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Di¤usion determines the manifold

By W. Arendt and M. Biegert at Ulm, and A. F. M. ter Elst at Auckland

Abstract. We prove under a weak smoothness condition that two Riemannian mani-
folds are isomorphic if and only if there exists an order isomorphism which intertwines with
the Dirichlet type heat semigroups on the manifolds.

1. Introduction

A fundamental problem raised in Kac’s famous article [21] ‘Can one hear the shape
of a drum’ is whether two isospectral manifolds are isomorphic. The answer is negative
in general. Milnor gave a counter example for compact Riemannian manifolds [22]. In the
Euclidean case the first example was given in dimension 4 by Urakawa [29]. Then Gordon–
Webb–Wolpert [17] constructed two polygons in R2 which are isospectral but not iso-
morphic. Moreover, [16] constructed two isospectral convex open sets in R4 which are
isospectral but not isomorphic. Kac’s question in the strict sense, namely whether two
isospectral bounded open sets in R2 with Cy-boundary are isometric, is still open. But
there are recent positive results by Zelditch [32] for open sets in R2 with analytic boundary
verifying some symmetry conditions.

To say that the two manifolds are isospectral means by definition that the corre-
sponding Dirichlet Laplacians have the same eigenvalues counted with multiplicity. This,
in turn, can be reformulated by saying that there exists a unitary operator U intertwining
the two heat semigroups. The heat semigroups are positive, i.e. positive initial values lead
to positive solutions. These positive solutions describe the heat di¤usion on the manifold.
Thus, if instead of a unitary operator, we consider an order isomorphism U (i.e. U is linear,
bijective and Ujf 0 if and only if jf 0) on L2, then to say that U intertwines the heat
semigroups means that U maps the positive solutions to positive solutions. It was shown
in [6] that in the Euclidean case, i.e. if we consider open connected sets in Rd , then these
sets are necessarily congruent as soon as such an intertwining order isomorphism exists.
This may be rephrased by saying that di¤usion determines the body. The aim of this paper
is to extend this result to manifolds.

There are several notable new features coming into play in the non-Euclidean case.
First of all, in [6] a precise regularity condition has been established under which the result
is valid. The open sets have to be regular in capacity (this means loosely speaking that they
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do not have holes of capacity 0). Some e¤ort is made in this paper to extend this notion
to manifolds, which is not possible in an immediate way. It turns out that all complete
Riemannian manifolds satisfy this regularity condition.

There are other results on Riemannian manifolds where heat flow determines a geo-
metric property. Norris [23] established a Varadhan type [30], [31] equality for a small time
limit of the heat kernel in terms of the Riemannian distance. For complete Riemannian
manifolds von Renesse–Sturm [25] characterized a lower bound on the Ricci curvature in
terms of gradient estimates for the heat semigroup, see also Otto–Villani [24]. In [26], [27]
Salo¤-Coste proved that two-sided Gaussian bounds for the heat kernel are equivalent to
parabolic Harnack inequalities, and are also equivalent to volume doubling together with a
scale of Poincaré inequalities.

The problem addressed in this paper is partially motivated by work of Arveson [9],
[10], who introduces di¤erential structures in operator algebras. Our results imply unique-
ness of these di¤erential structures, the case of compact Riemannian manifolds being of
particular interest.

Not all results in the Euclidean case carry over to Riemannian manifolds. We give
an example, Example 4.7, of a non-zero lattice homomorphism which intertwines the
heat semigroups, but which is not an isomorphism, in contrast to the Euclidean case [5],
Theorem 2.1.

Let ðM; gÞ be a Riemannian manifold of dimension d. We always assume that a
Riemannian manifold is s-compact. Then M has a natural Radon measure denoted by
j � j. Set

H 1
locðMÞ ¼

�
j A L2; locðMÞ : j � x�1 A H 1

loc

�
xðVÞ

�
for every chart ðV ; xÞ

�
:

If j A H 1
locðMÞ and ðV ; xÞ is a chart on M then set

q

qxi
j ¼

�
Diðj � x�1Þ

�
� x A L2; locðVÞ,

where Di denotes the partial derivative in Rd . Moreover, for all j;c A H 1
locðMÞ there exists

a unique element ‘j � ‘c A L1; locðMÞ such that

‘j � ‘cjV ¼
Pd

i; j¼1

gij q

qxi
j

� �
q

qx j
c

� �

for every chart ðV ; xÞ on M. We let j‘jj ¼ ð‘j � ‘jÞ1=2. Let H 1ðMÞ be the Hilbert space
of all j A H 1

locðMÞ such that both j; j‘jj A L2ðMÞ, with norm j 7! ðkjk2
2 þ k j‘jj k2

2Þ
1=2.

Moreover, let H 1
0 ðMÞ be the closure of Cy

c ðMÞ in H 1ðMÞ. Define the bilinear form
a : H 1

0 ðMÞ � H 1
0 ðMÞ ! R by aðc; jÞ ¼

Ð
‘c � ‘j. Then a is closed and positive. The

Dirichlet Laplace–Beltrami operator D on M is the associated self-adjoint operator. If
ðV ; xÞ is a chart on M then

Dj ¼ �
Pd

i; j¼1

1ffiffiffi
g

p
q

qxi
gij ffiffiffi

g
p q

qx j
j

for all j A Cy
c ðVÞ.
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If ðM1; g1Þ and ðM2; g2Þ are two Riemannian manifolds then a map t : M1 ! M2 is
called an isometry if it is a Cy-di¤eomorphism and

g2jtðpÞ
�
t�ðvÞ; t�ðwÞ

�
¼ g1jpðv;wÞ

for all p A M1 and v;w A TpM1. A map t : M1 ! M2 is called a local isometry if
for all p A M1 there exists an open neighbourhood V of p such that the restriction
tjV : V ! tðVÞ is an isometry. The Riemannian manifolds ðM1; g1Þ and ðM2; g2Þ are called
isomorphic if there exists an isometry from M1 onto M2. If t : M1 ! M2 is an isometry and
p A ½1;yÞ then j � t A LpðM1Þ and

kj � tkLpðM1Þ ¼ kjkLpðM2Þð1Þ

for all j A LpðM2Þ. In particular, the map j 7! j � t is a unitary map from L2ðM2Þ onto
L2ðM1Þ and a unitary map from H 1

0 ðM2Þ onto H 1
0 ðM1Þ. Moreover, if j A L2ðM2Þ then

j A DðD2Þ if and only if j � t A DðD1Þ and D1ðj � tÞ ¼ ðD2jÞ � t, where Dj is the Dirichlet
Laplace–Beltrami operator on Mj for all j A f1; 2g.

A linear operator U : E ! F between two Riesz spaces is said to be a lattice homo-

morphism if

Uðj5cÞ ¼ ðUjÞ5ðUcÞ

for all j;c A E. For alternative equivalent definitions see [2], Theorem 7.2. Here in this
paper in most cases the spaces E and F will be Lp-spaces and then

ðj5cÞðxÞ ¼ minfjðxÞ;cðxÞg a:e:

Each lattice homomorphism U is positive, i.e. jf 0 implies Ujf 0. An order isomorphism

U : E ! F is a bijective mapping such that Ujf 0 if and only if jf 0. Equivalently, U is
an order isomorphism if and only if U is a bijective lattice homomorphism. Then also U�1

is an order isomorphism. Recall that also each positive operator between Lp-spaces is con-
tinuous by [2], Theorem 12.3.

The main theorem of this paper is the following. It is valid under some regularity
assumptions on the manifolds, namely regularity in capacity, which is optimal for this
purpose and which we will explain below.

Theorem 1.1. Let ðM1; g1Þ and ðM2; g2Þ be two connected Riemannian manifolds

which are both regular in capacity. Let p A ½1;yÞ. For all j A f1; 2g let Dj be the Dirichlet

Laplace–Beltrami operator on Mj and let S ð jÞ be the associated semigroup on LpðMjÞ. Then

the following two conditions are equivalent:

(I) ðM1; g1Þ and ðM2; g2Þ are isomorphic.

(II) There exists a lattice homomorphism U : LpðM1Þ ! LpðM2Þ such that ULpðM1Þ
is dense in LpðM2Þ and

US
ð1Þ
t ¼ S

ð2Þ
t U

for all t > 0.
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Moreover, if U is a lattice homomorphism as in condition (II) then U is an order

isomorphism and there exist c > 0 and an isometry t : M2 ! M1 such that Uj ¼ cj � t for

all j A LpðM1Þ.

It turns out that all complete connected Riemannian manifolds, and in particular all
compact connected Riemannian manifolds, are regular in capacity. Therefore one immedi-
ately has the following corollary.

Corollary 1.2. Let ðM1; g1Þ and ðM2; g2Þ be two complete connected Riemannian

manifolds. Let p A ½1;yÞ. For all j A f1; 2g let Dj be the Dirichlet Laplace–Beltrami opera-

tor on Mj and let S ð jÞ be the associated semigroup on LpðMjÞ. Then the following two con-

ditions are equivalent:

(I) ðM1; g1Þ and ðM2; g2Þ are isomorphic.

(II) There exists an order isomorphism U : LpðM1Þ ! LpðM2Þ such that

US
ð1Þ
t ¼ S

ð2Þ
t U

for all t > 0.

