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Diffusion determines the manifold

By W. Arendt and M. Biegert at Ulm, and A. F. M. ter Elst at Auckland

Abstract. We prove under a weak smoothness condition that two Riemannian mani-
folds are isomorphic if and only if there exists an order isomorphism which intertwines with
the Dirichlet type heat semigroups on the manifolds.

1. Introduction

A fundamental problem raised in Kac’s famous article [21] ‘Can one hear the shape
of a drum’ is whether two isospectral manifolds are isomorphic. The answer is negative
in general. Milnor gave a counter example for compact Riemannian manifolds [22]. In the
Euclidean case the first example was given in dimension 4 by Urakawa [29]. Then Gordon—
Webb—Wolpert [17] constructed two polygons in R? which are isospectral but not iso-
morphic. Moreover, [16] constructed two isospectral convex open sets in R* which are
isospectral but not isomorphic. Kac’s question in the strict sense, namely whether two
isospectral bounded open sets in R? with C*-boundary are isometric, is still open. But
there are recent positive results by Zelditch [32] for open sets in R? with analytic boundary
verifying some symmetry conditions.

To say that the two manifolds are isospectral means by definition that the corre-
sponding Dirichlet Laplacians have the same eigenvalues counted with multiplicity. This,
in turn, can be reformulated by saying that there exists a unitary operator U intertwining
the two heat semigroups. The heat semigroups are positive, i.e. positive initial values lead
to positive solutions. These positive solutions describe the heat diffusion on the manifold.
Thus, if instead of a unitary operator, we consider an order isomorphism U (i.e. U is linear,
bijective and Uy = 0 if and only if ¢ = 0) on L,, then to say that U intertwines the heat
semigroups means that U maps the positive solutions to positive solutions. It was shown
in [6] that in the Euclidean case, i.e. if we consider open connected sets in R“, then these
sets are necessarily congruent as soon as such an intertwining order isomorphism exists.
This may be rephrased by saying that diffusion determines the body. The aim of this paper
is to extend this result to manifolds.

There are several notable new features coming into play in the non-Euclidean case.
First of all, in [6] a precise regularity condition has been established under which the result
is valid. The open sets have to be regular in capacity (this means loosely speaking that they
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do not have holes of capacity 0). Some effort is made in this paper to extend this notion
to manifolds, which is not possible in an immediate way. It turns out that all complete
Riemannian manifolds satisfy this regularity condition.

There are other results on Riemannian manifolds where heat flow determines a geo-
metric property. Norris [23] established a Varadhan type [30], [31] equality for a small time
limit of the heat kernel in terms of the Riemannian distance. For complete Riemannian
manifolds von Renesse—Sturm [25] characterized a lower bound on the Ricci curvature in
terms of gradient estimates for the heat semigroup, see also Otto—Villani [24]. In [26], [27]
Saloff-Coste proved that two-sided Gaussian bounds for the heat kernel are equivalent to
parabolic Harnack inequalities, and are also equivalent to volume doubling together with a
scale of Poincaré inequalities.

The problem addressed in this paper is partially motivated by work of Arveson [9],
[10], who introduces differential structures in operator algebras. Our results imply unique-
ness of these differential structures, the case of compact Riemannian manifolds being of
particular interest.

Not all results in the Euclidean case carry over to Riemannian manifolds. We give
an example, Example 4.7, of a non-zero lattice homomorphism which intertwines the
heat semigroups, but which is not an isomorphism, in contrast to the Euclidean case [5],
Theorem 2.1.

Let (M,g) be a Riemannian manifold of dimension d. We always assume that a
Riemannian manifold is g-compact. Then M has a natural Radon measure denoted by
| -|. Set

Hy (M) ={p€ Lyic(M) : pox" e HL (x(V)) for every chart (¥, x)}.

If pe H (M) and (V,x) is a chart on M then set ai (Di(goox_l)) oX € Ly joc(V),

where D; denotes the partial derivative in RY. Moreover, for all ¢, € H (M) there exists
a unique element Vo - Vi € L} joc(M) such that

Vo - VY, = UZIQ( )<6ijlﬁ>

for every chart (V,x) on M. We let [Vop| = (Vo - Vp)'/2. Let H'(M) be the Hilbert space
of all p € H. (M) such that both ¢, |Vg| € Ly(M), with norm ¢ — (|l¢[3 + || |Ve| ||13)"/%.
Moreover, let Hi(M) be the closure of C*(M) in H'(M). Define the bilinear form
a:H{(M)x H (M) — R by a(y,p) = [V - V. Then a is closed and positive. The
Dirichlet Laplace—Beltrami operator A on M is the associated self-adjoint operator. If
(V,x) is a chart on M then

1

i, j= 1\/_6)(:1

Ap = ”f

Ox/

forallpe CX (V).
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If (My,g1) and (M>, g,) are two Riemannian manifolds then a map 7: M| — M, is
called an isometry if it is a C*-diffeomorphism and

D2l (7:(0), 7. (W) = g1, (v, w)

for all pe M; and v,we T,M;. A map t: M — M, is called a local isometry if
for all p e M, there exists an open neighbourhood V of p such that the restriction
7|, : V' — (V) is an isometry. The Riemannian manifolds (M, g;) and (M>, g») are called
isomorphic if there exists an isometry from M, onto M,. If 7 : M} — M, is an isometry and
pe|l,o0) then pote L,(M;)and

(1) lp o 2llz, ) = 0l an)

for all p € L,(M,). In particular, the map ¢ — @ o7 is a unitary map from L,(M>) onto
Ly(M;) and a unitary map from H}(M,) onto H}(M;). Moreover, if ¢ € Ly(M>) then
¢ € D(Ay) if and only if p o 7€ D(A;) and Aj(p o 7) = (Ap) o 7, where A; is the Dirichlet
Laplace—Beltrami operator on M; for all j € {1,2}.

A linear operator U : E — F between two Riesz spaces is said to be a lattice homo-
morphism if

Ulpay) = (Up) A (UY)

for all g, € E. For alternative equivalent definitions see [2], Theorem 7.2. Here in this
paper in most cases the spaces £ and F will be L,-spaces and then

(9 AY)(x) = min{p(x), y(x)} ae.

Each lattice homomorphism U is positive, i.e. ¢ = 0 implies Up = 0. An order isomorphism
U : E — F is a bijective mapping such that Ugp = 0 if and only if ¢ = 0. Equivalently, U is
an order isomorphism if and only if U is a bijective lattice homomorphism. Then also U !
is an order isomorphism. Recall that also each positive operator between L,-spaces is con-
tinuous by [2], Theorem 12.3.

The main theorem of this paper is the following. It is valid under some regularity
assumptions on the manifolds, namely regularity in capacity, which is optimal for this
purpose and which we will explain below.

Theorem 1.1. Let (M;,g,) and (M>,g>2) be two connected Riemannian manifolds
which are both regular in capacity. Let p € [1, o). For all j € {1,2} let A; be the Dirichlet
Laplace—Beltrami operator on M; and let SV) be the associated semigroup on L,(M;). Then
the following two conditions are equivalent:

(I) (My,g1) and (M-, g2) are isomorphic.

(II) There exists a lattice homomorphism U : L,(My) — L,(M>) such that UL,(M)
is dense in L,(M>) and

us" =sPu
forall t > 0.
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Moreover, if U is a lattice homomorphism as in condition (I11) then U is an order
isomorphism and there exist ¢ > 0 and an isometry 1 : My — M| such that Up = cp o T for
all p € L,(M;).

