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Abstract. If Ω is any compact Lipschitz domain, possibly in a Riemannian
manifold, with boundary Γ = ∂Ω, the Dirichlet-to-Neumann operator Dλ is

defined on L2(Γ) for any real λ. We prove a close relationship between the

eigenvalues of Dλ and those of the Robin Laplacian ∆µ, i.e. the Laplacian with
Robin boundary conditions ∂νu = µu. This is used to give another proof of the

Friedlander inequalities between Neumann and Dirichlet eigenvalues, λNk+1 ≤
λDk , k ∈ N, and to sharpen the inequality to be strict, whenever Ω is a Lipschitz

domain in Rd. We give new counterexamples to these inequalities in the general

Riemannian setting. Finally, we prove that the semigroup generated by −Dλ,
for λ sufficiently small or negative, is irreducible.

1. Introduction. Let Ω ⊂ Rd be a bounded domain with ∂Ω = Γ. Let λD1 <
λD2 ≤ λD3 ≤ · · · and λN1 < λN2 ≤ λN3 ≤ · · · be the eigenvalues of the Dirichlet
and Neumann Laplacians on Ω, respectively. There is a beautiful set of inequalities
discovered by Friedlander [9] which compares the elements of these two lists, namely

λNk+1 ≤ λDk for all k. (1.1)

The fundamental tool in his proof is the Dirichlet-to-Neumann operator associated
to ∆ − λ; his methods require that ∂Ω be at least C1. Friedlander’s inequalities
have attracted substantial attention since then, starting from a geometric recasting
of his argument by the second author [19]. More recently, Filonov [8] discovered
a substantially simpler proof of (1.1) based on the minimax characterization of
eigenvalues, assuming only that Ω has finite measure and that the inclusionH1(Ω) ⊂
L2(Ω) be compact. An extension of Filonov’s ideas by Gesztesy and Mitrea [10]
provides a comparison between generalized Robin and Dirichlet eigenvalues, while
Safarov [24] showed how to describe all of this in a purely abstract setting involving
only quadratic forms on Hilbert spaces.

The present paper is a substantially shortened version of the preprint [3], which
apparently provided some motivation for [10], and hence should be placed before
that paper in the chronology. We have decided to revise it for publication since
we believe that the point of view espoused here is still of interest and should lead
to further progress on some of the questions we consider. We return to the use
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of the Dirichlet-to-Neumann operator, formulated weakly so that our argument
applies on Lipschitz domains. (This is still less general than the domains considered
by Filonov.) Our starting point is the folklore observation that if λ and µ are
real numbers, then µ is an eigenvalue of the Dirichlet-to-Neumann operator Dλ
associated to ∆ − λ if and only if λ is an eigenvalue of the Robin Laplacian ∆µ,
i.e. the operator ∆ on Ω with boundary condition ∂νu = µu. We prove that λ
depends strictly monotonically on µ, and vice versa. This has been rediscovered
several times before our proof of it in [3]; it is equivalent to the monotonicity for Dλ
used by Friedlander [9], see also [19], but traces back at least as far as the paper of
Grégoire, Nédélec and Planchard [11] in the mid ’70’s, though they in turn attribute
the idea to earlier unpublished work of Caseau. This relationship and monotonicity
was known to S.T. Yau in the ’70’s as well. In any case, this is a lovely set of ideas
which deserves to be more widely appreciated and utilized. We show here that it
leads directly to yet another proof of (1.1). We also show that (1.1) need not be
true for general manifolds with boundary. This was already discussed in [19], and
the counterexample given there is any spherical cap larger than a hemisphere. We
prove here that (1.1) also fails if Ω is the complement of a sufficiently small set in
any closed manifold M .

Our second goal in this paper is to present some facts about the semigroup
associated to the Dirichlet-to-Neumann operator Dλ (for any λ < λD1 ). Specifically,
we prove that it is positive and irreducible. While this is somewhat disjoint from
the question of eigenvalue inequalities, the proof is yet another illustration of the
close link between the Robin Laplacian and Dλ. A consequence of this is that the
first eigenvalue of Dλ is simple and has a strictly positive eigenfunction. Note that
this irreducibility of T requires only that Ω be connected, though its boundary may
have several components. This reflects the non-local nature of Dλ.

We mention also the recent paper [4] which considers a number of issues related
to the ones here. For general information about eigenvalue problems we refer to
[14] and [15].

We shall be brief since various of the papers cited above contain good exposition-
s of all the background material needed here, as well as the history of eigenvalue
inequalities preceding (1.1). The next section contains a short review of the cor-
respondence between coercive symmetric forms and self-adjoint operators and the
weak formulation of normal derivatives on Lipschitz domains, and then records
the quadratic forms underlying the various operators we study in this paper. §3 de-
scribes the eigenvalue monotonicity and its application to the proof of the eigenvalue
inequalities. The Dirichlet-to-Neumann semigroup is the subject of §4.