Now we explain the notion of regularity in capacity for Riemannian manifolds. The
capacity of a subset A of M is given by

capMðAÞ ¼ capðAÞ ¼ inffkjk2
H 1ðMÞ : j A H 1ðMÞ and jf 1 on a neighbourhood of Ag:

An open subset W of Rd is called regular in capacity [6] if capRd

�
Bðx; rÞnW

�
> 0 for all

x A qW and r > 0, where Bðx; rÞ is the Euclidean ball. Biegert and Warma gave several
characterizations for regular in capacity. In particular, an open subset W of Rd is regular
in capacity if and only if every j A H 1

0 ðWÞXCðWÞ is zero everywhere on qW ([12], Theorem
3.2). Since Rd is locally compact it then follows that an open subset W of Rd is regular in
capacity if and only if every j A H 1

0 ðWÞXC0ðWÞ is zero everywhere on qW. This character-
ization allows an extension to general connected Riemannian manifolds. There is a natural
distance dM on a connected Riemannian manifold M. We denote by BMðp; rÞ ¼ Bðp; rÞ the
associated balls. Let ~MM denote the (metric) completion of M with respect to this distance.
Set

qM ¼ ~MMnM:

We say that a connected Riemannian manifold M is regular in capacity if jðpÞ ¼ 0 for

all j A C0ð ~MMÞXH 1
0 ðMÞ ¼ fj A C0ð ~MMÞ : jjM A H 1

0 ðMÞg and p A qM. Here C0ð ~MMÞ is the
closure of the space Ccð ~MMÞ of all continuous functions with compact support, with respect
to the supremum norm in the space of all bounded continuous functions on ~MM. Clearly
every complete connected Riemannian manifold is regular in capacity.

In the Euclidean case, regularity in capacity is a very mild condition on the boundary
of an open subset. If WHRd is open and bounded then it is regular in capacity if it is
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Dirichlet regular. The Lebesgue cusp is regular in capacity, but not Dirichlet regular (see
[7], Section 7).

If M1 and M2 are two isomorphic connected Riemannian manifolds and t : M1 ! M2

is an isometry then t is distance preserving, i.e. dM2

�
tðpÞ; tðqÞ

�
¼ dM1

ðp; qÞ for all p; q A M1.
Moreover, if M1 is regular in capacity, then also M2 is regular in capacity.

Now we can explain why regularity in capacity is the minimal regularity condi-
tion in our context. Let M be a connected Riemannian manifold which is complete
(or more general, regular in capacity). Let j3N HM be a closed subset of capacity
zero. Then W :¼ MnN is again a connected Riemannian manifold (see Theorem 2.1)
The injection t : W ! M defines an isometry which is not surjective. The unitary operator
U : L2ðMÞ ! L2ðWÞ given by Uj ¼ j � t is an order isomorphism intertwining the two
heat semigroups even though W and M are not isomorphic. It follows from Theorem 1.1
that W is not regular in capacity.

The paper is organized as follows. In the next section we give a su‰cient condition
to ensure that the distance on a subriemannian manifold equals the induced distance. In
Section 3 we show that M1 and M2 are isometric if they have su‰ciently big isometric
open subsets. In Section 4 we prove Theorem 1.1. Finally, in Section 5 we give several
characterizations of regularity in capacity.

Acknowledgements. The first and second named authors would like to thank for the
great hospitality and generosity during their stay at the University of Auckland. The third
named author is most grateful for the hospitality extended to him during a most enjoyable
and fruitful stay at the University of Ulm.

2. Distances

If N is a connected open subset of a connected Riemannian manifold M then
dMðp; qÞe dNðp; qÞ for all p; q A N, where dM and dN are the natural distances on M

and N. Even if jMnNj ¼ 0, then it is easy to construct examples such that the induced
distance from dM on N di¤ers from the distance dN . We next show that the condition
capMðMnNÞ ¼ 0 su‰ces to have equality.

Theorem 2.1. Let N be an open subset of a connected Riemannian manifold M

and suppose that capMðMnNÞ ¼ 0. Then N is connected and dMðp; qÞ ¼ dNðp; qÞ for all

p; q A N.

The proof involves an alternative description of the distances and is split in three
propositions. The proof of some subresults is present in the literature on non-regular
metric spaces in a slightly di¤erent setting [3], [4], [14], [18]. First we need Ly-versions
of H 1 and ‘j. Let M be a Riemannian manifold. Set

W 1;y
loc ðMÞ ¼

�
j A Ly; locðMÞ : j � x�1 A W 1;y

loc

�
xðVÞ

�
for every chart ðV ; xÞ on M

�
:
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For all j A W
1;y
loc ðMÞ there is a unique j‘jj A Ly; locðMÞ such that

j‘jj jV ¼
Pd

i; j¼1

gij q

qxi
j

� �
q

qx j
j

� � !1=2

for every chart ðV ; xÞ on M, where
q

qxi
j A Ly; locðMÞ is defined in the natural way. Then

define W 1;yðMÞ ¼ fj A LyðMÞ : j‘jj A LyðMÞg.

The next proposition is folklore and is at the basis of analysis on metric spaces [3], [4].
For the convenience of the reader we include a proof.

Proposition 2.2. Let M be a connected Riemannian manifold. If p; q A M then

dMðp; qÞ ¼ supfcðpÞ � cðqÞ : c A W 1;y
loc ðMÞ; j‘cj A LyðMÞ and k j‘cj ky e 1g:

Proof. ‘e’. If q A M define c : M ! R by cðpÞ ¼ dMðp; qÞ. Then c A W
1;y
loc ðMÞ,

k j‘cj kye 1 and dMðp; qÞecðpÞ � cðqÞ.

‘f’. Let p; q A M. Let c A W
1;y
loc ðMÞ with k j‘cj ky e 1. Let g : ½0; 1� ! M be a

Cy-map with gð0Þ ¼ p and gð1Þ ¼ q. By regularizing we may assume that c is smooth in
a neighbourhood of gð½0; 1�Þ. Then

jcðpÞ � cðqÞje
Ð1
0

j _ggðtÞcj dt

e
Ð1
0

g
�
_ggðtÞ; _ggðtÞ

�1=2j‘cj
�
gðtÞ
�

dte
Ð1
0

g
�
_ggðtÞ; _ggðtÞ

�1=2
dt:

Minimizing over g gives jcðpÞ � cðqÞje dMðp; qÞ. r

We shall prove that W 1;y
loc ðMÞ ¼ W 1;y

loc ðNÞ if capMðMnNÞ ¼ 0. For all s A ½0;yÞ we
denote by HsðAÞ the s-dimensional Hausdor¤ measure of a subset A of M (see [18], 8.3).

Proposition 2.3. Let A be a subset of a connected Riemannian manifold M of

dimension d. If capðAÞ ¼ 0 then HsðAÞ ¼ 0 for all s A ½0;yÞ with s > d � 2.

Proof. For all n A N there exists a jn A H 1ðMÞ such that jn f 1 on a neighbour-

hood of A and kjnkH 1ðMÞ e 2�n. Set j ¼
Py
n¼1

jn A H 1ðMÞ. Then for all m A N it follows that

jfm on a neighbourhood of A. Hence for all a A A there exists an e > 0 such that
hjia; r fm for all r A ð0; e�, where hcip; r ¼ jBðp; rÞj�1 Ð

Bðp; rÞ
c is the average of c over the

ball Bðp; rÞ for all c A L1; locðMÞ, p A M and r > 0.

Let a A A and suppose that lim su
r!0

p r�s
Ð

Bða; rÞ
j‘jj2 < y. Then there exist r1 A ð0; 1�

and M A R such that
Ð

Bða; rÞ
j‘jj2 eMrs for all r A ð0; r1�.
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It follows from [11], Theorem 5.14, that there exists an r2 A ð0; r1� such that expa is a
di¤eomorphism from fv A TaM : gaðv; vÞ < r2

2g onto Bða; r2Þ and dða; expa vÞ ¼ gaðv; vÞ1=2

for all v A TaM with gaðv; vÞ < r2
2. Since TaM is equivalent to Rd , it admits a Poincaré

inequality. Hence there exists a c1 > 0 such that

Ð
Bða; rÞ

jc� hcia; rj2 e c1r2
Ð

Bða; rÞ
j‘cj2

uniformly for all c A H 1
�
Bða; rÞ

�
and r A ð0; r2�. Similarly, there exists a c2 > 0 such that

jBða; rÞjf c2rd for all r A ð0; 1�. Clearly the constants c1 and c2 depend on the point a.
Then

Ð
Bða; rÞ

jj� hjia; rj2 e c1r2
Ð

Bða; rÞ
j‘jj2 e c1Mrsþ2

for all r A ð0; r2�. Now the rest of the proof is standard, cf. [14], Theorem 4.7.4. r

Proposition 2.4. Let N be an open subset of a connected Riemannian manifold M

of dimension d and suppose that Hd�1ðMnNÞ ¼ 0. Then W
1;y
loc ðNÞ ¼ W

1;y
loc ðMÞ and N is

connected.

Proof. Let j A W 1;y
loc ðNÞ. Using a partition of the unity, normal coordinates and

[19], Proposition I.9.10, we may assume that there are p A M and r > 0 such that first j

is compactly supported in the ball BMðp; rÞ, secondly the restriction F of expp to the
set X2r ¼ fv A TpM : gpðv; vÞ < ð2rÞ2g is a di¤eomorphism of X2r onto BMðp; 2rÞ, thirdly
jvj ¼ dMðp; expp vÞ for all v A X2r and finally 2�1jv � wje dMðexpp v; expp wÞe 2jv � wj
for all v;w A X2r, where jvj ¼ gpðv; vÞ1=2. Then

Hd�1
�
XrnF�1

�
N XBMðp; rÞ

��
¼ Hd�1

�
F�1

�
ðMnNÞXBMðp; rÞ

��
¼ 0

where Xr ¼ F�1
�
BMðp; rÞ

�
. Moreover, j �F A W 1;q

�
F�1

�
N XBMðp; rÞ

��
for all q A ð1;yÞ

and F�1
�
N XBMðp; rÞ

�
is open. Hence it follows from [1], Lemma 9.1.10, that

j �F A W 1;qðXrÞ for all q A ð1;yÞ. Then j �F A W 1;yðXrÞ and j A W 1;y
�
BMðp; rÞ

�
. So

j A W 1;yðMÞ.