It turns out that all complete connected Riemannian manifolds, and in particular all
compact connected Riemannian manifolds, are regular in capacity. Therefore one immedi-
ately has the following corollary.

Corollary 1.2. Let (My,g,) and (M>,g>) be two complete connected Riemannian
manifolds. Let p € [1,00). For all j € {1,2} let A; be the Dirichlet Laplace—Beltrami opera-
tor on M; and let SV be the associated semigroup on L,(M;). Then the following two con-
ditions are equivalent:

(I) (My,g1) and (M-, g>) are isomorphic.
(II) There exists an order isomorphism U : L,(My) — L,(M>) such that
us!" =sPu
forall t > 0.

Now we explain the notion of regularity in capacity for Riemannian manifolds. The
capacity of a subset 4 of M is given by

capy,(A4) = cap(4) = inf{||(p||%11(M) :pe H'(M) and ¢ > 1 on a neighbourhood of 4}.

An open subset Q of R is called regular in capacity (6] if capgs (B(x;r)\Q) > 0 for all
x € dQ and r > 0, where B(x;r) is the Euclidean ball. Biegert and Warma gave several
characterizations for regular in capacity. In particular, an open subset Q of R¢ is regular
in capacity if and only if every ¢ € H} (Q) n C(Q) is zero everywhere on 0Q ([12], Theorem
3.2). Since R is locally compact it then follows that an open subset Q of R is regular in
capacity if and only if every ¢ € H} (Q) n Cy(Q) is zero everywhere on Q. This character-
ization allows an extension to general connected Riemannian manifolds. There is a natural
distance dj, on a connected Riemannian manifold M. We denote by By (p;r) = B(p;r) the
associated balls. Let M denote the (metric) completion of M with respect to this distance.
Set

oM = M\M.

We say that a connected Riemannian manifold M is regular in capacity if ¢(p) =0 for
all pe Co(M) nH} (M) = {pe Co(M) : ¢|,, € H} (M)} and p € M. Here Cy(M) is the
closure of the space C.(M) of all continuous functions with compact support, with respect
to the supremum norm in the space of all bounded continuous functions on M. Clearly
every complete connected Riemannian manifold is regular in capacity.

In the Euclidean case, regularity in capacity is a very mild condition on the boundary
of an open subset. If Q = R? is open and bounded then it is regular in capacity if it is
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Dirichlet regular. The Lebesgue cusp is regular in capacity, but not Dirichlet regular (see
[7], Section 7).

If M, and M, are two isomorphic connected Riemannian manifolds and 7 : M| — M,
is an isometry then  is distance preserving, i.e. dy, (t(p); ©(q)) = du, (p; q) for all p,q € M;.
Moreover, if M| is regular in capacity, then also M, is regular in capacity.

Now we can explain why regularity in capacity is the minimal regularity condi-
tion in our context. Let M be a connected Riemannian manifold which is complete
(or more general, regular in capacity). Let ) = N = M be a closed subset of capacity
zero. Then Q:= M\N is again a connected Riemannian manifold (see Theorem 2.1)
The injection 7 : Q — M defines an isometry which is not surjective. The unitary operator
U: Ly M)— Ly(Q) given by Up = ¢o 1 is an order isomorphism intertwining the two
heat semigroups even though Q and M are not isomorphic. It follows from Theorem 1.1
that Q is not regular in capacity.

The paper is organized as follows. In the next section we give a sufficient condition
to ensure that the distance on a subriemannian manifold equals the induced distance. In
Section 3 we show that M| and M, are isometric if they have sufficiently big isometric
open subsets. In Section 4 we prove Theorem 1.1. Finally, in Section 5 we give several
characterizations of regularity in capacity.

Acknowledgements. The first and second named authors would like to thank for the
great hospitality and generosity during their stay at the University of Auckland. The third
named author is most grateful for the hospitality extended to him during a most enjoyable
and fruitful stay at the University of Ulm.

2. Distances

If N is a connected open subset of a connected Riemannian manifold M then
dy(p;q) < dn(p;q) for all p,qe N, where dy; and dy are the natural distances on M
and N. Even if |[M\N| =0, then it is easy to construct examples such that the induced
distance from dj; on N differs from the distance dy. We next show that the condition
cap,,(M\N) = 0 suffices to have equality.

Theorem 2.1. Let N be an open subset of a connected Riemannian manifold M
and suppose that cap,,(M\N)=0. Then N is connected and dy(p;q) = dy(p;q) for all
P.g€N.

The proof involves an alternative description of the distances and is split in three
propositions. The proof of some subresults is present in the literature on non-regular
metric spaces in a slightly different setting [3], [4], [14], [18]. First we need L., -versions
of H' and Vg. Let M be a Riemannian manifold. Set

Wil (M) = {p € Lyoc(M) : 90 x~" € Wi (x(V)) for every chart (V,x) on M}.

loc loc
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For all p € W,>" (M) there is a unique |Vg| € L., joc(M) such that

st~ (39 () )

0 . .
for every chart (V,x) on M, where a—q) € Lo 10c(M) is defined in the natural way. Then

define W' (M) = {pe L.(M):|Vp| e L,(M)}.

The next proposition is folklore and is at the basis of analysis on metric spaces [3], [4].
For the convenience of the reader we include a proof.

Proposition 2.2. Let M be a connected Riemannian manifold. If p,q € M then

dyr(p; q) = sup{Y(p) —¥(q) - ¥ € W™ (M), [V| € Loo (M) and |||V ||, < 1}.

Proof. ‘<. If ge M define y : M — R by y(p) = dy(p;q). Then e Wb (M),
[ V¥, <1 and du(p;q) < ¥(p) — ¥(q).

‘> Let p,ge M. Let € Wb (M) with || [Vy|||,, 1. Let y:[0,1] — M be a

C”-map with y(0) = p and y(1) = ¢. By regularizing we may assume that i/ is smooth in
a neighbourhood of y([0, 1]). Then

W(p) — (g =

o%_

[7(0)w| dt

[IA
ST

g(5(0),5(6) V| (1)) dr < [a(i(o) 7(0)"? dt.

Minimizing over y gives [y(p) — ¥ (q)| < du(p;q). O
We shall prove that le)cx(M) loc (N) if cap,, (M\N) = 0. For all s € [0, 00) we
denote by #*(A4) the s-dimensional Hausdorff measure of a subset 4 of M (see [18], 8.3).

Proposition 2.3. Let A be a subset of a connected Riemannian manifold M of
dimension d. If cap(A) = 0 then #°(A) = 0 for all s € [0, 0) with s > d — 2.

Proof. For all ne N there exists a ¢, € H'(M) such that ¢, = 1 on a neighbour-
o0
hood of 4 and ||g,[|;71(y) S27". Setp = 3" ¢, € H'(M). Then for all m e N it follows that

n=1
@ = m on a neighbourhood of 4. Hence for all a € 4 there exists an ¢ > 0 such that
@)y, = m forall r e (0,¢, where {Y), , = \B(p;r)r1 | W is the average of Y over the
ball B(p;r) forall y € Ly 1oc(M), pe M and r > 0. B(p;r)

Let a € A and suppose that hm 1sup r = |V(p|2 < oo. Then there exist r; € (0, 1]
B(a;r)
and M € R such that [ |Vg|> < Mr* for all r € (0,r].
B(a;r)
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It follows from [11], Theorem 5.14, that there exists an r, € (0, r] such that exp, is a
diffeomorphism from {ve T,M : g,(v,v) < r3} onto B(a;r;) and d(a;exp,v) = galv;0)?
for all ve T,M with g,(v,v) < r%. Since T,M is equivalent to RY, it admits a Poincaré
inequality. Hence there exists a ¢; > 0 such that

J
(ayr

W= e, P <ar? ||V
i) B(a;r

B i)

uniformly for all € H'(B(a;r)) and r € (0,r,]. Similarly, there exists a ¢; > 0 such that
|B(a;r)| = cor? for all e (0,1]. Clearly the constants ¢; and ¢, depend on the point a.
Then

[ 1o =<pda,l* S cir® [ Vo> < ey Mr*?
Bain) Bla:r)

for all r € (0, ;). Now the rest of the proof is standard, cf. [14], Theorem 4.7.4. [

Proposition 2.4. Let N be an open subset of a connected Riemannian manifold M
of dimension d and suppose that #“~'(M\N) = 0. Then W5 (N) = Wb (M) and N is
connected.