2. The Robin Laplacian and Dirichlet-to-Neumann operator. Let H be an
infinite dimensional separable Hilbert space and V another Hilbert space which is
embedded as a dense subspace in H, so that V ⊂ H ⊂ V ∗. Suppose that a is a
closed, symmetric, real-valued, coercive quadratic form, i.e.

a(u) + ω‖u‖2H ≥ α‖u‖2V for all u ∈ V
for some ω ∈ R and α > 0. Associated to a is a bounded operator A1 : V → V ∗.
Also associated to a is an unbounded self-adjoint operator A2 on H with domain
D(A2) ⊂ V ⊂ H. Thus x ∈ D(A1) and A1x = y ∈ V ∗ if and only if a(x, v) = 〈y, v〉
for all v ∈ V . The operator A2 is the part of A1 in D(A2), and hence we simply
write either operator as A and drop the subscript. The form a is accretive (i.e.
a(u) ≥ 0 for all u ∈ V ) if and only if A is nonnegative (i.e. 〈Au, u〉H ≥ 0 for all



FRIEDLANDER’S EIGENVALUE INEQUALITIES 3

u ∈ D(A)). Furthermore, A has compact resolvent, and hence discrete spectrum,
if and only if the inclusion D(A) ↪→ H is compact, which is certainly the case if
V ↪→ H is compact. Assuming that this is so, then we denote by {en, λn} the
eigendata for A, so the en are an orthonormal basis for H, Aen = λnen for all n,
and λ1 ≤ λ2 ≤ · · · ↗ ∞. The standard max-min characterization of the eigenvalues
is

λn = sup
Vn−1∈Gn−1(V )

inf{a(u) : u ∈ Vn−1, ||u|| = 1
}
. (2.1)

where Gn−1(V ) denotes the set of all subspaces of V of codimension n− 1.
Let (Ω, g) be a compact Riemannian manifold with Lipschitz boundary. In other

words, we assume that Ω is a connected, compact subset in a larger smooth manifold
M , that the metric g on Ω is the restriction of a smooth metric on M , and that
Γ = ∂Ω is locally a Lipschitz graph such that Ω lies locally on one side of Γ. (The
results below extend in a straightforward manner if we only assume that M has a
C1,1 structure and that the metric g is Lipschitz.) We refer to [12], [13], [17], [18]
for more about the (straightforward) generalizations of the analytic facts used in
this paper from the setting of Lipschitz domains in Rd to domains in manifolds.

The volume form and gradient for g lead naturally to the Hilbert spaces L2(Ω)
and H1(Ω), as well as the space L2(Γ). As usual, H1

0 (Ω) is the closure of C∞0 (Ω) in
H1(Ω). The boundary restriction map u 7→ u|Γ := Tru is well-defined for any u ∈
H1(Ω)∩ C0(Ω), and this map extends to a bounded operator Tr : H1(Ω)→ L2(Γ),
with nullspace H1

0 (Ω). We write u|Γ or Tru interchangeably.
We next recall the weak formulations of well-known operators and identities.

a) If u ∈ H1(Ω), we say that ∆u ∈ L2(Ω) if there exists f ∈ L2(Ω) such that∫
Ω

∇u · ∇v dVg =

∫
Ω

fv dVg for all v ∈ H1
0 (Ω).

b) Suppose that u ∈ H1(Ω) and ∆u ∈ L2(Ω). We say that ∂νu ∈ L2(Γ) if there
exists b ∈ L2(Γ) such that∫

Ω

(
∇u · ∇v −∆u v

)
dVg =

∫
Γ

bv dσg for all v ∈ H1(Ω),

and we then write ∂νu = b.

To be explicit, our conventions are that ∆ = −div∇ and ν is the outer unit normal;
also, dVg and dσg are the volume forms on Ω and Γ associated to g. Here and later
we often omit the trace signs under the integral, e.g. simply write

∫
Γ
bv=

∫
Γ
bv|Γ .