Finally, let j : N ! f0; 1g be a continuous function. Then j A W 1;yðNÞHW 1;y
loc ðMÞ.

So j extends to a continuous function on M. But M is connected. Therefore j is constant
and N is connected. r

Proof of Theorem 2.1. This easily follows from the last three propositions. r

3. Quasi isometries are isometries

In this section we prove that two connected Riemannian manifolds, which are regular
in capacity, are isomorphic if they have isomorphic open subsets whose complements are
polar. Moreover, we give many useful tools to understand and to work with the H 1

0 -spaces
defined on Riemannian manifolds.
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Let ðM1; g1Þ and ðM2; g2Þ be Riemannian manifolds. We say that

M1 @
cap

M2

if there exist open sets M 0
1 HM1 and M 0

2 HM2 and an isometry t from M 0
2 onto M 0

1 such
that capM1

ðM1nM 0
1Þ ¼ 0 ¼ capM2

ðM2nM 0
2Þ.

The following theorem is the main theorem in this section. It shows that the relation
@
cap

defined on connected Riemannian manifolds determines the manifold.

Theorem 3.1. Let ðM1; g1Þ and ðM2; g2Þ be two connected Riemannian manifolds

which are regular in capacity. Then

M1 @
cap

M2 , ðM1; g1Þ and ðM2; g2Þ are isomorphic:

Explicitly, if M 0
1 and M 0

2 are open subsets of M1 and M2 such that

capM1
ðM1nM 0

1Þ ¼ 0 ¼ capM2
ðM2nM 0

2Þ

and t : M 0
2 ! M 0

1 is an isometry, then there exists an isometry t̂t : M2 ! M1 such that

t̂tjM 0
2
¼ t.

We define the space H 1
c ðMÞ to be the set of all j A H 1ðMÞ such that there exists a

compact subset K of M with j ¼ 0 a.e. on MnK.

Lemma 3.2. Let N be an open subset of a Riemannian manifold ðM; gÞ such that

jMnNj ¼ 0. Then the following are equivalent:

(I) capMðMnNÞ ¼ 0.

(II) The restriction map c 7! cjN from H 1ðMÞ into H 1ðNÞ maps H 1
0 ðMÞ onto

H 1
0 ðNÞ.

(III) H 1
0 ðMÞ ¼ fcjN : c A H 1

0 ðMÞg ¼ H 1
0 ðNÞ.

Proof. Clearly (III) is a reformulation of (II).

‘(III) ) (I)’. Let K HM be a compact set. There exists a c A Cy
c ðMÞ such that

cjK f 1. Then cjN A H 1
0 ðNÞ by assumption. Let e > 0. There exists a j A Cy

c ðNÞ such
that kcjN � jk2

H 1ðNÞ < e. Then c� j A Cy
c ðMÞ and c� jf 1 on KnN. So

capðKnNÞe kc� jk2
H 1ðMÞ ¼ kcjN � jk2

H 1ðNÞ < e;

where we used that jMnNj ¼ 0 in the equality. Since M is s-compact one deduces that
capðMnNÞ ¼ 0.

‘(I) ) (III)’. Clearly fcjN : c A H 1
0 ðMÞgIH 1

0 ðNÞ. Conversely, let c A Cy
c ðMÞ. Let

e > 0. There exists an open neighbourhood of MnN and a w A H 1ðMÞ such that 0e we 1,
wjU ¼ 1 and kwkH 1ðMÞ < e. Then

�
cð1� wÞ

���
N
A H 1

c ðNÞHH 1
0 ðNÞ and

		cjN �
�
cð1� wÞ

�
jN
		

H 1ðNÞ ¼ kcwkH 1ðMÞ e 3kckW 1;yðMÞkwkH 1ðMÞe 3kckW 1;yðMÞe:
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So cjN A H 1
0 ðNÞ. Since Cy

c ðMÞ is dense in H 1
0 ðMÞ and j 7! jjN is isometric from H 1ðMÞ

into H 1ðNÞ the lemma follows. r

If N is an open subset of a Riemannian manifold M and AHN, then
capNðAÞe capMðAÞ. The next lemma is instrumental to deduce equality of the two capaci-
ties if capMðMnNÞ ¼ 0. It is a kind of L2-version of Propositions 2.3 and 2.4.

Lemma 3.3. Let N be an open subset of a manifold M. Suppose that

capMðMnNÞ ¼ 0. Then H 1ðNÞ ¼ H 1ðMÞ.

Proof. Let j A H 1ðNÞXLyðNÞ. We shall prove that j A H 1ðMÞ. Let n A N. Since
capMðMnNÞ ¼ 0 there exists a cn A H 1ðMÞ such that cn f 1 in a neighbourhood of
MnN and kcnk

2
H1ðMÞ e n�1. We may assume that 0ecn e 1. Then j� jcn A H 1ðNÞ.

But j� jcn ¼ jð1� cnÞ vanishes in a neighbourhood of MnN. Therefore we can extend
this function by zero to a function jn A H 1ðMÞ. Then

kjcnk
2
H 1ðNÞ e 2kjk2

ykcnk
2
H 1ðMÞ þ 2kjk2

H 1ðNÞkcnk
2
y e 2kjk2

y þ 2kjk2
H 1ðNÞ

for all n A N. So the sequence j1; j2; . . . is uniformly bounded in H 1ðMÞ. Hence it has
a weakly convergent subsequence. Passing to a subsequence if necessary, there exists a
~jj A H 1ðMÞ such that lim jn ¼ ~jj weakly in H 1ðMÞ. Then lim jn ¼ ~jj weakly in L2ðMÞ. But

kj� jnkL2ðMÞ ¼ kjcnkL2ðMÞ e kjkykcnkL2ðMÞe kjkyn�1=2

for all n A N. So lim jn ¼ j strongly and therefore also weakly in L2ðMÞ. Hence ~jj ¼ j a.e.
and j A H 1ðMÞ.

Thus H 1ðNÞXLyðNÞHH 1ðMÞ. Since H 1ðNÞXLyðNÞ is dense in H 1ðNÞ the
lemma follows. r

Corollary 3.4. If M is a Riemannian manifold and N HM is open with

capMðMnNÞ ¼ 0 then capNðAÞ ¼ capMðAÞ for all AHN.

Corollary 3.5. Let M1 and M2 be two Riemannian manifolds. If M1 @
cap

M2 and M 0
1,

M 0
2 and t are as in the definition of @

cap
then capM1

�
tðAÞ

�
¼ capM2

ðAÞ for every set AHM 0
2.

Proof. One deduces from the previous corollary that

capM1

�
tðAÞ

�
¼ capM 0

1

�
tðAÞ

�
¼ capM 0

2
ðAÞ ¼ capM2

ðAÞ ¼ 0: r

We emphasize that the next proposition does not require the manifolds to be regular
in capacity.

Proposition 3.6. The relation @
cap

is an equivalence relation.

Proof. The reflexivity and symmetry are trivial.

Let M1, M2 and M3 be three Riemannian manifolds and assume that M1 @
cap

M2 and
M2 @

cap
M3. Then there exist open M 0

1 HM1, M 0
2;M

00
2 HM2 and M 00

3 HM3 and isometries
t : M 0

2 ! M 0
1 and s : M 00

3 ! M 00
2 such that

capM1
ðM1nM 0

1Þ ¼ capM2
ðM2nM 0

2Þ ¼ capM2
ðM2nM 00

2 Þ ¼ capM3
ðM3nM 00

3 Þ ¼ 0:

9Arendt, Biegert and ter Elst, Di¤usion determines the manifold

Brought to you by | The University of Auckland Library
Authenticated | 130.216.82.99

Download Date | 3/3/13 11:44 PM



Now let M 000
2 ¼ M 0

2 XM 00
2 . Then M 000

2 is open in M2 and

capM2
ðM2nM 000

2 Þe capM2
ðM2nM 0

2Þ þ capM2
ðM2nM 00

2 Þ ¼ 0:

Next set M 000
1 ¼ tðM 000

2 ÞHM 0
1 and M 000

3 ¼ s�1ðM 000
2 ÞHM 0

3. Then M 000
1 is open in M1 and

M 000
3 is open in M3. Moreover, tjM 000

2
� sjM 000

3
is an isometry from M 000

3 onto M 000
1 . Since

M 0
1nM 000

1 ¼ tðM 0
2nM 000

2 Þ it follows from Corollary 3.5 that

capM1
ðM 0

1nM 000
1 Þ ¼ capM2

ðM 0
2nM 000

2 Þ ¼ 0:

Therefore capM1
ðM1nM 000

1 Þe capM1
ðM1nM 0

1Þ þ capM1
ðM 0

1nM 000
1 Þ ¼ 0. So

capM1
ðM1nM 000

1 Þ ¼ 0:

It similarly follows that capM3
ðM3nM 000

3 Þ ¼ 0. Therefore M1 @
cap

M3. r

Also the next proposition does not assume regular in capacity. But it overshoots the
conclusions in Theorem 3.1 since the range of ~tt can be bigger than M1.