Proof. Let pe WIL’COO(N ). Using a partition of the unity, normal coordinates and
[19], Proposition 1.9.10, we may assume that there are p € M and r > 0 such that first ¢
is compactly supported in the ball By (p;r), secondly the restriction @ of exp, to the
set Xo, ={veT,M:g,(v,v) < (2r)?} is a diffeomorphism of X, onto By, (p;2r), thirdly
|v] = dp(p;exp,v) for all ve Xy and finally 27'|o — w| < dy(exp, v;exp, w) < 2[v — w|
for all v, w € X5,, where |v| = g, (v, v)"/2. Then

AT XA (N By (pin)) = 27 (@7 (M\N) 0 Bu(pir)) =0

where X, = @' (By(p;r)). Moreover, po ® € Wh4(®~' (N n By/(p;r))) forall g e (1, o)
and ®'(N nBy(p;r)) is open. Hence it follows from [1], Lemma 9.1.10, that
po®e Whi(X,) for all g€ (1,00). Then po ® e W'*(X,) and p € W' (By(p;r)). So
pe WL*(M).

Finally, let 9 : N — {0, 1} be a continuous function. Then ¢ € W1*(N) < WILEOO(M)-
So ¢ extends to a continuous function on M. But M is connected. Therefore ¢ is constant

and N is connected. []

Proof of Theorem 2.1. This easily follows from the last three propositions. []

3. Quasi isometries are isometries

In this section we prove that two connected Riemannian manifolds, which are regular
in capacity, are isomorphic if they have isomorphic open subsets whose complements are
polar. Moreover, we give many useful tools to understand and to work with the H-spaces
defined on Riemannian manifolds.
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Let (M, g,) and (M>, g>) be Riemannian manifolds. We say that
cap

M, ~ M,

if there exist open sets M| < M, and M} < M, and an isometry 7 from M} onto M/ such
that cap,,, (M\M|) = 0 = cap,,,(M>\M3).

The following theorem is the main theorem in this section. It shows that the relation
ca . . . . .
<Y defined on connected Riemannian manifolds determines the manifold.

Theorem 3.1. Let (M;,g,) and (M>,g>) be two connected Riemannian manifolds
which are regular in capacity. Then

My R M, & (M, ) and (Ms, g,) are isomorphic.
Explicitly, if M| and M are open subsets of M and M, such that
capy, (Mi\M{) = 0 = cap,,, (M>\M;)

and ©: M) — M| is an isometry, then there exists an isometry T : M, — M, such that
‘E|M2/ =T

We define the space H!(M) to be the set of all 9 € H'(M) such that there exists a
compact subset K of M with ¢ =0 a.e. on M\K.

Lemma 3.2. Let N be an open subset of a Riemannian manifold (M ,g) such that
|M\N| = 0. Then the following are equivalent:

(1) capy, (M\N) =0.

(I1) The restriction map Y — Y|y from H'Y(M) into H'(N) maps H}(M) onto
H{(N).

(L) H (M) = {y|y : ¥ € Hy(M)} = H(N).
Proof. Clearly (III) is a reformulation of (II).

‘(IIT) = (I)’. Let K = M be a compact set. There exists a y € C°(M) such that
¥|x = 1. Then y|y € H}(N) by assumption. Let & > 0. There exists a ¢ € C*(N) such
that [[y/|y — ¢||12L,1(N) <ée Theny —pe C (M) and y —p =1 on K\N. So

cap(K\N) < Y = ol = Wy — 0l <&

where we used that |[M\N| =0 in the equality. Since M is g-compact one deduces that
cap(M\N) = 0.

‘(1) = (I)". Clearly {y/|y : ¥ € H} (M)} > H}(N). Conversely, let y € C*(M). Let
& > 0. There exists an open neighbourhood of M\N and a y € H'(M) such that 0 < y <1,
2y =1 and || 7l <& Then (Y(1—y))|, € H!(N) = Hj(N) and

Wiy — (w1 _X))|NHH1(N) = [l iy = 3l e o L ary = 31 0e -



Arendt, Biegert and ter Elst, Diffusion determines the manifold 9

So Y|y € H} (N). Since C*(M) is dense in H{ (M) and ¢ — ¢| is isometric from H'(M)
into H'(N) the lemma follows. []

If N is an open subset of a Riemannian manifold M and A4 < N, then
capy(A4) < cap,,(A4). The next lemma is instrumental to deduce equality of the two capaci-
ties if cap,,(M\N) = 0. It is a kind of L,-version of Propositions 2.3 and 2.4.

Lemma 3.3. Let N be an open subset of a manifold M. Suppose that
cap, (M\N) = 0. Then H'(N) = H'(M).

Proof. Let pe H'(N) n L., (N). We shall prove that g € H'(M). Let n e N. Since
cap,,(M\N) =0 there exists a ¥, € H'(M) such that ¥, =1 in a neighbourhood of
M\N and Hl,anf{l(M) <n~'. We may assume that 0 <, < 1. Then ¢ — gy, € H'(N).
But ¢ — ¢y, = ¢(1 — ,,) vanishes in a neighbourhood of M\N. Therefore we can extend
this function by zero to a function ¢, € H'(M). Then

2 2 2 2 2 2 2
loWallzn vy = 20015 Wl an) + 2l [l = 2Mll5, + 2l

for all ne N. So the sequence ¢;,¢,, ... is uniformly bounded in H'!(M). Hence it has

a weakly convergent subsequence. Passing to a subsequence if necessary, there exists a

@ € H'(M) such that lim ¢, = ¢ weakly in H'(M). Then lim ¢, = ¢ weakly in L,(M). But
1o = Pall aary = IoWall aany = Mol Wl o ary = llollon ™2

for all n € N. So lim ¢, = ¢ strongly and therefore also weakly in L,(M). Hence ¢ = ¢ a.e.

and p e H'(M).

Thus H'(N)~ L, (N) < H'(M). Since H'(N)n L, (N) is dense in H!(N) the
lemma follows. [

Corollary 3.4. If M is a Riemannian manifold and N < M is open with
cap, (M\N) = 0 then capy(A) = cap,,(A4) for all A = N.

Corollary 3.5. Let My and M, be two Riemannian manifolds. If M, & M, and M,
Mj, and t are as in the definition of '~ then capyy, (1(A4)) = capyy,(A4) for every set A = M.

Proof.  One deduces from the previous corollary that
capy, (1(4)) = cap,y/ (1(4)) = capy(A) = capy,(4) =0. O

We emphasize that the next proposition does not require the manifolds to be regular
in capacity.

.o . cap . . .
Proposition 3.6. The relation ~ is an equivalence relation.

Proof. The reflexivity and symmetry are trivial.