These definitions are set so that Green’s formula still holds:∫
Ω

(
∇u · ∇v −∆uv

)
dVg =

∫
Γ

∂νu v dσg

for all v ∈ H1(Ω) whenever u ∈ H1(Ω), ∆u ∈ L2(Ω) and ∂νu ∈ L2(Γ).
Consider the form, for any µ ∈ R,

bµ(u, v) =

∫
Ω

∇u · ∇v dVg − µ
∫

Γ

uv dσg, (2.2)

for u, v ∈ H1(Ω). It is not hard to show that bµ is coercive, and hence determines
an operator ∆µ. Letting v ∈ H1

0 (Ω) shows that ∆µ is just the standard Laplacian
in the interior, and we then deduce that u ∈ D(∆µ) implies ∂νu = µu, at least in
the weak sense. Thus, altogether,

D(∆µ) =
{
u ∈ L2(Ω) : ∆u ∈ L2(Ω), ∂νu exists and ∂νu = µu|Γ

}
.
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The special case µ = 0 corresponds to the Neumann Laplacian ∆N .
We next consider the form

b−∞(u, v) =

∫
Ω

∇u · ∇v dVg, (2.3)

for u, v ∈ H1
0 (Ω). The discussion in the next section motivates why the moniker

b−∞ is reasonable. The coercivity of this form is obvious, and its corresponding
operator is the Dirichlet Laplacian ∆D.

Since H1(Ω) is compactly included in L2(Ω), each of these operators has discrete
spectrum. We write

σ(∆µ) = {λj(µ)}∞j=1, σ(∆D) = {λDj }∞j=1, and σ(∆N ) = {λNj }∞j=1.

Thus, λj(0) = λNj , whereas limµ→−∞ λj(µ) = λDj (see Proposition 3.2 below).
Hence the Robin eigenvalues interpolate between the Dirichlet and Neumann eigen-
values.

We now define, for each λ ∈ R, the Dirichlet-to-Neumann operator Dλ. If λ ∈
R\σ(∆D), then the classical definition is that if g is a (sufficiently smooth) function
on Γ and u is the unique function on Ω such that (∆ − λ)u = 0, Tru = g, then
Dλg = ∂νu|Γ . Note that u is indeed uniquely defined if and only if λ /∈ σ(∆D).
There are several equivalent ways to circumvent this apparent need to avoid the
Dirichlet eigenvalues. The first and most classical is simply to consider the Cauchy
data subspace, sometimes also called the Calderon subspace, which is defined for
any λ ∈ R by

Cλ = {(g, h) ∈ L2(Γ)× L2(Γ) : ∃u ∈ H1(Ω) such that

∆u = λu, u|Γ = g , ∂νu = h} .

It follows from Proposition 1 below that Cλ is a closed subspace of L2(Γ)× L2(Γ).
If λ /∈ σ(∆D), then Cλ intersects {0} × L2(Γ) only at the origin, and hence there is
a densely defined closed operator Dλ on L2(Γ) for which Cλ is the graph.

We may also consider Cλ as a multi-valued selfadjoint operator when λ ∈ σ(∆D).
In order to avoid this, we define Dλ as follows. Let λ ∈ σ(∆D) and define K(λ) :=
{h ∈ L2(Γ) : (0, h) ∈ Cλ}; clearly

K(λ) = {∂νw : w ∈ ker(λ−∆D), ∂νw ∈ L2(Γ)}.
Let L2

λ(Γ) := K(λ)⊥ (the orthogonal taken in L2(Γ)). Since dimK(λ) <∞, L2
λ(Γ)

is an infinite-dimensional closed subspace of L2(Γ). We now let Dλ be the unique
operator on L2

λ(Γ) whose graph is Cλ ∩ (L2
λ(Γ)× L2

λ(Γ)). In this way, the operator
Dλ is defined for all λ ∈ R. It follows from our definition of the normal derivative
that Dλ is symmetric. In order to show that Dλ is self-adjoint (i.e., that (is−Dλ)
is invertible for s ∈ R \ {0}), we use the following result by Grégoire, Nédélec and
Planchard [11, Proposition 1].

Proposition 1. Fix λ ∈ R and s ∈ R\{0}. Then given any h ∈ L2(Γ), there exists
a unique u ∈ H1(Ω) which satisfies

∆u = λu

isu|Γ − ∂νu = h .

This solution u is uniquely determined by the condition that∫
Ω

∇u · ∇v − λ
∫

Ω

uv =

∫
Γ

(
(isu|Γ − h

)
v|Γ
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for all v ∈ H1(Ω).

For h ∈ L2(Γ), let R(is)h = u|Γ where u is the solution above. By the Closed

Graph Theorem, L2(Γ) 3 h 7→ u ∈ H1(Ω) is bounded, so by the compactness
of Tr : H1(Ω) → L2(Γ), we see that that R(is) is compact on L2(Γ). We let
L2
λ(Γ) = L2(Γ) if λ 6∈ σ(∆D). The relationship with Dλ is as follows.

