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Introduction

The aim of this thesis is to present some results obtained while studying form
methods, which play an important role in the theory of evolution equations.
Rewriting an evolution equation as an abstract Cauchy problem, associated with
a linear operator, we regard those problems, where the linear operator is given by
a sesquilinear form. This is the case for most partial differential equations. If this
form is densely defined, continuous and elliptic, the associated Cauchy problem
is well-posed, because the operator is the generator of an analytic semigroup of
contractions. Then one is interested in properties of the solution, which can be
directly deduced from the sesquilinear form, such as positivity, contractivity and
regularity.

The situation is more delicate for non-autonomous Cauchy problems, when the
form also depends on the time parameter. Under a measurability assumption,
the family of associated operators defines a multiplication operator.

The first chapter is of a preliminary nature and recalls some important defini-
tions and results used in the following chapters of the thesis. First we introduce
vector valued function spaces and define the Bochner integral. Then we give the
basic facts to abstract Cauchy problems and semigroup theory. We conclude the
chapter with an introduction to form methods.

In spite of the common point of departure, the research has lead into three dif-
ferent directions. They shall be presented in independent chapters.

In the second chapter we study multiplication operators. In scalar function
spaces, they provide easy examples, whereas operator valued multiplication op-
erators on vector valued spaces are more complicated. Their importance arises
from non-autonomous Cauchy problems.

After an introduction to vector lattices, we study operators in vector and Banach
lattices with an emphasis on the center and its properties. On the Banach lattice
of scalar p-integrable functions, the center operators coincide with bounded mul-
tiplication operators. We give an appropriate definition of the center in vector
valued function spaces to obtain an analogous characterization with respect to
bounded multiplication operators.

Then a consideration of unbounded multiplication operators leads over some spec-
tral aspects to multiplication semigroups.
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Based on these results, we obtain a characterization of multiplication operators
associates with sesquilinear forms, in the scalar setting as well as for operator
valued multiplication operators.

The third chapter covers non-autonomous variational Cauchy problems, which are
associated with a family of time dependent linear operators, each being defined by
a continuous elliptic sesquilinear form. After an introduction to the underlying
spaces and their properties, we give equivalent formulations of the considered
problem. Then we recall an ingenious representation theorem due to J. L. Lions,
which provides well-posedness. Given the existence of a unique solution, which
depends continuously on the given data, we are interested in its properties.

A study of lattice operations on certain underlying spaces leads to sufficient
conditions on the forms, such that the solution is positive or sub-Markovian.
Namely, we require the same properties for the family of forms as in the Beurling-
Deny criteria, which provide a characterization in the autonomous case.

The investigations on regularity lead to an alternative proof of maximal regularity
for the autonomous case. These methods can only be applied in a very particular
non-autonomous situation.

Non-autonomous Cauchy problems can be examined with semigroup methods as
well, where we encounter a more restrictive notion of well-posedness. We give
an introduction to evolution semigroups and families. Our characterization of
well-posedness extends the known result for continuous functions. A generation
theorem for surjective and dissipative operators leads to well-posedness of the
non-autonomous variational Cauchy problem in a larger space, and we can restrict
the obtained solution to the original space. We conclude this section with some
invariance considerations of closed convex sets.

In order to use form methods directly for the non-autonomous Cauchy problem,
one is lead to generalized forms, to which we give a short introduction. We
characterize invariance of closed convex sets under the semigroup with respect to
properties of the generalized form. As a consequence we obtain the Beurling-Deny
criteria, which we then apply to the non-autonomous evolution equation.

In the last chapter we treat partial differential equations in an infinite dimensional
setting. We do not use form methods there, but their application to second or-
der differential operators inspired the work. After an introduction to Gaussian
measures we examine Gaussian semigroups and their relation to the infinite di-
mensional heat equation.

On this basis, we study well-posedness of second order partial differential equa-
tions in infinite dimensional spaces. The idea is to diagonalize the matrix of coef-
ficients, where the diagonal matrix satisfies the conditions for the heat equation,
and thus provides a Gaussian measure. The image measure under the transfor-
mation matrix then defines a strongly continuous semigroup, which solves the
second order problem.

Then we generalize these results and replace the derivatives by general group



INTRODUCTION 3

generators. As for the differential operators, we start with the construction of a
semigroup and give conditions, such that its generator coincides with the desired
operator.

Finally, we consider order continuous linear forms on the space of bounded uni-
formly continuous functions on a Banach space. The presented characterization
is used to construct a Gaussian measure for the representation of the heat semi-
group and therefore given in this context.
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Chapter 1

Preliminaries

In this first chapter we recall some functional analytic background used in this
thesis. First we introduce vector valued LP-spaces assuming the reader to be
familiar with the scalar situation. Then we define solutions to abstract Cauchy
problems and explain their relation to one parameter semigroups. Finally, we
consider linear operators associated to sesquilinear forms and recall the Beurling-
Deny criteria for abstract Cauchy problems associated to such operators.

1.1 Vector Valued LP-spaces

This section is meant to present some properties of the Bochner integral of vector-
valued functions. Let (£2,%, ) be a measure space and F a complex or real
Banach space.

A subset N C Q is called nullset, if N is measurable and u(N) = 0. We say
that a property holds almost everywhere (a.e.), if there exists a nullset N,
such that the property holds for all w € '\ N. For a measurable subset A C (2,
the map

1 ifweAd

Xatw = Xalw) = { 0 otherwise

is called the characteristic function of the set A.

A function f: Q — E is simple, if it is of the form f(w) = >_7_, x4, (w) for
some n € N, z; € E and measurable sets A; C Q with finite measure u(4;). In
the representation of a simple function, the sets A; may always be arranged to
be disjoint, and then

_Joz; weAd;i=1,2,..,n)
flw) = { 0 otherwise.

Definition 1.1.1. A function f : 2 — FE is measurable if there is a sequence
of simple functions g, such that f(w) = lim,_, g,(w) for almost all w € Q.

5
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When E' = C, this definition agrees with the usual definition of Lebesgue measur-
able functions but not with Borel measurable functions. Recall, that a function
f : Q — C is Borel measurable, if for every open set O C C, f~1(O) € B, where
B denotes the o-algebra on €2. However, if we add to B all subsets of nullsets, we
obtain again a o-algebra 3, which we call complete and a function f: Q — C
is Borel measurable with respect to 3, if and only if f is Lebesgue measurable.
In order to have the same notations, we assume in the scalar case, where £ = C,
that the underlying measure space is complete, i.e. the o-algebra is complete.

Lemma 1.1.2. Let f : Q — FE,g: Q2 — E and h : Q@ — C be measurable and
k: E — F be continuous, where F' is any Banach space. Then f + g,h- f and
ko f are measurable.

Proof. Let f,,g, : @ — FE and h, : Q2 — C be simple functions that approxi-
mate f, g and h respectively pointwise almost everywhere. Then f, + g, h, - fa
and k o f, approximate f + g,h - f and k o f respectively pointwise almost ev-
erywhere. We only have to show that f, + g,, h, - f, and k o f, are simple
functions. Fix n € N. Let fy(w) = D77, zx4; (W), gn(w) = 22:1 YkX B, (w) and
hn(w) = >"r_; 2kXc, (w) be representations, such that A;, respectively By or Cj
are disjoint. Then

ZTj+ Yk (wEAijk;j:1a2a--'ama k=12,,..1)

. Z; (w S Aj \ Uk By; 5 =1,2, 7m)
(fo+ gn)(w) = Ve (we B \U, 453 k=1,2,...,1)
0 otherwise,

R~ T (wEAjﬂBk;j:I,Z,...,m, k:1,2,,...,l)

(- ) =1 §

otherwise,
" @) )
| k(zj) (wed;i=12,...,m
(ko fn)(w) = { k(0) otherwise.
Hence they are simple. O

Definition 1.1.3. For a simple function g: Q = E, g =37

j—1ZjX4,; we define

[ ) dn =Y ju4).

This definition is independent of the representation of g = Z?lejx 4; and the
integral is linear.

Definition 1.1.4. A function f : Q) — F is called Bochner integrable if there
exist simple functions g, such that g, — f pointwise a.e. and and one has for
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the scalar integral lim, o [, | f(w) — gn(w)|| dp = 0. If f : @ — E is Bochner
integrable, then the Bochner integral of f on () is

/Q F@)dpi= Jim [ a(0)di

n—oo

The following theorem gives an easy characterization for Bochner integrable func-
tions.

Theorem 1.1.5. (Bochner) A function f : Q — E is Bochner integrable if and
only if f is measurable and || f|| is integrable. If f is Bochner integrable, then

[r@au < [rean
Q Q
For the proof we refer to [ABHN], Theorem 1.1.4.

Definition 1.1.6. For 1 < p < oo, we denote by L?(2, F) the space of all
measurable functions f : 2 — F such that

1l = ( / IIf(w)II”du> R

Further, L*°(€2, E) denotes the space of all measurable functions f : Q — E such
that

[flloo = esssup || f(w)]] < o0,
weN

where ess sup,cq || f (W) || = infaruan=o SuPyeow | (W)II-
In the usual way, we identify functions, which differ only on a set of measure
zero. Then (LP(Q2, E), ||-||,) is a Banach space for 1 < p < co.
Note that LP(2,C) are the usual LP-space, which we shall denote simply by
LP(92).
Remark 1.1.7. As in the scalar-valued case, for each f € L>(€, E), there exists
a null set ' C Q such that

[/ lloo := ess sup [f (@)l = sup [|f(w)]]-

weQ\N

Hence for f,g € L*°(2, E) we have ||f - gllc < ||flloo  ||gllco- Indeed,

esssup || f(w)]| - esssup [|g(w)[] = sup [|f(w)]|- sup [g(w)]
weN weN we\N5 weEMNy
> sup  [[f(w)[|- sup  [lg(w)]]
wWEQ\(NFUNy) wWEQ\(NFUNy)
= sup  ([[f(@)]-[lg(w)I])
wEQ\(NFUNy)

> ne s (IF@I-lg@l) ()

= esssup([lf(w)] - lg(w)ll)
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1.2 Cauchy Problems and Semigroups

In physical and economical problems one is often confronted with partial differ-
ential equations, e.g. the heat equation in R® is given as

2

t>0,

.’L'

P 3
(HEs) prtbe) = 2

1=

u(0,2) = wup(x).

Regardlng u(t,.) as an element of an appropriate function space E and then
Zz " 3 97 = =: A as a linear operator, the differential equation can be written as an

abstract Cauchy problem on F
u'(t) = Au(t), t>0,

(4CP) { u(0)=uy €E,

where we assume, that F is a Banach space, A a closed linear operator on E and

u:Ry = E, u(t) = u(t,.).

Definition 1.2.1. (i) A function u: Ry — FE is called a(classical) solution
of (ACP) if u is continuously differentiable with respect to ¢ and with values
in X, u(t) € D(A) for all £ > 0, and (ACP) holds.

(ii) A continuous function u : Ry — FE is called a mild solution of (ACP) if
7 u(s)ds € D(A) for all t > 0 and

U@ZAAE@@+m

Existence and uniqueness of solutions for abstract Cauchy problems is strongly
related to the theory of one parameter semigroups. We refer to the monographs
[EN], [Paz] and [Ta] among many others for more details.

Definition 1.2.2. A family (7°(t)):>0 of bounded linear operators on a Banach
space E is called strongly continuous (one-parameter) semigroup (or Cy-
semigroup) if it satisfies the functional equation

T(t+s)=T(t)T(s), forallt,s >0
(FE) {ﬂ@:u

holds and the orbit maps
Tz :R, - E t—T(t)x

are continuous for every = € F.
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For the relation to abstract Cauchy problems we will need the generator of a
semigroup defined as follows.

Definition 1.2.3. The generator A : D(A) C E — E of a strongly continuous
semigroup (T'(t)):>o on a Banach space E is the operator

.1
Az = lgfgl E(T(t)x — 1)

defined for every z in its domain

DA)={z€E: ltif(l)q%(T(t)x — ) exists}.

We just want to give some basic properties of Cy-semigroups and their generators.
We cite [EN], Lemma II.1.3 and Theorem II.1.4, to which we also refer for the
proof.

Proposition 1.2.4. For the generator (A, D(A)) of a strongly continuous semi-
group (T'(t))e>0, the following properties hold.

(i) A: D(A) C E — E is a closed densely defined linear operator.
(ii) If x € D(A), then T(t)x € D(A) and

%T(t)x =T(t)Ax = AT (t)x for allt > 0.

(iii) For everyt >0 and x € E, one has
¢
/ T(s)z ds € D(A).
0
(iv) For everyt > 0, one has
t
Tt)x—z = A/ T(s)rds ifz€E,
0
t
= / T(s)Axds if x € D(A).
0

Therefore we get the following characterization.

Corollary 1.2.5. z € D(A) and Az = y if and only if

Tt —z = /OtT(x)y ds.
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Now we get as an immediate consequence the relation to the abstract Cauchy
problem. For more details on the proof, see [EN], Proposition I1.6.2 and I1.6.4.

Proposition 1.2.6. Let (A, D(A)) be the generator of a strongly continuous
semigroup (T (t))e>o0. Then,

(i) for every x € D(A), the function
u:t—u(t) =T(t)x
is the unique classical solution of (ACP).
(ii) for every x € E, the orbit map
u:tu(t) =T(t)x
is the unique mild solution of the abstract Cauchy problem (ACP).

In view of this proposition, one is interested in a characterization of operators
that generate a strongly continuous semigroup. The following generation theorem
is due to Hille and Yosida.

Note that p(A4) := {\ € C : (A — A) is invertible and (A — A)~! € L(E)} is
called the resolvent set and R(\, A) := (A — A)~! for A € p(A) the resolvent
operator of A.

Theorem 1.2.7. For a linear operator (A, D(A)) on a Banach space E, the
following properties are equivalent.

(i) (A, D(A)) generates a strongly continuous semigroup of contractions, i.e.
IT(t)]| <1 forallt>0.

(i1) (A, D(A)) is closed, densely defined, and for every A > 0 one has A € p(A)
and
IAR(A, A < 1.

(i1i) (A, D(A)) is closed, densely defined, and for every A € C with ReA > 0
one has A € p(A) and

1
Al < —.
1RO A < &

We shall also recall the generation theorem for dissipative operators. We first
give the definition.

Definition 1.2.8. A linear operator (A, D(A)) on a Banach space X is called
dissipative if
(A = A)z|| = Alj]]

for all A > 0 and z € D(A).
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The following generation theorem for dissipative operators is due to Lumer and
Phillips.

Theorem 1.2.9. For a densely defined, dissipative operator (A, D(A)) on a Ba-
nach space X the following statements are equivalent.

(i) The closure A of A generates a contraction semigroup.

(17) Im(\ — A) is dense in X for some (hence all) A > 0.

We have the following more convenient characterization of dissipativity, see [EN],
Proposition 11.3.23. For a Banach space X we denote by X' its dual space and
for every z € X its duality set by J(z) := {2z’ € X' :< z,2' >=||z|*> = ||2||*},
which is nonempty by the Hahn-Banach theorem.

Proposition 1.2.10. A linear operator (A, D(A)) on a Banach space X is dis-
sipative if and only if for every x € D(A) there ezists j(x) € J(x) such that

Re < Az, j(z) ><0. (1.2)

If A is the generator of a strongly continuous contraction semigroup, then (1.2)

holds for all x € D(A) and arbitrary z' € J(x).

Remark 1.2.11. On a Hilbert space H, which we identify with its dual H' & H,
one has for every z € H that J(x) = {z}. Thus, a linear operator (A, D(A4)) on
a Hilbert space H is dissipative if and only if

Re(Az,z) <0
for all x € D(A).

For the sake of completeness we also give the definition of an analytic semigroup.
In the complex plane we denote by X5 := {A € C: |argA| < §} \ {0} the open
sector of angle §.

Definition 1.2.12. A family of operators (7'(2)).ex,u0y C L£(E) is called an
analytic semigroup (of angle 6 € (0,7/2]) if

(i) T(0) = Id and T'(z; + 22) = T(21)T(29) for all 21, 2o € 3.
(ii)) The map z — T'(z) is analytic in ;.
(iii) limg,,5,507(2)z =2 forallz € F and 0 < ¢’ < 4.
If, in addition
(iv) ||T(2)|| is bounded in Xy for every 0 < ¢’ < 4,
we call (T'(2)),ex;ut0p @ bounded analytic semigroup.

In the following section, we regard a certain class of operators, which turn out to
be generators of bounded analytic semigroups.
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1.3 Sesquilinear Forms and Associated Opera-
tors

For a long time, sesquilinear forms have been studied in the context of evolution
equations. We refer to [DL2], Chapter VII, and [LM], Chapter 3, for further
details. Note that the non linear theory is presented in [Br|. Here we give a short
introductions to form methods with an emphasis on those results, that we shall
use later in this thesis. We mainly follow the approach in [Tal.

Let H and V be two Hilbert spaces. We denote by |.||z, ||-|lv and (., .)a, (-,-)v
the norm and scalar product in H and V respectively.

Assume that V' is a dense, continuously embedded subspace of H, i.e. there exists
a constant C such that ||v||z < C||v||v for all v € V. We shortly write V —— H.
Let V' and H' be the anti dual spaces of V and H respectively, i.e. the spaces of
all continuous anti linear forms, where anti linear means that ®(\v) = A®(v).
Then after identifying H with H' by the Riesz-Fréchet Theorem, we obtain

VS HeH <5V (1.3)
Indeed, let @y, denote the restriction of ® € H' to V, then
Dy (v)| = [2(v)| < [lella vl < llellaCllollv. (1.4)

Hence @,y € V'. Since V is dense in H, the correspondence ® — @y is injective,
so that by identifying ® with ®, we may consider H' C V'. From (1.4) we
conclude || ®y|ly» < C||®| z, hence the embedding is continuous. We have that
V is dense in V", if U,y = 0 implies ¥ = 0 for all ¥ € V". Note that V" =V,
since V is reflexive as a Hilbert space. Then, if we take v € V, we obtain
U(v) =< Y,v Syny= <0,V >y = (v,¥)y, since v € V C H. Hence
U(v) =0 for all v € V implies ¥ = 0 by taking v = W. Therefore V is dense in
V" and in particular H is dense in V.

Now consider a sesquilinear form a on H with domain V. That is a mapping
a:V xV — C which is linear in the first component and anti linear in the
second:

a(uy + ug,v) = a(ur,v) + alug,v)  a(Au,v) = Aa(u,v)
a(u,v1 +v2) = a(u,v1) + a(u,vs)  alu, \w) = Aa(u,v) (1.5)

Assume that a is continuous, i.e. there exist a constant M > 0, such that for
all u,v eV
|a(u,v)| < Mllullv[v]lv (1.6)

and elliptic, i.e. there exist constants A € R and « > 0, such that for all u € V

Re a(u, u) + M|u||3 > a||u||%, (1.7)
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This inequality is called Garding’s inequality. Under these assumptions the norm
|. Il in V is equivalent to (Rea(u,u) + A||ul%)"/2.
In this situation we can associate with a an Operator A given by

D(A) = {u eV :3ve H satistying a(u, ) = (v, @)y for all p € V}
Au = v

The sesquilinear form is called coercive if there exists a constant a > 0, such
that for all u € V
Re a(u, u) > oflully, (1.8)

i.e. A can be chosen equal to zero in (1.7).
To a sesquilinear form a we define the adjoint form by

a'(.,.): VxV —=>C: (u,v) = a*(u,v) := a(v, u).

Then a* inherits the properties of a. It is easy to see, that if A* is the operator
associated with a*, then A* is the adjoint operator to A, the operator associated
with a.
If a is a continuous elliptic form with form domain V', then the form a, defined
by

a,:VxV—=C:(uv)—alu,v)+w(u,v)y (1.9)

is also continuous with continuity constant M, = M+|w|C?, since by the Cauchy-
Schwarz inequality |(u,v)| < ||ullg||lv||lz < C?*||ullv||v||v, and for w > X (the
constant in (1.7) for a), a, is coercive. Further, if A is the operator associated
with a, then A+ w : u — Au + wu is the operator associated with a,.

Hence it is not a severe restriction to assume from now on, that A is the operator
associated with a continuous coercive form a.

Remark 1.3.1. The operator A associated with a continuous coercive form a is
surjective as a consequence of the Lax-Milgram Theorem, see [Ta], Lemma 2.2.1.

Proposition 1.3.2. If a is a continuous coercive form, the associated operator A
is densely defined, closed and for every A > 0, one has A € p(A) and the estimate
[AR(A, A)|| <1 holds.

Proof. Assume that there exists a v € H such that (u,v)g = 0 for all u € D(A).
Since A* is surjective, there exists a w € D(A*) C V such that v = A*w. Hence

0 = (’U,,’U)H = (U,A*’U})H = (A*w:u)H = a*(wau)
= a(u,w) = (Au,w).
Since A is surjective, this implies w = 0, hence v = 0, which shows that D(A) is

dense in H.
The closedness of A can be immediately deduced from the fact that p(A4) # (.
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For A > 0, the operator (A + A) is associated with the form a,, which is again a
continuous coercive form. Hence by Remark 1.3.1, (A + A) is surjective.
Since a is coercive, we obtain for every u € D(A)

Re(—Au,u)y = —Rea(u,u) <0

Hence for A > 0

IO+ Al = (A Ay, (A Ay

= (Au, \u)g + 2Re(Au, Au) g + (Au, Au) g
N2||u|| + 2(=A) Re(—Au, u)
AJull

AV,

Hence (A + A) is injective, therefore invertible and

M+ A ull < lull
This shows A € p(A) and ||AR(A, A)|| < 1. O
Remark 1.3.3. By [Ta],.Lemma 2.2.2, D(A) is even dense in V.

From the above proposition and by Theorem 1.2.7 it follows, that —A is the
generator of a contraction semigroup (7'(t);>o. We even have that it is an analytic
semigroup of contractions, see [Ta], Theorem 3.6.1.
Note that if a is a continuous elliptic form, then for w > A, a,, is coercive, hence
—(A+w) is the generator of an analytic semigroup of contractions 7T'(t);>o. Then
—A = —(A+w) + w is the generator of the semigroup 7,,(¢) := e** T'(¢).
In the literature as [Da2], [FOT], [Ka2] or [MR], one often finds a different ap-
proach to sesquilinear forms. Let a : D(a) X D(a) — C be a sesquilinear form on
H, where the form domain D(a) is a linear dense subspace of H. Define a norm
on D(a) by

lullg = Re a(u, u) + [|ullz.