Let M, M, and M3 be three Riemannian manifolds and assume that A <L M> and
ca; . . .
M> % M;. Then there exist open M{ « My, M}, M} = M, and M} < M5 and isometries

7: M)} — M| and ¢ : M3’ — M} such that

capy, (Mi\ M) = capy,(M2\M3) = cap,,(M2\My) = cap,, (M3\M3) = 0.
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Now let M3y" = M, n M,'. Then M}" is open in M, and

capy, (Mx\M)") < capy,(My\M;) + cap,, (M2 \ M) = 0.

Next set M{" =t(M}") =« M| and M}’ = O'_I(M'”) < Mj. Then M{" is open in M; and
Mj" is open in Ms. Moreover 7|y 0 0y is an isometry from M’” onto M{". Since
MN\M]" = t(M;\M)") it follows from Corollary 3.5 that

capyy, (M{\M") = cap,,(M3\M;") = 0.
Therefore cap,,, (M \M]") < cap,, (M\M]) + cap,, (M{\M|") = 0. So
capy, (Mi\M]") = 0.
It similarly follows that cap,,, (M3\M;") = 0. Therefore M R M. O

Also the next proposition does not assume regular in capacity. But it overshoots the
conclusions in Theorem 3.1 since the range of 7 can be bigger than M.

Proposmon 3.7. Let My and M, be two connecled Riemannian manifolds. If
M X M, and if M{, M} and t are as in the definition of D then there exists a distance
preserving isomorphism 7 : My — M such that 7| M =T

Proof. The function 7| M : Mj — M| is distance preserving with respect to the
distances dy; and dj. Then by Theorern 2.1 the map 1| M is also a distance preserving
with respect to the 1nduced distances from M, and M| on M and M. Since Mj is dense in
M, and therefore also in M it follows that there exists a unique distance preserving map
7: M, — M such that 7| My =T Similarly there exists a unique distance preserving map
G: M, — M- such that 0|M, =11 Then 7o a]M, is the identity function on M/. So by
density and continuity 7 o ¢ = Sinnlarly G071 = Iy and the proposition follows O

Now we are able to prove the main theorem of this section.
Proof of Theorem 3.1. The implication = 1s trivial. Suppose that M, X M, and

let M{, M} and 7 be as in the definition of X. Let 7 be as in Proposition 3.7. If
pe Hol(Ml) N Co(M) then ¢ o T € Co(M;). Moreover, ¢l € H}(M]), so

(9o D)y € HY (M3)
and therefore (¢ o 7)|,,, € Hj (M) by Lemma 3.2. So we can define
VvV Hy (M) A Co(My) — Hy (M) 0 Co(M)
by Vp=¢po1.
Next, let pe M;. There exists a ¢e CX(M;) such that ¢(p)=1. Then

Vo e H} (M>) n Co(M>). Moreover, (Vo)(i7'(p)) = ¢(p) = 1. Hence 7 !(p) € M, since
M, is regular in capacity. Similarly 7(¢) € M for all ¢ € M, since M, is regular in capacity.
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Let 7= 17| M- Then 7 is a topological homeomorphism from M, onto M. It remains to
show that 7 and its inverse are smooth and an isometry.

By (1) we can define U: Ly(M;) — Ly(My) by Up=g¢ot. If pe H} (M) then
porte H}(M}) = H}!(M,) by isometry, (1) and Lemma 3.2. Therefore U is a bijection
from H}(M)) onto HJ(M>). Let h; and hy be the forms associated to the Dirichlet
Laplace—Beltrami operators on M; and M>, with form domains H}(M,) and H{(M).
Then

h(p) = [ Vo> = [ |Vg|*
M, M!

1

= [IV(pon))> = [IV(por) = [|V(pot)|* = ha(Up)

M! M, M,

for all p e C*(M;). Since C(M,) is a core for hy it follows that & (p) = hy(Ugp) for
all p e H!(M)). Hence if ¢ € L,(M;), then ¢ € D(A;) if and only if Upe D(Ay), and
A Ugp = UA, ¢ if both conditions are valid. Now let p € C°(M;). Then

Upe () D(AY) < C*(M)

n=1

by elliptic regularity. (See [15], Theorem 9.11, if p & 1. If p =1 first apply a Sobolev
embedding to embed L; into a Sobolev space W*” with s < 0 and p > 1, and then apply
[15], Theorem 9.11.) So there exists a y € C*(M>) such that Up = a.e. But p = po 7 is
continuous. Therefore ¢ o7 =1 pointwise. Thus ¢ o7 is smooth for all ¢ € C*(M)).
Therefore 7 is a C*-map from M, onto M;. Similarly also z~! is a C*-map, so 7 is a
C*-diffeomorphism. Finally, since 7 is an isometry and M) is dense in M, it follows by
continuity that also 7 is an isometry. This proves Theorem 3.1. []

4. Lattice homomorphisms

In this section, we consider lattice homomorphisms between L,-spaces on two
Riemannian manifolds without the assumption that the manifolds are regular in capacity.
The aim is to prove that the associated HO1 -spaces are equivalent, under the conditions of
Theorem 1.1.

The first step is to use elliptic regularity of the Laplace—Beltrami operator to reduce
to smooth functions.

Lemma 4.1. Let (M}, g,) and (M, g>) be two Riemannian manifolds. Let p € [1, ).
For all j € {1,2} let A; be the Dirichlet Laplace—Beltrami operator on M; and let SU) be the
associated semigroup on L,(M;). Let U : L,(My) — L,(M>) be a lattice homomorphism
such that

(2) us\Y = sPu

for all t > 0. Then:
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(i) UCF (M) = C*(M>).
(i) Up =0 forall pe CF(M;) with ¢ = 0.
(iii) (Up)(Uy) =0 for all p,\y € CF (M) with gy = 0.
(iv) AU = UAg for all p € CF (M,).
Proof. 1t follows from (2) that UD(A;) < D(A;) and AUp = UAp for all

o0 o0
@ € D(A;). Hence by iteration U | D(A}) = () D(A}). But
n=1 n=1

C* (M) < () D(AM) < C*(M;) forall je{1,2}

c nel
by elliptic regularity. This shows (i) and (iv). Property (ii) follows since U is a lattice homo-

morphism. Moreover, |Ugp| = Ulgp| for all ¢ € L,(M,). Hence if ¢,y € C.(M;) and gy =0
then |p| A || = 0 and |Ugp| A |UY| = Ulp| A UlY| = U(|g| A |¢|) = 0. Therefore

[(Up)(UY)| = |Up| |UY| =0 and  (Up)(Uy) = 0.
This implies property (iii). []
We frequently need the following sufficient condition for point evaluations.

Lemma 4.2. Let M be a manifold and F : C (M) — R a positive linear functional
such that

(3) F(p)F(y) =0 forall o,y € CF (M) with gy = 0.
Then there exist ¢ € [0, 00) and p € M such that F(p) = co(p) for all p € CF(M).

Proof. Arguing as in [14], Corollary 1.8.1, it follows that there exists a unique
Radon measure ¢ on M such that F(p) = [@du for all g € C*(M). Then it follows

from (3) that ux is a point measure. Hence there exist p e M and c € [0, c0) such that
F(p) =cp(p) forallpe C*(M). O

The next proposition is a manifold version of [2], Theorem 7.22.