Proposition 2. The operator Dλ is selfadjoint for every λ ∈ R. In fact, for
s ∈ R \ {0} the resolvent is given by

(is−Dλ)−1h = R(is)h (h ∈ L2
λ(Γ)).

In particular, Dλ has compact resolvent.

Proof. Let h ∈ L2
λ(Γ), R(is)h = g, and define the corresponding u ∈ H1(Ω) as in

Proposition 1 with u|Γ = g. We claim that g ∈ K(λ)⊥. In fact, let ∂νw ∈ K(λ),

where w ∈ ker(λ − ∆D). Since w ∈ H1
0 (Ω), it follows from the last identity in

Proposition 1 for v := w

0 =

∫
Ω

∇u · ∇w − λ
∫

Ω

uw =

∫
Ω

∇u · ∇w −
∫

Ω

u∆w

=

∫
Γ

u|Γ ∂νw = 〈g, ∂νw〉L2(Γ) .

Thus g ∈ K(λ)⊥ = L2
λ(Γ).

Since isg − ∂νu = h ∈ L2
λ(Γ), it follows that ∂νu ∈ L2

λ(Γ) as well. Moreover,
since ∂νu = isg − h one has (g, isg − h) ∈ Cλ ∩ (L2

λ(Γ)× L2
λ(Γ)). Thus g ∈ D(Dλ)

and Dλg = isg − h.

Lemma 2.1. Let (g, h) ∈ Cλ. Then g ∈ D(Dλ). If 〈g, h〉 = 0, then 〈Dλg, g〉 = 0.

Proof. Let (g, h) ∈ Cλ. We show that g ∈ L2
λ(Γ). By definition, there exists

u ∈ H1(Ω) such that ∆u = λu, u|Γ = g, ∂νu = h. Let k ∈ K(λ). We have

to show that 〈k, g〉 = 0. There exists w ∈ ker(λ − ∆D) such that k = ∂νw.
Thus 〈k, g〉 =

∫
Γ
∂νwū = −

∫
Ω

∆wū +
∫

Ω
∇w∇u = −

∫
Ω
λwū +

∫
Ω
w∆u = 0 since

w ∈ H1
0 (Ω). This proves the claim. Since Cλ is closed, also K(λ) is a closed

subspace of L2(Γ). Thus we can write h = h0 + h1 with h0 ∈ L2
λ(Γ), h1 ∈ K(λ).

Hence g ∈ D(Dλ) and Dλg = h0. Now assume that 〈g, h〉 = 0. Since g ∈ L2
λ(Γ) one

has 〈g, h1〉 = 0. Consequently, 〈g,Dλg〉 = 〈g, h0〉 = 〈g, h− h1〉 = 0.

We will see later, in Theorem 3.1, that the operator Dλ is bounded below. Thus
its spectrum consists of eigenvalues αk(λ), k = 1, 2, . . . , which we arrange in in-
creasing order repeated according to multiplicity.

Remark 1. Using Proposition 1 Grégoire et al. [11] define the unitary operator
B(s) on L2(Γ):

B(s) = (is− Cλ)(is+ Cλ)−1

for λ = s2 (where Cλ is considered as a multi-valued operator, which is such that
its resolvent is single-valued). Hence as λ increases, the poles of Dλ as λ crosses a
Dirichlet eigenvalue transform to a more innocuous spectral flow across the value 1.

We conclude this discussion by an alternative form definition of Dλ in the case
where λ 6∈ σ(∆D).
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Lemma 2.2. For any λ ∈ R \ σ(∆D), define H1(λ) = {u ∈ H1(Ω) : ∆u = λu}.
Then

H1(Ω) = H1
0 (Ω)⊕H1(λ).

Proof. If λ /∈ σ(∆D), then ∆D−λ : H1
0 (Ω)→ (H1

0 (Ω))∗ is an isomorphism. Let u ∈
H1(Ω) and consider the element F ∈ H1

0 (Ω)∗ given by F (v) =
∫

Ω
(∇u · ∇v − λuv).

Since λ 6∈ σ(∆D), there exists u0 ∈ H1
0 (Ω) such that (∆D − λ)u0 = F . Thus

u1 := u−u0 ∈ H1(λ), and hence u = u0 +u1 ∈ H1
0 (Ω)+H1(λ). We have now shown

that H1(Ω) = H1
0 (Ω) + H1(λ). Since λ 6∈ σ(∆D) one has H1

0 (Ω) ∩ H1(λ) = {0}.
The fact that H1(Ω) is the topological direct sum of these two spaces follows from
the open mapping theorem.