Proposition 3.7. Let M1 and M2 be two connected Riemannian manifolds. If

M1 @
cap

M2 and if M 0
1, M 0

2 and t are as in the definition of @
cap

, then there exists a distance

preserving isomorphism ~tt : ~MM2 ! ~MM1 such that ~ttjM 0
2
¼ t.

Proof. The function tjM 0
2
: M 0

2 ! M 0
1 is distance preserving with respect to the

distances dM 0
2

and dM 0
1
. Then by Theorem 2.1 the map tjM 0

2
is also a distance preserving

with respect to the induced distances from M2 and M1 on M 0
2 and M 0

1. Since M 0
2 is dense in

M2 and therefore also in ~MM1 it follows that there exists a unique distance preserving map
~tt : ~MM2 ! ~MM1 such that ~ttjM 0

2
¼ t. Similarly there exists a unique distance preserving map

~ss : ~MM1 ! ~MM2 such that ~ssjM 0
1
¼ t�1. Then ~tt � ~ssjM 0

1
is the identity function on M 0

1. So by
density and continuity ~tt � ~ss ¼ I ~MM1

. Similarly ~ss � ~tt ¼ I ~MM2
and the proposition follows. r

Now we are able to prove the main theorem of this section.

Proof of Theorem 3.1. The implication ( is trivial. Suppose that M1 @
cap

M2 and
let M 0

1, M 0
2 and t be as in the definition of @

cap
. Let ~tt be as in Proposition 3.7. If

j A H 1
0 ðM1ÞXC0ð ~MM1Þ then j � ~tt A C0ð ~MM2Þ. Moreover, jjM 0

1
A H 1

0 ðM 0
1Þ, so

ðj � ~ttÞjM 0
2
A H 1

0 ðM 0
2Þ

and therefore ðj � ~ttÞjM2
A H 1

0 ðM2Þ by Lemma 3.2. So we can define

V : H 1
0 ðM1ÞXC0ð ~MM1Þ ! H 1

0 ðM2ÞXC0ð ~MM2Þ

by Vj ¼ j � ~tt.

Next, let p A M1. There exists a j A Cy
c ðM1Þ such that jðpÞ ¼ 1. Then

Vj A H 1
0 ðM2ÞXC0ð ~MM2Þ. Moreover, ðVjÞ

�
~tt�1ðpÞ

�
¼ jðpÞ ¼ 1. Hence ~tt�1ðpÞ A M2 since

M2 is regular in capacity. Similarly ~ttðqÞ A M1 for all q A M2 since M1 is regular in capacity.
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Let t̂t ¼ ~ttjM2
. Then t̂t is a topological homeomorphism from M2 onto M1. It remains to

show that t̂t and its inverse are smooth and an isometry.

By (1) we can define U : L2ðM1Þ ! L2ðM2Þ by Uj ¼ j � t̂t. If j A H 1
0 ðM1Þ then

j � t A H 1
0 ðM 0

2Þ ¼ H 1
0 ðM2Þ by isometry, (1) and Lemma 3.2. Therefore U is a bijection

from H 1
0 ðM1Þ onto H 1

0 ðM2Þ. Let h1 and h2 be the forms associated to the Dirichlet
Laplace–Beltrami operators on M1 and M2, with form domains H 1

0 ðM1Þ and H 1
0 ðM2Þ.

Then

h1ðjÞ ¼
Ð

M1

j‘jj2 ¼
Ð

M 0
1

j‘jj2

¼
Ð

M 0
2

j‘ðj � tÞj2 ¼
Ð

M2

j‘ðj � tÞj2 ¼
Ð

M2

j‘ðj � t̂tÞj2 ¼ h2ðUjÞ

for all j A Cy
c ðM1Þ. Since Cy

c ðM1Þ is a core for h1 it follows that h1ðjÞ ¼ h2ðUjÞ for
all j A H 1

0 ðM1Þ. Hence if j A L2ðM1Þ, then j A DðD1Þ if and only if Uj A DðD2Þ, and
D2Uj ¼ UD1j if both conditions are valid. Now let j A Cy

c ðM1Þ. Then

Uj A
Ty

n¼1

DðDn
2 ÞHCyðM2Þ

by elliptic regularity. (See [15], Theorem 9.11, if p3 1. If p ¼ 1 first apply a Sobolev
embedding to embed L1 into a Sobolev space W s;p with s < 0 and p > 1, and then apply
[15], Theorem 9.11.) So there exists a c A CyðM2Þ such that Uj ¼ c a.e. But j ¼ j � t̂t is
continuous. Therefore j � t̂t ¼ c pointwise. Thus j � t̂t is smooth for all j A Cy

c ðM1Þ.
Therefore t̂t is a Cy-map from M2 onto M1. Similarly also t̂t�1 is a Cy-map, so t̂t is a
Cy-di¤eomorphism. Finally, since t is an isometry and M 0

2 is dense in M2 it follows by
continuity that also t̂t is an isometry. This proves Theorem 3.1. r

4. Lattice homomorphisms

In this section, we consider lattice homomorphisms between Lp-spaces on two
Riemannian manifolds without the assumption that the manifolds are regular in capacity.
The aim is to prove that the associated H 1

0 -spaces are equivalent, under the conditions of
Theorem 1.1.

The first step is to use elliptic regularity of the Laplace–Beltrami operator to reduce
to smooth functions.

Lemma 4.1. Let ðM1; g1Þ and ðM2; g2Þ be two Riemannian manifolds. Let p A ½1;yÞ.
For all j A f1; 2g let Dj be the Dirichlet Laplace–Beltrami operator on Mj and let S ð jÞ be the

associated semigroup on LpðMjÞ. Let U : LpðM1Þ ! LpðM2Þ be a lattice homomorphism

such that

US
ð1Þ
t ¼ S

ð2Þ
t Uð2Þ

for all t > 0. Then:
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(i) UCy
c ðM1ÞHCyðM2Þ.

(ii) Ujf 0 for all j A Cy
c ðM1Þ with jf 0.

(iii) ðUjÞðUcÞ ¼ 0 for all j;c A Cy
c ðM1Þ with jc ¼ 0.

(iv) D2Uj ¼ UD1j for all j A Cy
c ðM1Þ.

Proof. It follows from (2) that UDðD1ÞHDðD2Þ and D2Uj ¼ UD1j for all

j A DðD1Þ. Hence by iteration U
Ty

n¼1

DðDn
1 ÞH

Ty
n¼1

DðDn
2 Þ. But

Cy
c ðMjÞH

Ty
n¼1

DðDn
j ÞHCyðMjÞ for all j A f1; 2g

by elliptic regularity. This shows (i) and (iv). Property (ii) follows since U is a lattice homo-
morphism. Moreover, jUjj ¼ U jjj for all j A LpðM1Þ. Hence if j;c A CcðM1Þ and jc ¼ 0
then jjj5jcj ¼ 0 and jUjj5jUcj ¼ U jjj5U jcj ¼ Uðjjj5jcjÞ ¼ 0. Therefore

jðUjÞðUcÞj ¼ jUjj jUcj ¼ 0 and ðUjÞðUcÞ ¼ 0:

This implies property (iii). r

We frequently need the following su‰cient condition for point evaluations.

Lemma 4.2. Let M be a manifold and F : Cy
c ðMÞ ! R a positive linear functional

such that

FðjÞFðcÞ ¼ 0 for all j;c A Cy
c ðMÞ with jc ¼ 0:ð3Þ

Then there exist c A ½0;yÞ and p A M such that FðjÞ ¼ cjðpÞ for all j A Cy
c ðMÞ.

Proof. Arguing as in [14], Corollary 1.8.1, it follows that there exists a unique
Radon measure m on M such that FðjÞ ¼

Ð
j dm for all j A Cy

c ðMÞ. Then it follows
from (3) that m is a point measure. Hence there exist p A M and c A ½0;yÞ such that
FðjÞ ¼ cjðpÞ for all j A Cy

c ðMÞ. r

The next proposition is a manifold version of [2], Theorem 7.22.

Proposition 4.3. Let ðM1; g1Þ and ðM2; g2Þ be two Riemannian manifolds. Suppose

there exists a linear map U : Cy
c ðM1Þ ! CyðM2Þ such that

(i) Ujf 0 for all j A Cy
c ðM1Þ with jf 0, and

(ii) ðUjÞðUcÞ ¼ 0 for all j;c A Cy
c ðM1Þ with jc ¼ 0.

Then there exist an open set M 0
2 HM2, a function t : M2 ! M1 and a function

h : M2 ! ½0;yÞ such that M 0
2 ¼ fq A M2 : hðqÞ > 0g and Uj ¼ h � ðj � tÞ pointwise for all

j A Cy
c ðM1Þ. Moreover, the restrictions tjM 0

2
and hjM 0

2
are both Cy.
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Proof. Set M 0
2 ¼ fq A M2 : ðUjÞðqÞ3 0 for some j A Cy

c ðM1Þg. Then M 0
2 is open.

Let q A M2. Then the map j 7! ðUjÞðqÞ from Cy
c ðM1Þ into R is linear, positive and satis-

fies (3). Hence it follows from Lemma 4.2 that there exist tðqÞ A M1 and hðqÞ A ½0;yÞ such
that

ðUjÞðqÞ ¼ hðqÞj
�
tðqÞ

�
for all j A Cy

c ðM1Þ. So one obtains functions t : M2 ! M1 and h : M2 ! ½0;yÞ. More-
over, M 0

2 ¼ fq A M2 : hðqÞ > 0g. It remains to show the smoothness of the restrictions of t
and h to the set M 0

2.