Proposition 4.3. Let (My,g1) and (M, g,) be two Riemannian manifolds. Suppose
there exists a linear map U : CF (M) — C* (M) such that

(i) Up =0 forall pe CF(M;) with ¢ =0, and
(i) (Up)(Uy) =0 for all p,\y € C (M) with gy = 0.
Then there exist an open set M) < M, a function t: M, — M, and a function

h: M, — [0,00) such that M) = {qge M, : h(q) > 0} and Up = h - (¢ o T) pointwise for all
9 € C(M1). Moreover, the restrictions t|, and h|M2, are both C*.
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Proof. Set M; ={qe M, : (Ugp)(q) % 0 for some p € C*(M,)}. Then M, is open.
Let ¢ € M5. Then the map ¢ — (Up)(q) from C*(M;) into R is linear, positive and satis-
fies (3). Hence it follows from Lemma 4.2 that there exist 7(¢) € M, and h(g) € [0, c0) such
that

(Up)(q) = h(q)p(t(q))
for all p € C¥(M,). So one obtains functions 7 : M, — M; and h: M, — [0, c0). More-
over, Mj = {q € M : h(q) > 0}. It remains to show the smoothness of the restrictions of 7
and £ to the set M.
First we show that the function 1 my 1s continuous. Otherwise there are
4,491,492, - .. € M} and & > 0 such that limg, = ¢ and d(t(¢,); 7(¢q)) = ¢ for all n € N, where

d is a distance on M. There exists a ¢ € C*(M;) such that ¢(7(¢g)) = 1 and ¢(p) = 0 for
all p e M, with d(p;(¢)) > ¢ Then Up is continuous, so

h(q) = (Up)(q) = lim(Up)(g) = 0,
which is a contradiction.

_ Secondly, let Q be a relatively compact open subset of M; with Q = Mj;. Then
7(Q) is compact, so there is a y € C(M)) such that ¥, q) = 1. Then hlg = (Uy)l|q is a
C*”-function. Hence 4|, is a C*-function from M into (0, c). Then

(pot)lg=(h""- Up)lge C*(Q) forallpe CZ(M)

and 7|,,, is a C*-function. [
2

Using the fact that U intertwines with the Laplace—Beltrami operators implies that ¢
is almost an isometry.

Proposition 4.4. Let (M,,g1) and (M;,g2) be two Riemannian manifolds with
Dirichlet Laplace—Beltrami operators Ay and A,. Let tv:Mj;— M, be a C%-map

and h:M; — (0,00) a C%-function. Define the map U :CF(M,)— C*(M}) by
Up =h-(por). Suppose that AU = UA,. Then

(4) gl|r(q)(avﬁ) = g2|q(T*(“)7T*(ﬁ))
for all g e M; and o, € T M. In particular, dim M; = dim M,.
If, in addition, dim M, = dim M) then t is locally an isometry and h is locally constant.

Proof. 1t follows from the identity A, U = UA, that

(5) Ay(h-(pot)) =h-((A1p)o7)

on M; forall p e C¥(M,). Let g € M,. There exists a chart (}, x) on M; such that 7(q) € V'
and x(7(g)) = 0. Let Q = M, be a relatively compact subset such that 7(g) e Q = Q = V.



14 Arendt, Biegert and ter Elst, Diffusion determines the manifold

Let di =dim M, and d, =dim M,. Let 4,...,44 € R. For all >0 there exists a
@, € CX (M) such that

dy

TZ )kak
Pl = e = o
Since
dy i
A = 97V
i,j= 1\/_ ax’

on V it follows that

Ag, = —ZIQQKMJ%H (97 +/g1)

i,j=1 \/—_gotaxl

on Q. Hence

lim £ (k- ((Aig,) 0 7)) (q) = —h(g) 5 g/

t— o0 i, j=1

Next, let (W, y) be a chart on M} such that ¢ € W. Then it follows similarly that

t— 0

[
im 2 (&a(h- 0,2 9))0) = = 32 oot 532" o) (735 4 )

== Z h(@)gal, (v (dx"), 7" (dx7)) Aidy.

l]—

But then (5) gives

Zg /”—Zgﬂ(( N, T (dx7)) Ak

i,j=1 i,j=1

for all 4,...,44 € R and g{'j|1<q) = gl (t*(dx"),z*(dx/)) for all i, je{l,...,d}. Hence
Gilog) (e B) = ga|,(z*(o),7*(B)) for all «,fie T, M. In particular, 7* is injective and
dr = d

Finally suppose that di = d». Since 77|, is injective for all g € M; it follows that
“(q) is bijective for all ¢ € M;. Hence 7 is locally a C*-diffeomorphism. Moreover,
T*|T(q) is an orthogonal map and therefore also .|, is an orthogonal map for all g € M;.
In particular, 7 is locally an isometry.

|

It then also follows that Ay(p o 1) = (A1p) o on M, for all p e C*(M,). If g e M,
and Q is a relatively compact open subset of M, with g € Q < Q < M3, and if one chooses
¢ € C(M) such that ¢l o) =1, then it follows from (5) that (A2h)(¢g) = 0. Then for all

¢ € C*(M;) one deduces from (5) that
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h-((Arp)ot) =Ay(h-(porT))
= (A2h) - (pot) +2(Vah) - (Va(po1)) +h-Ax(por)
=2(Vah) - (Va(po1)) +h- ((Arp) o)

on M}. So (V2h) - (Va(p o)) = 0 on M. Since  is locally a diffeomorphism it follows that
V,oh = 0 and £ is locally constant. This completes the proof of Proposition 4.4. [

In the next lemmas we consider injectivity and density of the range of U.

Lemma 4.5. Assume the hypothesis of Lemma 4.1. Moreover, assume U =+ 0, the
manifold M is connected and the manifolds have equal dimension.

Then there exist open sets M{ c My and M; < M>, a map ©: M, — M, and a
bounded function h: M, — [0, o) such that M; = {q € M, : h(q) > 0}, M| = 1(M;), T|M2/
is a local isometry, h| M is a C*-function and

Up=h-(por)

pointwise for all p € CF(M;) and a.e. for all 9 € L,(M;). Moreover, U is injective and
[M\M{| = 0.

Proof.  Since C*(M,) is dense in L,(M,) and U =+ 0 it follows that the restriction of
U to C(M;) does not vanish. So we can apply Lemma 4.1 and Proposition 4.3. We use
the notation of Proposition 4.3. Set M{ = t(M3}). It follows from the inverse function theo-
rem that M/ is open in M. Moreover, since M, # 0 it follows that M| % @ and |M]| * 0.

Now let ¢ € L,(M,). Since C*(M,) is dense in L,(M,) there exists a sequence
?1,05,... € CP(M;) such that limg, = ¢ in L,(M;). Since U is continuous it follows that
lim Ugp, = Up in L,(M>). Passing to subsequences, if necessary, we may assume that
limgp, = ¢ a.e. and hm Up, = Up a.e. But since M| is g-compact and ‘L'|M/ is locally an
isometry it follows that ~!(N) is a null-set in M, for every null-set N in M (. Therefore
limgp, ot =g¢pota.. on M. Then

Up =lim Up, =limh-(p,07) =h-(poT)

a.e. on M;. In addition one has Up = lim Ugp, =0 a.e. on M,\M}. So Up =h-(po1) a.e
on M>.