Since Tr : H1(λ)→ L2(Γ) is injective and H1(λ) ↪→ L2(Ω) is compact, it is not
difficult to show that there exist α > 0, ω ≥ 0 such that∫

Ω

|∇u|2 − λ
∫
Ω

|u|2 + ω

∫
Γ

|u|2 ≥ α‖u‖2H1

for every u ∈ H1(λ). Define

aλ(u|Γ , v|Γ) =

∫
Ω

∇u · ∇v − λ
∫

Ω

uv.

Then aλ is a closed, symmetric form on L2(Γ) and Dλ is the associated self-adjoint
operator. We refer to [3] for more details.

3. Eigenvalue comparison. We now recall the relationship between the eigenva-
lues λk(µ) of ∆µ and αk(λ) of Dλ.

Theorem 3.1. Let λ, µ ∈ R. Then

a) µ ∈ σ(Dλ)⇔ λ ∈ σ(∆µ);
b) dim ker(µ−Dλ) = dim ker(λ−∆µ).

Proof. Both assertions follow from the fact that the mapping

S : ker(∆µ − λ) −→ ker(Dλ − µ), u 7→ Tru

is an isomorphism.
To prove this, let u ∈ ker(∆µ − λ). Then bµ(u, v) = λ

∫
Ω
uv for all v ∈ H1(Ω),

i.e. ∫
Ω

(
∇u · ∇v − λuv

)
= µ

∫
Γ

uv (3.1)

for all v ∈ H1(Ω). This implies that (Tru, µTru) ∈ Cλ. Let ∂νw ∈ K(λ) where
w ∈ ker(λ−∆D). Then∫

Γ

∂νwTru =

∫
Ω

∇w · ∇u−
∫

Ω

∆w u

=

∫
Ω

∇w · ∇u− λ
∫

Ω

w u

=

∫
Ω

w∆u− λ
∫

Ω

w u = 0

since w ∈ H1
0 (Ω) and ∆u = λu. Thus Tru ∈ K(λ)⊥ = L2

λ(Γ). Hence Tru ∈ D(Dλ)
and DλTru = µTru. Thus S is well-defined.

Next, S is injective, since if u ∈ ker(∆µ − λ) is such that Tru = 0, then u = 0
by Proposition 1. To show surjectivity, let ϕ ∈ ker(Dλ − µ). Then there exists



FRIEDLANDER’S EIGENVALUE INEQUALITIES 7

u ∈ H1(Ω) such that ∆u = λu, ∂νu = µTru, ϕ = Tru. Thus u ∈ D(∆µ) and
∆µu = λu.

We now describe how the Robin eigenvalues λk(µ) vary with µ.

Proposition 3. For each k, the function λk(µ) is strictly decreasing and satisfies

lim
µ→−∞

λk(µ) = λDk , lim
µ→∞

λk(µ) = −∞.

Proof. It follows from the definition of bµ and the max-min definition of eigenvalues
that λk is at least nonincreasing. To see that it decreases strictly, suppose that
λk(µ1) = λk(µ2) for some µ1 < µ2. Then setting λ := λk(µ1), it follows from
Theorem 3.1 that µ ∈ σ(Dλ) for all µ ∈ [µ1, µ2]. But this is impossible since σ(Dλ)
is discrete.

Standard eigenvalue perturbation theory shows that each λk is continuous in µ,
and is even analytic if one follows the eigenvalue branches correctly across their
crossings, see [16]). We refer to [3, Theorem 2.4] for the proof that lim

µ→−∞
λk(µ) =

λDk . On the other hand, if there exist k ∈ N and λ ∈ R such that λk(µ) > λ > −∞
for all µ ∈ R, then by Theorem 3.1, for that value of λ, σ(Dλ) ⊂ {µ ∈ R, λj(µ) =
λ, j = 1, . . . k − 1}, which is a finite set. This is impossible.

We are now almost in a position to reprove the Friedlander eigenvalue inequalities.

Lemma 3.2. If Ω ⊂ Rd is a bounded Lipschitz domain, then σ(Dλ) ∩ (−∞, 0) 6= ∅
for any λ > 0.

Proof. Fix λ > 0 and define W := {ω ∈ Rd : |ω|2 = λ}. For ω ∈ W , set uω(x) =
eiωx. Then uω ∈ H1(Ω), ∆uω = λuω and (∂νuω)(x) = i〈ω, ν(x)〉eiωx on Γ. Thus
(uw|Γ , ∂νuw) ∈ Cλ. It follows from the divergence theorem that∫

Γ

gω∂νuω = −i
∫

Γ

〈ω, ν(z)〉 = 0 .