First we show that the function tjM 0
2

is continuous. Otherwise there are
q; q1; q2; . . . A M 0

2 and e > 0 such that lim qn ¼ q and d
�
tðqnÞ; tðqÞ

�
f e for all n A N, where

d is a distance on M1. There exists a j A Cy
c ðM1Þ such that j

�
tðqÞ

�
¼ 1 and jðpÞ ¼ 0 for

all p A M1 with d
�

p; tðqÞ
�
> e. Then Uj is continuous, so

hðqÞ ¼ ðUjÞðqÞ ¼ limðUjÞðqnÞ ¼ 0;

which is a contradiction.

Secondly, let W be a relatively compact open subset of M 0
2 with WHM 0

2. Then
tðWÞ is compact, so there is a c A Cy

c ðM1Þ such that cjtðWÞ ¼ 1. Then hjW ¼ ðUcÞjW is a
Cy-function. Hence hjM 0

2
is a Cy-function from M 0

2 into ð0;yÞ. Then

ðj � tÞjW ¼ ðh�1 � UjÞjW A CyðWÞ for all j A Cy
c ðM1Þ

and tjM 0
2

is a Cy-function. r

Using the fact that U intertwines with the Laplace–Beltrami operators implies that t
is almost an isometry.

Proposition 4.4. Let ðM1; g1Þ and ðM 0
2; g2Þ be two Riemannian manifolds with

Dirichlet Laplace–Beltrami operators D1 and D2. Let t : M 0
2 ! M1 be a Cy-map

and h : M 0
2 ! ð0;yÞ a Cy-function. Define the map U : Cy

c ðM1Þ ! CyðM 0
2Þ by

Uj ¼ h � ðj � tÞ. Suppose that D2U ¼ UD1. Then

g1jtðqÞða; bÞ ¼ g2jq
�
t�ðaÞ; t�ðbÞ

�
ð4Þ

for all q A M 0
2 and a; b A T �

tðqÞM1. In particular, dim M 0
2 f dim M1.

If, in addition, dim M1 ¼ dim M 0
2 then t is locally an isometry and h is locally constant.

Proof. It follows from the identity D2U ¼ UD1 that

D2

�
h � ðj � tÞ

�
¼ h �

�
ðD1jÞ � t

�
ð5Þ

on M 0
2 for all j A Cy

c ðM1Þ. Let q A M 0
2. There exists a chart ðV ; xÞ on M1 such that tðqÞ A V

and x
�
tðqÞ

�
¼ 0. Let WHM1 be a relatively compact subset such that tðqÞ A WHWHV .
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Let d1 ¼ dim M1 and d2 ¼ dim M 0
2. Let l1; . . . ; ld1

A R. For all t > 0 there exists a
jt A Cy

c ðM1Þ such that

jtjW ¼ e
t T

d1

k¼1

lkxk

jW:

Since

D1 ¼ �
Pd1

i; j¼1

1ffiffiffiffiffi
g1

p
q

qxi
g

ij
1

ffiffiffiffiffi
g1

p q

qx j

on V it follows that

D1jt ¼ �
Pd1

i; j¼1

t2g
ij
1 liljjt þ t

ljffiffiffiffiffi
g1

p jt

q

qxi
ðgij

1

ffiffiffiffiffi
g1

p Þ

on W. Hence

lim
t!y

t�2
�
h �
�
ðD1jtÞ � t

��
ðqÞ ¼ �hðqÞ

Pd1

i; j¼1

g
ij
1 jtðqÞlilj:

Next, let ðW ; yÞ be a chart on M 0
2 such that q A W . Then it follows similarly that

lim
t!y

t�2
�
D2

�
h � ðjt � tÞ

��
ðqÞ ¼ �

Pd2

k; l¼1

hðqÞgkl
2 jq
�

q

qyk

Pd1

i¼1

lix
i � t

�
ðqÞ
�

q

qyl

Pd1

j¼1

ljx
j � t

�
ðqÞ

¼ �
Pd1

i; j¼1

hðqÞg2jq
�
t�ðdxiÞ; t�ðdx jÞ

�
lilj:

But then (5) gives

Pd1

i; j¼1

g
ij
1 jtðqÞlilj ¼

Pd1

i; j¼1

g2jq
�
t�ðdxiÞ; t�ðdx jÞ

�
lilj

for all l1; . . . ; ld1
A R and g

ij
1 jtðqÞ ¼ g2jq

�
t�ðdxiÞ; t�ðdx jÞ

�
for all i; j A f1; . . . ; d1g. Hence

g1jtðqÞða; bÞ ¼ g2jq
�
t�ðaÞ; t�ðbÞ

�
for all a; b A T �

tðqÞM1. In particular, t� is injective and
d2 f d1.

Finally suppose that d1 ¼ d2. Since t�jtðqÞ is injective for all q A M 0
2 it follows that

t�jtðqÞ is bijective for all q A M 0
2. Hence t is locally a Cy-di¤eomorphism. Moreover,

t�jtðqÞ is an orthogonal map and therefore also t�jq is an orthogonal map for all q A M 0
2.

In particular, t is locally an isometry.

It then also follows that D2ðj � tÞ ¼ ðD1jÞ � t on M 0
2 for all j A Cy

c ðM1Þ. If q A M 0
2

and W is a relatively compact open subset of M 0
2 with q A WHWHM 0

2, and if one chooses
j A Cy

c ðM1Þ such that jjtðWÞ ¼ 1, then it follows from (5) that ðD2hÞðqÞ ¼ 0. Then for all

j A Cy
c ðM1Þ one deduces from (5) that
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h �
�
ðD1jÞ � t

�
¼ D2

�
h � ðj � tÞ

�
¼ ðD2hÞ � ðj � tÞ þ 2ð‘2hÞ �

�
‘2ðj � tÞ

�
þ h � D2ðj � tÞ

¼ 2ð‘2hÞ �
�
‘2ðj � tÞ

�
þ h �

�
ðD1jÞ � t

�
on M 0

2. So ð‘2hÞ �
�
‘2ðj � tÞ

�
¼ 0 on M 0

2. Since t is locally a di¤eomorphism it follows that
‘2h ¼ 0 and h is locally constant. This completes the proof of Proposition 4.4. r

In the next lemmas we consider injectivity and density of the range of U .

Lemma 4.5. Assume the hypothesis of Lemma 4:1. Moreover, assume U 3 0, the

manifold M1 is connected and the manifolds have equal dimension.

Then there exist open sets M 0
1 HM1 and M 0

2 HM2, a map t : M2 ! M1 and a

bounded function h : M2 ! ½0;yÞ such that M 0
2 ¼ fq A M2 : hðqÞ > 0g, M 0

1 ¼ tðM 0
2Þ, tjM 0

2

is a local isometry, hjM 0
2

is a Cy-function and

Uj ¼ h � ðj � tÞ

pointwise for all j A Cy
c ðM1Þ and a.e. for all j A LpðM1Þ. Moreover, U is injective and

jM1nM 0
1j ¼ 0.

Proof. Since Cy
c ðM1Þ is dense in LpðM1Þ and U 3 0 it follows that the restriction of

U to Cy
c ðM1Þ does not vanish. So we can apply Lemma 4.1 and Proposition 4.3. We use

the notation of Proposition 4.3. Set M 0
1 ¼ tðM 0

2Þ. It follows from the inverse function theo-
rem that M 0

1 is open in M1. Moreover, since M 0
2 3j it follows that M 0

1 3j and jM 0
1j3 0.

Now let j A LpðM1Þ. Since Cy
c ðM1Þ is dense in LpðM1Þ there exists a sequence

j1; j2; . . . A Cy
c ðM1Þ such that lim jn ¼ j in LpðM1Þ. Since U is continuous it follows that

lim Ujn ¼ Uj in LpðM2Þ. Passing to subsequences, if necessary, we may assume that
lim jn ¼ j a.e. and lim Ujn ¼ Uj a.e. But since M 0

1 is s-compact and tjM 0
2

is locally an

isometry it follows that t�1ðNÞ is a null-set in M 0
2 for every null-set N in M 0

1. Therefore
lim jn � t ¼ j � t a.e. on M 0

2. Then

Uj ¼ lim Ujn ¼ lim h � ðjn � tÞ ¼ h � ðj � tÞ

a.e. on M 0
2. In addition one has Uj ¼ lim Ujn ¼ 0 a.e. on M2nM 0

2. So Uj ¼ h � ðj � tÞ a.e.
on M2.

Next we show that U is injective. Let j A L2ðM1Þ and suppose that Uj ¼ 0. Then
U jjj ¼ jUjj ¼ 0, so we may assume that jf 0. Fix t > 0. Then

0 ¼ S
ð2Þ
t Uj ¼ US

ð1Þ
t j ¼ h � ðS ð1Þ

t jÞ � t

a.e. on M 0
2. Since also t maps M 0

2-null-sets into M 0
1-null-sets and h > 0 pointwise, one

deduces that S
ð1Þ
t j ¼ 0 a.e. on M 0

1. But M1 is connected and if j3 0 then ðS ð1Þ
t jÞðpÞ > 0

for all p A M1 and in particular for all p A M 0
1. So j ¼ 0 and U is injective. It is obvious

that this implies that jM1nM 0
1j ¼ 0.
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Finally we show that h is bounded by kUk. Let q A M 0
2 and e > 0. Since tjM 0

2
is locally

an isometry and hjM 0
2

is continuous there exists an open neighbourhood W of q in M 0
2

such that tjW : W ! tðWÞ is an isometry and hjWf ð1 � eÞhðqÞ. Fix j A Cy
c

�
tðWÞ

�
with

j3 0. Then

ð1 � eÞhðqÞkj � tkLpðWÞ e kh � ðj � tÞkLpðWÞ e kUjkLpðM2Þ

e kUk kjkLpðM1Þ e kUk kjkLpðtðWÞÞ ¼ kUk kj � tkLpðWÞ

where we used (1) in the last step. So hðqÞe kUk. r

Lemma 4.6. Assume the hypothesis of Lemma 4:1. Let M 0
2 be an open subset of M2,

let t : M2 ! M1 and h : M2 ! ½0;yÞ be two functions such that M 0
2 ¼ fq A M2 : hðqÞ > 0g

and the restrictions tjM 0
2

and hjM 0
2

are both Cy-maps. Suppose that Uj ¼ h � ðj � tÞ for all

j A Cy
c ðM1Þ.