Next we show that U is injective. Let ¢ € Ly(M;) and suppose that Up = 0. Then
Ulgp| = |Up| = 0, so we may assume that ¢ = 0. Fix 7 > 0. Then

0=5"Up=Us{"p=h-(5"p)o

a.e. on M,. Since also v maps M;-null-sets into M/-null-sets and /& > 0 p01ntw1se one
deduces that S,( )(p 0 a.e. on M. But M; is connected and if ¢ =+ 0 then ( p gp)( ) >

for all p € M, and in particular for all p € M{. So ¢ =0 and U is injective. It is 0bv10us
that this implies that |[M\M{| = 0.
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Finally we show that / is bounded by || U||. Let ¢ € M, and ¢ > 0. Since 7| M is locally
an isometry and /| M is continuous there exists an open neighbourhood Q of ¢ in M;

such that 7|g : @ — 7(Q) is an isometry and h|g = (1 — ¢&)h(q). Fix g € C*(7(Q)) with
@ £+ 0. Then
(I =e)h(g)lloetl, @ = - (9oL, = 1UPL,mm)

= Ul o) = 11Ul

L) = Ul leetl, @
where we used (1) in the last step. So A(q) < ||U||. O

Lemma 4.6. Assume the hypothesis of Lemma 4.1. Let M be an open subset of M,
let T: My — My and h : M, — [0, 00) be two functions such that M) = {q € M, : h(q) > 0}
and the restrictions 7| M and h| My are both C*-maps. Suppose that Up = h- (¢ o ) for all
pe CP(M).

Then the following are equivalent:
(I) UL,(M,) is dense in L,(M>).
(II) UCF(M,) is dense in L,(M>).

(II1) For every pair of disjoint measurable subsets A; and A, in M, with
0 < |A1], |42| < oo the functionals

p— [Up and ¢~ [Up
A] AZ

Sfrom C¥(M,) into R are linearly independent.
(IV) The map T|M2/ is injective and |M>\ M| = 0.
Moreover, these conditions imply that the dimensions of M| and M, are equal.
Proof. Clearly (I) < (II) = (III).

Next we show that (III) or (IV) implies that dim M; = dim M,. Obviously U = 0,
so M} +0 and d, = d; by Proposition 4.4, where d; = dim M, and d, = dim M,. Fix
ge M, and set p =1(q). Let (V,x) be a chart on M; with pe V' and (W, y) a chart
on M, with ge W. Let V' =x(V), W' = y(W), p’ =x(p) and ¢’ = y(q). Define the
C*map f: W' — V' by f=xot0y!l. Then it follows from (4) that (Df)(¢q') has
maximal rank. Suppose that k =d> — d; > 0. Then it follows from the inverse func-
tion theorem that there exist open W” c R®, 6>0 and a C*-diffeomorphism
F:W" = B(p';38) x (—35,30)" such that ge W" = W', B(p';35) = V', F(¢') = (p',0)
and f(G(u,v)) = u for all (u,v) € B(p';30) x (—39,39)", where G = F~.

In particular, /" is not injective. This contradicts the injectivity of 7 in (IV).
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In order to obtain a contradiction with condition (II1) we proceed as follows. Define
the C*-function @ : B(p';36) x (—35,39)" — (0, ) by

D(u,v) = ((hy/g2) 0 ¥~ © G) (u,0)|(JG) (u, )],

where JG denotes the Jacobian determinant of G. If 4 = y~!(W") is measurable then

(6) [Up= | ®uuv)(pox")(u)d(u,v)
4 (Foy)(4)
for all ¢ € C.(M;). By compactness, there are m, M > 0 such that m < ®(u,v) < M for all
(u,v) € B(p';20) x [—26,26]". Let u e B(p';25). Then

O(u,v) dv < (40)om < | @ (u,v) dv.
[=28,26) ' x[~omM ~1,0) [—28,20]%1 x(0,4]

So there exists a ff(u) € (0,0] such that

®(u,v) dv = f ®(u,v) dv.
[=26,20] " x[~omM 1,0) [—26,26]% 71 % (0, B(u)]

Now choose
Ay = (y~ o F71)(B(p';20) x [~25,20" " x [~omM~,0))
and
Ay ={(y o F Y (u,v) : ue B(p';20) and v € [-25,26]* " x (0, B(u)] }.

Then AN A, =0, 0 < |A4;],|42] < o0 and [ Up = [ Ugpfor all p e C(M;) by (6) and
A A
the choice of f(u). This contradicts (III). Soldl = d,. Thus all four conditions imply that

the dimensions of M| and M, are equal.

‘(IIT) = (IV)". Clearly (III) implies that |M>\M;| =0. Suppose (III) and 7 is
not injective. Then there are ¢i,q» € M; such that 7(q;) = t(q2) and ¢ % ¢». Since
dim M, = dim M, it follows from Proposition 4.4 that 7| M is locally an isomorphism.
There are open connected relative compact Q;,Q, < M; such that QO =0 and for
all j € {1,2} one has g; € Q; and 7; = 7|g, : @ — 7(€;) is an isometry. Since €; is connected
there is a ¢; € (0, 00) such that h|Q =¢. Wlthout loss of generality we may assume that
71(Q1) = 72(Qy). Then for all p e C(M;) one has (Up)(q) = h(q)p(t1(q)) = c19(t1(q))
for all ¢ € Q1. So

JUp=c1[pori=c1 [ ¢
Q Q 71 ()

where we used (1). Similarly

JUp=c2 [ ¢
Q 75(Q2)

for all p € C(M;). But 7;(Q;) = 12(Q2). This contradicts the independence of the func-
tionals.
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‘(IV) = (II). Since |M>\M,| = 0 the space C°(M,) is dense in L,(M,). Therefore
it suffices to show that C*(M,) < UC* (M]).

Using again that dim M, = dim M, it follows from Proposition 4.4 that 7|,, is
locally an isomorphism and A|,,, is locally constant. If y € C°(M;) and there exists an
open connected set Q in M; such that suppy < Q, then / is constant on , say ¢, and
p=c o (T|MZI)_1 € CX(M|) « CF(M,) satisfies Up = . Then the general case follows
by a partition of the unity. []

For open subsets in R? the surjectivity of U follows from the fact that U + 0 (see [5],
Theorem 2.1). In general the condition U =+ 0 is not sufficient to establish the surjectivity
of U.

Example 4.7. Let S'={zeC:|z| =1}. Let g; be the Riemannian metric on
0 0
_ gl
M] =9 SUCh that (g1)|ei() (axl em,@
S! such that ¥ is an open neighbourhood of e, 0 € x(¥) and x~! (&) = e for all & € x(V).
Set M, = S; and choose the Riemannian metric g, on M; by g» = 4¢;.

) =1 for each 0 € R, where (V/, x) is a chart on

il

Define U : Lz(Ml) — Lz(Mg) by
(Up)(2) = p(2%).

Then U is a lattice homomorphism, U + 0 and US,<1) = S[(Z)U for all ¢ > 0, where S is
the semigroup on L,(M;) generated by the Dirichlet Laplace—Beltrami operator on M; for
all j € {1,2}. Moreover, M; and M, are regular in capacity. But the Riemannian manifolds
(My,g1) and (M,, g>) are not isomorphic.

We combine the previous results.

Proposition 4.8. Let (M, g,) and (M, g>) be two connected Riemannian manifolds.
Let pe[l,). For all je{1,2} let A; be the Dirichlet Laplace—Beltrami operator on M;

and let S\ be the associated semigroup on L,(M;). Let U : L,(M) — L,(M,) be a lattice
homomorphism such that UL,(M) is dense in L,(M,) and

(7) us\V = sPu
forall t > 0.
Then U is an order isomorphism and there exist open connected sets M| < M,
and Mj; < M>, a map t©: M, — M, and a constant ¢ >0 such that M| = t(M;),
tlyy : My — M is an isometry, and
Up=cly;- (por1)

pointwise for all p € C¥ (M) and a.e. for all p € L,(M1). Moreover,

cap(M;\M|) = cap(M2\M;) =0
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and for all pe|[l,o0) there exists an order isomorphism U such that Up = Ug for all
g e L,(M)n Ly(My). Finally, if p =2 then U maps H} (M) continuously into H}(M>).