Now it follows from Lemma 2.1 that gw := uw|Γ ∈ D(Dλ) and

〈Dλgw, gw〉 = 0

for all w ∈W . Suppose that Dλ is a nonnegative operator. Then for any h ∈ D(Dλ),

〈Dλgω, h〉 ≤ 〈Dλgω, gω〉
1
2 〈Dλh, h〉

1
2 = 0,

which implies that Dλgω = 0 for every ω ∈ W . This is a contradiction since it
would mean that kerDλ is infinite-dimensional.

This same set of test functions was used in [9] and later in [8] for the same
purpose.

Using this Lemma and Theorem 3.1, we now obtain the strict Friedlander in-
equalities.

Theorem 3.3. If Ω ⊂ Rd is a bounded Lipschitz domain, then

λNk+1 < λDk for all k ∈ N .

Proof. Suppose that λNk+1 ≥ λDk for some k. Choose any λ ∈
[
λDk , λ

N
k+1

]
; then for

any µ < 0,

j ≤ k ⇒ λj(µ) ≤ λk(µ) < λDk ≤ λ,
j ≥ k + 1 ⇒ λj(µ) ≥ λk+1(µ) > λk+1(0) = λNk+1 ≥ λ.
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Hence λj(µ) 6= λ for any j ∈ N. It follows from Theorem 3.1 that µ 6∈ σ(Dλ), which
contradicts Lemma 3.2.

µ

λk(µ)
λN

k

λD
k

λ

λN
k+1

λk+1(µ)

A quantitative version of this inequality which appears in [9] for λ 6∈ σ(∆D) can
be proved by similar considerations.

Proposition 4. For any λ ∈ R, define

NN (λ) = card{k ∈ N : λNk ≤ λ},
ND(λ) = card{k ∈ N : λDk ≤ λ}.

Then NN (λ)−ND(λ) is the number of all eigenvalues of Dλ which are ≤ 0.

Proof. Let λ ∈ R. Then{
k ∈ N : λNk ≤ λ < λDk

}
=
{
k ∈ N : ∃µ ≤ 0 such that λk(µ) = λ

}
.

Since NN (λ) − ND(λ) = card
{
k ∈ N : λNk ≤ λ < λDk

}
the claim follows from

Theorem 3.1.

We now consider the functions µk : (−∞, λDk )→ R which are the inverses of the
λk(µ), k = 1, 2, . . .. These are well-defined by the strict monotonicity of the λk, of
course, and each µk is continuous (see [3]), strictly decreasing and satisfies

lim
λ→−∞

µk(λ) =∞, lim
λ→λD

k

µk(λ) = −∞.

Theorem 3.1 now gives the following description of the spectrum of Dλ, where we
use the convention λD0 = −∞.

Proposition 5. For any λ ∈ R, choose n ∈ N such that λDn−1 ≤ λ < λDn . Then

σ(Dλ) = {µj(λ) : j ≥ n} .

We conclude this section with a broader class of counterexamples of (1.1) when
Ω is no longer Euclidean than those presented in [19]. We first quote an old result
by Rauch and Taylor which is a special case of Theorem 2.3 in [23]:

Lemma 3.4. Let (Md, g) be a compact Riemannian manifold, d ≥ 2. Let K1 ⊃
K2 ⊃ . . . ⊃ {a} be a decreasing sequence of closed subsets with Lipschitz boundary
which decrease to a point a ∈M . Set Ωn = M \Kn, and denote by ∆M the Laplace
operator on all of M . Then for all k ∈ N,

lim
n→∞

λDk (Ωn) = lim
n→∞

λNk (Ωn) = λk(M)

Remark 2. The precise criterion in [23] is that the capacities of the sets Kn tend
to 0.
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Proposition 6. Choose any k ∈ N such that λk(M) < λk+1(M). Then for n
sufficiently large, λDk (Ωn) < λNk+1(Ωn).

Proof. This is immediate from

lim
n→∞

λNk+1(Ωn) = λk+1(M) > λk(M) = lim
n→∞

λDk (Ωn).

On the other hand, a straightforward perturbation result using the variational
characterization of the eigenvalues also proves the following.

Proposition 7. Let (Md, g) be any compact Riemannian manifold and let k ∈ N.
Then for any λ > 0 there exists an r0 which depends on λ and g such that

λNk+1(Ω) < λDk (Ω)

for any Lipschitz domain Ω in M which is contained in a geodesic ball Br0(p), and
for all k such that λDk (Ω) ≤ λ.

Note that from this sort of perturbation argument, it is impossible to discern
whether these inequalities hold for all k independent of the size of Ω.

4. Positivity. We now turn to a study of the semigroup generated by −Dλ on
L2(Γ). Some of the facts established here appear also in the paper [7].

A C0-semigroup T = (T (t))t≥0 on a space Lp is called positive if T (t)f ≥ 0 for
all t ≥ 0 whenever 0 ≤ f ∈ Lp.