Assume that a is positive, i.e. for all u € D(a)
Rea(u,u) >0,
continuous, i.e. there exists constant M > 0 such that for all u,v € D(a)
|a(u, v)| < Mllulla|v]la,

and closed, i.e. the space (D(a), ||-||a) is complete.
The following proposition shows, that in a way, the two approaches to sesquilinear
forms are equivalent.
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Proposition 1.3.4. Let H be a Hilbert space. A sesquilinear form a on H with
dense domain D(a) is positive, continuous and closed if and only if the form a;
(defined by (1.9) for w = 1) with domain V = D(a) is continuous and coercive
with constant o = C, where ||u||g < C||v||y for allv e V.

Proof. Let a be positive, continuous and closed. Then (D(a), ||.||.) is complete,
hence we can suppose |[ully = [|u|l = (Rea(u,u) + [|u]|%)"? > ||lu||z and the
embedding from V' to H is continuous, in particular C' = 1. Then

jai(u,v)| < la(u, v)| + (v, v)u| < Mlullv]lvllv + lJull al[oll 2
< (M +1)([[ullvllvllv,

hence a; is continuous. Since Rea(u,u) + ||ul|} = ||ul|?, a1 is coercive with
constant « =1 =C.

Conversely, suppose that a; is continuous and coercive. Then (Rea;(u,u))/? =
(Rea(u,u) + ||ul|%)/? = ||ul|q is an equivalent norm on V, hence (D(a),||.||o) is
complete. Further

la(u,v)| = lai(u,v) — (u,v)n]
a1 (u, )| + [ (u, )| < Mlullv[lvlly + [Jullallv]l=

<
< (M +Dllullvlollv,

which shows that a is continuous. Finally
Rea(u,u) = Rea (u,u) — (u,u)n > aflully, - [lullf > (o = O)|Jully =0,
hence a is positive. O

The theory of sesquilinear forms can be applied to many differential operators.
Since we obtain the generator of a semigroup, the Cauchy problem is well-posed.
Further advantages of form methods in the context of partial differential equations
is the fact, that in most cases the form domain is known explicitly, whereas the
domain of the operator is difficult to determine.

Even properties of the semigroup, hence of the solution, can be directly charac-
terized by the form. In this context, the following theorem, which is due to E.-M.
Ouhabaz, see [Ou], Theorem 2.1 and Proposition 2.3, plays an important role for
this thesis.

Let H be a Hilbert space. Assume that a is a continuous elliptic form with domain

V< H , and denote by A the associated operator and by 7" the semigroup
generated by —A.

Theorem 1.3.5. Let K be a closed conver subset of the Hilbert space H and
denote by P the projection of H on K. The following assertions are equivalent

(i) T(t)K C K for allt > 0.
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(ii) AR\, A)K C K for all A < 0.

(iii) uw € V implies Pu € V and Rea(u,u — Pu) > 0.

Remark 1.3.6. The assertions of the above theorem are equivalent to
(iv) w € V implies Pu € V and Rea(Pu,u — Pu) > 0.

The proof is implicitly contained in [Ou], see also [Bar] or [Th].

As a direct consequence, we obtain the so-called Beurling-Deny criteria. Let €2
be a measure space and H = L*(Q, C). We denote Hg := L*(Q, R), for u € Hg,
let u™ :=sup{u,0} € Hg, and Hy := {u € Hg : u > 0}.

We call a semigroup on H positive, if T(t)H; C H, for all ¢ > 0 and sub-
Markovian, if 7'(t) f < 1, whenever f <1 for all ¢ > 0.

We suppose, that the sesquilinear form a is real, i.e.

u € V implies Reu € V| and a(u,v) € R for all u,v € V N Hg.

Proposition 1.3.7. (Beurling-Deny I) The following assertions are equivalent.
(i) The semigroup T is positive.
(i1) For allu € V N Hg, we have ut € V and a(ut,u™) < 0.

Proof. The set K := {u > 0} is closed an convex with orthogonal projection
given by u — (Reu)™. O

Proposition 1.3.8. (Beurling-Deny II) Assume, that the semigroup T is posi-
tive. Then the following assertions are equivalent.

(i) The semigroup T is sub-Markovian.
(i1) For all0 <wu € VN Hg, we have u A1 €V and a(u,u A1) < a(u,u).

Proof. The set K := {u < 1} is closed an convex with orthogonal projection
given by u — (Reu) A 1. O

These last results have been generalized in [Th|, to the case, where the form is
not densely defined. Then one has to consider the semigroup obtained through
a composition of the semigroup on the closure of the domain and the orthogonal
projection onto this closure. This semigroup is not strongly continuous in the
origin. However, this generalization can immediately be deduced by the results
for a non-linear setting established in [Bar|. Finally, as was shown in [MVV], it
is even enough to verify the conditions on a dense subset of the form domain.



Chapter 2

Multiplication Operators

In operator theory one often wishes to have examples of a simple structure.
Multiplication operators often play this role in function spaces, in particular
in LP-spaces. Moreover, non-autonomous Cauchy problems are associated to a
family of operators, which in most cases define an operator valued multiplication
operator.

First we will treat the more general case of operators belonging to the center of a
Banach lattice. For that we recall some basic definitions and properties of vector
and Banach lattices, which we took from the monographs [Me| and [Scha| and
the survey article [BR|. Then we study bounded and unbounded multiplication
operators and their relation to center operators, which we mainly took from [Me]
for the scalar case, but developed some new results in the vector valued situation.
Finally we will see that under certain assumptions on a sesquilinear form and its
domain, the associated operator is automatically a multiplication operator.

2.1 Operators in Vector Lattices

This section is meant to give some background information on vector lattices and
their center. As an application we will treat in particular the Banach lattice LP.
The results shall be generalized to vector-valued LP-spaces, although those are in
general no vector lattices.

2.1.1 Vector Lattices and Normal Cones

In the following definitions X is supposed to be an ordered vector space, i.e. X
is a real vector space with an order < satisfying

e r <y impliess z+z2<y-+zforallzy zin X.
e x>0 implies Az >0forallzin X and A > 0.

The positive cone X, := {z € X : 2 > 0} determines the order completely.

17
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Definition 2.1.1. An ordered vector space X is called a vector lattice (or
Riesz space) if any two elements z,y in X have a supremum, which is denoted
by z Vy = sup(z,y), and an infimum, denoted by z A y = inf(x, y).

A vector lattice X is called order complete (or Dedekind complete), if for each
non-void majorized set B C X, sup B exists in X.

A vector lattice X is called countably order complete (or o-Dedekind com-
plete), if for each non-void countable majorized set B C X, sup B exists in X.

A vector sub-lattice Y of a vector lattice X is a vector subspace of X such
that z,y € Y implies sup(z,y) € Y where the supremum is formed in X.

For z € X we use the usual notations z* := sup(z,0) and x~ := sup(—=z, 0) for
the positive, respectively negative part of z, and |z| := 2t + 2~ for the absolute
value.

Definition 2.1.2. Two elements z,y of a vector lattice are called orthogonal
or lattice disjoint and noted z L y, if inf(|z|, |y|) = 0.

Certain subspaces of a vector lattice will play an important role in the sequel.
We briefly recall the definitions.

Definition 2.1.3. A linear subspace I of a vector lattice X is called an ideal if
xz € I,|y| < |z| implies y € I. A band in a vector lattice X is an ideal, which
contains arbitrary suprema. For any subset B in X the disjoint complement
Bt :={y € X :inf(|y|, |z|) = 0 for all z € B} is a band in X. A band B is called
a projection band if it does have a complemented ideal, i.e. F = B @ B+,
and the projection of X onto B with kernel B+ is called the band projection
belonging to B.

The smallest band containing a subset B is called the band generated by B.
A band generated by a singleton {z} is called principal band, and the lattice
is said to have the principal projection property, if each principal band of X
is a projection band.

In particular countably order complete lattices have the principal projection prop-
erty (see [Schal, p. 64), and are therefore Archimedian, i.e. z,y € X andnz <y
for all n € N implies x < 0. In Archimedian lattices the Band generated by a
subset B is given by B% := {B+}+.

Remark 2.1.4. It is clear that an ideal is a vector sublattice. Conversely a
sublattice I of X is an ideal, if 0 <y <z, z € [ implies y € I.

In the following, let E be an ordered Banach space with norm ||.|| and positive
cone F., not necessarily a lattice. Since the definition of an ordered Banach
space does not require any direct relation between the order and the topological
structure involved, it is necessary to impose further restrictions. The most useful
restriction of this sort is to require the cone to be normal with respect to the
topology.
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Definition 2.1.5. In an ordered Banach space E, the positive cone E is said
to be normal if there exist an o > 1 such that the inequality y < z < z always
implies ||z|| < a([ly]l v |=[])-

Remark 2.1.6. This condition is equivalent to the requirement that order boun-
ded sets, i.e. sets of the form {z € F: y < x < z} =: [y, 2] for arbitrary y, z € E,
are norm bounded.

For more details on Banach spaces with normal cone see [BR].

There exist of course stronger conditions on the compatibility of the order struc-
ture and the norm. However, now we suppose the underlying space to be a
lattice.

Definition 2.1.7. A norm on a vector lattice X is called a lattice norm, if it
satisfies
[z <ly| implies ||| < [ly|l.

Then X is called a normed vector lattice. A Banach lattice is a Banach
space E endowed with an order < such that (F, <) is a vector lattice and the
norm on F is a lattice norm.

By [Schal, II, Proposition 5.2. we have that in a normed vector lattice the lattice
operations

+

z—=zt =2 sz (ry)— Ay (zy)—aVy

are continuous.
In the sequel we will use the Riesz decomposition theorem, see [Scha], The-
orem 2.10.

Theorem 2.1.8. For any subset A of an order complete vector lattice E, FE is
the direct sum of the band generated by A and of the band A+. In particular each
band of F is a projection band.

2.1.2 The Banach Lattice LP(Y, X, u)

In order to illustrate the properties of Banach lattices, we give a well known
example. We refer to [Me], Section 1.1 for more details.

Let (Y, X, 1) be an arbitrary measure space, and define on the real valued L?(Y),
1 < p < 0, the order pointwise. Then LP(Y') is an Archimedian Banach lattice.
Two elements f,g € LP(Y) are disjoint, f L g, if and only if f = 0 almost
everywhere (a.e.) on {y : g(y) # 0}. Further for 1 < p < oo, LP(Y) is Dedekind
complete, and if (Y, 3, u) is o-finite, then also L*(Y") is Dedekind complete. We
have the following characterization of ideals in LP(Y).

Lemma 2.1.9. For a sublattice I C LP(Y) the following assertions are equivalent.
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(i) I is an ideal of LP(Y).
(11) LI C I, where LI := {¢f :p e L*(Y), fe LP(Y)}.

Proof. 1f I is an ideal, let ¢ € L*(Y) and f € I. Then for any o € R, af € I,

hence [pf| = ||| f| < ll¢lloo f| = ll¢llcof| implies o f € I.
Conversely, let f € I and g € LP(Y) such that 0 < g < f. Let ¢(y) = % on
{y : f(y) # 0} and 0 otherwise. Then ¢ € L*(Y), hence g = ¢f € I. O

For 1 < p < oo we also have a characterization of the bands in LP(Y).

Lemma 2.1.10. For a subspace B C LP(Y,X, u) the following assertions are
equivalent.

(i) B is a band in LP(Y, X, u).

(i1) B = LP(A,X4, pua), for some measurable subset A C Y and the induced
o-algebra X4 and measure 4.

Proof. Obviously, LP(A,X 4, 1) is a band in LP(Y, 3, u). For the converse, let
B be a band in LP(Y). Since LP(Y) is Dedekind complete, by Theorem 2.1.8,
every band is a projection band. Thus LP(Y) = B @ Bt. If B+ = {0}, then
B=L°Y,S,p)and A=Y. If0# g€ B, thenforall f € B= B f=0
a.e. on {y: g(y) # 0}. Since L?(Y) is separable, there exists {g, : n € N} dense
in B+. Then A := J,n{v : gn(y) # 0} is measurable and for all f € B, f =0
a.e. on AY i.e. B C LP(A,X4,14). On the other hand, for g € B+, there exists
gn, — g in LP(Y) as k — oo, hence, passing to a subsequence, g,,(y) — ¢(y)
for almost all y € Y. Thus, if f € LP(A, X4, pa), then f(y)gn,(y) = 0 a.e. and
therefore f(y)g(y) = 0 a.e., which yields f L g. Consequently, f € Bt* = B. 0O

We have used the fact, that every band is a projection band. The projection onto
the band LP(A, X4, 114) is obviously given by x4 : f — xa - f.

Moreover, LP(Y') has the principal projection property, which can be seen as
follows. Let f € LP(Y), then the principal band generated by f is given as the
set B(f) = {f}¥ ={g € L’(Y) : g = 0 (a.e.) on {y : f(y) = 0}}, and the
corresponding band projection by Pg = g - x{rx0}-

2.1.3 The Center of Vector Lattices

In this section we will treat special classes of operators on vector lattices. Mainly
we are interested in band preserving operators and the center. We use the nota-
tion of [Me], Section 3.1.

Throughout this section let X and Y be Archimedian vector lattices.

Definition 2.1.11. Assume that 7" : X — Y is a linear operator.
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(i) T is called positive, if TX, C Y,. We will denote this by 7" > 0. Let
L. (X,Y) be the collection of all positive linear operators from X into Y.

(ii) T is called regular, if T is the difference of two positive operators. We
denote by L"(X,Y’) the collection of all regular operators ordered by T > S
if and only if T'— S > 0.

(iii) A linear operator 7' : X — X satisfying TB C B for every band B C X is
called band preserving.

(iv) A band preserving operator 7' € L"(X) is called an orthomorphism. We
denote by Orth(X) the collection of all orthomorphisms on X.

(v) The center Z(X) consists of all linear operators 7' : X — X such that
—ald <T <ald for some 0 <a € R

It is clear, that every positive operator is regular and that one has a decomposition
L"(X,Y) = Ly(X,Y) — L, (X,Y). Further, observe that Z C L"(X), because
T=(T+ald)— (ald —T) is the difference of two positive operators. Finally,
Z(X) C Orth(X) and Z(X) is the ideal in L"(X) generated by the identity.

We want to recall some properties of these operators.

Proposition 2.1.12. For every linear operator T : X — X the following asser-
tions are equivalent.

(i) T is band preserving.
(ii) Tz € B, (the principal band generated by x) for every x € X
(i1i) Tz Ly for all z,y € X satisfying x L y.

Proof. (i) = (ii) x € By, hence from T B, C B, follows Tz € B,.

(it) = (i) Since X is Archimedian, B, = {z}¥ and z L y & y € {z}*.
Therefore Tz € B, = {z}% = Tx L y.

(ii7) = (i) Let B C X be a band, then B% = B. For z € B arbitrary, we get
r L yVye Bt By (iii) Tz L y Vy € B+, hence Tz € B¥ = B. O

Proposition 2.1.13. Suppose that X has the principal projection property. A
linear operator T : X — X is band preserving if and only if T commutes with
every band projection.

Proof. Assume that 7" is band preserving. Let P be a band projection and
B = P(X) the corresponding projection band. Then X = B @ B+, and Bt is
a projection band with corresponding band projection Id — P. By assumption
TB* ¢ B+ and TB C B, hence PTx = PT(Pz + (Id — P)x) = PTPz = TPx,
for all z € X.
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Conversely, assume that 7' commutes with every band projection. Since X has the
principal projection property, for every x € X, the principal band B, generated
by z is a projection band. If P, denotes the band projection, then P,7 = TP,.
Therefore, one gets Tx = T P,x = P,Tx C B, and T satisfies (ii) of the preceding
proposition and is therefore band preserving. O

Remark 2.1.14. T commutes with every band projection is equivalent to saying
that TB C B for every projection band.

As Z(X) C Orth(X), each T € Z(X) is band preserving. But the following even
stronger property holds.

Lemma 2.1.15. Let T € Z(X), then T1 C I for each ideal in X.

Proof. Let I be an arbitrary ideal in X and —a Id < T < a Idforsome (0 < a € R.
Then for every z € I, axt,ax™ € I and |T(z")| < |az™|, |T(z7)| < |az™| imply
Tex=T(z")—-T(z") € I. O

2.1.4 The Center of Banach Lattices

We have seen the basic properties of band preserving and center operators on
vector lattices. In most applications, the underlying space is a normed vector
lattice or even a Banach lattice. It is well known that center operators on a
normed vector lattice are always bounded and that they coincide with band
preserving operators on Banach lattices. We recall these results in this section.
Throughout this section let £ denote a normed vector lattice.

Proposition 2.1.16. If E is a normed vector lattice, then every T € Z(F) is
bounded, i.e. Z(E) C L(FE).

Proof. Let T € Z(FE), then —a Id < T < a Id for some 0 < a € R. Hence for all
f € E. we have |[Tf| <af = l|af|. As E is a normed vector lattice, this implies
ITf|| < llaf|l = a||f]| for all f € E,. Now f*, f~ <|f]| holds for all f € E, thus
1T =TT =N <NTEN+ITUN < allFF +allf7N < 2l O

Assume now, that F is complete, i.e. F is a Banach lattice. The following result
is due to B. de Pagter, see [Pag], for the proof we refer to [Me], Proposition 3.1.12.

Proposition 2.1.17. If E' is a Banach lattice, then every band preserving oper-
ator T : E — FE is in the center Z(E), hence bounded. In particular, one has
Z(E) = Orth(E).

Therefore on a Banach lattice, we get the following characterization of center
operators.

Theorem 2.1.18. Let E be a Banach lattice and T : E — E a linear operator.
Then the following assertions are equivalent.
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(i) T € Z(E),
i.e. there exists 0 < a € R such that —a Id <T < a Id.

(i) TI C I for every ideal I C E.
(iii) T is band preserving.
(iv) Tx Ly for all x,y € E satisfying x L y.

In particular, if T satisfies one of the above assertions, then T 1is bounded, i.e.
T € L(E). If in addition E has the principal projection property, the above
assertions are equivalent to

(v) TB C B for every projection band B C E, i.e. T commutes with every
band projection.

The proof is contained in the above results, and the fact that a band is in par-
ticular an ideal.

2.1.5 The Center of Scalar- and Vector-Valued LP-spaces

As we have seen before, typical examples for Banach lattices are the LP-spaces.
We will recall in the subsequent section, that the center of L”(£2) coincides with
the set of bounded multiplication operators. Since there is a sense to multi-
plication operators on vector-valued LP-spaces, we wish to give a sense to center
operators on these spaces as well, although vector-valued LP-spaces are in general
not even vector lattices.

Throughout this section, let (2, X, 1) be a o-finite measure space, i.e. Q@ =, {2
with p(€,) < 0.

First we want to examine some of the assertions of Theorem 2.1.18 for £ = L?(2).
See section 2.1.2 for the lattice properties of LP((2).

Lemma 2.1.19. For a linear operator T : LP(Q)) — LP(Q) the following asser-
tions are equivalent.

(i) Tf L g forall f,g € LP(QY) satisfying f L g
(i) Tf =0 a.e. on{w: g(w) # 0} for all f,g € LP(Q) with f = 0 a.e. on
s g(w) £0)

(iti)) Tf =0 a.e. on {w: f(w) =0}
Proof. (i) < (ii) Evident, by the characterization of orthogonality in LP(£2).
(it) = (ii1) Let f € LP(2). First assume that p({w : f(w) = 0}) < co. Then
g = X{f=0} € LP(Q) and f = 0 a.e. on {g # 0}. Hence Tf = 0 a.e. on
{9 #0} = {f = 0}. Now, if p({w : f(w) = 0}) = oo, then set g, = X{r=0}n0, €
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LP. Then f = 0 a.e. on {g, # 0} for all n € N, hence Tf = 0 a.e. on

Undgn # 03 = {f = 0}.
(17) = (i1) Let f,g € LP(Q) with f = 0 a.e. on {w : g(w) # 0}, i.e. f L g.

Then u({g # 0} \ {f =0}) = u({g # 0} N {f # 0}) = 0. Therefore we obtain

{g#0}={g#0}n{f #0})U({g # 0} n{f = 0}), where the first set has
measure 0 and the second is a subset of {f = 0}. Hence Tf =0 a.e. on {f =0}

implies Tf = 0 a.e. on {g # 0}, ie. T'f L g. O

Now we can rewrite Theorem 2.1.18 for scalar LP-spaces in the following way. Re-
call that we write x4 also for the multiplication with 4, i.e. the band projection
onto LP(A), and L®I = {¢f:p € L*®, f € I}.

Theorem 2.1.20. Let T : LP(2) — LP(Q) be a linear operator. Then the follow-
ing assertions are equivalent.

() T e 2(17(9),
i.e. T € L"(LP(Q2) and there ezists 0 < a € R such that —a Id <T < a Id.
(i) TI C I for every I C LP(Q), satisfying L= (Q)I C I.
(111) TLP(A) C LP(A) for every measurable subset A C Q.
(iv) Tf =0 a.e. on the set {w € Q: f(w) =0}, for all f € LP(Q).
(v) Txa = xaT for every measurable subset A C Q.

In particular, if T satisfies one of the above assertions, then T 1is bounded, i.e.
T e L(LP(Q2)).

Now we shall generalize the above results on vector valued LP-spaces as introduced
in Section 1.1. For a Banach space F, and for 1 < p < oo, let

1/p
(O, B) = {f QS B, = ( [ise du(w)) < oo} ,
and for p = oo, let

L>®(Q,E) = {f Q= E | flleo = esss1618||f(w)||E < oo}.

As usual we identify functions that are only different on a set of measure zero.
Then for 1 < p < oo, (LP(2, E), ||.||,) is a Banach space.

Obviously, if E is not ordered, L?(2, E) cannot be a vector lattice. Hence there
is no sense to the order of operators on L?(Q2, E), nor to an ideal nor to a band
in LP(Q, E).

However, the reformulated assertion (i) —(v) of Theorem 2.1.20 still have a mean-
ing in LP(2, E'), but are not all equivalent. Moreover, we do not get boundedness
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for the operator directly from de Pagter’s Theorem 2.1.17. But we shall give a
generalization to this result, see Theorem 2.1.23 below. Note that here again x4
denotes the multiplication with x4 and L*°(Q)I = {¢f : ¢ € L*®(Q), f € I},
where ¢ is an element of the scalar L.

Theorem 2.1.21. For a linear operator T : LP(Q), E) — LP(Q), E) consider the
following assertions.

(i) TI C I for every I C LP(Q, E), satisfying L>(Q)I C 1.
(ii) TLP(A, E) C LP(A, E) for every measurable subset A C Q.
(i1i) Tf =0 a.e. on the set {w € Q: f(w) = 0}.