Then the following are equivalent:

(I) ULpðM1Þ is dense in LpðM2Þ.

(II) UCy
c ðM1Þ is dense in LpðM2Þ.

(III) For every pair of disjoint measurable subsets A1 and A2 in M2 with

0 < jA1j; jA2j < y the functionals

j 7!
Ð

A1

Uj and j 7!
Ð

A2

Uj

from Cy
c ðM1Þ into R are linearly independent.

(IV) The map tjM 0
2

is injective and jM2nM 0
2j ¼ 0.

Moreover, these conditions imply that the dimensions of M1 and M2 are equal.

Proof. Clearly (I) , (II) ) (III).

Next we show that (III) or (IV) implies that dim M1 ¼ dim M2. Obviously U 3 0,
so M 0

2 3 0 and d2 f d1 by Proposition 4.4, where d1 ¼ dim M1 and d2 ¼ dim M2. Fix
q A M 0

2 and set p ¼ tðqÞ. Let ðV ; xÞ be a chart on M1 with p A V and ðW ; yÞ a chart
on M 0

2 with q A W . Let V 0 ¼ xðVÞ, W 0 ¼ yðW Þ, p 0 ¼ xðpÞ and q 0 ¼ yðqÞ. Define the
Cy-map f : W 0 ! V 0 by f ¼ x � t � y�1. Then it follows from (4) that ðDf Þðq 0Þ has
maximal rank. Suppose that k ¼ d2 � d1 > 0. Then it follows from the inverse func-
tion theorem that there exist open W 00 HRd2 , d > 0 and a Cy-di¤eomorphism
F : W 00 ! Bðp 0; 3dÞ � ð�3d; 3dÞk such that q A W 00HW 0, Bðp 0; 3dÞHV 0, Fðq 0Þ ¼ ðp 0; 0Þ
and f

�
Gðu; vÞ

�
¼ u for all ðu; vÞ A Bðp 0; 3dÞ � ð�3d; 3dÞk, where G ¼ F �1.

In particular, f is not injective. This contradicts the injectivity of t in (IV).
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In order to obtain a contradiction with condition (III) we proceed as follows. Define
the Cy-function F : Bðp 0; 3dÞ � ð�3d; 3dÞk ! ð0;yÞ by

Fðu; vÞ ¼
�
ðh ffiffiffiffiffi

g2
p Þ � y�1 � G

�
ðu; vÞjðJGÞðu; vÞj;

where JG denotes the Jacobian determinant of G. If AH y�1ðW 00Þ is measurable then

Ð
A

Uj ¼
Ð

ðF�yÞðAÞ
Fðu; vÞðj � x�1ÞðuÞ dðu; vÞð6Þ

for all j A CcðM1Þ. By compactness, there are m;M > 0 such that meFðu; vÞeM for all

ðu; vÞ A Bðp 0; 2dÞ � ½�2d; 2d�k. Let u A Bðp 0; 2dÞ. Then

Ð
½�2d;2d�k�1�½�dmM�1;0Þ

Fðu; vÞ dve ð4dÞk�1dme
Ð

½�2d;2d�k�1�ð0; d�
Fðu; vÞ dv:

So there exists a bðuÞ A ð0; d� such that

Ð
½�2d;2d�k�1�½�dmM�1;0Þ

Fðu; vÞ dv ¼
Ð

½�2d;2d�k�1�ð0;bðuÞ�
Fðu; vÞ dv:

Now choose

A1 ¼ ðy�1 � F �1Þ
�
Bðp 0; 2dÞ � ½�2d; 2d�k�1 � ½�dmM�1; 0Þ

�
and

A2 ¼
�
ðy�1 � F �1Þðu; vÞ : u A Bðp 0; 2dÞ and v A ½�2d; 2d�k�1 �

�
0; bðuÞ


�
:

Then A1 XA2 ¼ j, 0 < jA1j; jA2j < y and
Ð

A1

Uj ¼
Ð

A1

Uj for all j A Cy
c ðM1Þ by (6) and

the choice of bðuÞ. This contradicts (III). So d1 ¼ d2. Thus all four conditions imply that
the dimensions of M1 and M2 are equal.

‘(III) ) (IV)’. Clearly (III) implies that jM2nM 0
2j ¼ 0. Suppose (III) and t is

not injective. Then there are q1; q2 A M 0
2 such that tðq1Þ ¼ tðq2Þ and q1 3 q2. Since

dim M1 ¼ dim M2 it follows from Proposition 4.4 that tjM 0
2

is locally an isomorphism.
There are open connected relative compact W1;W2 HM 0

2 such that W1 XW2 ¼ j and for
all j A f1; 2g one has qj A Wj and tj ¼ tjWj

: Wj ! tðWjÞ is an isometry. Since Wj is connected
there is a cj A ð0;yÞ such that hjWj

¼ cj. Without loss of generality we may assume that
t1ðW1Þ ¼ t2ðW2Þ. Then for all j A Cy

c ðM1Þ one has ðUjÞðqÞ ¼ hðqÞj
�
t1ðqÞ

�
¼ c1j

�
t1ðqÞ

�
for all q A W1. So Ð

W1

Uj ¼ c1

Ð
W1

j � t1 ¼ c1

Ð
t1ðW1Þ

j

where we used (1). Similarly Ð
W1

Uj ¼ c2

Ð
t2ðW2Þ

j

for all j A Cy
c ðM1Þ. But t1ðW1Þ ¼ t2ðW2Þ. This contradicts the independence of the func-

tionals.
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‘(IV) ) (II)’. Since jM2nM 0
2j ¼ 0 the space Cy

c ðM 0
2Þ is dense in LpðM2Þ. Therefore

it su‰ces to show that Cy
c ðM 0

2ÞHUCy
c ðM 0

1Þ.

Using again that dim M1 ¼ dim M2 it follows from Proposition 4.4 that tjM 0
2

is
locally an isomorphism and hjM 0

2
is locally constant. If c A Cy

c ðM 0
2Þ and there exists an

open connected set W in M 0
2 such that suppcHW, then h is constant on W, say c, and

j ¼ c�1c � ðtjM 0
2
Þ�1 A Cy

c ðM 0
1ÞHCy

c ðM1Þ satisfies Uj ¼ c. Then the general case follows

by a partition of the unity. r

For open subsets in Rd the surjectivity of U follows from the fact that U 3 0 (see [5],
Theorem 2.1). In general the condition U 3 0 is not su‰cient to establish the surjectivity
of U .

Example 4.7. Let S1 ¼ fz A C : jzj ¼ 1g. Let g1 be the Riemannian metric on

M1 ¼ S1 such that ðg1Þje iy

q

qx1

����
e iy

;
q

qx1

����
e iy

� �
¼ 1 for each y A R, where ðV ; xÞ is a chart on

S1 such that V is an open neighbourhood of eiy, y A xðVÞ and x�1ðxÞ ¼ eix for all x A xðVÞ.
Set M2 ¼ S1 and choose the Riemannian metric g2 on M2 by g2 ¼ 4g1.

Define U : L2ðM1Þ ! L2ðM2Þ by

ðUjÞðzÞ ¼ jðz2Þ:

Then U is a lattice homomorphism, U 3 0 and US
ð1Þ
t ¼ S

ð2Þ
t U for all t > 0, where S ð jÞ is

the semigroup on L2ðMjÞ generated by the Dirichlet Laplace–Beltrami operator on Mj for
all j A f1; 2g. Moreover, M1 and M2 are regular in capacity. But the Riemannian manifolds
ðM1; g1Þ and ðM2; g2Þ are not isomorphic.

We combine the previous results.

Proposition 4.8. Let ðM1; g1Þ and ðM2; g2Þ be two connected Riemannian manifolds.

Let p A ½1;yÞ. For all j A f1; 2g let Dj be the Dirichlet Laplace–Beltrami operator on Mj

and let S ð jÞ be the associated semigroup on LpðMjÞ. Let U : LpðM1Þ ! LpðM2Þ be a lattice

homomorphism such that ULpðM1Þ is dense in LpðM2Þ and

US
ð1Þ
t ¼ S

ð2Þ
t Uð7Þ

for all t > 0.

Then U is an order isomorphism and there exist open connected sets M 0
1 HM1

and M 0
2 HM2, a map t : M2 ! M1 and a constant c > 0 such that M 0

1 ¼ tðM 0
2Þ,

tjM 0
2
: M 0

2 ! M 0
1 is an isometry, and

Uj ¼ c1M 0
2
� ðj � tÞ

pointwise for all j A Cy
c ðM1Þ and a.e. for all j A LpðM1Þ. Moreover,

capðM1nM 0
1Þ ¼ capðM2nM 0

2Þ ¼ 0
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and for all ~pp A ½1;yÞ there exists an order isomorphism ~UU such that ~UUj ¼ Uj for all

j A LpðM1ÞXL~ppðM1Þ. Finally, if p ¼ 2 then U maps H 1
0 ðM1Þ continuously into H 1

0 ðM2Þ.