Proof.  We use the notation as above. Let p € [1, c0). Then the map

U: Ly(My) — Lp(M>)

defined by Up = h - (po 1) (a.e.) for all p e L;(M;) is well defined since / is bounded and
t71(N) is a null-set in M; for every null-set N in M/. It is a lattice homomorphism and is
consistent with U. Moreover, UL;(M;) is dense in L;(M>) by Proposition 4.6 (IV) = (I).

Therefore, for the remainder of the proof we may assume that p = 2. Then one
deduces from (7) that (I + A;) "">U = U(I + A;)~"/*. Hence

UH} (M) = U(I + Ay) 2Ly (M)

= (T4 Ay) " PULy(My) = (I 4 Ay) P Ly(My) = H} (Ms).

Then by the closed graph theorem the restriction of U to Hj(M;) is a contlnuous map
from H}(M,) into H] (Mz) Next UL2(M1) is dense in Lz(Mz) and (I + A,) /% is contin-
uous from Ly(My) onto H} (M,). So UH} (M) is dense in H} (M,). Therefore UC;’“‘(MI) is
dense in H} (M,).

Now suppose cap(M>,\M;) > 0. There exist compact subsets K; < K, < --- of M,
such that M, = U K. Then cap(M,\M;) = 11m cap(K,\M;) by [13], Proposition 8.1.3c.

n=1

Hence there exists an n € N such that cap(K,,\Mz) > 0. Let y € C(M;) be such that
Ylg, = 1. Smce UC*(M,) is dense in Hj(M,) there exists a ¢ € C*(M,;) such that
W — Ul (13 < cap(K,\M3). Then y — Ugo =1 on Kn\M by definition of M;. More-
over, i — Ugo is continuous and y — Up € H} (M,) = H'(M,). Hence

2
cap(Ki\M3) < (I = Upllgary)-
This is a contradiction. Hence cap(M»\M,;) = 0.
This allows to apply Theorem 2.1 to deduce that M) is connected. Then A M is
constant, say ¢ > 0. It follows from (1) that (for any p € [1, c0)) the map U is an isometry

between L,-spaces and since the range is dense, it is surjective.

Finally, Hj (M}) = {IMM, Y € H} (M)} by Lemma 3.2, since cap(M>\M}) = 0. But
H}(M>) = UH|} (Ml) In add1t10n UH{}(M|) = H}(M]}) since f]M, M; — M| is an iso-
metry. Therefore

UHY(M{) = {(Up) |y : p € HY(M)} = {Ulplyy) : 9 € HY (M)}

Hence H|}(M]) {go|M, e Hl(M)}. Using Lemma 3.2 again one deduces that
cap(Mi\M[) =0. [
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Now we are able to prove the main theorem of this paper.

Proof of Theorem 1.1. The implication (I) = (II) is trivial. But if condition (II) is
valid then Proposition 4.8 implies that M, < M,. Hence the Riemannian manifolds
(My,g1) and (M>, g>) are isomorphic by Theorem 3.1. Moreover, there exist ¢ > 0 and an

isometry 7 : M, — M such that Up = cpotforallpe L,(M;). [

In fact, it follows from the proof that under condition (II) it follows that M; = M,
and M| = M. Therefore Up = cp ot for all p € L,(M,).

5. Regularity in capacity

The purpose of this section is to characterize the notion of regularity in capacity by
various other properties. Among those several are functional analytic in nature. Of special
interest is a characterization via relative capacity. Recall that M is the completion of M
with respect to the natural distance and dM = M\ M. The relative capacity is defined on
subsets of M instead of M. It had been introduced in [8] for an open subset Q in R
Since it depends on the set Q in [8] it is called relative capacity. The following definition
on manifolds is similar to the Euclidean one.

Let 4 be the trivial extension to M of the natural Radon measure | - | on M, that is,
for a Borel set B < M we let u(B) = |Bn M]|. For a subset A = M the relative capacity of
A (with respect to M) is given by

rcap(4) = inf{||(p||1291(M) :pe H'(M) and ¢ > 1 g-a.e. on a neighbourhood of A}
where H'(M) is defined to be the closure of the space H'(M)n C.(M) in H'(M).

Note that the relative capacity is the usual capacity as defined in [13], Section L8,
on the space M with respect to the Dirichlet form (,¢) — [ Vi - Vg and form domain

M
H'(M). We consider H'(M) instead of H'(M) in order to fulfill condition (D) in [13],
Subsection 1.8.2, and therefore to use the notion of relative quasi-continuity and relative
quasi-everywhere (r.q.e.). We do not need that M is locally compact, although it is a
consequence of the embedding theorem of Nash. In general, however, the completion of a
locally compact metric space is not locally compact. We are grateful to Robin Nitka for
showing us a counter example.

The following characterization of regularity of capacity is our main result in this
section. Note that condition (V) is formulated completely in terms of relative capacity of
the boundary 0Q.

Theorem 5.1. Let M be a connected Riemannian manifold. Then the following condi-
tions are equivalent:

(I) M is regular in capacity.

(I1) The space C* (M) is dense in H} (M) n Co(M).



Arendt, Biegert and ter Elst, Diffusion determines the manifold 21

(II1) For every lattice homomorphism F : Hy (M) N Co(M) — R there exist ¢ € R and
p € M such that F(p) = cp(p) for all p € Hi (M) n Co(M).

(IV) For every multiplicative functional T on the Banach algebra Hy(M) Co(M)
there exists a p € M such that ©(¢) = ¢(p) for all p € H (M) n Co(M).

(V) For every p € 0M and r > 0 one has rcap(0M n By (p,r)) > 0.

For the proof of Theorem 5.1, we need a characterization of the space H}(M) in
terms of the relative capacity. This result is also of independent interest.

Theorem 5.2. Let M be a connected Riemannian manifold. Then
(8) HY(M)={pe H' (M):$=0rgq.e. ondM}
where ¢ denotes the relative quasi-continuous version of ¢.

Proof. ‘<. Since C*(M) < H' (M) C.(M) one deduces by closure in H'(M)
that H) (M) = H'(M). Let g € H}(M). Then it follows from the proof of Proposition
8.2.1 in [13] that there exists a sequence ¢, ¢,,...€ CZ(M) such that lim ¢, = ¢ r.q.e.
on M. So ¢ =0r.q.e. on OM. e

‘>’. Let D}(M) denote the right-hand side of (8). Let ¢ e Dy(M)n L*(M). We
may assume that ¢ > 0. Then ¢ € H'(M). It follows from the definition of H'(M) and
the proof of Proposition 8.2.1 in [13] that there exist ¢y, ¢,,...€ H' (M) n C.(M) such
that nhj?» 9, =¢ in H'(M) and for all ¢ >0 there exists an open U = M such that

rcap(U) < ¢ and Y}Lngc ¢, = ¢ uniformly on M\ U. We may assume that 0 < ¢, < ||¢|| . and

@ull i1 vy = 2l 111 (ar) for all n e N.