(iv) Txa = xaT for every measurable subset A C Q.
Then (1) = (i1) < (ii1) & (iv).

Proof. (i) = (i) L (Q)LP(A, E) C L*(A, E) for every measurable subset A C Q.
(ii) = (ii1) Let A = {w: f(w) = 0}, then f € LP(A, E). Hence Tf € L?(A, E)
and Tf =0 a.e. on A® = {w: f(w) = 0}.

(171) = (iv) For f € LP(f2, E) and every measurable set A C Q, x4cTxaf =0
by iii). Hence Txaf = xaTxaf + xacTxaf = xaTxaf + xaTxacf = xaTf.
(iv) = (i1) Let f € LP(A, E), then one has f = xaf and therefore gets that
Tf=Txaf =xaTf € LP(AFE). O

The following example show, that indeed assertion (i) of the above theorem is
not necessary for the other equivalent assertions (i), (7i7) and (iv).

Example 2.1.22. Let E =R? and T : LP(Q,R?) — LP(Q,R?), f+— Mf, where
M is a fixed 2 x 2-matrix. Then T satisfies (1) — (iv). However, (i) is not satisfied

for M = <(1) 8) and I = IP(2, R x {0}), although L®(Q)I C I.

In order to obtain some analogy to the scalar LP(2) we will define the center of
LP(2, E) by means of the last three equivalent assertions.

We have seen in Section 2.1.4 that a band preserving operator on a Banach
lattice is automatically bounded, which immediately gives that a linear operator
T : LP(Q) — LP(Q) satisfying T'f = 0 almost everywhere on { f = 0}, is bounded.
We will generalize this result to vector-valued LP-spaces, but we have to distin-
guish cases with respect to the underlying measure space.

Assume that (€2, X, 1) is a non atomic measure space. Then for every measurable
A C Q, such that u(A) # 0, there exists a measurable B C A, such that u(B) # 0
and u(A\ B) # 0.
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Theorem 2.1.23. Let (2,2, ) be a non atomic measure space and E be a sep-
arable Banach space. Assume that T : LP(Q), E) — LP(QQ, E) is a linear operator
satisfying Tf = 0 almost everywhere on the set {w € Q : f(w) = 0} for every
feLP(Q,E). Then T is bounded, i.e. T € L(LP(2, E)).

Proof. Note that since T'f = 0 almost everywhere on the set {w € Q: f(w) =0}
we have TLP(A,E) C LP(A,E) for every measurable A C Q. In particular
171 < 2 max{|{ s 1 oo ac,m -

We proof the theorem by contradiction. Assume that 7' is unbounded. Then
for every M € N there exist two disjoint measurable sets 21,2, C €2 such that
p(€2) > 0 fori = 1,2, and ||Ti1r(q,,m)|| > M and Tj1»(q,,r) is unbounded. Indeed,
if this is not true, then there exists an M € N such that for every two disjoint
sets Q1,Qy C Q with u(Q;) > 0 for ¢ = 1,2, if T s, k) is unbounded, then
| Tien,m)l] < M. Let Q C Q be measurable and Qy := QF, then Tjzs(q;,m) is
unbounded for one 7 = 1,2, otherwise 7" were bounded. Suppose T|»(q,, k) is
unbounded, then ||T|zr(q, 5 || < M. Further let Q5 C Q, and Q4 := Q \ Q3, then
again Tiz»(q,,r) is unbounded for one 7 = 3,4. Suppose T|1»(q, &) is unbounded,
then 7] 1p(,,m)|| < M. Continuing in the same way, we get ||Tizs(q,,_,,5)|| < M
for all n € N and Tr»(q,,,r) is unbounded for all n € N. Further one obtains
Qon = Q\Uj—1 Q2n—1, hence Q = |, oy Q2n—1, where the Qy,_; are disjoint. Thus
|T|| = maxpen || T Lr(@an_1,)|| < M, which contradicts that T" is unbounded.
Now for n = 1, let M = 2" = 2. Then there exist 2,2} C  disjoint of
positive measure such that ||Tizsq,,m)| > M = 2 and Tjs(e;,p) is unbounded.
Then Troy,m) : LP(Q), E) — LP(Q), E) is linear, unbounded and satisfies for
f € P, E), Tir,p)f = 0 almost everywhere on the set {f = 0}. Hence
with the same argument as above, for n = 2 and M = 2" = 4, there exist
0y, C O disjoint and of positive measure such that |7 zr(q,,m)|| > M = 4 and
Tjr»(y,m) is unbounded. Continuing this procedure, we obtain 2, C § disjoint,
such that [|7jze(q,,m)|| > 2" and T r»(a; g is unbounded, where €27, is disjoint to
Qp for k=1,2,...n

Then for all n € N, as ||T1r(q,,5)|| > 2", there exists f, € LP(Qy,, E) such that
| fallzeon,zy = 1 and ||Tize,,e)fal| > 2. We can regard f, as an element of
LP(Q, E), if we set f,, = 0 on QF.

Let f:=>", g—;ﬁxgn. Then

1
o0 = D 5l Falonm = 1
hence f € LP(Q2, E). But
pitls

IT I 0. = Z—nmmn,mfnnmgpr = o0,

which contradict the fact that 7 : LP(Q, F) — LP(Q, E), hence T has to be
bounded. O
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The assumption that the measure space is non atomic is essential in the pre-
vious theorem. Indeed, if Q; C Q is an atom, then every f € LP(Q, E) has
to be constant on €; as a measurable function. Hence, either p(;) < oo or
LP(Qy, E) = {0}.

Assume () < oo and let A : E — E be a linear unbounded operator. For
f € LP(2, E) define

(Tf)(w) = A(fXa, (W) + fxae (W).

Then T : LP(Q, E) — LP(Q), E) is a linear operator satisfying 7'f = 0 almost
everywhere on {f = 0}. But obviously 7" is unbounded.
Since every measure space can be decomposed into a non atomic and a purely
atomic subset, we immediately get the following result.

Corollary 2.1.24. Let (£2,X, ) be a measure space and E be a separable
Banach space. Assume that T : LP(Q,E) — LP(Q2,E) is a linear operator
which satisfies Tf = 0 almost everywhere on the set {w € Q : f(w) = 0}
for every f € LP(Q,E). Then there exists €; C  measurable, such that
Tivn,p) ¢ LP(S4, E) — LP(y, E) is bounded and Q2 \ €, is purely atomic.

This result explains the following notation.

Definition 2.1.25. We say that a linear operator 7 : LP(Q2, E) — LP(Q, E)
belongs to the center of LP(€2, E), and write T' € Z(LP(Q2, E)), if Tf = 0 a.e. on
{w: f(w) =0} and 7|}, gy is bounded for every purely atomic subset €2 of €.

Thus, every center operator on LP(S2, E') is bounded.

2.2 Bounded Multiplication Operators

This section is devoted to the discussion of bounded multiplication operators in
the Banach space LP(2) and bounded operator valued multiplication operators on
LP(Q2, E). In the first case, we recall its relation to center operators. Moreover, we
consider the special case, where the underlying measure space is locally compact
Hausdorff space provided with the Borel o-algebra. Finally, we generalize the
characterization to the vector valued setting.

Our considerations were strongly motivated by the results obtained in [Gr| for
the space of continuous functions. However, we encounter difficulties, whenever
an evaluation of a function at one point is involved.

Again we suppose, that (€2, %, u) is a o-finite measure space, i.e. Q =[], Q, with
1(€2,) < oo, and F is a separable Banach space.
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2.2.1 Scalar Multiplication Operators

First we want to make precise what we understand by a multiplication operator
on LP(Q).

Definition 2.2.1. For a function m : Q@ — C we define on LP(2) the scalar
multiplication operator M,, associated to m by

D(Mp) = {f€LP(Q):mf e L*(Q)},
M,f = mf.

Clearly M,, is a linear operator, but in general unbounded. The following propo-
sition gives an answer to the natural question, under which assumptions on m,
the operator M, is bounded.

Proposition 2.2.2. With the notation above the following assertions are equiv-
alent.

(i) Mm € L(LP(Q)).
(ii) m € L®(Q).
In this case || M| = ||[m]|co-

Proof. (i) = (ii) First assume that p(§2) < oo, then xq € L*(Q2) and thus one
has m = mxq = Muxo € LP(2), hence m is measurable. If p(Q) = oo, let
Q = U, Q, with Q, disjoint and p©(2,) < co. Then m(w) = (MuXxaq,)(w) if
w € ,, and m is measurable.

Let A ={w € Q: |m(w)| > ||Mu]||}, and suppose p(A) < oo, otherwise consider
a subset of finite measure.. Then f := x4 € LP(Q) and ||f]| = (u(A))Y?. If
u(A) > 0, then f # 0 and by the boundedness of M,

Il 1] > 11 = ([ m)xa))
= ([ @)Y > Ml (D = [0, 1]

which is a contradiction, hence p(A) = 0. Therefore |m(w)| < || My,|| a.e., thus
m € L=(Q) and [|ml|oe < || M.

(i)) = (i) m € L2(Q) implies [Mnfll, = (o mfP)"" < [Imlloll £y, for al
f € LP(Q), hence M, € L(LP(Q)) and || My,|| < ||m]]co- 0

Now we can show that on LP(2) the bounded multiplication operators coincide
with the center.

Theorem 2.2.3. For a linear operator T : LP(Q)) — LP(QY) the following asser-
tions are equivalent.
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(i) T is a bounded multiplication operator,

i.e. there exists m € L®(Q) such that T = M,y,.

(i) T(pf)=@(Tf) for all f € LP(Q) and ¢ € L®().
(11i)) Tf =0 a.e. on the set {w € Q: f(w) =0} for all f € LP(Q),
i.e. T € Z(LP(Q)).

Proof. (1) = (11) T(pf) = mef = emf = o(Tf).

(17) = (ui1) Let A={w € Q: f(w) # 0}, then Tf = T(xaf) = xa(Tf) =0 a.e.
on A° = {w e Q: f(w) =0}.

(#4i) = (i) Let T be a linear operator on LP(2), such that (T'f)(w) = 0 a.e.
on {w € Q : f(w) = 0} for all f € LP(Q2), then T is band preserving and
therefore T € L(LP(2)) by Proposition 2.1.17. Further T'(xaf) = xaT'f for each
measurable subset A C Q and all f € LP(Q). Indeed, A° C {w € Q: xaf =0},
hence T'(xaf) = 0 a.e. on AY, which implies x 4¢T (xaf) = 0. Therefore

T(xaf) = xaT(xaf)+xacT(xaf)
= XaT(xaf) + xaT(xacf) = xaTf.

Let 0 # f € LP(Q), let ¢ > 0 and let A = {w € Q : |Tf(w)| > c|f(w)|}.
Assume that p(A) > 0 and let ¢ = xaf. Then 0 # g € LP(Q2) and for almost
all w € A, clg(w)| = ¢|f(w)| < |Tf(w)|, whereas ¢|g(w)| = 0 almost everywhere
on AY. Therefore clg| < xalTf| = |xaTf| = [T(xaf)| = |Tg| a.e., hence
cllglle < | Tgllee < |T)| |lgl|e- Since g # 0, it follows that ¢ < ||T'||. This shows
that

Tf(w)| <I|T| |f(w)] a.e. forall fe LP. (2.1)

Assume next that 4(2) < co. Then xq € LP(Q2). Let m = T'xq. Then m € LP(2)
is measurable. It follows from (2.1) that m € L*(, p) and ||m|| < ||T||. Let A
be measurable. Then T'x4 = Txaxa = xXalxa = mxa. Thus Tf = mf for all
simple functions. Consequently, T f = mf for all f € LP(2) by density.

Finally, if 4(Q2) = oo, choose Q;, C Q measurable such that Q, N, = () for k& # 1,
(%) < oo and Uyen % = . Let my = Txq, and m(w) = my(w) if w € Q.
Then m is measurable and as above, |m(w)| < ||T'|| a.e. and T'f = mf for all
f e Lr(Q). O

In the following we consider (2, B, 1), where Q is a locally compact Hausdorff
space, B the Borel o-algebra and p a Borel measure on ().
In the latter case we assume y to satisfy the following properties:

(i) u is positive,

(ii)) pu(K) < oo for every compact set K C €,
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(iii) for every B C B, we have

wu(B) = inf{u(0) : B C O open},

(iv) the relation
u(B) = sup{u(K) : B D> K compact}

holds for every open set B, and for every B C B with u(B) < oc.

Further we require €2 to be o-compact, i.e. there exist K, C €2 compact, such
that Q =, Kn.

Remark 2.2.4. By [Ru], Theorem 2.18, if each open subset O of Q2 is o-compact,
in particular if 2 = R", then it suffices to assume (i) and (ii) above, in order that
the measure p is regular, i.e. (iii) and (iv) hold for every B C B.

Definition 2.2.5. For f : 2 — R measurable, we call the support of f the set
supp f := Q\ Of with Oy :== {w € Q : U € U(w) : fiy = 0 a.e.}, which is open
in €.

Proposition 2.2.6. For f : 2 = R measurable, f = 0 almost everywhere on Oy.

Proof. By property (iv) we find compact subsets K, C K,+1 C Oy, such that
U, K = Oy almost everywhere. Since every open covering admits a finite sub-
covering, f = 0 almost everywhere on K, for all n. Since a countable union of
null sets is a null set, we obtain that f = 0 almost everywhere on Oy. O

Our aim is again to characterize multiplication operators in this situation, where
the underlying measure space has a topology. Note that here we assume a priori,
that the linear operator is bounded.

Theorem 2.2.7. Let 1 < p < co. For an operator T € L(LP(2)), the following
assertions are equivalent.

(i) There exists an m € L*°(Q) such that Tf = mf.

(i1) supp T f C supp f for all f € C.(Q).

Proof. Let T be a bounded multiplication operator, i.e. there exists m € L*°(Q)
such that Tf = mf for all f € LP(Q2). Let f € C.(€2). Then by Theorem 2.2.3,
Tf = 0 on the set {f = 0}, which contains almost all of O;. Therefore Tf =0
almost everywhere on Oy, hence supp T f C supp f for all f € C.(2).
Conversely, suppose that supp T f C supp f for all f € C.(2). Thus for every
open subset O C Q, f =0 on O implies Tf =0 a.e. on O, for all f € C.(Q).
First we want to show, that for all f € LP(Q), suppTf C supp f, i.e. Tf =0
a.e. on Oy. Let f € LP(Q), and choose w € Oy and let K C O be a compact
neighborhood of w. For ¥ € C,(Q2), such that 0 < ¥ < 1, ¥ =1 on K and
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supp¥ C Oy and f, € C.(f2) such that f, — f in LP(Q2), we obtain that
Co(Q) 3 fum Ufy > f—Uf = f (ac.).

As f,—VUf, =0a.e. on }O{, the open interior of K, by assumption T'(f,—¥ f,) =0
a.e. on IO{ . Hence as n — o0, and if necessary by passing to a subsequence, we

obtain that 7f = 0 a.e. on [O{ Since w € Oy was arbitrary, we get T'f = 0 a.e.
on Of.

We deduce, that for every open subset O C €2, f(w) = 0 almost everywhere on
O implies T f(w) = 0 almost everywhere on O, for every f € LP(Q).

Let A ={w e Q: f(w) =0}, then A® = {w € Q: f(w) # 0}. First assume,
that u(A®) < oco. Then by property (iii) there exist O, C Q open such that
w(0y) < 00, A C Opy1 C O, and p(0, \ A°) = u(0,NA) — 0 for n — oo, and
by property (iv) there exist C,, C O,, compact, such that ;(O, \ Cy) < =.

Let ¢, = xc, € LP(2). Then ¢,f — f in measure and hence for a suitable
subsequence in LP()) by the dominated convergence theorem. Now we have
on(w)f(w) =0 on C¢, which is open and hence T(¢,f) =0 (a.e.) on OF C CF¢.
Letting n — oo, as T'(¢nf) — T'(f) almost everywhere for a suitable subsequence,
we obtain T'(f) = 0 (a.e.) on |J,0f. But OY C OF,; C A and therefore
w(A\ OS) = u(AN 0,) — 0 yields T(f) =0 (a.e.) on A, if u(A%) < co.

Now let u(A°) = oco. Since Q = |, Ky, with K,, compact, we obtain that
A° =, (A° N K,,), with u(A° N K,,) < oo. Consequently 4 = (1), (49 N K,)°.
As above we can show that T'(f) = 0 a.e. on (A° N K,)¢ for all n € N. Hence
T(f) =0a.e. on),(4° N K,)° = A. O

2.2.2 Operator Valued Multiplication Operators

Similar to multiplication operators on LP(2) we study operator valued multipli-
cation operators on L?(2, E'). We denote as usual by £(E) the space of bounded
linear operators on F.

The role of L*°(2) will now be played by an operator valued L.

Definition 2.2.8. Let £,(FE) denote the space of all bounded linear operators
on E, provided with the strong operator topology and

L®(Q,L(E)) :={[M :Q = L(E)] : wr— M(w)x € L*(Q, E) for all z € E}.

Lemma 2.2.9. Let M € L®(Q,L(F)) and f : Q@ — E be measurable, then
Mf:Q — E defined by w — M(w)f(w) is measurable.

Proof. First assume that f = x 4-x for some measurable subset A C 2 and x € F.
Then M(w)f(w) = M(w)xa(w)x = xa(w)M(w)z for all w € Q. Hence M f is
measurable as the product of the two measurable functions M(-)z € L*(Q, E)
and x4. Further M(w) is linear for every w € € and consequently M f is mea-
surable for a step function f = Y77, xa,7; since M(w)f(w) = > 7, xa; M (w)z;.
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If f is an arbitrary measurable function, then there exist a sequence of step
functions f, such that f(w) = lim, o fn(w) for almost every w € Q. As the
operators M (w) are continuous for every w € (), we obtain the convergence
M(w) f(w) = M(w)(limy, 00 frn(w)) = limy, 400 M (w) frn(w). Hence M f is measur-
able as the almost everywhere pointwise limit of measurable functions. O

Lemma 2.2.10. Let M € L>*°(Q, L,(FE)), then

(i) there exists a constant C' and a nullset N, such that for allw € Q\ N and
forallz € E, |M(w)z||g < C|lz||g-

(i1) w— ||M(w)||g—E is measurable.

Proof. (i)Define an operator ® : E — L*(Q,E) by x — M(-)xz. Obviously
® is linear. Further ® is closed, because if z, — z in E and M(-)z, — f in
L>*(Q, E), then M(w)z, — f(w) almost everywhere. But M (w) is continuous
for every w € 2, hence M(w)z, — M (w)z everywhere. This shows f = M(-)z,
thus @ is closed and therefore bounded by the closed graph theorem. Hence there
exists a constant C' such that ||M(-)z||w < C||z||g, therefore | M (w)z|| < C||z||
almost everywhere, where the exceptional null set depends on x. However, since
E is separable, there exists {z,, : n € N} dense in E. For all n € N let N, be the
exceptional null set for z,, then N := |, .y N» is a null set and

IM(w)zn||lz < Cllzn||lz foralln € N and all w ¢ N

As {z,, : n € N} is dense in E, this implies |M(w)z||g < C||z||g for all z € E
and all w ¢ N, i.e. almost all w € Q.

(i7) Observe, that we identify the two elements M and M = M Xo\w in the
space L>®°(Q, Ls(E)), where N is the nullset of part (7). For all x € E, the
map w — M(w)z € L®(Q, E) is measurable, hence w +— ||M(w)z||z is mea-
surable, as ||.||g is continuous. Since E is a separable Banach space, there
exist z, € Bg := {z € E : ||z|| < 1} such that {z, : n € N} is dense in
Bg. Then |[M(w)| = sup, ||M(w)z,||, hence w ~— ||M(w)|| is measurable, as
w = ||M(w)z,||p is measurable for every n € N and the supremum exists be-
cause by the choice of M and part (i), | M (w)z||g < C||z||z for all w € O O

Proposition 2.2.11. L®(Q, L,(FE)) provided with the essential supremum norm
|M||oo := esssup,eq ||M(w)||g—E is a Banach algebra under pointwise multipli-
cation.

Proof. L*(2, Ls(E)) is obviously a vector space over C.

For every element M € L*(Q, L,(E)) the essential supremum norm is finite,
hence well defined. Indeed by Lemma 2.2.10(i) there exists a nullset N, such
that ||M(w)z||g < C||z||g for all z € E and all w ¢ N, thus |M(w)||gse < C
for almost all w € Q. Therefore || M ||« := esssup,cq || M (w)| poE < 0.
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Obviously ||.|| defines a norm on L*(Q2, L;(E)).

L*>*(Q, Ls(E)) is complete, hence a Banach space. Indeed, let M, be a Cauchy
sequence in L®(Q, L (FE)), i.e. for all € > 0 there exists ng = ng(¢) € N such
that n,m > ng implies ||M, — M|loo < e. Further by Remark 1.1.7 for all
(n,m) € N x N there exists a null set NV, ,, such that

WEN\Np,m

Hence for the null set N :=|J,, ey Vn,m We obtain

sup ||M,(w) — M, (w)|| <e for all n,m > ng(e). (2.2)
we\N

Thus for all w € Q\ NV, M, (w) is a Cauchy sequence in L(E), hence convergent.
For w € Q\ N let M(w) := lim,,_,o, M, (w) and for w € N let M(w) = 0. Then
M(w) € L(E) for all w € Q. Further, for all z € E,

M(w)z := xaw(lim M,)(w)z = lim xo\n Mp(w)z

is measurable as the pointwise limit of measurable functions. Moreover, from
(2.2) we conclude, that

sup || M,(w) — M(w)|| <e forall n > ny(e). (2.3)
weN\N

Then for all x € F,

sup ||Mp(w)x — M(w)z|| < e||z|| for all n > ny(e).
weQ\N
Therefore ||M,(-)z — M(-)z|lcc — 0, which implies M (-)z € L*(, E). Hence
M € L*(Q,Ls(F)). On the other hand (2.3) implies |M,(-) — M(-)||loc — O,
which proves that L>(Q, L;(E)) is complete.
For My, My € L*>(Q, Ls;(FE)) we define the product by pointwise multiplication,
hence (M; - Ms)(w) := M;(w) o My(w) € L(E) for all w € Q and

(My - M) (-)x = (My(-) o My(-))z = Mi(-)(Ma())

is measurable by Lemma 2.2.9, since My(-)x € L*®(f, E) is measurable. Further
we have by (1.1),

[(My - M) ()zl|peey = (M) 0 Ma(-)) 2] oo (o,m)
ess sup | My (w)(Ma(w)z)|

IN

ess ilelg(llMl(w)ll ([ Ma(w)z|))

IN

esssup || M (w)|| - esssup || M (w)z|| < oo,
weN weN
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which shows that M; - My € L*(Q, Ls(F)). Thus (M, My) — M - M, is an as-
sociative bilinear mapping from L>®(Q, L;(E)) x L>®(Q, L;(E)) to L*=(Q, L,(E)).
Finally, again with (1.1) we obtain

| My - Ms|lw = eSSSU8||(M1‘M2)(w)||
we

esssu8||M1(w) o My (w)|

we

ess sgg(lll\/h(w)” || Ma(w)])

< esssup || M;(w)]| - esssup || M (w)]|
we wen

IA

= (Moo - [|M2]|co-
Therefore L*(Q2, L;(E)) is a Banach algebra. O

Lemma 2.2.12. Let M € L®(Q, L,(E)) and f € LP(2, E) be measurable, then
Mf:Q — FE defined by w — M(w)f(w) is in LP(Q, E).

