces that ∫

Γ

|u|2 � (16 + 24cE)‖u‖2
H1(Ω)

.

So by Theorem 1.3 every element of H̃1(Ω) has a unique trace.
For all n ∈ N define un ∈ H1(Ω) ∩ C(Ω) by un(x, y) = y1Ωn

(x, y). Then it follows from (the proof

of) Lemma 9.3 that ‖Tr un‖2
L2(Γ ) � 1

3 ‖un‖2
H1(Ω)

. Since the norms on H1(Ω) and H1
H(Ω) are equiva-

lent and the functions u1, u2, . . . have disjoint support, it follows that Tr is not compact. Therefore
the Dirichlet-to-Neumann operator does not have a compact resolvent. Nevertheless, since Ω has a
continuous boundary, the space H1(Ω) is compactly embedded in L2(Ω) by Proposition 1.1.

Note that as in Example 9.1 the semigroup S is not ultracontractive. Hence there does not exists
a q > 2 such that Tr u ∈ Lq(Γ ) for all u ∈ H1(Ω). Indeed, otherwise by the closed graph theorem
there exists a c > 0 such that ‖Tr u‖Lq(Γ ) � c‖u‖H1

H(Ω) for all u ∈ H1(Ω) = H1
H(Ω). Let t > 0 and

ϕ ∈ L2(Γ ). Then Stϕ ∈ D(D0), so by Remark 5.1 there exists a u ∈ H1(Ω) such that Tr u = Stϕ and∫
Ω

∇u · ∇v = (D0 Stϕ,Tr v)L2(Γ )

for all v ∈ H1(Ω). Then

‖Stϕ‖2
Lq(Γ ) � c2‖u‖2

H1
H(Ω)

= c2
(∫

Ω

|∇u|2 + ‖Tr u‖2
L2(Γ )

)

= c2((D0 Stϕ, Stϕ)L2(Γ ) + ‖Stϕ‖2
L2(Γ )

)
� c2

(
1 + 1

t

)
‖ϕ‖2

L2(Γ ).

But this implies that S is ultracontractive by [20], Lemma 6.1, which is a contradiction. Thus there is
no q > 2 such that Tr u ∈ Lq(Γ ) for all u ∈ H1(Ω).
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