Proof. We use the notation as above. Let ~pp A ½1;yÞ. Then the map

~UU : L~ppðM1Þ ! L~ppðM2Þ

defined by ~UUj ¼ h � ðj � tÞ (a.e.) for all j A L~ppðM1Þ is well defined since h is bounded and
t�1ðNÞ is a null-set in M 0

2 for every null-set N in M 0
1. It is a lattice homomorphism and is

consistent with U . Moreover, UL~ppðM1Þ is dense in L~ppðM2Þ by Proposition 4.6 (IV) ) (I).

Therefore, for the remainder of the proof we may assume that p ¼ 2. Then one
deduces from (7) that ðI þ D2Þ�1=2

U ¼ UðI þ D1Þ�1=2. Hence

UH 1
0 ðM1Þ ¼ UðI þ D1Þ�1=2

L2ðM1Þ

¼ ðI þ D2Þ�1=2
UL2ðM1ÞH ðI þ D2Þ�1=2

L2ðM2Þ ¼ H 1
0 ðM2Þ:

Then by the closed graph theorem the restriction of U to H 1
0 ðM1Þ is a continuous map

from H 1
0 ðM1Þ into H 1

0 ðM2Þ. Next UL2ðM1Þ is dense in L2ðM2Þ and ðI þ D2Þ�1=2 is contin-
uous from L2ðM2Þ onto H 1

0 ðM2Þ. So UH 1
0 ðM1Þ is dense in H 1

0 ðM2Þ. Therefore UCy
c ðM1Þ is

dense in H 1
0 ðM2Þ.

Now suppose capðM2nM 0
2Þ > 0. There exist compact subsets K1 HK2 H � � � of M2

such that M2 ¼
Sy

n¼1

Kn. Then capðM2nM 0
2Þ ¼ lim

n!y
capðKnnM 0

2Þ by [13], Proposition 8.1.3c.

Hence there exists an n A N such that capðKnnM 0
2Þ > 0. Let c A Cy

c ðM2Þ be such that
cjKn

¼ 1. Since UCy
c ðM1Þ is dense in H 1

0 ðM2Þ there exists a j A Cy
c ðM1Þ such that

kc� Ujk2
H 1ðM2Þ < capðKnnM 0

2Þ. Then c� Uj ¼ 1 on KnnM 0
2 by definition of M 0

2. More-
over, c� Uj is continuous and c� Uj A H 1

0 ðM2ÞHH 1ðM2Þ. Hence

capðKnnM 0
2Þe kc� Ujk2

H 1ðM2Þ:

This is a contradiction. Hence capðM2nM 0
2Þ ¼ 0.

This allows to apply Theorem 2.1 to deduce that M 0
2 is connected. Then hjM 0

2
is

constant, say c > 0. It follows from (1) that (for any p A ½1;yÞ) the map U is an isometry
between Lp-spaces and since the range is dense, it is surjective.

Finally, H 1
0 ðM 0

2Þ ¼ fcjM 0
2
: c A H 1

0 ðM2Þg by Lemma 3.2, since capðM2nM 0
2Þ ¼ 0. But

H 1
0 ðM2Þ ¼ UH 1

0 ðM1Þ. In addition, UH 1
0 ðM 0

1Þ ¼ H 1
0 ðM 0

2Þ since tjM 0
2
: M 0

2 ! M 0
1 is an iso-

metry. Therefore

UH 1
0 ðM 0

1Þ ¼ fðUjÞjM 0
2
: j A H 1

0 ðM1Þg ¼ fUðjjM 0
1
Þ : j A H 1

0 ðM1Þg:

Hence H 1
0 ðM 0

1Þ ¼ fjjM 0
1
: j A H 1

0 ðM1Þg. Using Lemma 3.2 again one deduces that
capðM1nM 0

1Þ ¼ 0. r
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Now we are able to prove the main theorem of this paper.

Proof of Theorem 1.1. The implication (I) ) (II) is trivial. But if condition (II) is

valid then Proposition 4.8 implies that M1 @
cap

M2. Hence the Riemannian manifolds
ðM1; g1Þ and ðM2; g2Þ are isomorphic by Theorem 3.1. Moreover, there exist c > 0 and an
isometry t : M2 ! M1 such that Uj ¼ cj � t for all j A LpðM1Þ. r

In fact, it follows from the proof that under condition (II) it follows that M 0
2 ¼ M2

and M 0
1 ¼ M1. Therefore Uj ¼ cj � t for all j A LpðM1Þ.

5. Regularity in capacity

The purpose of this section is to characterize the notion of regularity in capacity by
various other properties. Among those several are functional analytic in nature. Of special
interest is a characterization via relative capacity. Recall that ~MM is the completion of M

with respect to the natural distance and qM ¼ ~MMnM. The relative capacity is defined on
subsets of ~MM instead of M. It had been introduced in [8] for an open subset W in Rd .
Since it depends on the set W in [8] it is called relative capacity. The following definition
on manifolds is similar to the Euclidean one.

Let m be the trivial extension to ~MM of the natural Radon measure j � j on M, that is,
for a Borel set BH ~MM we let mðBÞ ¼ jBXMj. For a subset AH ~MM the relative capacity of
A (with respect to M) is given by

rcapðAÞ ¼ inffkjk2
H 1ðMÞ : j A ~HH 1ðMÞ and jf 1 m-a:e: on a neighbourhood of Ag

where ~HH 1ðMÞ is defined to be the closure of the space H 1ðMÞXCcð ~MMÞ in H 1ðMÞ.

Note that the relative capacity is the usual capacity as defined in [13], Section I.8,
on the space ~MM with respect to the Dirichlet form ðc; jÞ 7!

Ð
~MM

‘c � ‘j and form domain

~HH 1ðMÞ. We consider ~HH 1ðMÞ instead of H 1ðMÞ in order to fulfill condition (D) in [13],
Subsection I.8.2, and therefore to use the notion of relative quasi-continuity and relative
quasi-everywhere (r.q.e.). We do not need that ~MM is locally compact, although it is a
consequence of the embedding theorem of Nash. In general, however, the completion of a
locally compact metric space is not locally compact. We are grateful to Robin Nitka for
showing us a counter example.

The following characterization of regularity of capacity is our main result in this
section. Note that condition (V) is formulated completely in terms of relative capacity of
the boundary qW.

Theorem 5.1. Let M be a connected Riemannian manifold. Then the following condi-

tions are equivalent:

(I) M is regular in capacity.

(II) The space Cy
c ðMÞ is dense in H 1

0 ðMÞXC0ð ~MMÞ.
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(III) For every lattice homomorphism F : H 1
0 ðMÞXC0ð ~MMÞ ! R there exist c A R and

p A M such that FðjÞ ¼ cjðpÞ for all j A H 1
0 ðMÞXC0ð ~MMÞ.

(IV) For every multiplicative functional t on the Banach algebra H 1
0 ðMÞXC0ð ~MMÞ

there exists a p A M such that tðjÞ ¼ jðpÞ for all j A H 1
0 ðMÞXC0ð ~MMÞ.

(V) For every p A qM and r > 0 one has rcap
�
qM XB ~MMðp; rÞ

�
> 0.

For the proof of Theorem 5.1, we need a characterization of the space H 1
0 ðMÞ in

terms of the relative capacity. This result is also of independent interest.

Theorem 5.2. Let M be a connected Riemannian manifold. Then

H 1
0 ðMÞ ¼ fj A ~HH 1ðMÞ : ~jj ¼ 0 r:q:e: on qMgð8Þ

where ~jj denotes the relative quasi-continuous version of j.

Proof. ‘H’. Since Cy
c ðMÞHH 1ðMÞXCcð ~MMÞ one deduces by closure in H 1ðMÞ

that H 1
0 ðMÞH ~HH 1ðMÞ. Let j A H 1

0 ðMÞ. Then it follows from the proof of Proposition
8.2.1 in [13] that there exists a sequence j1; j2; . . . A Cy

c ðMÞ such that lim
n!y

jn ¼ ~jj r.q.e.
on ~MM. So ~jj ¼ 0 r.q.e. on qM.

‘I’. Let D1
0ðMÞ denote the right-hand side of (8). Let j A D1

0ðMÞXLyð ~MMÞ. We
may assume that jf 0. Then j A ~HH 1ðMÞ. It follows from the definition of ~HH 1ðMÞ and
the proof of Proposition 8.2.1 in [13] that there exist j1; j2; . . . A H 1ðMÞXCcð ~MMÞ such
that lim

n!y
jn ¼ ~jj in H 1ðMÞ and for all e > 0 there exists an open U H ~MM such that

rcapðUÞ < e and lim
n!y

jn ¼ ~jj uniformly on ~MMnU . We may assume that 0e jn e kjky and

kjnkH 1ðMÞe 2kjkH 1ðMÞ for all n A N.