Theorem 4.1. If λ < λD1 , then the semigroup generated by −Dλ on L2(Γ) is
positive.

Proof. If w is any function, then we recall the standard notation w+ = max{w, 0}
and w− = −min{w, 0}. If u ∈ H1(Ω), then both u± ∈ H1(Ω) as well. Let ϕ = Tru,
which is an element of the space V consisting of all boundary traces of elements of
H1(Ω). Then the terms ϕ± in its decomposition are precisely the boundary traces
Tru±, and in particular both ϕ± ∈ V as well.

By the Beurling-Deny criterion (see [6] or [22, Theorem 2.6]), the semigroup
T (t) is positive if and only if aλ(ϕ+, ϕ−) ≤ 0 for all ϕ ∈ V . Now suppose that
u ∈ H1(λ), and write u± = u±0 +u±1 ∈ H1

0 ⊕H1(λ). We use this short notation here
even though u=

0 is not the positive part u0 (and similarly for u−0 , u
+
1 , u

−
1 ). Since

u = (u+
0 − u

−
0 ) + (u+

1 − u
−
1 ) ∈ H1(λ), i.e. u has no component in H1

0 (Ω), it follows
that u+

0 = u−0 . We then compute

aλ(ϕ+, ϕ−) =

∫
Ω

(
∇u+

1 · ∇u
−
1 − λu

+
1 u
−
1

)
=

∫
Ω

∇(u+
1 + u0)∇(u−1 + u0)

−
∫

Ω

(
∇u+

1 ∇u0 +∇u0∇u−1 + |∇u0|2
)

−λ
∫

Ω

(
(u+

1 + u0)(u−1 + u0)− u+
1 u0 − u0u

−
1 − (u0)2

)
=

∫
Ω

∇u+∇u− − λ
∫

Ω

u+u− −
∫

Ω

|∇u0|2 + λ

∫
Ω

(u0)2 ≤ 0,
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by the Poincaré inequality. In the last identity we used that fact that∫
Ω

∇u±1 ∇u0 = λ

∫
Ω

u±1 u0

since u±1 ∈ H1(λ).

Let (Y,Σ, ν) be a measure space endowed with a positive C0-semigroup T acting
on Lp(Y ) for some 1 ≤ p < ∞. A subspace J ⊂ Lp(Y ) is called a closed ideal
if and only if there exists S ∈ Σ such that J = {f ∈ Lp(Y ) : f = 0 a.e. on
Y \ S} =: Lp(S). A closed ideal J is said to be invariant (with respect to T )
if T (t)J ⊂ J for all t > 0. The semigroup T is called irreducible if the only
invariant closed ideals are J = {0} and J = Lp(Y ). For any f ∈ Lp(Y ) we write
f > 0 if f(y) ≥ 0 a.e. and ν({y ∈ Y : f(y) > 0}) > 0, while f � 0 if f(y) > 0
a.e. If T is holomorphic then irreducibility implies that T (t)f � 0 for all t > 0 and
f > 0 (see [20, C-III.Theorem 3.2.(b)]).

Irreducible semigroups have interesting spectral properties. Assume that T is
positive and irreducible (and hence that its generator −B has compact resolvent).
Denote by λ1(B) the first eigenvalue of B. Then the eigenspace ker(λ1(B) − B)
has dimension 1. Moreover, there exists a strictly positive eigenvector u; i.e. u ∈
D(B), Bu = λ1(B)u and u � 0. This actually characterizes the first eigenvalue:
whenever λ ∈ R is an eigenvalue with positive eigenvector, then λ = λ1(B). This
set of results is frequently referred to as the Krein-Rutman Theorem, see [20] for

more information. The following comparison result will be used below. Let T̃ be
another C0-semigroup on Lp(Y ) whose generator B̃ has compact resolvent. If

T (t)f ≤ T̃ (t)f

for all t ≥ 0 and f ≥ 0 then λ1(B) ≤ λ1(B̃). Moreover,

λ1(B) = λ1(B̃) if and only if B = B̃ (4.1)

(see [1, Theorem 1.3]).
An example of this is the semigroup generated by the Robin Laplacian, or slightly

more generally, the Laplacian ∆β with boundary conditions ∂νu = βu|Γ for some
fixed β ∈ L∞(Γ). To make this precise, let Ω be a compact manifold with Lipschitz
boundary Γ, as before, and fix β ∈ L∞(Γ). Then define the form

aβ(u, v) =

∫
Ω

∇u · ∇v dVg −
∫
Γ

βuv dσg (4.2)

with domain H1(Ω). The associated self-adjoint operator is ∆β , and has domain

D(∆β) = {u ∈ H1(Ω) : ∆u ∈ L2(Ω), ∂νu ∈ L2(Γ), ∂νu = βu}.
Moreover, −∆β generates a positive irreducible C0-semigroup Tβ on L2(Ω) and if

β̃ ≤ β then
0 ≤ Tβ(t) ≤ Tβ̃(t).