Proof. By Lemma 2.2.9 w — M (w)f(w) is measurable. Further there exists a
null set A such that || M|l = sup,eo\ ||M(w)]|. Hence for 1 < p < oo and all
f € LP(Q, F) we have

1/p
1Ml = ( [ ||P)
1/p
< (/ ||M<w>||%ﬁE||f<w>||%)
QW

1/p
< sup M) (/ ||f(w)||%>
weN\N (9AV.Y2
= M 1l

For p = o0 and f € L*>(Q, E) we have

[Mflle = esssup||M(w)f(w)]

wen
< esssup [[M(w)]] esssup [|f (w)]
= [[M]loo [[llco-
Hence for all 1 < p < oo
1M fllze@.m) < [|M oo [|.f |2 (0,2), (2.4)
therefore w — M(w) f(w) is in LP(Q, E). O

Corollary 2.2.13. For M € L®(Q,L,(E)), Muy = f — M(-)f(-) defines a
bounded linear operator on LP(Q, E), i.e. My € L(LP(Q, E)).
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Proof. My is obviously linear and the boundedness follows from (2.4). O

Proposition 2.2.14. The map ® : L®(Q,L;(E)) — L(LP(Q, E)) defined by
M — My is an isometric algebra homomorphism.

Proof. Observe that for My, My € L>®(Q,L;(F)) and A € C

Mosrtanf = (AML() + Mz(+)) f(-) = AML () f(-) + Ma(-) f()
= MM f+ M f = (MM, + Mag,) f

and

Mo f = (Mi(-) o Ma(-)) f(-) = Mi () (Ma(-) £ ()
= AAAﬁ(AAﬂbf)::(AAAﬁ()AAAb)f'

Hence @ is linear and multiplicative, i.e. an algebra homomorphism.

We still have to show that ||[Mu]| = [|M||- By the inequality (2.4) we get
IMarfll = IMSl] < |IM|lo || f]l, hence ||Mu]| < ||M]|co- For the converse
inequality define for each z € E the set A, := {w € Q : |M(w)z| > |[IMulll|zl||},
which is measurable, since w +— |[[M(w)z| € L*(£2) is measurable. We can
assume p(A;) < oo, otherwise consider a subset of finite measure. Then the
function f := x4, -z € LP(L, E) for all x € E and ||f|| = ||z||(u(Ag))"? for
1 <p<ooand |f|| = || for p = co. Suppose that u(A,) > 0. Then by the
continuity of M, we get for 1 < p < o0

IMarll lzll ((A)'? = IMaall I > [1Macf

= ([t xnp)
- (/ ||M(w>x||%)

IMal 2l (1(A2) 2,

V

and for p = oo

[IMullllzl] = [Mall I = [[Marrfloo
= esssugHM(w)XAw(w)iE“E
we
= ess sup || M(w)z||m

WEAL

> Ml

which leads in both cases to a contradiction. Hence u(A;) = 0 and therefore
IM(w)z|| < ||Ma]|||z]| almost everywhere, where the exceptional null set de-
pends on z. Now we proceed in the same way as in the proof of Lemma 2.2.10.
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Since F is separable, there exists {z,, : n € N} dense in E. For all n € N let N,
be the exceptional null set for z,, then N := Unen NVn is a null set and

IM(w)znlle < ||Mull ||Zn]|z forallm € N and all w ¢ N.

As {z, : n € N} is dense in E, this implies ||M(w)z||g < [[Mun] ||z||g for all

z € Eand allw ¢ N, thus ||M(w)||g—e < ||[Ma]| for almost all w € Q. Therefore
[ M ||oo := esssup,eq | M (w)][p-5 < Ml [

Definition 2.2.15. We call an operator M € L(L?(Q2, F) a bounded operator
valued multiplication operator if M = M, for some M € L*®(Q, L,(E)),
ie. M e ®(L>(Q, Ly(E)).

Remark 2.2.16. Note that ® is an isometric isomorphism from L*°(Q, L;(E))
to the bounded operator valued multiplication operators.

In particular, since L>(Q, L;(E)) is complete, the set of bounded operator valued
multiplication operators is closed in L(L?(2, E)).

We have the following characterization. Here again, we write for short {f = 0}
for the measurable set {w € Q : f(w) = 0}.

Theorem 2.2.17. For a linear operator T : LP(Q, E) — LP(2, E) the following
assertions are equivalent.

(i) T is a bounded operator valued multiplication operator,

i.e. there erists M € L*(Q, Ls(E)) such that T = M.
(i1) T(pf)=@(Tf) for all f € LP(Q, E) and ¢ € L>®(9).

(iii)) Tf = 0 a.e. on the set {f = 0} for Ezll f € LP(QE), and Tu,m) s
bounded for every purely atomic subset Q2 C Q, i.e. T € Z(LP(Q, F)).

Proof. (1) = (1) Let f € LP(Q, E) and ¢ € L*(Q), then

(T(ef)w)) = Mw)(ef)(w) =Mw)ew)f(w)
= pwM(W)f(w) = pW)(Tf)(w)

for almost all w € €2, hence T'(¢f) = ¢(Tf).

(17) = (4i1) Let A = {w € Q : f(w) # 0}, then T(xaf) = xa(Tf) =0 ae. on
AC ={f =0}

(174) = (i) We proceed as in the proof of Theorem 2.2.3. Let T satisfy T'f = 0 a.e.
on the set {f = 0} and T\ 15(6,) 1s bounded for every purely atomic subset Q of
Q2. Then T € L(LP(Q2, E)) by Corollary 2.1.24. Further for all A C 2 measurable,
XacT (xaf) =0, because A° C {xaf = 0} and therefore T'(x4f) = 0 on A°.
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Thus

T(xaf) = xaT(xaf)+ xacT(xaf)
= xaT(xaf) +xaT (xacf) = xaTf

Let 0 # f € LP(), E) and ¢ > 0, define A := {w € Q : (T f)(w)]| > c||f(w)]|}-
Suppose, that u(A) > 0, then 0 # g := xaf € LP(Q, E) and

i@l < 1AW = 1Tl weAa
"’”g(“’)”‘{ 0 < |(T9)w] ! o AC

and consequently cl|gllz» < ||[Tgllz» < [[T]||lgllzs. Since g # 0 we conclude
¢ < ||T||, which shows

Tl < T [f@)lle  ae. forall fe LP(Q, E). (2.5)

Now first assume that () < oo, then for all x € E, xq -z € LP(, E).
Therefore, we can define M, := T(xq - ), which is an element of L*(Q, E),
because T'(xq - ) € LP(Q), E) is measurable and | M,|l« < [|T||||z]| by (2.5).
Then in view of

Myzi42, = T(xa-(Az1+122)) =T (Axa -1+ xa - T2))
= )‘T(XQ : 371) + T(XQ : 372) = )‘Mm + Mm

for all A € C and zy,z € E, the map £ — L*®(Q, FE) : © — M, is linear. In
particular | My, — My, |lco = [|May—25]lc0 < ||| ||21 — x2||. Again we use the fact

that F is separable, hence there exists {z, : n € N} dense in E. Then there
exists a null set N' C Q such that for all w € Q\ N and all n,m € N

| M, ()| < 1| |2l (2.6)

and
Mz, (W) — M, (W) < [T lzn — 2l (2.7)

and
M., (w) + M, (w) = My, 1z, (w) (2.8)

and
M . (w)=—-M,, (v) (2.9)

and
Mig, (w) = iMy, (w) (2.10)

Now for w € Q\N define M, (w) := lim,,_,o, M,, (w) where z, — z. Then M, (w)
is well defined, because for z,, — x and Z,, — z, by the linearity of x — M, and
(2.7) we have

M, (w) = Mz, (w)|| < ([T |2 — Znl] = 0.
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We claim, that 2 — M (w) € L(E). From (2.6) we deduce
[T, @) = lim My, @) < tim [T zall = [Tl 211)

for all w € Q\ NV, hence z — M,(w) is bounded. In the same way we obtain
from (2.7) o o
[My(w) = Mz ()| < ||IT] [l — &]]

for all w € Q\ V. B
We still have to show that x — M, (w) is linear for all w € Q \ N. For the
additivity let z,, - x and %, — Z, then by (2.8) and (2.9)

Myiz(w) = Hm My, us,(w) = lim (M, (w) £ Mz, (w))
= Mg(w) £ Mzw).

From the additivity we immediately deduce M ,,(w) = 2M,(w) for all z € Z.
Then for all rational numbers ¢ = £ with z € Z and n € N we obtain that
M 4o (W) = Mpge(w) = M p(w) = 2M 4 (w), thus Mg, (w) = 2My(w) = ¢M4(w).
Further every real number r is the limit of some sequence of rational numbers
Gn- Since || Mg,z(w) = Mo (w)|| < || gnz — raf] < [|T| g — 7| lz]l = 0, we get
M,z (w) = limy,_yoo My, o (w) = limy 00 ¢n M z(w) = 7Mz(w). Analogously we get
for z, — z by (2.10) M, (w) = limy, 400 Mip, (w) = limy, 00 iM,, (w) = 1Mz (w).

Hence for all A € C,
My (W) = M e Natiim s (w) = Re AM () 4+ 1 Im AM , (w) = AM 4 (w)

Therefore x — M, (w) € L(E) for allw € Q\N. Set M,(w) = 0 for w € N, then
z— My(w) € L(E) for all w € Q.

We claim that for all z € E, w — M,(w) € L®(Q, E). Let x € E be fixed, and
let z, — x for n — oo. Then M,(w) = lim,_,q xo\w Mz, (w), hence measurable
as the pointwise limit of measurable functions. In order to obtain that the map-
ping w — M,(w) € L®(Q, E), it suffices to show that M,(w) = M, (w) almost
everywhere.

For the moment, assume that u(Q2) < oo. Let z, — z in E, then xq -2, = Xo- =
in LP(Q, E). Indeed, for 1 < p < o0

1/p
e - 0 — X0 - 2llisiom = ( / ||m(w>-xn—>m(w>-x||du)
Q

1/p
= ([t )
Q

= [lzn — 2 (())"” =0
and for p = o0

Ixe - 2n = xo - lloc = esssup [Ixa(w) - 2n — Xo(w) - 2| = Jlon = 2l| = 0.
we
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Since T € L(LP(2, E)) is continuous, we also have T(xq - z,) = T(xq - ) in
LP(Q2, F), and therefore for a subsequence T'(xq - Z,)(w) = T(xa-z)(w) = My(w)
almost everywhere. But T(xq - 7n)(w) = M,, (w) — M(w) for all w € Q\ N.
Hence M, (w) = M,(w) almost everywhere.

Now for all w € Q define M(w) := [z — M (w)] € L(E). Then M : Q — L(E)
defined by w — M(w) is an element of L>®(S2, L;(E)), because we have that
Wi M(w)z = M,(w) € L®(Q,E) for all 7 € E.

We still have to show, that 7'f(w) = M(w)f(w) almost everywhere for every
f € LP(2, E). Indeed

T(xa - 2)(w) = My(w) = My(w) = M(w)z,

where each equality holds for almost all w € Q. Since T'(xaf) = xaT f for all
A C Q measurable and all f € L?(Q, F), we deduce

T(xa-2)(w) = T(xaxe )W) = (xaT(xa - )W) -
= XaW)T(xo - 2)(W) = xa (W) Ma(w) = xa (W) M (w)
= xaW)Mw)z = M(w)(xaw) - ).

By linearity, for all simple functions 7 f(w) = M(w)f(w) almost everywhere,
and since the simple functions are dense in L?(2, F) and by continuity of the
operators, we obtain 7 f(w) = M(w) f(w) almost everywhere for all f € L?(Q, F).
Finally, if ;4(©2) = oo, choose measurable Q C €, such that Q; N Q; = @ for
k#j, p(Q) < oo for all k € Nand Q = J, Q. Then T € L(LP(, E)) for all
k € N and satisfies (i73). Hence for w € €y we can define My(w) as before, such
that w — My (w) € L>®(Q, Ls(F)) and T f(w) = My (w)f(w) almost everywhere
on Qf and for all f € LP(Q, E). Now let M(w) = Mi(w) if w € Q, then
w i M(w) € L*®(Q,L(E)) and T f(w) = M(w)f(w) almost everywhere on {2
and for all f € L*(Q, E). O

We immediately obtain an analogue to Proposition 2.2.2.

Proposition 2.2.18. Denote by O(F) the set of linear operators on E, not
necessarily bounded. Let M : Q — O(E) be a function and define a linear
operator
T: LP(ULE) — LP(Q) F)
Pl e M@)fW)

Then T is bounded if and only if M € L*>°(Q, Ls(F))

(2.12)

Proof. If T is given by (2.12), then for every f € LP(QQ, E), Tf = 0 a.e. on
{f = 0}. If T is bounded, then in particular T| LP(0,E) is bounded for every purely

atomic subset Q of . Hence 7T satisfies (i77) of Theorem 2.2.17 and get that
M € L*(Q, Ls(F)). The converse is contained in Corollary 2.2.13. O
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2.3 Unbounded Multiplication Operators

After the discussion of bounded multiplication operators, we are certainly in-
terested in unbounded multiplication operators on scalar and vector valued LP-
spaces. We will study some basic properties, which lead us over spectral con-
siderations to multiplication semigroups. Again, we have been inspired by [Gr],
where such operators are treated on the space of continuous functions. But once
more, we could not transfer the results, whenever an evaluation of a function at
one point is involved.

2.3.1 Unbounded Multiplication Operators on LP-spaces

Throughout this section, let €2 be a o-finite measure space and E a Banach space.
We will not treat the scalar case where £ = R or C separately.

We study those unbounded linear operators on LP(£), E'), which are defined
through pointwise multiplication with linear operators on E.

Definition 2.3.1. Let (A, D(.A)) be an unbounded linear operator on L?(Q, E).
It is called an unbounded operator valued multiplication operator, if there
exists a family (A(w), D(A(w))weq of linear operators on E, such that

D(A) = {feL’(QFE): f(w) € D(A(w) for almost all w € Q
and w — A(w) f(w) € LP(Q, E)}
(Af)(w) = A(w)f(w) for all f € D(A) and almost all w € €.

In this case the operators (A(w), D(A(w))weq are called the fiber operators of
A.

Lemma 2.3.2. An unbounded operator valued multiplication operator (A, D(A))
on LP(Q), E) satisfies

(1) for all f € D(A) and all o € L*®(2), of € D(A) and A(of) = o(Af),
(i1) for all f € D(A), Af =0 a.e. on the set {w € Q: f(w) =0}.

Proof. (i) Let (A(w), D(A(w))w,eq be the fiber operators of A. Let f € D(A)
and ¢ € L>(Q). Then f(w) € D(A(w)) for almost all w € 2 and the mapping
w i AWw)f(w) € LP(Q, E). Further p(w) is a bounded scalar for almost all
w € Q. Hence p(w)f(w) € D(A(w)) for almost all w € €, and

w = AW)pw) f(w) = p(w)Aw)f(w) € LP(Q, E),

ie. of € D(A). In particular A(pf) = p(Af).
(ii) Let ¢ = xqr20y € L®(2). Then f = ¢f and by (i), we obtain the equality

Af = Alpf) = G(AF) = Xrz0(Af) = 0 ae. on {w € Q: f(w) = 0}, O
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Remark 2.3.3. In contrast to bounded operators, the properties in the above
lemma do not characterize multiplication operators. For example on L?(f2) the
Laplace operator A satisfies (i7) of the above lemma, but not (i) nor is it a
multiplication operator.

For a discussion of spectral properties we are interested in closed operator valued
multiplication operators. The following lemma shows, how this property can be
deduced from the fiber operators.

Lemma 2.3.4. If A(w) is closed for almost every w € §Q, then A is closed.

Proof. Let D(A) > f, — f and Af, — g in LP(Q, E). Then for a subsequence
folw) = f(w) ae. and A(w)fn(w) = (Afn)(w) — g(w) almost everywhere.
As A(w) is closed for almost every w € Q, we obtain f(w) € D(A(w)) and
A(w) f(w) = g(w) almost everywhere. Hence, f € D(A) and Af = g. O

2.3.2 The Resolvent of a Multiplication Operator

In the sequel we will always assume (A, D(A)) to be a closed operator valued
multiplication operator with closed fiber operators (A(w), D(A(w))weq- We shall
establish a relationship between an operator and its resolvent with respect to the
property of being a multiplication operator.

Lemma 2.3.5. Let A be a multiplication operator, and assume X € p(A). Then
the operator R(A, A) is a bounded multiplication operator.

Proof. For all f € LP(Q), E), we have R(\, A)f € D(A). Hence for all ¢ € L*°(2)
by Lemma 2.3.2, as A is a multiplication operator, pR(\, A)f € D(A). Further
(A—A) is a multiplication operator with fiber operators (A — A(w)) and also with
Lemma 2.3.2, we obtain

A= AR\, A)f) = (A= A (RN A)f) = of.

Therefore R(A, A)pf = R\, A)(A—A)(pR(\, A)f) = ¢R(\, A) f, which implies
by Theorem 2.2.17 that R(\,.A) is a bounded operator valued multiplication
operator, i.e. there exists an M € L*(Q, L,(E)) such that R(A\, A) = My,. O

Since we have a characterization for bounded multiplication operators, the con-
verse result would be a strong tool. With the following theorem we can conclude
from the fact, that the resolvent is a bounded multiplication operator, that also
A is a multiplication operator.

Theorem 2.3.6. Let A be a densely defined closed operator on LP(Q), E). As-
sume that there exists an unbounded sequence (Ag)ren C p(A) such that for all
feLP(QFE), limg oo Me R(Ae, A) f = f. If R(\k, A) is a bounded multiplication
operator for every k € N, then there exists a family (A(w)),eq of densely defined
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closed operators on E, such that (A, D(A)) is a multiplication operator with fiber
operators (A(w), D(A(w))). Further there exists a null-set N such that for every
w € Q\N and for every k € N one has M\, € p(A(w)).

Proof. Let My, : Q@ — L(E),w — M, (w) € L>®(Q,Ls;(F)) be determined
by the bounded multiplication operator R(M, A), i.e. for all f € LP(Q, R),
(R(Ak, A) f)(w) = M), (w) f(w) for almost all w € .

1. Step: For almost all w € Q, (M, (w))ken is a pseudo resolvent.

The resolvent equation

(A = Ae) (B(A, A)R (A, A) ) (W) = (B(Ak, A) f) (W) = (B(As; A) f)(w)

holds for all f € LP(Q, E) and almost all w € €, where the exceptional null-set
depends on f.

Since (2 is o-finite, there exist €2, disjoint, such that Q =, €, and p(€,) < oco.
Further there exists {z,, : m € N} dense in E, because E is separable. Then
define f m = X, - Tm € LP(Q%, E).

As the countable union of null-sets is again a null-set, there exists a null-set N7,
such that for all m € N and for all w € 2\ Ni, there exist an n € N such that
w € Q, \ N, and

(A = Ae) (BN, A) R (A, A) fom) (@) = (R(Ak, A) frm) (@) = (R(A A) fom) (W)

and
(R(Ae, A) frm) (W) = My, (w) frm(w) = My, (w)Zm

and

(BN, A)R(Ak, A) fom) (w) = My, (W) M, (@)

Therefore, we obtain for all m € N and for all w € 2\ N if we choose n such
that w € Q, \ Vi,

(N = )‘k)MAz( )M (@)
= (N = M) (RN, AR, A) frm) (W)

= (B(Ax; A) fom) (W) = (BN, A) frm) (@)
= My, (@)zm — My, (W)Zm

Since {z,, : m € N} is dense in E we obtain by continuous extension, that
(A = Ae) My ) My, (w)z = My, (w)z — My, (w)z for all z € E and all w € Q\ N,
i.e. for almost all w € Q, (M), (w))ken is a pseudo resolvent.

2. Step: For almost every w € €2, limy_, o0 A\g My, (w)z =z for allz € E.

Since \,R(A\g, A)f — f for all f € LP(Q, E), ||M\eR(M, A)f]| is bounded and
therefore by the principle of uniform boundedness, ||[AxR(\, A)|| < C for some
constant C.
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Recall that ||A;R(Ax, A)|| = ||Mx,(:)||L=(0,c,(5)) by Proposition 2.2.14. By Re-
mark 1.1.7 there exists a nullset A5 such that

sup || A Mo, ()| = [[ MM, ()| Lo @, (8))-
weMN\N2

Hence for all w € Q \ N3 and for all k € N,
| A M, (W) ||z < A6l | Ma, (D llzee@,c.8)) = (ARl [R(AR, A)|| < C.

Further Ay R(\g, A) f(w) — f(w) for a subsequence, which we shall again denote
by Ar, and almost all w € €2, where the subsequence and the exceptional null-set
depend on f. Again for the countable f, ,, we obtain a subsequence and a null-set
N3, such that for all m € N and all w € '\ (N; UN3), there exists n € N such
that w € Q, \ (M UN3) and

lim A\ M)y, (w)zm = klim MR (A, A) from(w)
— 00

k—o0
= fn,m(w) =Tm

Let N = Ny UN; UN3, then for allw € Q\ NV and all z € E
A M, (W) — zf| < [[ MMy, (W)[llz = zml| + [[Me M, (W) T = Tin || + |27 — 2],

which implies since {z,, : m € N} is dense in E, that limy_,o, Ay M), (w)z = z for
allz € F.

3. Step: Construction of fiber operators.

Combining Step 1 and 2, for almost all w € 2, namely all w € Q\N, (M), (w))ken
is a pseudo resolvent satisfying limy_, Ay M), (w)x = z for all x € E. By [EN],
Corollary I11.4.7, there exist densely defined closed operators (A(w), D(A(w))
such that \; € p(A(w)) and (M), (w)) = R(\, A(w)) for all £ € N. We set
Alw)=0forwe N.