Let e A ð0; 1�. Then there exist n A N and an open U H ~MM such that kjn � jkH 1ðMÞ e e,
rcapðUÞ < e and jjn � ~jjje e uniformly on ~MMnU . Since ~jj ¼ 0 r.q.e. on qM there exists an
open V H ~MM such that fx A qM : ~jjðxÞ3 0gHV and rcapðVÞ < e. Consequently, jn e e
uniformly on ðqMÞnW where W ¼ U WV , and rcapðWÞe rcapðUÞ þ rcapðVÞe 2e.
Let w A ~HHðMÞ be such that wf 1 on W and kwk2

H 1ðMÞ < 3e. We may assume that
w ¼ 1 pointwise on W and 0e we 1 on M. Let s ¼ ðjn � 2eÞþ and t ¼ sð1� wÞ. Then
kskH 1ðMÞ e 2kjkH 1ðMÞ and ktkH 1ðMÞ e 4kjkH 1ðMÞ þ 2kjky. Moreover,

ks� tk2 ¼ kswk2 e kjkykwk2 e 2e1=2kjky:

Then supp tH suppsXW c, which is a compact subset of M. So t A H 1
c ðMÞHH 1

0 ðMÞ.

It follows from the above that for all m A N there exist jm; sm A H 1ðMÞXLy and

tm A H 1
0 ðMÞXLy such that kj� jmkH 1ðMÞ e

1

m
, ksm � tmk2 e

1

m
and 0e jm � sm e

1

m

for all m A N, and the sequences s1; s2; . . . and t1; t2; . . . are bounded in H 1ðMÞ. We next
show that t1; t2; . . . has a subsequence which converges to j weakly in H 1ðMÞ.
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Clearly lim jm ¼ j strongly and hence weakly in H 1ðMÞ. The sequences s1; s2; . . .
and t1; t2; . . . are bounded in H 1ðMÞ. Hence, by passing to a subsequence if necessary,

these sequences are weakly convergent in H 1ðMÞ. Since 0e jm � sm e
1

m
for all m A N it

follows from the Lebesgue dominated convergence theorem that lim jm � sm ¼ 0 in L2; loc.
Therefore it follows by the uniqueness of the weak limit that lim jm � sm ¼ 0 weakly in
H 1ðMÞ. Because lim sm � tm ¼ 0 in L2 it follows that lim sm � tm ¼ 0 weakly in H 1ðMÞ.
Then lim tm ¼ j weakly in H 1ðMÞ. So j A H 1

0 ðMÞ and D1
0ðMÞXLyð ~MMÞHH 1

0 ðMÞ.

Finally, if j A D1
0ðMÞ then ð�nÞ4j5n A D1

0ðMÞXLyð ~MMÞHH 1
0 ðMÞ for all n A N

and limð�nÞ4j5n ¼ j in H 1ðMÞ. So j A H 1
0 ðMÞ. r

Finally we prove the characterizations of regular in capacity.

Proof of Theorem 5.1. ‘(I) ) (II)’. Let j A H 1
0 ðMÞXC0ð ~MMÞ and e > 0. We may

assume that jf 0. Since j A C0ð ~MMÞ there exists a compact K H ~MM such that jðqÞ < e
for all q A ~MMnK. Moreover, jðqÞ ¼ 0 for all q A qM since M is regular in capacity. Let
U ¼ fq A ~MM : jðqÞ < eg. Then U is open and ~MMnM HU . Moreover,

suppðj� eÞþH ð ~MMnUÞXK

and hence compact. But ð ~MMnUÞXK HM. Therefore ðj� eÞþ A H 1
0 ðMÞXCcðMÞ. Using

a partition of the unity one deduces that Cy
c ðMÞ is dense in H 1

0 ðMÞXCcðMÞ. Finally,
lim
e#0

ðj� eÞþ ¼ j in H 1
0 ðMÞXC0ð ~MMÞ. So Cy

c ðMÞ is dense in H 1
0 ðMÞXC0ð ~MMÞ.

‘(II) ) (I)’. Suppose M is not regular in capacity. Then there are

j A H 1
0 ðMÞXC0ð ~MMÞ

and p A qM such that jðpÞ3 0. Then kj� ckC0ð ~MMÞ f jjðpÞj for all c A Cy
c ðMÞ, so

Cy
c ðMÞ is not dense in H 1

0 ðMÞXC0ð ~MMÞ.

‘(II) ) (III)’. Let F : H 1
0 ðMÞXC0ð ~MMÞ ! R be a lattice homomorphism. Then F is

continuous by [28], Theorem V.5.5(ii). Arguing as at the end of the proof of Lemma 4.1
it follows from Lemma 4.2 that there are c A R and p A M such that FðjÞ ¼ cjðpÞ for all
j A Cy

c ðMÞ. Since F is continuous and Cy
c ðMÞ is dense in H 1

0 ðMÞXC0ð ~MMÞ it follows that
FðjÞ ¼ cjðpÞ for all j A H 1

0 ðMÞXC0ð ~MMÞ.

‘(III) ) (I)’. Suppose M is not regular in capacity. Then there are

c A H 1
0 ðMÞXC0ð ~MMÞ

and p A qM such that cðpÞ3 0. Define F : H 1
0 ðMÞXC0ð ~MMÞ ! R by FðjÞ ¼ jðpÞ. Then F

is a continuous lattice homomorphism. So by assumption there are q A M and c A R such

22 Arendt, Biegert and ter Elst, Di¤usion determines the manifold

Brought to you by | The University of Auckland Library
Authenticated | 130.216.82.99

Download Date | 3/3/13 11:44 PM



that FðjÞ ¼ cjðqÞ for all j A H 1
0 ðMÞXC0ð ~MMÞ. Let w A Cy

c ðMÞ be such that wðqÞ ¼ 1. Then

cð1� wÞ ¼ c� cw A H 1
0 ðMÞXC0ð ~MMÞ. Therefore

03cðpÞ ¼
�
cð1� wÞ

�
ðpÞ ¼ F

�
cð1� wÞ

�
¼ c
�
cð1� wÞ

�
ðqÞ ¼ 0:

This is a contradiction.

‘(II) ) (IV)’. Let t : H 1
0 ðMÞXC0ð ~MMÞ ! C be a (non-zero) multiplicative func-

tional. Then t is continuous by [20], Theorem C.21. Therefore it follows by condition (II)
that tjCy

c ðMÞ : Cy
c ðMÞ ! C is a (non-zero) multiplicative functional. Let p; q A supp tjCy

c ðMÞ
with p3 q and let U and V be two disjoint open neighbourhoods of p and q respectively.
Then there exist j A Cy

c ðUÞ and c A Cy
c ðVÞ such that tðjÞ3 0 and tðcÞ3 0. But then

jc ¼ 0 and

0 ¼ tðjcÞ ¼ tðjÞtðcÞ3 0:

This is a contradiction. So there exists a p A M such that supp tjCy
c ðMÞ ¼ fpg.

Next we show that t is positive. Let j A Cy
c ðMÞ and suppose that jf 0. If

jðpÞ > 0 then there exist c A Cy
c ðMÞ and a neighbourhood V of p such that jjV ¼ c2jV .

Then tðjÞ ¼ tðc2Þ ¼ tðcÞ2
f 0. Alternatively, suppose that jðpÞ ¼ 0. Let V be a rela-

tive compact neighbourhood of p. Then by continuity there exists a c > 0 such that
jtðcÞje ckckW 1;yðVÞ for all c A Cy

c ðVÞ. We may assume that supp jHV . Then

lim
e#0

ðj� eÞþ ¼ j in W 1;yðVÞ, so by regularizing it follows that there are j1; j2; . . . A Cy
c ðVÞ

such that lim jk ¼ j in W 1;yðVÞ and jk vanishes in a neighbourhood of p for all k A N.
Then tðjÞ ¼ lim tðjkÞ ¼ 0.

Now it follows from Lemma 4.2 that there are c A ½0;yÞ and p A M such that
tðjÞ ¼ ctðjÞ for all j A Cy

c ðMÞ. Then c2 ¼ 1 and since t3 0 it follows that c ¼ 1.
Since Cy

c ðMÞ is dense in H 1
0 ðMÞXC0ð ~MMÞ one establishes that tðjÞ ¼ jðpÞ for all

j A H 1
0 ðMÞXC0ð ~MMÞ.

‘(IV) ) (I)’. This proof is similar to the proof (III) ) (I).

‘(I) ) (V)’. Assume that there exist p A qM and r > 0 such that

rcap
�
B ~MMðp; rÞX qM

�
¼ 0:

Then there exist a ~MM-open neighbourhood U of B ~MMðp; rÞX qM and a function w A ~HH 1ðMÞ
such that wf 1 a.e. on U XM. Let r A ð0; rÞ be such that MnB ~MMðp; rÞ3j. Define
c : ~MM ! R by cðqÞ ¼ d ~MM

�
q; ~MMnBðp; rÞ

�
. Then c A Cð ~MMÞ and cjM A W 1;yðMÞ. Set

j ¼ wc. Then j A Cð ~MMÞ and by an elementary argument one deduces that jjM A ~HH 1ðMÞ.
Moreover, j ¼ 0 r.q.e. on qM. By Theorem 5.2 it follows that jjM A H 1

0 ðMÞ. So
j A H 1

0 ðMÞXC0ð ~MMÞ. Since jðpÞ3 0 it follows from the definition that the manifold M

is not regular in capacity.

‘(V) ) (I)’. If M is not regular in capacity then there exist j A H 1
0 ðMÞXC0ð ~MMÞ and

p A qM such that jðpÞ3 0. Without loss of generality we may assume that jðpÞ ¼ 2.
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Let r A ð0; 1Þ be such that jf 1 on B ~MMðp; rÞ. Since j A H 1
0 ðMÞ one deduces from Theorem

5.2 that j ¼ 0 r.q.e. on qM. Then rcap
�
B ~MMðp; rÞX qM

�
e rcap

�
fq A qM : jðqÞ3 0g

�
¼ 0.
r
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