Lete € (0,1]. Then there exist n € N and an open U < M such that g, — ol S &
rcap(U) < ¢ and |p, — ¢| < ¢ uniformly on M\ U. Since ¢ = 0 r.q.e. on M there exists an
open ¥ < M such that {x e dM : ¢(x) + 0} = V and rcap(V) < &. Consequently, ¢, < ¢
uniformly on (0M)\W where W =UuV, and rcap(W) < rcap(U) + rcap(V) < 2.
Let y € H(M) be such that =1 on W and |y i,l(M) < 3e. We may assume that
% =1 pointwise on W and 0< y <1 on M. Let ¢ = (¢, — 2¢)" and 7 = o(1 — x). Then
ol z1cary = 2001 110y and N2l g1 ar) = 419l i1 (ar) + 2ll@ll.- Moreover,

1/2

lo—zlly = lloxlly = lloll llxlla = 267l

Then suppt < suppa N W¢, which is a compact subset of M. So € H!(M) = H} (M).

It follows from the above that for all m € N there exist ¢,,,0,, € H' (M) n L., and
1 1 1
1
tm € Hy (M) 0 Lo such that (¢ — ¢, 1) < pt lom — tmll, = . and0< ¢, — 0, < P

for all m € N, and the sequences 1,07, ... and 71,1, ... are bounded in H'(M). We next
show that 71, 75, ... has a subsequence which converges to ¢ weakly in H'! (M).
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Clearly lim ¢,, = ¢ strongly and hence weakly in H'(M). The sequences ai,03,...
and t1,715,... are bounded in H'(M). Hence, by passing to a subsequence if necessary,

. . 1 .
these sequences are weakly convergent in H 1(M ). Since 0 < ¢, — oy < po for all m e N it

follows from the Lebesgue dominated convergence theorem that lim ¢,, — g, = 0 in L joc.
Therefore it follows by the uniqueness of the weak limit that lim ¢,, — g,, = 0 weakly in
H'(M). Because lima,, — 7,, = 0 in L, it follows that lim a,, — 7, = 0 weakly in H'(M).
Then lim 7,, = ¢ weakly in H'(M). So ¢ € H} (M) and D{(M) n L,,(M) = H}(M).

Finally, if ¢ € D}(M) then (—n) v Aane D{(M) L, (M) < H} (M) for all ne N
and lim(—n)voAan=¢in H'(M).Sope H}(M). [

Finally we prove the characterizations of regular in capacity.

Proof of Theorem 5.1. “(I) = (II)". Let p € H} (M) n Co(M) and ¢ > 0. We may
assume that ¢ > 0. Since ¢ € Co(M) there exists a compact K = M such that ¢(q) < ¢
for all ¢ e M\K. Moreover, ¢p(q) = 0 for all g e dM since M is regular in capacity. Let
U={qeM:¢p(q) <e}. Then U is open and M\M < U. Moreover,

supp(p — )" = (M\U) n K

and hence compact. But (M\U) n K = M. Therefore (¢ — &) € H} (M) n C.(M). Using
a partition of the unity one deduces that C;°(M) is dense in Hy(M) N C.(M). Finally,
lif%)l((p —&)T =¢pin H} (M) Co(M). So C*(M) is dense in H} (M) n Co(M).

&

‘(Il) = (I)’. Suppose M is not regular in capacity. Then there are
v e Hy(M) 0 Co(M)

and pedM such that ¢(p) +0. Then [l¢p — |l ) = 0(p)| for all Y e CX (M), so
C* (M) is not dense in H{ (M) n Co(M).

‘(1) = (II). Let F: H} (M) n Co(M) — R be a lattice homomorphism. Then F is
continuous by [28], Theorem V.5.5(ii). Arguing as at the end of the proof of Lemma 4.1
it follows from Lemma 4.2 that there are ¢ € R and p € M such that F(p) = cp(p) for all
@ € C*(M). Since F is continuous and C*(M) is dense in H} (M) n Co(M) it follows that
F(p) = cp(p) for all p € H} (M) n Co(M).

‘(IIT) = (I). Suppose M is not regular in capacity. Then there are
Y e Hy (M) 0 Co(M)

and p € dM such that (p) # 0. Define F : H} (M) n Co(M) — Rby F(p) = ¢(p). Then F
is a continuous lattice homomorphism. So by assumption there are ¢ € M and ¢ € R such
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that F(p) = cp(q) for all p € H} (M) n Co(M). Let y € C* (M) be such that y(q) = 1. Then
(1 —y) =¥ — Yy e H (M) n Co(M). Therefore

0% y(p)= (b1 —x)(p)=FW( —x)=c@ —x)(q) =0.
This is a contradiction.

“(I1) = (IV). Let 7: H} (M) Co(M) — C be a (non-zero) multiplicative func-
tional. Then 7 is continuous by [20], Theorem C.21. Therefore it follows by condition (II)
that 7| ..y : CZ (M) — Cis a (non-zero) multiplicative functional. Let p, ¢ € supp 7|

at e © G e10) . cz )
with p & ¢ and let U and V' be two disjoint open neighbourhoods of p and ¢ respectively.
Then there exist p € CX(U) and y € C (V) such that 7(p) & 0 and t(y) #+ 0. But then
oy =0 and

0 =1(py) = 2(p)(¥) + 0.
This is a contradiction. So there exists a p € M such that supp T\C{% on = {1r}-

Next we show that ¢ is positive. Let p e C(M) and suppose that ¢ = 0. If
¢(p) > 0 then there exist € C*(M) and a neighbourhood V' of p such that ¢|, = 1p2|V.
Then 7(p) = t(Y?) = r(tﬁ)z > 0. Alternatively, suppose that ¢(p) =0. Let V' be a rela-
tive compact neighbourhood of p. Then by continuity there exists a ¢ > 0 such that
[t(W)| < cll¥llprw(p) for all yeC(V). We may assume that suppp < V. Then
ljfgl(w —¢&)" = ¢pin WH*(V), so by regularizing it follows that there are ¢, ¢, ... € C* (V)

such that limg, = ¢ in W* (V) and ¢, vanishes in a neighbourhood of p for all k € N.
Then 7(p) = limt(¢;,) = 0.

Now it follows from Lemma 4.2 that there are c € [0,00) and p € M such that
7(p) = ct(p) for all pe C*(M). Then ¢*> =1 and since 7 +0 it follows that ¢ = 1.
Since C*(M) is dense in H} (M) Co(M) one establishes that t(¢) = ¢(p) for all
pe H} (M) Cy(M).

‘(IV) = (I)’. This proof is similar to the proof (IIT) = (I).
‘(I) = (V). Assume that there exist p € M and r > 0 such that
rcap(By;(p;r) noM) = 0.

Then there exist a M-open neighbourhood U of By (p;r) @M and a function y € H'(M)
such that y =1 a.e. on Un M. Let pe (0,r) be such that M\B,;(p;p) * 0. Define
Y: M — R by y(q) =dy(q; M\B(p;p)). Then y e C(M) and y|,, € WI*(M). Set
@ = . Then g € C(M) and by an elementary argument one deduces that ¢|,, € H'(M).
Moreover, ¢ =0 r.q.e. on 0M. By Theorem 5.2 it follows that ¢|,, € H}(M). So
pe H} (M) Cy(M). Since ¢(p) # 0 it follows from the definition that the manifold M
is not regular in capacity.

(V) = (I). If M is not regular in capacity then there exist ¢ € H} (M) n Cy(M) and
p € 0M such that ¢(p) = 0. Without loss of generality we may assume that ¢(p) = 2.
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Let € (0, 1) be such that ¢ = 1 on B,;(p;r). Since ¢ € H} (M) one deduces from Theorem
5.2 that ¢ = 0 r.q.e. on M. Then rcap(By;(p;r) 0 dM) < rcap({qg € M : p(q) + 0}) = 0.
O
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