Define an operator B by

D(B) = {felL’(,E): f(w) € D(A(w)) for almost all w €
and w — A(w)f(w) € LP(L, E)}
Bf(w) = Aw)f(w).

4. Step: B = A.
Let A € {)\ : k € N} be arbitrary, but fixed. Then

D(A) = R\ AE
= {fel’(Q,E):3pe PO, E),f =R\ Ay}
c D(B).
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Indeed, if f € LP(Q, E) such that there exists ¢ € LP(Q, E) and f = R(), A)yp,
then for almost all w € €Q,
f(s) = R(A A)p(s) = My(w)e(w)
= R(\ Aw))p(w) € D(A(w)

and

AC)C) = AC)RMA AC)e()
= AR(A AC))e() = ()
= M() = () € L7(Q, E).
And for f € D(A) and almost all w € ©,
Af(w) = AR, A)p(w) = Af(w) — p(w) = (AR(A, A(w)) — Id)p(w)
= AW)R\ AWw))p(w) = A(w) f(w) = Bf(w).

Hence A C B.
Conversely,

D(B) = {feL’(QFE): f(w) € D(A(w)) for almost all w €
and w— A(w)f(w) € LP(QL E)}
C {felP(VE):Tpe P(E), f=R\Ap}
= D(A).

Indeed, if f(w) € D(A(w)) for almost all w € Q and A(-)f(:) € LP(Q2, E), then
o= Af —A()f(-) € LP(Q2, E). Moreover, for almost all w € €2, the equality
f(w) =R\, A(w))p(w) = My(w)p(w) = R(A, A)p(w) holds. Thus B=A4. O

If we already assume, that A is a multiplication operator, we get the following
relationship between the resolvent of unbounded operator valued multiplication
operators and the resolvent of their fiber operators.

Proposition 2.3.7. Let (A, D(A)) be a closed multiplication operator with closed
fiber operators (A(w), D(A(w)))weq-

(a) If X € p(A(w)) for almost all w € Q and R(\, A(+)) : Q5 w— R(\ A(w))
is in L®°(Q, Ls(F)), then X € p(A) and R(\, A) = MR(,\yA(.)).

(b) If there exists an unbounded sequence (Ag)ken C p(A), such that for all
f € LP(Q,E), one has \kR(\g, A)f — f as k — oo, then for almost all
weQand all k €N, A\ € p(A(w)) and Mg, a¢)) = R(Ax, A).

Proof. (a) Since (A — A)Mpgp a)) = Id = Mg a¢))(A — A), one has (A — A) is
invertible with bounded inverse Mg a(.)-

(b) From A\;R(\g, A)f — f we conclude that A is densely defined. Further by
Lemma 2.3.5, R(\,.A) is a bounded multiplication operator for each k£ € N.
Hence the conditions of Theorem 2.3.6 are satisfied and the claim follows. O
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2.3.3 Multiplication Semigroups

After having established a relationship between the resolvents, it is natural to seek
similar results for the semigroups generated by multiplication operators and their
fiber operators respectively. An important role will be played by the following
operators.

Definition 2.3.8. We call a Cy-semigroup (7 (t));>0 on LP(€2, E) a multiplica-
tion semigroup if for every ¢t > 0 the operator 7T (¢) is a bounded multiplication
operator, i.e. for every ¢t > 0 there exists T(,(t) : @ — L(E),w — T,(t) €
L>®(Q, L;(E)) such that (7(t)f)(w) = T,,(t) f(w) for almost all w € Q.

In order to use the previous results for resolvents, the following characterization
for multiplication semigroups is quite helpful.

Lemma 2.3.9. Let (T (t))i>0 be a Co-semigroup with generator (A, D(A)) on
LP(Q, E), that satisfies | T (t)|| < M e". The following assertions are equivalent.

(1) (T(t))>0 is a multiplication semigroup.
(11) R(\, A) is a bounded multiplication operator, whenever Re A > w.

Proof. (i) = (it) As T (t) is a bounded operator valued multiplication operator,
by Theorem 2.2.17, T(t)f = 0 a.e. on the set {w € Q : f(w) = 0} for all
¢t > 0. Hence for all ReA > w, R(\, A)f = [T e M T(t)f dt =0 a.e. on the set
{w e Q: f(w) =0}, i.e. R(\ A) is a bounded operator valued multiplication
operator.

(i7) = (i) As R(A, A) is a bounded operator valued multiplication operator for all
Re A > w, T(t)f = lim, (3 R(%,A))"f = 0 a.e. on theset {w € Q: f(w) =0},
hence 7 (¢) is a bounded operator valued multiplication operator for all ¢ > 0, i.e.
(T (t))e>0 is a multiplication semigroup. O

Starting from a family of generators, we shall examine the property of defining a
bounded operator valued multiplication operator in the sense of Definition 2.2.15
for the semigroups and resolvents. However, we do not assume beforehand that
the family of operators defines a multiplication operator.

Lemma 2.3.10. Let (A(w), D(A(w)))wea be a family of operators on E, that
generate Cy-semigroups (T,,(t))i>0 satisfying | T, ()| < M e™ for some constants
M > 1 and w € R.. Then the following assertions are equivalent.

(i) For everyt > 0 the map w — T, (t) belongs to L= (2, Ls(E)).

(i1) For every A > w the map w — R(\, A(w)) belongs to L= (82, Ls(E)).
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Proof. (i) = (i) We have for w € Q the representation

RO\, A(w)) = /0 TN (1) d.

Hence from w +— T, (t) € L*(Q,L,(E)), we deduce that for all z € E, the
mapping w — R\, A(w))z = fo e MT,(t)z dt is measurable. Further

1RO A = || [T e M Tvaarl
0
< [ e imolel a
< [ M eI ol b = MO = w) s,
0

which shows that w — R(\, A(w)) € L®(Q, Ls(E)).
(17) = (i) For all z € E, we have

T,(t)r = lim [QR (Q,A(w))]n:r.

n—oo Lt t
Hence w +— T,(t)x is measurable as the limit of measurable functions and since
T, (t)z|| < M e™ ||z||, we obtain w — T, (t)z € L>(Q, L,(E)). O

The previous results did not consider multiplication operators. This shall be done
in the following two propositions.

Proposition 2.3.11. Let (A, D(A)) be a densely defined closed multiplication
operator with densely defined closed fiber operators (A(w), D(A(w)))weq. Assume
that there exists a nullset N C Q, such that for all w € Q\ N, the operator
A(w) is the generator of a Co-semigroup (T,,(t))e>0, satisfying | T,(t)|| < M e™,
where M > 1 and w € R are some constants independent of t and w. If for every
t >0, the map w — xawT,(t) is in L®(Q, L,(E)), then A is the generator of
the multiplication semigroup given by (T (t) f)(w) = xowTw(t) f(w) for almost all
w € Q. Further || T (t)]| < M e™.

Proof. Since w — xawT,(t) € L=(Q, Ls(F)),
(TON W) = xawTu®) f(w)

defines a bounded linear operator from LP(), E) into itself for all ¢ > 0. By
Proposition 2.2.14 we immediately get the norm estimate

1T = lixawTo @)l e@.c.m) < S 1T (@) < Me™. (2.13)

We show that (7 (t))>0 is a Cy-semigroup with generator A. Let f € LP(Q, E).
Observe, that

(T(0) f)(w) = xawTu(0) f(w) = xaw f(w),
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hence 7 (0)f = f, which shows that 7(0) = Id. Further

(TOT ()N w) = xawTL@(T(5)f)(w) = xawTu(t)Tu(s)f(w)
= XawTu(s +1)f)w) = (T(t + 5)f)(w),

which shows T (t +s) =T (t)7 (s).
Finally, as ¢ — 0, (T(¢)f)(w) = xowTu(t)f(w) — f(w) almost everywhere,

and [[(T()f)(w) = fW)lle < ITu@)f(Wlle + [[f(WIle < Clf(w)lls, almost

everywhere, where C' is some constant. Hence, by the dominated convergence

theorem
1/p
ITOF = Flivo = ( / ||T(t)f)(w)—f(w)||%>

= ( / s - f(w)||%) RN

as t — 0. Hence for every f € LP(Q, F), the map t — T (t)f is continuous in 0,

and by the functional equation, it is continuous in ¢ > 0.
The generator G of T is defined by

D(G) = {f e IP(OE) : 133(1)1% exists in LP(Q,E)}
T f
gf = lt%lf

We claim that A = G.

Let f € D(A). In order to obtain that f € D(G) and Gf = Af, it suffices to
show that T'(t)f — f = fo s)Afds. But for almost every w € Q \ N, we have
f(w) € D(A(w)) and therefore

TN - f@) = Tul)f©) - @)= / T(5) A(w) f () ds
- / (T(5)Af)(w) ds

Thus, f € D(G) and Gf = Af. It remains to show that D(G) C D(A).

The estimate ||T,(¢)]] < Me“ implies that A € p(A(w)) for all A > w and
almost all w € Q. By Lemma 2.3.10, w — R(\, A(w)) € L=(, L;(E)), hence by
Proposition 2.3.7, we obtain A € p(.A). On the other hand G is the generator of a
semigroup satisfying (2.13), which implies A € p(G). Then from the surjectivity
of the operators, there exist for every f € D(G), g € L?(Q,FE) and h € D(A),
such that

f=R(\G)g=R\NG)AN—Ah=R(\NG)AN—G)h=he D(A).
Hence G = A. O
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The converse result reads as follows.

Proposition 2.3.12. Assume that (A, D(A)) is a densely defined closed multipli-
cation operator with densely defined closed fiber operators (A(w), D(A(w)))wea- If
A is the generator of a Cy-semigroup (T (t))es0, satisfying ||T (t)|| < M e“t, then
(T(t))e0 is a multiplication semigroup given by some T(y(t) € L>(Q, Ly(E))
for all t > 0. Further for almost all w € Q, (T,,(t))i>0 is a Cy-semigroup with
generator A(w) and satisfies || T, (t)|| < M e"'.

Proof. Since A is the generator of a strongly continuous semigroup 7 satisfy-
ing ||[T@)|| < Me™, for all A > w, A € p(A), and for all f € LP(Q, E),
limy ,0 AR(A, A)f = f. Hence by Proposition 2.3.7, R(),.A) is a bounded
multiplication operator given by R(A,/A) = Mg a¢)), and therefore satisfies
R\ A)(of) = R\, A)f for all ¢ € L®(Q) and all f € LP(Q, E) by Theorem
2.2.17. Hence for every ¢t > 0,
) n_(n n ) n_(n n
TW(ef) = lim 2R (5 4)] () = im [2R(2,4)]" 1 = ¢T0)s,
n—oo LE t n—oo LT t
which implies again by Theorem 2.2.17, that 7 (¢) is a bounded multiplication
operator. Then for every ¢ > 0 there exists w — T, (t) € L>®(, L,(E)).
Since €2 is a o-finite measure space, there exist €2,, disjoint and of finite measure,
such that Q = | J,cy ©2n- From the separability of E we get {z,, : m € N} dense
in E. Now define f, ,, := Xxq, - Tm. Then
(T @) frm) (W) = Too(t) (Xa, - @m) (W) = Xa, (W) Lo () Tm,

for almost all w € Q. Therefore there exists a nullset N' C €, such that for all
w ¢ N there exists n € N such that w € Q,, and for all m € N

To(t)zm = (T (1) fam) (W)

T,00)Zm = Tm

Tt + 8)xm = T, ()T, (s) (W) T

T,0)zm =z, (t—0).
By the density of {z,, : m € N} in E and the continuity of the T,,(¢), we conclude
that (7,,(t))i>0 is a Co-semigroup for all w € Q\ V.
Further we have

(R(A, A) frm) (W) = R(A, A(w)) (Xa, * Tm) (W) = Xa, (W) R, A(w))Zm.

Hence there exists a nullset A” O A, such that for all w ¢ N there exists n € N
such that w € €2, and for all m € N

ROVAW@) T = (RO A) fum) ()
- / T () (frm) () dt

_ / e M T (1) dt.
0
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By the density of {z,, : m € N} in E and the continuity of the R()\, A(w)) and
the dominated convergence theorem, we deduce

ROV A(w))z = /0 T ML (1) dt

for all z € E, hence A(w) is the generator of (77,(%)):>o-
Moreover, for almost all w € Q, ||T,,()|| < [|T)(t)||o = | T (2)]] < M ™. O

We conclude this section with some remarks. Theorem 2.3.6 will play an impor-
tant role in the sequel, but it requires many assumptions.

However, if A is the generator of a Cy-semigroup with growth bound w, i.e.
IT@)|| < Me* for some constants M > 1 and w € R, then X\ € p(A) for all
A>wand AR\, A)f — f as A — oo holds for every f.

By the following lemma, in this situation, it is even sufficient for the assumptions
of Theorem 2.3.6, if R(A, A) is a bounded multiplication operator for one A > w.

Lemma 2.3.13. Assume, that R()\, A) is a bounded multiplication operator for
one Ao € p(A). Then R()\, A) is a bounded multiplication operator for all A €
po(A), where po(A) is the connected component of p(A) containing Ao.

Proof. For all A € C such that |\ — Xo| < |[[R(No, A)||7, we have X € p(A) and
the power series expansion R(A, A) =3 >7 (Ao — A)"R(Xo, A)"TL. It is clear, that
> o(do — A)"R(Ag, A)"** for each m € N is again a bounded multiplication
operator, and since the set M of bounded multiplication operators is closed in
L(LP(Q, E)), see Remark 2.2.16, we get that R(), A) is a bounded multiplication
operator.

Now we take a A\; € B(\g, ||R(Xo, A)||7!) and consequently obtain for each A such
that |A — A1 < ||[R(\y, A)||7t that R(), A) is a bounded multiplication operator.
By this method we can exhaust the entire connected component. O

With the above considerations we immediately get the following result.

Corollary 2.3.14. Let A be the generator of a strongly continuous semigroup on
LP(Q), E) with growth bound w and assume that R(\,.A) is a bounded operator
valued multiplication operator for one A with Re A\ > w. Then A is an operator
valued multiplication operator.

We conclude this section by summing up the above results in one theorem.

Theorem 2.3.15. Let (A, D(A)) be the generator of a strongly continuous semi-
group (T (t))i>0 on LP(U, E), satisfying ||T(¢)|| < Me™. Then the following
assertions are equivalent.

(1) (T(t))>0 is a multiplication semigroup.
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(i) The resolvent R(\,A) is a bounded operator valued multiplication operator
for all Re X\ > w.

(iii) The resolvent R(\,A) is a bounded operator valued multiplication operator
for one A > w.

(iv) A is an unbounded operator valued multiplication operator with fiber oper-
ators (A(w), D(A(w))weq. Moreover, for almost all w € Q, A € p(A(w))
whenever Re A > w, R(\, A) = Mg a)) and (A(w), D(A(w)) is the gen-
erator of a Cy-semigroup (T,,(t))i>0 such that T (t) = M @) for all t > 0.

2.4 Local Forms and Multiplication Operators

On a Hilbert space H we consider a coercive closed form a with domain V,
which is dense and continuously embedded in H. In order to use the results
of the previous sections, we assume, that H is also a Banach lattice. Hence by
[Scha], Theorem IV.6.7, H = L*(Q) for some measure space (2,3, ). We assume
additionally, that € is o-finite.

We will also consider a more general setting, where the underlying Hilbert space
is H = L*(Q, H), the space of H-valued square integrable functions. Here we
only suppose that H is a Hilbert space, but assume no order structure, such that
‘H is not necessarily a lattice. Also in this case we assume the form domain V to
be dense and continuously embedded in H.

2.4.1 Locality and Support

We have seen in Section 1.3, that the operator associated to a coercive continuous
sesquilinear form is the generator of a Cy-semigroup on H. By the Beurling-Deny
criteria a necessary and sufficient condition for the positivity of the semigroup is
the fact that the form domain V' is a sublattice of H and that a(u™,u™) < 0 for
allu e V.

In most examples the form even satisfies a(u™,u~) = 0 for all u € V. We want
to discuss this property further.

Here we denote for u,v € L?(Q) by u - v the pointwise product, which is measur-
able.

Lemma 2.4.1. Let the form domain V' of a coercive continuous sesquilinear form
a be a sublattice of H = L?(Q). Then the following assertions are equivalent.

(i) a(ut,u™) =0 forallu eV

(i) u-v=0 (a.e.) implies a(u,v) =0 for all u,v € V.
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Proof. (i) = (4i) Since v -v = 0 implies |u| - |[v| = 0, we can assume u,v > 0. Let
w =u— v, then u = w' and v = w™, because u - v = 0. Hence from (i) follows
a(u,v) = alwt,w™) = 0.

(17) = (i) By the fact that u™ - v~ = 0 and (ii), we get a(ut,u™) = 0. O

Remark 2.4.2. Since V is a sublattice of H, u-v = 0 is equivalent to v | v, i.e.
u is lattice orthogonal to v which is again equivalent to inf{|u|, |v|} = 0, where
we take the infimum pointwise.

Now we want to give a name to this property in scalar and vector valued L2-
spaces.

Definition 2.4.3. (i) In H = L*(Q) a coercive continuous sesquilinear form a
with domain V is called local if u-v = 0 implies a(u, v) = 0 for all u,v € V.

(ii) In H = L?(Q, H) a coercive continuous sesquilinear form a with domain V
is called local if ||u||g - |v||# = 0 implies a(u,v) = 0 for all u,v € V, where
lullr = w = flu(w)llz € L*(9).

If H = L%(X), where X is a locally compact measure space, in the literature,
see for example [MR], a form is often called local if supp v N supp v = () implies
a(u,v) = 0, where the support of a measurable function is defined as in Definition
2.2.5.

At a first sight, one might think that on a locally compact space X the two
definitions are equivalent. But our definition is stronger in general, since one has
supp u Nsupp v = ) implies |u| - [v| = 0 (a.e. on X). Indeed, |u|-|v] =0 a.e. on
O, U O,, and supp v Nsupp v = () implies suppu C O,, hence |u| - |[v| =0 a.e. on
X =0, Usuppu C O, UQO,.

Conversely, |u| - |v| = 0 does not imply suppu Nsuppv = ), as is shown in the
following example.

Example 2.4.4. On the interval (0,1) we take the Lebesgue measure A. Let
QN (0,1) = {g;n € N} and let 0 < &, < 1, such that > e, < i, and for
A, = (gn —€n, @n +&5) we have A =, A, C (0,1). Then we get for the measure
AMA) < 3 MAn) = 23 e, < % oand for A9 = (0,1) \ 4, M(A®) > L. Let
f=x4, 9= Xxuc, then f-g=0on (0,1).

However, Oy = {z : 3U € U(z) : fv = 0 a.e.} = (), because for all U C (0,1)
open, there exist ¢, € U and 0 < ¢ < &, such that (¢, — d,¢, +6) C U, but
fign—6.gn+s) = 1 and A((¢n — 0,¢n +6)) = 26 > 0. Hence supp f = (0,1), and
supp f N supp g = supp g.

We prove suppg # 0 by contradiction. Assume suppg = 0, then O, = (0,1),
hence g = 0 a.e. on (0, 1), which contradicts, that g =1 on A® and A(AY) > 1.

Analogously we call an operator local on LP(Q) if Tf = 0 a.e. on the set {f = 0}.
We have seen in Section 2.2.1, that for a bounded operator 7" on LP(X), where
X is a locally compact space, this definition is equivalent to supp T f C supp f
for all f e C.(X).
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2.4.2 Characterization of Multiplication Operators

Here we want to characterize multiplication operators on H = L?({) associated
to a coercive continuous sesquilinear form. We suppose the form domain V' to
be dense and continuously embedded in H. Additionally we require V' to be a
sublattice of H.

Theorem 2.4.5. Let A be an operator on L?(Q), which is associated to a form
a with domain V. The following assertions are equivalent.

(i) A is a positive multiplication operator, i.e. there exists m : Q — [0, 00)
measurable, such that (Au)(w) = m(w)u(w) almost everywhere and for all
u € D(A) ={ueL?:mue L?}

(i) V' has normal cone and a is local.

Proof. (i) = (i) Let A be a positive multiplication operator. In particular A is
selfadjoint and the form is given by

V=D(AY?) = {uel?®:m'uc L%
a(u,v) = (mY?*u,m'’%) /m v(w) dp

Therefore V' has normal cone, because for u,v,w € V, the condition v < u < w
implies |u(w)| < |[v(w)| V |w(w)|, for almost all w € €, hence

fule = ([ m(w)\U(w)IZdu)m
< ([ m e viow )\)%m)w
< ({(erora) v [mrweors))”
< Ve (( [ mpoPan) v ([ meerd) ")

= V2(lullv V lwlly)-

The form a is obviously local.

(i1) = (i) First we show that V is an ideal in H. Since V is a sublattice, by
Remark 2.1.4 it suffices to show, that for u € H, v € V, the condition 0 < u < v
impliesu € V. Let v € V and 0 < u < v. Since V is dense in H, there exists
a sequence u, € V converging to u in H. We can, without loss of generality,
assume that 0 < wu, < v, otherwise set w, = (u, A v) V0, then 0 < w, < v,
w, € V, since V is a lattice and w, — u in H, since the lattice operations are
continuous in the Banach lattice H. Order bounded sets in V' are norm bounded
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because V' has normal cone. Therefore 0 < u,, < v implies sup,,cy ||tun||v < 00,
from which we obtain since V' is reflexive, a subsequence u,, — w converging
weakly to w in V. And therefore u, is converging weakly to w in H, since the
embedding V' < H is continuous. From this and the convergence of u, to u in
H we obtain u = w € V, hence V is an ideal in H.
Since — A is the generator of a Cy-semigroup, using Theorem 2.3.15 we only have
to show, that the resolvent of A, R(\, A) = (A—A)~! is a bounded multiplication
operator for one A < w, where w is the growth bound of the semigroup. By
Theorem 2.2.3 this holds true if and only if R(\, A)u = 0 almost everywhere on
the set {w € Q : u(w) = 0}, for all u € L*(Q). Let u € L?(Q2) be arbitrary and
define

K, ={veL*):v(w)=0ae on{weN:uw)=0}}
Then K, is a closed convex set in H and the orthogonal projection P, onto K,
is given by

P = UX{w:u(w)#0} -

Then |[(P,v)(-)| < |v(-)| and since V is an ideal in H, we obtain

veV =Puel. (2.14)
On the other hand
a(u,u — Pyu) = a(u, ux{u=0})
= G(UX{u:o}, uX{u:O}) + G(UX{U;AO}, uX{u:O})
> 0, (2.15)

by the positivity and locality of the form a. Since (2.14) and (2.15) give the
condition (iii) of Theorem 1.3.5, we conclude that AR(\, A) K, C K, for all A < 0.
In particular v € K, and the multiplication with the scalar A does not interfere
with the property of belonging to the subspace K, hence R(\, A)u € K,, i.e.