We refer to [5] for this and further information. The Krein-Rutman Theorem shows

that if β̃ ≤ β, then

λ1(∆β) = λ1(∆β̃) if and only if ∆β = ∆β̃ . (4.3)

Let us return to our primary goal, which is to prove the

Theorem 4.2. Suppose that Ω is connected, and let λ < λD1 . Then the semigroup
T generated by −Dλ on L2(Γ) is irreducible.
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Remark 3. It is somewhat surprising that this holds only assuming that Ω, but
not necessarily Γ, is connected. There is an elegant criterion by Ouhabaz [22] which
shows that the semigroup generated by ∆β is irreducible, and we shall use this last
result to deduce the irreducibity of T . It does not seem to be easy to prove the
irreducibility more directly using the usual criteria such as the one in [22].

Proof. Let Γ1 ⊂ Γ be a Borel set and assume that the closed ideal L2(Γ1) := {b ∈
L2(Γ) : b|Γ2

= 0 a.e.} is invariant under T , where we have set Γ2 = Γ \ Γ1. Then

T1(t) := T (t)|L2(Γ1)
is a positive C0-semigroup on L2(Γ1) and T1(t) is compact for

all t > 0. Consequently its generator −A1 has compact resolvent. Let µ be the first
eigenvalue of A1. By the Krein-Rutman Theorem there exists 0 < b ∈ L2(Γ1) such
that T1(t)b = e−µtb (t > 0). Consequently, T (t)b = e−µtb for all t > 0, and hence
b ∈ D(Dλ) and Dλb = µb. By the definition of Dλ there exists u ∈ H1(Ω) such that
Tru = b and ∂νu = µb. We show that u ≥ 0. In fact,∫

Ω

(∇u · ∇v − λuv) = µ

∫
Γ

uv (4.4)

for all v ∈ H1(Ω). Since Tru ≥ 0, one has u− ∈ H1
0 (Ω). Thus inserting v = u−

into this equation gives

−
∫

Ω

|∇u−|2 + λ

∫
Ω

|u−|2 = 0 .

Combined with the Poincaré inequality,
∫

Ω
|∇u−|2 ≥ λD1

∫
Ω
|u−|2, we obtain λ

∫
Ω
|u−|2 ≥

λD1
∫

Ω
|u−|2. Since λ < λD1 we deduce that

∫
Ω
|u−|2 = 0, and hence u− = 0, i.e.

u ≥ 0. It follows that u ∈ D(∆µ) and ∆µu = λu. Since u ≥ 0 but u 6≡ 0, the
Krein-Rutman Theorem implies that λ = λ1(µ) is the first eigenvalue of ∆µ. Now
define β ∈ L∞(Γ) by

β(z) =

{
µ z ∈ Γ1

µ1 z ∈ Γ2 ,

where µ1 6= 0 is chosen so that µ < µ1. Since Tru = 0 on Γ2, it follows from (4.4)
that

aβ(u, v) =

∫
Ω

∇u∇v −
∫

Γ

βuv =

∫
Ω

∇u∇v − µ
∫

Γ

uv = λ

∫
Ω

uv

for all v ∈ H1(Ω). This implies that u ∈ D(∆β) and ∆βu = λu. Since u ≥ 0
(and u is nontrivial), applying the Krein-Rutman Theorem once again gives that
λ = λ1(∆β). We have shown that λ1(∆β) = λ1(∆µ). Since µ ≤ β, the semigroup
Tβ generated by −∆β satisfies 0 ≤ Tβ(t) ≤ Tµ(t). Now it follows from (4.3) that
∆µ = ∆β . This implies that aβ = aµ. In particular∫

Γ1

µu2 +

∫
Γ2

(µ1)u2 =

∫
Γ

µu2

for all u ∈ H1(Ω). Hence
∫

Γ2
u2 dσ = 0 for all u ∈ H1(Ω). In particular

∫
Γ
u21Γ2

dσ =

0 for all u ∈ D(Rd). Since {Tru : u ∈ C∞0 (Rd)} is dense in C(Γ), we see that∫
Γ
ϕ21Γ2 dσ = 0 for all ϕ ∈ C(Γ). This implies that the Borel measure 1Γ2 dσ is 0.

Hence σ(Γ2) = 0.
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