R(\, A)u = 0 a.e. on the set {w € Q: u(w) =0},

for all u € L?(Q), since u was arbitrary. Consequently by Theorem 2.2.3, R(), A)
is a bounded multiplication operator, and hence A is an unbounded multiplication
operator. O

2.4.3 Local Forms and Operator Valued Multiplication
Operators

In this section we generalize the previous result to the space of vector valued
square integrable functions. Hence the underlying Hilbert space is

H=L*Q,H):={f:Q— H measurable : / | (W)||5Hdp < o<},
0
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where (2, %, 1) is an arbitrary o-finite measure space and H a separable Hilbert
space with norm and scalar product denoted by ||.||z and (.,.)s respectively.
We generalize the notion of ideal in the following way.

Definition 2.4.6. A subspace V of H is called an ideal if for u,v € H we have
that v € V and ||u(w)||g < ||v(w)||x a.e. on Q implies u € V.

Let V be a Hilbert space which is dense and continuously embedded in H. Let
a be a continuous coercive sesquilinear form with domain V, and (A, D(A)) the
associated operator.

Recall that we say that the sesquilinear form a is local, if ||u(w)||z - ||v(w)||zg =0
for a.e. w € Q implies a(u,v) = 0.

We want to give conditions on the form such that the associated operator is an
unbounded operator valued multiplication operator. Since the associated oper-
ator is densely defined and closed, we wish to get densely defined closed fiber
operators, i.e. a family (A(w))yeq of densely defined closed operators on H, such
that

D(A) = {feH: f(w) € D(A(w)) a.e. on Q and w — A(w)f(w) € H}
Af(w) = Aw)f(w) ae.

The following example shows, that for a multiplication operator on H, which is
associated to a form, the form domain need not be an ideal in H.

Example 2.4.7. Let H = L*(R"), hence # = L*(Q, L>(R")). Define the form
aonV = L*Q,HY(R")) by a(u,v) = [, [g. Vu(w)Vv(w) dX du. Then the
associated operator is given by (Au)(w) = A(u(w)) a.e. on Q2 on the domain
D(A) ={u € H : u(w) € D(A) a.e. and Au(w) € H}. Hence A is a multiplica-
tion operator, but V is not an ideal in H.

However, we still have the one implication.

Theorem 2.4.8. Assume that the form domain V is an ideal in H and that the
form a is local, then the associated operator A is a multiplication operator.

Proof. Let f € L*(Q, H) be arbitrary and define
Ki={ge L*(%H):|lgw)|zg =0ae on{weQ:|f(w)z=0}}

Then Ky is a closed convex set in 4 and the orthogonal projection Py onto Ky
is given by

Prg = gx{ui @l £0}-
Then |[(Prg)(-)||# < |lg(:)||# and since V is an ideal in #H, we obtain

vueVY=>Pmuel. (2.16)
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On the other hand

a(u,u— Pru) = a(u, ux{s=oy)
a(ux =0}, ux{s=0}) + a(ux{so} UX{s=0})
0, (2.17)

v

by the positivity and locality of the form a. Since (2.16) and (2.17) give the
condition (iii) of Theorem 1.3.5, we conclude that AR(\, A)K; C K for all
A < 0. In particular f € K; and again the multiplication with the scalar A
does not interfere with the property of belonging to the subspace K, hence
R(MNA)f € Ky, ie.

R\, A)f =0 a.e. on the set {w € Q: || f(w)||lz = 0},

for all f € L*(Q, H), since f was arbitrary. Consequently by Theorem 2.2.17
R(A,A) is a bounded operator valued multiplication operator for all A < 0.
Therefore by Theorem 2.3.15 the operator —A, and hence A is an unbounded
operator valued multiplication operator. O
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Chapter 3

Non-autonomous Cauchy
Problems

In this chapter we study non-autonomous Cauchy problems, which are associated
with a family of linear operators depending on the time parameter . Thus, for a
Hilbert space H we consider initial value problems of the type

u'(t) + At)u®) = [f(t), t=0
u(0) = =z €H

and seek solutions in the function space L?(0,T; H). Moreover, we assume, that
the linear operators A(t), which depend on the time parameter ¢, are associated
with sesquilinear forms.

After recalling a result on existence and uniqueness of a solution, we examine
further its properties. We are interested in positive and sub-Markovian solutions
as well as regularity results. A different approach to non-autonomous Cauchy
problems uses semigroup theory and evolution families. Here we use a stronger
notion of well-posedness, but we will apply the result to the original problem.
On this basis we obtain Beurling-Deny criteria as a consequence of invariance of
closed convex sets characterized for generalized sesquilinear forms.

3.1 Solutions of Non-autonomous Cauchy Prob-
lems

As we only consider those problems, in which the operators are associated with
sesquilinear forms, we first treat the variational formulation. Then we examine its
relation to the abstract Cauchy problem. An ingenious representation theorem
of linear functionals in terms of some kind of quadratic forms by J.L. Lions, see
[Li], Chapitre III, then enables us to deduce well-posedness.

57



o8 CHAPTER 3. NON-AUTONOMOUS CAUCHY PROBLEMS

3.1.1 The Non-autonomous Variational Problem

In the following we use form methods as introduced in section 1.3. We consider
two separable Hilbert spaces V and H, denoting the scalar product and norm in
V by ((, )) and ||.||, and in H by (, ) and |.| respectively.

We suppose that V is a dense subspace of H with continuous embedding, i.e.
lu| < c||lul|, for all u € V and a constant c¢. If V' denotes the dual of V' we obtain
by identifying H with its dual H'

VS HS V.

The duality pairing between V' and V is also denoted by ( , ), since for u € V
and h € H C V' one has h(u) = (h,u), the scalar product of h and u in H.

If we denote V := L?(0,T;V) and H := L*(0,T; H), then V' = L?(0,T;V") and
V<2 H <25 V' holds. Let X be a Banach space, in particular X stands for one
of the spaces V, H or V'.

Definition 3.1.1. We say, that a function u € L?(0,T; X) is differentiable in
the sense of distributions if there exists a function v’ € L?(0,T; X) such that

/0 u(t)<p'(t)dt=—/0 u'(t)o(t) dt

holds for all ¢ € D(0,T) = {p € C®(R) : suppy C [0,7]}. The function
u' € L?(0,T; X) is called the derivative in the sense of distributions.

Functions in L?(0,7;V) with the property, that v’ € L?(0,T; V"), will play an
important role in the following, so that it makes sense to introduce the following
notation.

Definition 3.1.2. We denote by W = W(0,T;V,V’) the space of functions
u € L*(0,T,V) such that v’ € L?>(0,T; V"), i. e.

W ={ueL*0,T;V):u € L*(0,T;V"}.

These spaces are thoroughly studied in ([DL5], XVIII §1.2.) and we will just
quote the properties we need, referring to [DL5] and [Ta], Section 5.5 for the
proofs.

Proposition 3.1.3. The space W =W (0,T;V, V') equipped with the norm

1 T 2
2
||u||W:(||u||2L2(0’T,V)+||u'||%2(0’T’V:)) :(/0 [||u(t)||2+||u’(t)||2vf]dt)

15 a Hilbert space.
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Everyu e W =W (0,T;V,V') is almost everywhere equal to a unique continuous
function of [0,T] in H. Further, we have a continuous embedding

w(0,T;V, V") < C([0,T]; H),

the space C([0,T); H) being equipped with the norm of uniform convergence.
Consequently, for a function v € W(0,T;V,V') we may speak of the traces
u(0), w(T) € H. Moreover, the mapping W(0,T;V,V") — H : u — u(0) is
surjective.

Ifu, ve W =WwW(0,T;V,V'"), then (u(t),v(t)) is absolutely continuous and the
following equality holds:

%(u(t), u(t)) = (W' (£), v(t)) + (u(t), v'(2)).

In particular, for u € W = W(0,T;V, V'), v € V, we obtain that the equality
2 ((u(t),v) = (W(t),v) holds, where the derivatives are taken in the sense of
distributions.

Remark 3.1.4. Note that the above proposition holds for [0, 7] replaced by any
interval [a, b] with a < b € R

Now we return to the spaces V <%y H <55 V', Assume that we are given a
family of sesquilinear forms on H with domain V', denoted a(t;u,v), depending
on the time parameter t € [0, 7], with T finite. We suppose the following:

for u,v € V, the function ¢t — a(t;u,v) is measurable, and
|a(t; u, v)| < MJull]]o], (3.1)
M being a constant independent of ¢, u, and v.

Lemma 3.1.5. Under these assumptions and for u, v : [0,T] — V measurable
we have
t = a(t;u(t), v(t))

18 measurable.

Proof. Tt suffices to show, that there exists a sequence of measurable functions
fa(t) with | f, () — a(t; u(t),v(t))] = 0 (n — o0), for almost all ¢ € [0, T].
We have u, v measurable, therefore there exist sequences of step functions

un(t) = Z ug")XAgn) (t), for almost all t € [0, 7]

and
va(t) = Z yz-(n)XA(n) (t), for almost all ¢t € [0,T]
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such that ||u,(t) — u(t)|| — 0 and |[v,(¢) — v(t)]| = 0 for n — oo and almost all
t € [0,T]. Here we achieve the same measurable sets A§") for u, and v, after an

adequate consideration of intersections.
Let

falt) = alt; un(t), va(t) = alt; D X400 (8, D1 Xy (1)

= Dalt i v)x (1)

i

which is measurable, since each term is measurable and the sum is finite.
And we have

|[fa(t) = alt; u(t), v(t))]
= [a(t;un(t), va(t)) — alt; u(t), v(t))|
|a(t; un(t) — u(t), va ()] + la(t; u(t), va(t) — v(t))]
< Mlun(t) = u@)| lva @]l + Mlu@)] v ) —v(@)]
— 0 (asn — 00),
which completes the proof. O

Remark 3.1.6. Due to the inequality |a(t;u,v)| < M|u||||v|| with M indepen-
dent of ¢, we obtain for u, v € L?(0,T;V) and for all ¢ € [0, T], the inequalities
la(t;u(t),v(t))| < M||u(®)||||v(t)]|. Therefore we have a(t;u(t),v(t)) € L*(0,T)
and if v € V we get a(t; u(t),v) € L*(0,T).

For given ug € H and f € L%(0,T; V") we consider the following problem.
Problem 3.1.7. Find a function v € L*(0,T;V), with

/0 {a(t; u(t), (1)) — (u(t), ¢'(t)) }dt = /O (f(1), o(t))dt + (uo, p(0)),  (3.2)
for all functions ¢ satisfying
o€ L*(0,T;V), ¢ € L*0,T;V"), ¢(T)=0. (3.3)

Definition 3.1.8. We say that a solution u € L?(0,T;V) of Problem 3.1.7 de-
pends continuously on the given data, if there exists a constant C' > 0 such
that

lullzzosvy < € (Iluolly + 11
L2(0,T;V7)
Problem 3.1.7 is called well-posed, if for all ug € H and f € L?(0,T; V") there

exists a unique u € L*(0,T;V) such that (3.2) is satisfied, and which depends
continuously on the given data.

1/2
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3.1.2 The Associated Abstract Cauchy Problem

Under the hypotheses (3.1), we can associate to a(t;u,v) for each t € [0,7] a
linear operator A(t) € L(V, V") defined by

(A(t)u, v) = alt; u, v),

for all u, v € V.
Then for a function u given in L2(0,T;V) the function

t s A(t)u(t)

is measurable with values in V. Indeed, the map ¢ — A(t)u(t) is weakly mea-
surable, because (A(t)u(t),v) = a(t;u(t),v) is measurable, and has its values in
the separable space V', hence it is measurable by a theorem due to B. J. Pet-
tis, see [HP], Theorem 3.5.3, or [Pe], or [ABHN], Theorem 1.1.1. Furthermore,
|A@®)u(t)|ly < M||u(t)|]y, from which we obtain A(t)u(t) € L?(0,T;V").

Proposition 3.1.9. A solution of Problem 3.1.7 satisfies
u' € L*(0,T;V")
where u' is the derivative in the sense of distributions. Moreover, u(0) = uy.

Proof. We have to show, that there exists a function w € L?(0,T;V") such that

/0 w(t)b(t)dt = — /0 (e (H)dt, (3.4)

for all p € D(0,T).
Note that u has its values in V' C V' and w has its values in V', so that (3.4) is
meant to hold in V'  ie. forallv € V

(/OT'w(t)w(t)dt, u> =- (/()Tu(t)d)’(t)dt, v) ,

In the following we will use, that if ¢» € D(0,7), then so is the complex conjugate
¥, and for v € V the function ¢(t) = 1 (¢t)v satisfies (3.3) and ¢(0) = 0. Moreover,

o'(t) = U (t)w.




62 CHAPTER 3. NON-AUTONOMOUS CAUCHY PROBLEMS

We set w(t) = —A(t)u(t) + f(t), then w € L*(0,T; V") and

T
= —/ (u(t), ! (t)v)dt (by (3.2), since u is a solution of Problem 3.1.7)
0

_ —/()T(u(t)q/)’(t),v)dt: - (/OTu(t)w’(t)dt, v) .

Moreover, for all ¢ satisfying (3.3), one obtains from (3.2)

(u,00) = [ Haltue). o) = O£ Ot = [ (70 00
_ / (A o)t [ (.0
- / (W), ¢ (8)) Yot — / (u(t), ' (£)) }at

- - [ Gew.eo)a
= ((0). 9(0))

Observe that {¢(0) : ¢ satisfies (3.3)} is dense in H. Thus, u(0) = uy. O
Proposition 3.1.10. Problem 3.1.7 can equivalently be formulated as follows.

Problem 3.1.11. For given initial value ug € H and f € L*(0,T;V") find a
function u € W =W (0,T;V, V"), satisfying u(0) = ug and

[ 1.0y + st eoa = [ @, ena 69

for all p € L*(0,T;V).

or
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Problem 3.1.12. For given ug € H and f € L2(0,T;V") find u € L*(0,T;V),
satisfying
u' € L*(0,T;V")
u'(t) + A)u(t) = f(t) ae inV’
u(0) = uy.

Proof. Let u be a solution of Problem 3.1.7. Then by Proposition 3.1.9 it satisfies
ue W =W(O,T;V,V") ¢ C([0,T]; H) and u(0) = wuo. Moreover, (3.2) is
equivalent to (3.5). As the set of all functions ¢ satisfying (3.3) is dense in
L?(0,T;V), the function u is a solution of Problem 3.1.11. Conversely, a solution
of Problem 3.1.11 obviously solves Problem 3.1.7.

For the equivalence of Problem 3.1.11 and Problem 3.1.12, observe that (3.5)
holds in particular for all functions, which can be written as ¢ = ¥ ® v, with
¥ € D(0,T) and v € V, and we obtain this equation in vectorial form

u'(t) + At)u(t) = f(t) a.e. in V"

Vice versa, the functions of the form f = ). 1; ® v;, where the sum is finite, are
dense in the space L%(0,T;V). O

3.1.3 The representation theorem by Lions

The representation theorem by Riesz-Fréchet plays an important role for well-
posedness of autonomous variational Cauchy problems. In [Li], J. L. Lions intro-
duces a more general representation theorem, which serves as an important tool
to show well-posedness for non-autonomous variational Cauchy-Problems. We
want to present his methods here.

Let F be a Hilbert space. If u, v € F, we denote by (u,v)r the scalar product of
u and v and set ||ul|r = (u, u)},/2

Let ® be a subspace of F'. We suppose that ® is provided with a scalar product
(((p, 1)), for @, ¥ € ®, such that ® becomes a pre-Hilbert space.

For the norm |||¢||| = (((¢¢,¢)))? the space ® is complete or not (the more
interesting case corresponding to ® being non-complete). We suppose that the
function ¢ — ¢ from ® into F' is continuous, i.e.

lellr < elllell], (3.6)

for all ¢ € ®, where c; is a constant.

Note that the space ® is not necessarily dense in F.

The previous conditions are for example fulfilled if ® is a vector-subspace of F',
being neither closed nor dense in F', with the induced pre-Hilbert structure.

We assume to have a sesquilinear form F(u, ¢) on F' x ® satisfying the following
hypotheses:

for all ¢ € @, the form u — E(u, ¢) is continuous on F; (3.7)
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there exists a constant a > 0 such that } (3.8)

|E(@, 0)| > allle]||? for all ¢ € ®.

Note the fact, that the semilinear form ¢ — E(u, @) need not be continuous on
® for fixed u in F.
We have the following existence result.

Theorem 3.1.13. We assume the hypotheses (3.6), (3.7) and (3.8). If o — L(yp)
15 a continuous semilinear form on ®, there exists an element u in F satisfying

E(u, ) = L(¢) (3.9)
for all p € P.

Proof. Since (3.7) holds, we can write
E(u, ¢) = (u, Ko)r, (3.10)

which defines a linear operator ¢ — K¢ from ® into F'. The mapping K from &
into F' is one-to-one; actually, if Ko = 0, then (¢, K¢)r = E(p,p) = 0, and by
(3.8) we get ¢ = 0, since |||¢]|| is a norm.

Let K® = A, then the inverse Ry of K is continuous from A (with the topology
induced by F') into ®.

To see this, we let K¢ = a, then ¢ = Rya, and with (3.8) we have

all[Reall|* < [E(e, @) = (0, Ko)r| < [lellr [1Kollr < cilllell] [1Kollr,

from which we obtain

C
1 Roall] < () llal
(0%

which shows that Ry is continuous.

Therefore we can extend Ry to Ry, a continuous linear mapping from A = B
(closure of A in F) into ® (completion of ® with respect to |||.]|).

The semilinear form ¢ — L(¢) can by continuity be extended to ®, so that

L(p) = (((¢z, ¥)));
with &, € &, and the equation (3.9) is equivalent to

(u, Ko)r = (((§2, ),
for all p € ®, or to
(u,a)r = (((§, Roa))) = (((¢2, Roa))), Va € A. (3.11)

A solution of (3.11) can be found immediately. Let for example P be the or-
thogonal projection (in F) onto B, then R = RyP € L(F;®). We denote by
R* € L(®; F) its adjoint and (3.11) is equivalent to

(U’a a)F = (((gLa Ra’))) = (R*é-La a)Fa Va € A,
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from which follows that one solution of the problem is
u= R*¢]. (3.12)
O

Remark 3.1.14. In general, there is no uniqueness of solutions; the necessary
and sufficient condition for uniqueness is .4 being dense in F'.

Remark 3.1.15. Let |||L||| be the norm of L, i.e.

LI = sup |L()].
€®

©
elll<1

Then the Solution (3.12) of Equation (3.9) satisfies
c
lulle < (5) 11211 (3.13)

3.1.4 Well-Posedness

Recall that we say that Problem 3.1.7 well-posed, if there exists a unique solution
which depends continuously on the given data. Under one additional assumption
on the form a(t;u,v), Problem 3.1.7 is well-posed. The proof of the following
theorem is taken from [Li] and [Ta].

Theorem 3.1.16. We assume that a(t; u,v) satisfies (3.1), as well as the follow-
ing hypothesis: there exists A € R and o > 0, such that

Rea(t;u,u) + AMu> > a||ul|®>, YueV. (3.14)
Then Problem 3.1.7 is well-posed.

Proof. 1) Preliminary reduction.

One can always assume (3.14) to hold for A = 0. Indeed, if we set u = exp(kt)w,
k a real number to be determined, the Problem 3.1.7 is equivalent to finding a
function w, which is zero for ¢ < 0 and satisfies

L d

dt
This is a problem equivalent to Problem 3.1.7 , but with a(¢;u,v) replaced by
a(t,u,v) + k(u,v), from which the result follows.

2) Eistence.
We use the representation Theorem 3.1.13 in the following situation:

a(t; w(t),v) + k(w(t),v) (w(t),v) = (exp(—kt)f,v) + (ug, v)d;

T
F=I2(0,T;V), ”“”F:‘/O lu(t)Pdt)?,
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where @ is the space of functions ¢ satisfying (3.3) with norm

Helll = (lellF + [¢(0)]?)z.
We set

and

E(u, ) = /0 {a(t; u(t), o(t)) — (u(), ¢'(1)) }dt;

L(y) = / (F(8), o(t))dt + (o, 0(0)).

0
Let us now verify, that we are in the situation of Theorem 3.1.13.
For ¢ fix in @, the form v — E(u, ¢) is continuous on F. Then

ReBlog) = [ Reattiplt) o= [ ZloPa

= / Rea(t;w(t),w(t))dt‘i‘(%) [P (0",

0

According to 1), we conclude

T
ReE(p,9) 2 a [ [ol0lFde+ Fol0) > nt(a, ol
Finally the semilinear form ¢ — L(¢) is continuous on ® for the norm |||¢|||.
Therefore, by applying Theorem 3.1.13, there exists u in F' with E(u, @) = L(p)
for all p € ®, i.e. a solution of Problem 3.1.7.

3) Uniqueness.

We only need to proof that u = 0 if u9 = 0 and f = 0. By Proposition 3.1.3,
lu(t)|? is absolutely continuous and

%|u(t)|2 +2Rea(t;u(t),u(t)) = 2Re(u'(t),u(t)) +2Re(A(t)u(t),u(t))
= 2Re(u'(t) + A(t)u(t),u(t)) =0,

so that 4|u(t)|? < 0 and hence, |u(t)| is a decreasing function. Since |u(0)| =0,
we have u(t) = 0.

4) Continuous Dependence on Data

The solution u of E(u, @) = L(y) depends continuously on L (see Remark 3.1.15),
such that the mapping {f,uq} — u is continuous from L*(—oc,T; V') x H into
L?*(—c0,T; V). One obtains from (3.13) that

1 T :
lolle < oo ([ 170+ 1uoP)

2

supposing that (3.14) holds for A = 0. O
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Recall that by Proposition 3.1.3, we have that a solution is an element of the
space C'([0,T]; H), and the following lemma shows, that in this space we still
have continuous dependence on the given data.

Lemma 3.1.17. Let (ug, f) € H x L?(0,T;V") and let u be the corresponding
solution of Problem 8.1.7. Then for allt € [0,T] the following estimate holds.

a t
b+ 3 [ Il dr < gluoly + 5 [ 1501 ar.

In particular, there exists a constant C' € R, such that

lulleqo.rym = SEJI;] w®)|mr < C(luola + || fllz20,m;v7))-
telo,

Proof. Since u is a solution of Problem 3.1.7, it satisfies (3.5), from which we
obtain by replacing ¢ by v and 1" by 7, the energy equality

[ 1,00y + at ). utoniar = [0, uton

From (3.14), for A = 0, we obtain

< [ 1@, u)a
< / 7@ ol
<

— t V, dt + — t 2V dt
which 1mphes

50 + 5 [l < Gw0).00)+ 5 [ 1Ol @

— IOl de
a Jo v ’

and the claim follows. U

IN
=
o
N
(=]
N—r
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3.2 Positive and Sub-Markovian Solutions

Now that we have well-posedness for the non-autonomous variational Cauchy
problem, we are interested in the properties of the solution. Here we want to
find sufficient conditions on the form such that the solution is positive or sub-
Markovian.

In order to talk about positivity, we need the setting of a lattice. It is clear, that
if V is a lattice, then L?(0,T;V) is a lattice. But we do not know an answer to
the following question.

Question 3.2.1. If V is a lattice, do we have W = W (0,T;V, V") is a lattice?

However, there is some sense to lattice operation, if we consider the following
function spaces and spaces of distributions,

V=HiQ), H=L*Q), V'=HQ),

where 2 C R" is an open set.

We denote by ||.|| the norm in L*(0,T’; X), where X denotes one of the spaces V,
H or V', and by |.| the norm in H = L?(Q).

The results of this section have their roots in discussions with D. Daners, while
he stayed at Ulm.

3.2.1 Lattice Operations

On the spaces of lattice valued functions, lattice operations have a sense. Here
we study their properties in a particular setting.

Let D([0,T],V) be the space of all functions ¢ : [0, 7] — V, which are infinitely
differentiable. Then D([0,7],V) is dense in W = W (0, T; V, V"), see [DL5], XVIII
§1, Lemma 1.

Since D(N2) is dense in V = H;(€2) and D([0,T], D(2)) = D([0, T] x §2) we obtain
the following density.

Proposition 3.2.2. D([0,T] x ) is dense in W = W (0,T;V,V').

AsV and H are lattices, we can consider pointwise the positive part of a function
u € L?*(0,T;V), respectively u € L?(0,T; H). We denote by u™ the function
ut: (0,T) = V, respectively u™ : (0,7) — H, defined by u™t(t) = u(t)™.

Since H = L*(Q) and L?(0,T; L*(Q2)) is isometrically isomorphic to L?((0,7T) x )
which is a Banach lattice, for a function v € L?*(0,T; L*(Q2)), u™ coincides with
the positive part in L2((0,7) x ). Therefore, we can immediately deduce that
ut € L?(0,T; L?(Q2) and also get that u, — u in L?(0,T; L*(2)) implies u;” — u™
in L2(0, T; L2(5)).

The following lemma gives us the same properties in L?(0,7; Hy(£2)).

Lemma 3.2.3. (i) Let u € L*(0,T; Hy(Q)), then u™ € L*(0,T; Hy(Q)).
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(ii) Let u, — u in L*(0,T; H3(Q)), then u — u* in L*(0,T; Hy(Q)).

Proof. (i) Since for almost every t € [0,7], u(t) € Hy(2), which is a lattice, we
have u(t)* € Hy(?) and since (u™)" = /x>0y, We get [|u(®)*]|g < [Ju®)|gz-
We have t — wu(t) is measurable, and by the continuity of the lattice oper-
ations in H}(Q) we also get t — u(t)Jr is measurable and moreover obtain
the estimate fOT u(t) ™% ydt < fo |u(t)]% i < 00, from which we deduce that
ut € L?(0,T; H} ().

(i1) By part (i), the Hilbert space L2(0,T; H}(f2)) is a vector lattice, in which
the equality ||ullp2ozm1 () = Il [ul l|l22(0,1;m1(0)) holds. Therefore it is sufficient
to show, that the lattice operations are weakly continuous. Indeed, if u, — u
implies |u,| — |u|, one gets strong convergence in the Hilbert space, because
Il lun| || = |unl] = l|ul| = || |u| ||, and thus for all lattice operations.

Now as u,, — u in L?(0,T; H}(2)) implies u,, — u in L*(0, T; L*(Q2)), we obtain
by the above considerations u;” — u™ in L?(0,7T; L?(Q2)). Furthermore, u” — u™
weakly in L?(0,7; Hy(2)). Indeed for every ¢ € D(0,T;D(2)) = D((0,7T) x ),

() @) oy = / (un (1), 0 e
- / (un(t)"* () 3y + / (un())' (0(0)) 2200
- / (un(t)"* (1)) 20 — / (unlt)*, (0(0)") 22(ey

= (u),0)emria@) — (U, (())") 20015020
— (u™, 90)L2 0,T;L2(Q)) — (u+, (SO(-))")L2(0,T;L2(Q))
(u

S S S

5 <P)L2 0,T;HE ()"

Note that with the same argument, we get that all lattice operations are weakly
continuous. O

Since we have chosen V' and H to be a real valued function space, we can ap-
proximate the positive part u™ of a function u € L?(0,T;V) or L?(0,T; H) with
the help of the following function.

Definition 3.2.4. For € > 0 we set

o 24— >0
JE(T)_{ 0 r<0.

Then j. € C*°(R) and j.(r) converges pointwise to jo(r) = r* as ¢ — 0.
Theorem 3.2.5. Forue W = W(0,T;V,V') we have

u(T)** = [u(0)*]* = 2/0 (w" (), v'(t))dt.
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Proof. First let u € D([0,T] x ), then we obtain for the composition with j.
that j. ou € D([0,T] x ) € C*([0,T]; H). For v € C*([0,T]; H) we have

d !
2 (0(8),0(1) = 2(0(0),v'(1)),

omitting the real part, since we assumed H to be real valued. Applying this to
Je 0 u we get

d

i ou(v)l

oy =2 /Q jeou(t) - 1l o u(t) - u'(t)da.

Integrating on both sides from 0 to 7" leads to

G (w(T)
120y — | (u(0))]? -
L2(Q) — 2/0 (]s o u(t),]é o u(t) . U,(t))L2(Q)dt.

Now we let ¢ tend to 0. The first term |j.(u(T))|?

12(q) converges to |u(T")*|?

2y by
Lebesgue’s dominated convergence theorem, since j.(u(7")) converges poiritv)vise
to u(T)" and |j.(r)| < |r| and here r = u(T) is square integrable. Analogously
we obtain for the second term |[j.(u(0))|?
120y — w(0)7[?. For the third term we
observe that j.ou(t) — u*(t) and j.(r) = X{r>0} pointwise and again Lebesgue’s
theorem yields [} (j. o u(t), 5L o u(t) - w'()) 2(ydt — [ (u*(t),4/(t))dt. So that
we have established the result

u(T)** = [u(0)*[* = /O (w* (), u'(t))dt

for u € D([0,T] x Q).
Consider now u € W = W(0,T;V,V"). Then there exists a sequence of functions
un, C D([0,T] x ), such that

u, —u in L*(0,T; Hy(S2))
and
ul, — v in L*(0,T; H(Q)).

From the first property we obtain by Lemma 3.2.3, that also v — u™ in
L*(0,T; H}(Q)). For these u, € D([0,T] x ), we have

[n(T)]* = Jun (0) " = 2/0 (ty (), u (1)) 2.

We now let n tend to infinity. Observe that u,, — uwin W = W(0,7; V, V"), which
is continuously embedded in C([0,T]; H). Therefore we obtain u,(T) — u(7T)
and u,(0) — u(0) in H, and since H = L?(Q) is a Banach lattice with contin-
uous lattice operations, we have |u,(T)*| — |u(T)*| and |u,(0)*] — |u(0)"]|.
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Further (u,}(t),u! (t)) denotes the scalar product in H as well as the duality
pairing between V and V| if u} (¢) is viewed as an element of V'. Hence the ex-
pression fOT(u;LF (t),ul (t))dt denotes the duality pairing between L?(0,T; H}(Q2))
and L?(0,T; H~'(Q)). Therefore we get [, (uz(t), uly(t))dt — [ (u*(t), ' (t))dt.
This completes the proof. O

Remark 3.2.6. The same results can be obtained for any s € [0,7] instead

of T, if we just consider the interval [0, s] instead of [0,7]. Therefore we have
Vs € (0,7

[u(s)** — [u(0)*]” = 2/Os(u+(t), u'(t))dt.

And since v~ = (—u)T we also get
[u(s) " |* — [u(0)"|* = —2 /OS(U(t),U'(t))dt-

3.2.2 Positivity

Now we want to examine positivity of the non-autonomous Cauchy problem. We
will give sufficient conditions on the form in order to have a positive solution,
whenever the given data uy € H and f € L?(0,T;V") are positive. This reminds
of the Beurling-Deny criteria, which have been studied for the autonomous case
in Section 1.3. We will make the same assumptions on the forms a(t;u, v) for
almost all ¢ € [0, 7], and show that they are sufficient for positivity.

However, this does not extend the Beurling-Deny criteria to the the general non-
autonomous case, since these results are restricted to the case where V = H}(Q2)
and H = L?(Q) are real valued function spaces and V' = H1(Q).

Theorem 3.2.7. Assume that for each u € V = Hj ()
a(t;u®,u”) <0,

for almost allt € [0,T], then the solution of the non-autonomous Cauchy-Problem
18 positive.

Proof. We have to show that for H > uy > 0 and L?*(0,7,V') > f > 0 the
solution u € W = W(0,T,V, V") is positive. Note that we have u(0) = ug > 0
and therefore v~ (0) = 0.

Since u is a solution, it satisfies by Proposition 3.1.10

/0{(U'(t),w(t))+a(t;U(t),s0(t))}dt=/0 (f(t), o(t))dt, (3.15)

for all ¢ € L?(0,T;V). If we take o(t) = u (t) we obtain

/O {(U'(t)au(t))+a(t;U(t),U(t))}dt=/O (f(2),u”(2))dt,
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which together with Remark 3.2.6 and also here T replaced by s leads to

WO = P - o)
— /0 (W (), u™ (1)) dt
I / altu(t),u (6)} dt — 2 / (F(), (1)) de
_ / Caltut(0),u (1) dt

—2/0 alt: u_(t),u_(t))dt—Q/OS(f(t),u‘(t))dt

< 0,
because the first term is negative by assumption, the second is negative because
the form is positive and the last by the positivity of f. Thus, |u™(s)]* < 0, i.e.
u=(s) =0, for all s € [0,T], which says that u is positive. O

Example 3.2.8. Let A be an elliptic Operator, i.e. the form a(¢;u,v) is given
by

n n

a(t;u,v) =/Q{ Zaij(t) DiuDjv—i—ibi(t)uDiv—Zci(t) Diuv—duv}dx,

ij=1 i=1

for all u, v € V = H}, with functions a;;, b;, ¢;,d € L*((0,T) x Q). Further we

assume . .

Z aij(t, ©)&&5 > OéZfiz,

ij=1 i=1
where o > 0 is a constant independent of z and t, for all £ = (&,...,&,) € R,
and almost every (¢,z) € [0,T] x €, in order to obtain a(t;u,u) > «o||ul|?.
Now a(t;u,v) satisfies the conditions, such that the Cauchy-Problem is well-
posed. Additionally a(t;u™,u™) < 0 for for each u € V = H;(f2) and almost all
t €1[0,7].
Hence the previous theorem implies positivity of the solution.

3.2.3 Sub-Markovian Solutions

Positivity is linked to the first Beurling-Deny criterion, so it is natural to inves-
tigate the property of the second criterion as well.

Definition 3.2.9. The Cauchy-Problem is called homogeneous, if f = 0. We
say, that a homogeneous Cauchy-Problem has sub-Markovian solutions, if the
solution u satisfies u < 1, whenever ug < 1.
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Remark 3.2.10. Remember that we are restricted to the case where V = H} ().
Therefore we have for each u € V, that the minimum between u and the constant
1 functionu A1 € V.

Theorem 3.2.11. We assume the Cauchy problem to have positive solutions,
and additionally that a(t;u,u A 1) < a(t;u,u) for allu € V = H}(Q) and for
almost all t € [0,T]. Then the solution of the non-autonomous Cauchy problem
15 sub-Markovian.

Proof. We have to show, that f = 0 and H > ug < 1 implies that the solution
satisfies W 3 u < 1.
We decompose u in the following way,

u=(uAl)+ (u—1)".

In order to show that u < 1, which is equivalent to © = u A 1, we only have to
verify that (u —1)* = 0. Note that by the assumptions we have (u —1)*(0) = 0.
As in the proof of positivity we replace (t) in equation (3.15) by (v —1)*(¢) and
obtain

/0 (@ 0), (u = 1)* (1)) + alt; u(t), (u — 1)* (&)}t
- / (1), (u— 1) (1))dt.

Again this is valid for T replaced by each s € [0,T] and together with u replaced
by (u — 1) in Remark 3.2.6 (note that (u — 1) = '), we get

(uw—=1)"(s)? = |(u—1)"(s)]* = [(u—1)*(0)
= 2 [ . =)
9 /0 Caltsut), (u—1)*()dt
= -2 /08 a(t;u(t), u(t))dt + 2 /05 a(t;u(t), (uA1)(t))dt

< 0,

because the second term is less than or equal to 2 ] a(t;u(t), u(t))dt by the
assumption. Therefore we have (u — 1)T(s) = 0, for all s € [0,7], and thus
u < 1. O

Example 3.2.12. Let A be again an elliptic Operator, i.e. the form a(t;u,v) is
given by

n n

a(t;u,v) :/Q{ Zaij(t) DiuDjv—f—zn:bi(t)uDiv—Zci(t) Diuv—duv}dac,

i,j=1 i=1 i=1



74 CHAPTER 3. NON-AUTONOMOUS CAUCHY PROBLEMS

for all u, v € V = Hj, with functions a;j, b;, ¢;;d € L*°((0,T) x ). Further we
assume

D ay(t, )68 > 0y &,
=1

1,j=1

where o > 0 is a constant independent of z and t, for all £ = (&,...,&,) € R,
and almost every (t,z) € [0,7] x ©, in order to obtain a(t;u,u) > a|lul/?.

Now a(t;u,v) satisfies the conditions, such that the Cauchy-Problem is well-
posed. We have seen before that the inequality a(t;u™,u™) < 0 is satisfied for
for each v € V = H} () and almost all ¢ € [0, T7.

Additionally, we assume

i D;b; —d < 0.
=1

But since the derivatives D;b; need not exist as functions, this expression must
be interpreted in a generalized sense, i.e.

dv — b;D;v)dx <0,
[ @0 =3

=1

for all v > 0 and v € C}(2). And since b; and d are bounded, this inequality
extends to all non-negative v € W,"'(Q).

Then we have the inequality a(t,u, (v — 1)%) > a(t, (u — 1)*, (u — 1)), indeed,
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since D;(u — 1)* = Diuxqus13,

alt,u,(u—1D1) —alt,(u—1" (u—1")

n

= / { Z aij (t) Diu Djux qu>1y + Z bi(t) u Diux u>1y
2 i=1

ij=1

- Zci(t) Diu(u—1)"—du(u-— 1)+} dz

—/ { Z aij(t) Diuxius1} DjuXius1}y — sz’(t) (u—1)" Diuxqus13
Q i=1

=1

+i_i1ci(t) Dirxgusny (u—1)* +d(u—1)* (u—1)*}do
_ /Q { ZZ::bi(t) fu = (= 1)*] Ditxgusry — dfu = (w=1)* (w=1)*} da
- Mﬁ}mawxm-<u—1>+1<u-1>+>—d[u—(u—lm (w=1)"}do
(5

E:bxﬂl%v——dv}dx

v
o

since

Di([u— (u—1)"](u—1)")
(Difu = (u=1)"(uw—1)" +[u—(u—1)]Di(u — 1))
= (D= Djuxgus1y)(u —1)" +[u = (u = 1)"]D;(u — 1)7)
= (Diuxqu<iy)(u—1)" + [u = (u = 1) "] Djuxqus1y
= [u— (u—1)"]Diux{us1}
and
v=([u—(u—1)*(u—-1)")>0and v € W, (Q),

because u € Hj () implies uAl € HF(Q2), and thus (u—1)" =u—uAl e H}(Q)
and v — (u—1)" =uA1l € H}(Q) and the product of these two functions is then
in W,"' ().

Therefore, an elliptic operator satisfying
n
> Db —d <0,
i=1

has sub-Markovian solutions.
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3.3 Maximal Regularity

A further property of solutions which is worth to be investigated is the regularity,
this is differentiability in an appropriate sense and space. There have been some
results even for non-autonomous Cauchy problems, see e.g. [HM], but under more
regularity assumptions on the operator A(t) with respect to t.

Since we have established existence and uniqueness only under measurability
assumptions, we seek a regularity result in this situation as well.

3.3.1 Idea of the Proof

We are still in the setting of a function space L?(0, T; X ), where X can be replaced
by any of the Hilbert spaces V, H and V' respectively. We do no longer assume
an order structure on any of these spaces.

Definition 3.3.1. Let (A(t)):>0 be a family of closed densely defined operators
on X. We say that the associated non-autonomous Cauchy problem

{u'(t)+A(t)u(t) = f(t) t>0
uw(0) = 0

has maximal regularity in L?(0,7T; X), if for every f € L*(0,T;X), there
exists a unique solution u satisfying v € D(A) N H(0,T; X), where A is the
multiplication operator associated with (A(t))s>o in L?(0,7T; X).

Observe, that the representation theorem by Lions implies not only well-posed-
ness of Problem 3.1.12, but also gives maximal regularity in L2(0,7;V").

However, the given space is L%(0,7; H), and in general we do not even know
exactly the space V'. Hence our interest is maximal regularity in L?(0,7T; H).
Therefore we need to interpret A(t) as operator in H with domain D(A(t)), i.e.

D(A(t)) = {ueV:3h€H:a(t;u,v) =(h,v) Vv eV}
At)u = h

Then we have D(A(t)) == V <2 H < V.

The idea is now to find Hilbert spaces V and V', which are isomorphic to D(A(t))
and H respectively. For a family of operators B(t) associated with continuous
elliptic forms on V, we have maximal regularity in L*(0,T;V"). If then B(t)
coincides with A(t) with respect to the isomorphisms, we can deduce maximal
regularity for the Cauchy problem associated with the family (A(t));>0 in the
space L?(0,T; H).

We encounter the following difficulties. For the application of Lions’ theorem,
we need a fixed Hilbert space V, but D(A(t)) depends on the time parameter ¢.
Hence we will have time dependent isomorphisms i(t) : D(A(t)) — V. This also
implies, that we have to assume, that the spaces D(A(t)) are all isomorphic.
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Denote by j the isomorphism from H to V. Let (B(t)):»o be a family of operators,
such that the relation A(t) = j7'B(¢)i(t) holds. If B(t) is associated with a
continuous elliptic form, then the Cauchy problem associated with the family
(B(t))s>0 has maximal regularity in L2(0,7 : V'), i.e.

Vf e L2(0,7: V') 3lu e L2(0,T;V) N H(0,T; V") :
u'(t) + B(t)u(t) = f(t)
u(0) = 0.

1

In order to get to the space L?*(0,T; H), we apply 5! in each line and obtain

5 () + 5 B E) ult) = 5f()
j_lu(o) = 0,
which is equivalent to
JTH) + AR ) Tut) = ()
j_lu(o) = 0,

since A(t) = j 'B(t)i(t). Hence we obtain maximal regularity for the Cauchy
problem associated with the family (A(t))i>o if

(@)~ u(t)) = j~"u/(t) and (i(0) " u(t) = j~ u(0).

Both equations hold if and only if i(t) = j, hence D(A(t)) = D.

The other problem is to verify that B(t), ¢ fixed in the following, is associated with
a continuous coercive form. We have supposed, that B(t) = jA(t)j ' : V — V.
Hence the candidate for the form is

b(u,v) =< B(t)u,v >y =< jAL)] 'u,v > g0 -

As A(t): D — H, j: D — V and j : H — V' are isomorphisms, we obtain
equivalence between the norms

Illp ~ [1A@)-llz, (|-l ~ 5]l and |||z ~ [|5-]|3--
Therefore

[b(u, v)]

| <JA®)F w0 >y 50 | < 1FA@)  ullg o]l
< Gl[A®);  ullallvlly < Colli ullpllvlly
< Gillully ]y,

which shows that the form b is continuous.

On the other hand it is not obvious, if b is a coercive form. This inconvenience
does not occur in many autonomous cases.
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3.3.2 Maximal Regularity for Autonomous Forms

In the autonomous case, the form does not depend on a time parameter ¢. Hence

in the usual setting V < H< V! , we consider a continuous elliptic sesquilin-
ear form a: V XV — C, where

|a(u, v)| < Mllullv [[ollv

and
Rea(u,u) > d|ullv,

with constants M > 1 and 6 > 0. The associated operator A on H is defined by

D(A) = {ueV:3heH:a(u,v)=(hv)g VveV}
Au = h.

Since the operator A is associated with a continuous coercive form we can define
on H the operator A'/? by

1

[ AY2(A = X hdA
27Ti/1~ ( ) ’

A2 = (14_1/2)_1 where A71/? =
see [Ta], Chapter 2 for more details.
If a is symmetric, i.e. a(u,v) = a(v,u), then A is selfadjoint and one has
D(Al/ 2) = V. The question, weather this equality holds for all operators as-
sociated with a continuous coercive form, is known as Kato’s famous square root
problem posed in [Kal]. Recently answers were given. First A. McIntosh gave
a counterexample in [Mcl|, hence the answer is no in general. A survey on the
square root problem is given in [AT], where a positive answer under more as-
sumptions can be found. Finally, in [AHLMT] it was shown that D(AY2) =V
for elliptic second order differential operators in divergence form on R".
Hence we still cover enough operators, even if we restrict our observations to the
case where D(AY?) =V,
The result of maximal regularity is well known for generators of analytic semi-
groups, thus in particular for autonomous forms. However, the method to proof
it with Lions’ representation theorem given below seems to be new.

Theorem 3.3.2. Let V —— H < V' and let a be a continuous coercive form
with domain V, such that the associated operator A in H satisfies D(AY?) = V.
Then the Cauchy problem
u+Au = f
{ u(0) = 0

has mazimal reqularity in L*(0,T; H).
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Proof. After changing to equivalent norms, the operator A2 is an isometric
isomorphism between all spaces as illustrated below.

A1/2 A1/2 A1/2

DA)«— Ve— H— V'

From Lions’ theorem we deduce maximal regularity for the Cauchy problem as-
sociated with A in L?(0,T;V"). Hence

Vfe L*0,T; V') 3lue L*(0,T; V)N H'Y0,T; V') :

u'(t) + Au(t) = [f(t)
u(0) = 0.

Applying A='/2 on the equations, we obtain

ATV () + ATVPAAP AT Pu(t) = ATVRf(1)
A Y2(0) = 0.

As A2 is an isomorphism from V' to A as well as from V' to D(A), and since
A7V = (A71/24(t))', this implies

Vfe L*(0,T;H) 3lu e L*(0,T; D(A)N H'(0,T; H) :

u'(t) + Au(t) = f(t)
u(0) = 0,

which is maximal regularity for the Cauchy problem associated with the operator
A on the space L?(0,T; H). O

3.3.3 Remark on Non-Autonomous Forms

We conclude this section with a remark on the non-autonomous setting. From
the proof of Theorem 3.3.2 we immediately deduce the following result.

Theorem 3.3.3. LetV — H <~ V' and let a(t; u,v) be a family of sesquilinear
forms satisfying (3.1) and (3.14). Assume that the associated operators satisfy
D(A(t)) = D and that there exists an isomorphism A from D to V as well as
from H to V', which commutes with A(t) for every t > 0. Then the associated
Cauchy problem has mazimal reqularity in L*(0,T; H).

For the proof we only need to replace in the proof of Theorem 3.3.2 the operators
A2 by A, A by A(t) and the space D(A) by D.
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3.4 Semigroup Methods

So far, we have studied the solutions of the variational non-autonomous Cauchy
problems as they are given by Lions’ theorem. However, one can also apply
semigroup methods to non-autonomous Cauchy problems. These have their roots
in [Ev] and [Ho], and a nice overview is given in the survey article [Na2], see also
[EN], Section VI.9. Note that in this context, the notion of well-posedness is
more restrictive.

First we want to give the background on strongly continuous evolution families
and the associated semigroups. An excursion over the generator property of a
surjective dissipative operator leads us to an evolution semigroup associated with
our problem in L?(0,7;V"). Finally, we will get a result for our original problem
by a restriction to the space L?(0,T; H), and conclude this section with some
invariance considerations.

3.4.1 Evolution Families and Semigroups

The ideas for this section are mainly taken from [Schn] and [Nil]. However, we
will replace the Banach space Cy(RR; X)), where X is a Banach space, by the spaces
LP(0,7;X),1<p<o00,0<T < oc.

On the Banach space X we consider the non-autonomous Cauchy problem

w(t) = A()u(t), t>s, t,s€[0,T]

u(s) = =.

(NCP)sz {

If the Cauchy problem is considered for several initial values, then we denote it
by (NCP),, and by (NCP), if the Cauchy problem is considered for all initial
times s € [0, 7.

Recall that a function v € WHP(0,T; X) is continuous after changing its values
on a set of measure zero, hence in the sequel we always mean its continuous
representative, in particular for v € WH(0,7; X) and s € [0,T] the expression
u(s) = x has a sense.

In the following, A(.) denotes the multiplication operator with fiber operators
(A(t))sefo,r) on LP(0,T; X). Recall that the domain D(A(.)) is given as the set
of all functions u € LP(0,T) such that u(t) € D(A(t)) for almost all ¢ € [0,T]
and t — A(t)u(t) € LP(0,T; X). Furthermore, let A (.) denote the multiplication
operator with fiber operators (A(t)):c(s,z), then D(A (.)) := LP(s,T) N D(A(.)).

Definition 3.4.1. Let Y}, ¢t € [0,7] be dense subspaces of X. The Cauchy
problem (NCP) is called well-posed on the spaces Y;, t € [0,7], if for each
s € [0,T] and = € Y, there exists a unique function v € WHP(s,T; X )N D(4,(.)),
satisfying (NCP)s 4, with u(t) = u(t;s,z) € Y; for t > s. Moreover, the solu-
tions depend continuously on the initial data, i.e. if [0,7] 3 s, — s € [0,T]



3.4. SEMIGROUP METHODS 81

and additionally Y, > z, — x € Y; with respect to the topology of X, then
U(t; Sn, Tn) — U(t; s, x) uniformly in ¢t € [0, T], where

o _ Joutys,z) if t>s, t,s€[0,T],
i(t; 5, 7) '_{ z if t<s, t,s€]0,T].

The Cauchy problem (NCP) is called well-posed, if there exist dense subspaces
Y;, t € [0, 7], of X, such that (NCP) is well-posed on the spaces Y;, ¢t € [0,T].

For well-posed autonomous Cauchy problems, the solutions are given as the or-
bits of strongly continuous semigroups. An analogous result for non-autonomous
Cauchy problems on spaces of continuous functions was shown in [Nil], Proposi-
tion 3.10. Below, we adapt his proof to the spaces L?(0,7; X), 1 < p < oo. We
set I:={(t,s) €[0,T)?:t > s}.

Proposition 3.4.2. Assume that (NCP) is well-posed on spaces Y; fort € [0,T).
Then there is a unique family of operators U(t,s) € L(X), (t,s) € I, satisfying

(E1) U(s,s) = 1d, U(t,s) =U(t,r)U(r,s) fort >r > s;
(E2) the mapping I > (t,s) — U(t, s) is strongly continuous;

(E3) U(t,s)Ys C Y, the mapping t — U(t,s)x, t > s, belongs to the space
W' (s, T; X) N D(A,(.)) for z € Y;, and 2U(t,s)z = A(t)U(t, s)z.

(E4) For a solution u of (NCP), one has w — A()u(.) in L'0,T; X)
as h — 0.

Conversely, if there is a unique family (U(t,s))wser € L(X) satisfying (E1) -
(E4) for dense subspaces Y;, t € [0,T], then (NCP) is well-posed on Y.

Proof. Let (NCP) be well-posed on the spaces Y; for ¢ € [0,T] and denote by
u(t; s, z) the solution of (NCP),,. For all s € [0,7] and z € Y; we define
U(t,s)x = u(t;s,z) for t € [s,T]. This yields an operator U(t,s) : Y; — Y,
which is obviously linear. By the continuous dependence, we can extend this
mapping uniquely to a bounded operator on X. The fact that u(t;s,x) is the
solution of (NCP);, implies all the algebraic properties in (E1). To show strong
continuity, we first prove that

U, 5)]] < K. (3.16)

If this were false, there would exist a sequence s, in [0,7] such that the norm
estimate sup, |U(t, s,)|| > 2n holds. Since the spaces Y; are dense in X and
the operators U(t, s,) are bounded, we would obtain z, € Y;, with ||z,| < ©
and sup, ||U(t,s)z,|| > 1. Since [0,7] is compact, there exists a continuous
subsequence of (s,), again denoted by s, — s. Then z,, — 0 while

sup lu(t; sn, 20)|| = sup U (t, sn)xal| # 0,
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which contradicts the continuous dependence. Thus (3.16) holds and we only have
to show the strong continuity on a dense subspace of X. Let now (t,, s,) — (¢, s)
and z € Y;. Choose a sequence z, — x with z, € Y; . We can now estimate

|U(tn, sn)x — U(t, )|
1U(tn, $0) (@ = 2n)l| + [|U(tns sn)20 — @(tn; 5, 2) || + ||0(tn; s, 2) — U(Z, 5)z]
K|z — zu|| + ||0tn; 8, Tn) — G(tn; s, 2)|| + ||0tn; s, ) — u(t; s, z)||

K|z — z,| + Sl[lp | (75 Sy T0) — (T8, 2)|| + ||@(tn; s, 2) — u(t; s, z)|.
T7€[0,T

INIAIA

For n — oo, the first term vanishes, since x,, — x, the second by the continuous
dependence, and finally the third, since the extended solutions % are continuous.
Moreover, for x € Y, the function

U(.,s)z
clearly belongs to the space WP(s, T; X) N D(A,(.)) and satisfies the equality

2U(t, s)xr = A(t)U(t, s)z. Finally, for a solution w —u'()=A)f(.) in
L?(0,T; X), because u € W'?(0,T; X). Thus,

ul — AQ)u(.)

| Ulkhu)—u)_ul kD) B ul)
_ u(.+h;-au(2)—u(-+h) u( +h})l—u()_A(.)U()

_ U(+h})z_U()_UI(')_)O

in L7(0,T; X) as h — 0, because for all sin[0,T] the solutions of (NCP), ) are
unique.

Suppose now the existence of a unique family (U(t, s))¢,ser € L£(X) satisfying
(E1) - (E4) for dense subspaces Y; with ¢ € [0,T]. For s € [0,T] and z € Y,
define u(t) = u(t;s,z) := U(t, s)x. Then obviously, u is a solution of (NCP),,
and depends continuously on the given data. We still have to show uniqueness.
For that we prove below that for a given solution u(.) := wu(.;s,z) and fixed
t € [s, T}, the function [s,t] > r — U(t,r)u(r) € W'P(s,t; X) and the derivative
in the sense of distributions [U(¢,.)u(.)]" = 0. Then [s,t] > r — U(t, r)u(r) is
constant and u(t) = U(t,t)u(t) = U(t, s)u(s) = U(t, s)z, which shows that the
solution is uniquely given by U(t, s)z.

Indeed, r — U(t,r)u(r) is continuous, since the solution u is continuous and
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U(t,r) is strongly continuous. Hence,

Ut r)u( Ju(s)

ts
7'+h
:h_I>I(l)h/ U(t, 7)u T—ll_)oh/ T)dT

- flfi%h[/s+h Ut ) ()dT—/ Ut ) ()dT]

S
T

~ lim % U(t, 7 + h)u(r + h) — U(t, 7Yu(r)] dr.

h—0 s

Observe that

% [U(t, 7+ h)u(r + h) = U(t, 7)u(7)]

= % [Ut, 7+ h)[u(r +h) —u(7)]] + % [U(t, 7+ ) = U(t, 7)]u(7)]
= U(t, 7+ h)u(T * h})L — u(7) + U7+ h) [U(r,7) - U(}Z + h, 7)]u(7)

— U(t,7)A(m)u(r) = U(t, 7)A(T)u(r) =0,

in L?(0,T; X) as h — 0, because u(.) is a solutions of (NCP) and (E4) is satisfied.
Hence, the convergence holds in particular in L!(0,T; X ), which proves the claim.
O

Proposition 3.4.2 motivates the following definition.

Definition 3.4.3. A family U = (U(t, 5))t,s)er € £(X) satisfying (E1) is called
an evolution family. It is strongly continuous if (E2) holds. We say that U
solves (NCP) (on spaces Y;) if (E3) is satisfied.

Let U be a strongly continuous evolution family. As [0, 7] is compact, the prin-
ciple of uniform boundedness yields sup, o |U(Z, s)|| < oc. Furthermore, for
feLr(0,T;X) and t > 0 set

{ Us,s —t)f(s —t), if s—te[0,T], (3.17)

0 if s—t¢[0,7T].
Then (7T'(t)):>0 is a Co-semigroup on LP(0,T’; X), see [Schn], Proposition 1.9.

Definition 3.4.4. We call a strongly continuous semigroup 7' = (7'(t))¢>o on
LP(0,T; X) an evolution semigroup, if there exists a strongly continuous evo-
lution family U = (U(t, 5)),s)er such that (3.17) holds.

We remark that an evolution semigroup uniquely determines the underlying evo-
lution family.
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For the spaces L?([a, b]; X), 1 < p < 0o, evolution semigroups were characterized
in [Ne|, Theorem 4.12. This was also done for more general Banach function
spaces in [Schn], Theorem 2.6, which we cite here for LP(0,7; X), in order to
keep the same notations. We set Co((0,T]; X) := {f € C([0,T]; X) : £(0) = 0}.

Theorem 3.4.5. Let X be a Banach space and T = (T'(t))i>0 a Co-semigroup on
LP(0,T; X) with generator (G, D(G)). Then the following assertions are equiva-
lent.

(i) T is an evolution semigroup.

(ii) (a) For all f € D(G) and ¢ € C'([0,T]) with support in (0,T] we have
that of € D(G) and

G(of) = —¢'f + oG (f).

(b) There is A € p(G) such that R(\,G) : LP(0,T;X) — Co((0,T]; X) is
continuous with dense image.

Remark 3.4.6. Note that since T is finite, R(\, G) : L?(0,T; X) — Co((0,T]; X)
automatically implies, that the mapping is continuous by the closed graph theo-
rem. Indeed, if u,, — u in L?(0,7; X) and R(\, G)u, — v in Cy((0,T]; X), then
in particular R(\, G)u, — v in L?(0,7T; X), which yields v = R(\, G)u. Thus,
R(A\,G) : LP(0,T; X) — Co((0,T]; X) is a closed operator between two Banach
spaces and therefore continuous.

Our definition of well-posedness is weaker that the one given in [Nil], because
there the solutions are assumed to be continuously differentiable. Nevertheless,
we obtain an analogous characterization of well-posedness in terms of evolution
semigroups.

Note that an evolution semigroup 7" = (T'(t));>0 on LP(0,T; X) leaves the spaces
LP(7,T; X) for 7 > 0 invariant and the restriction T; = (T(t) e(r,1;x))t>0 1S @
strongly continuous evolution semigroup.

Theorem 3.4.7. Let X be a Banach space and (A(t), D(A(2)))icp,r) o family of
linear operators on X. The following assertions are equivalent.

(i) The non-autonomous Cauchy problem (NCP) for (A(t))ejo,r] s well-posed.
(i) There exists a unique evolution semigroup T = (T(t))i>0 with generator
(G, D(G)) on LP(0,T; X) and for every T € [0,T] there exists an invariant
core D, C W4 (7, T; X) N D(A,(.)) containing the solutions of (NCP),,
such that
Gf + ' = A()f
for f € D, and the spaces
Yy :={ye€ X :3f € Dy with f(s) =y}

are dense i X.
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Proof. (i) = (i1) If (NCP) is well-posed, then there exists a unique evolution
family solving (NCP), and thus a unique evolution semigroup. We still need
to find invariant cores with the claimed properties. But (i) implies (NCP) is
well-posed for (A(t))¢c|r1), for every 7 € [0,7] and the following proof is analog
for 7 # 0. Thus, we only need to find an invariant core for (7'(t));>o with the
claimed properties. It is obtained using an idea from [LMR], Proposition 2.9.
Let € > 0 and for s < 0 define Y; := Y; and U(t, s) := U(t,0), where ¢ > 0. Then
consider s € [—¢,T], y € Y; and a function oo € C*(R) — the space of smooth
functions — with «(t) = 0 for ¢ < s. Then the function f € LP(0,7; X) defined
by
() = { at)U(t,s)y ift> s,

10 otherwise,

is contained in WHP(0,T; X )N D(A(.)). Moreover, we obtain that f € D(G) and
Gf =—f"+ A(.)f. Indeed,

a(r—=8t)U(r,s)y ifr—t>s,

T®)f(r) = { 0 otherwise, (3.18)

which implies (Gf)(r) = 4T (t)f(r)=0 = —a'(r)U(r,s)y. Since U(t,s) solves
(NCP), we have

d 0
g/ (1) = (U (r, )y +a(r) 5 U(r, sly = o/ (r)U(r, s)y + a(r)A(r)U(r, )y,
for almost every r > s and therefore Gf = —f' + A(.)f.

Obviously the space

D :=span{a(t)U(t,s)y : s € [-¢,T],y € Y;,a € C*°(R), a(t) =0 for t < s}

contains the solutions of (NCP)y. It remains to show, that the space D is
invariant under (7(¢));>o and dense in L?(0,7;X). From equation (3.18) we
immediately obtain the invariance. As in [LMR], Proposition 2.9, we obtain,
that D is dense in C([0,7]; X), from which one easily gets that the spaces given
by {y € X : 3f € D with f(s) = y} are dense in X. Moreover, since [0, 7
is a finite measure space C([0,7]; X) is dense and continuously embedded in
LP(0,T; X), hence D is dense in LP(0,7; X). Finally, the uniqueness of the
evolution semigroup follows by differentiating s — S(t — s)T'(s)f for two such
semigroups and f € D.

(17) = (i) Conversely suppose that there exists a unique evolution semigroup
and thus a unique strongly continuous evolution family (U(Z, s)),s)er- Moreover,
assume that there exist invariant cores D, C WHP(0,T; X) N D(A(.)) for all
7 € [0,T], containing the solutions of (NCP), and such that Gf + f' = A(.)f
for f € D; and Y; := {y € X : 3f € D, with f(s) = y} dense in X. Then for
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fe€D.Cc DG NW(r,T; X) N D(A,(.)), one has

U(+h)f(0) = f() Th)f(+h) = f()

h h
_ =10 100 =10
= PO G = A0 (3.19)

in LP(7,T; X) as h — 0. In particular, for a solution u of (NCP), one has u € D,
and (3.19) implies (E4) of Proposition 3.4.2. Thus it suffices to show, that the
evolution family (U(t, s)),s)er solves (NCP) on the spaces Y.

Let s € [0, 7] and y € Y;. Then by the definition of Y;, there exists an f € D such
that f(s) = y. For t > s one obtains U(t, s)y = U(t, s)f(s) = [T(t — s) f](t) € V3,
because T'(t)f € D for all t € [0,7]. Moreover, by the same argument, one
gets that ¢ — U(t,s)y = [T(t — s)f](t) € D(As(.)). It remains to show that
t— U(t,s)y € WH(s,T; X) and 2U(t, s)y = A(t)U(t, s)y, which is equivalent
toU(t,s)y =y + f: A(r)U(r, s)ydr. Since t — U(t, s)y is continuous, we obtain

U(t,s)y—U(s,s)y = lim [l U(r,s)f(s)dr— %/s U(r,s)f(s) dr]

~ lim~ [ / U ) () dr — / U(r,s)f(s)dr}

_ lim/t U(r+h,s)f(s) = U(r,s)f(s) dr.

h—0 h

The claim now follows, if U('+h’s)f(3}2_U("s)f(s) — A()U(.,s)y in L'(s,T; X) as
h — 0. Note that

U(+h,s)f(s)=U(.,8)f(s) U(+h,)U(,s)f(s)=U(.,s)f(s)

h h

and by (3.19), it suffices to show, that U(.,s)f(s) € Ds. Now observe that for
s € [0,T] and f € D(G) the function t — U(t,s)f(s) =T (t—s)f(t) € D C D(G)
and one has the equality G[T(.—s)f(.)] = [T(.—s)Gf](.) in L?(0,T; X). Indeed,

Th)T(—=s)f()=T(=s)f()

. -T(—-s)Gf(.)
L TLms WO =TC=9f0 g TO =0
h . h
41— TOIUZIU _pgep)
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in LP(0,T; X), because T is a bounded semigroup and f € D(G). Moreover,
for s € [0,T] and f € D ¢ WP(0,T; X) N D(G) one obtains that the function
t—=U(t,s)f(s) =T(t—s)f(t) € WhP(0,T; X), because

T(.+h—s)f(.+h) —T(—s)f()

= T(+h-—ys)
— T(—=3s)f'()+T(.—-9Gf(.)

in LP(0,7; X) as h — 0. Thus

U(.+h,s)f(s)=U(.,s)f(s) U(.+ h, )U(.,8)f(s) = U(.,s)f(s)

h h
= [U(9)f(s)] + GIU(.,9)f(s)]

in L?(0,T; X), which implies [U(., s) f(s)]' = [U(., s) f(s)]'+G[U(., s) f(s)]. Hence,
U(.,5)f(s) € KerG C Ker(—4% — A(.)), which is contained in the solutions of
(NCP) and thus in Dy, which proves the claim. O

In view of Theorem 3.4.7, the non-autonomous Cauchy problem (NCP) is well-
posed if the operator (—% + A(.), W'?(0,T; X) N D(A(.)) is the generator of an
evolution semigroup on L?(0,7; X). In the application we have in mind, we will
have, that this operator is surjective and dissipative, which motivates the study
of such operators.

3.4.2 Generator Property of a Surjective and Dissipative
Operator

In order to get that a surjective and dissipative operator on a Hilbert space is
the generator of a strongly continuous semigroup, we need some properties of
surjective operators. This study was encouraged by Exercises 250 and 272 in
[Ma).

Lemma 3.4.8. Let E and F' be Banach spaces. The set of open surjective map-
pings in L(E, F) is open in L(E, F).

Proof. Let T € L(E, F) be open and surjective, i.e. there exists o7 > 0 such that
for every y € F with ||y|| < 1 there exists an z € E with ||z|| < é and Tz = y.
Let ¢ > 0 and S € L(E, F) such that ||T — S|| < e. We have to show, that S is
open and surjective.

Let y € F with |ly|| < 1. Then there exists ; € E such that ||z1] < é and

Tzy =vy. Then (T — S)z|| < ||T = S| ||z1]] = 8% < %, if we choose ¢ < %5T.

Consequently, there is zo € E with [|z3]| < ﬁ and Tzy = (T — S)z; and
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(T — S)as|| < e55 < - If we continue this procedure, we obtain a sequence

(:)ren C E such that ||z,41]] < ﬁ and Tz, = (T — S)z,.

Observe that > °° z, converges in E. Let z = 2% =, and s = °%£. Then
Izl < 35720 llzell < 3272 775, = & = 5, and

o

St = Sixr = iSm, = Z(Tmr —T2p) =Tz =y,
r=1 r=1

r=1

because lim,_,, Tz, = 0, as lim,_,,, x, = 0 and T is continuous. Thus we have,
S is open and surjective. O

Corollary 3.4.9. Let E and F be Banach spaces. The set of surjective mappings
in L(E, F) is open in L(E, F).

Proof. By the open mapping theorem, every surjective operator T € L(FE, F) is
open. ]

Corollary 3.4.10. On a Banach space E, for every operator T € L(FE), the
deficiency spectrum

oq4:={A € C: X —T is not surjective}
is closed.

The following lemma shows, that the closure of a surjective and dissipative op-
erator is the generator of a strongly continuous semigroup.

Lemma 3.4.11. Let E be a Banach space and A : E D D(A) — E a densely de-
fined, dissipative and surjective operator. Then the closure A of A is the generator
of a contraction semigroup.

Proof. Since A is densely defined and dissipative, it follows that A is closable and
its closure A is also densely defined and dissipative. As A is closed, (D(A), || ||1)
is a Banach space and B B

A (D(A), | Iz) = E

is continuous and surjective, because A is surjective. Hence, by Corollary 3.4.9,
there exists A > 0 such that A=A : (D(A), || |[z) — F is continuous and surjective.
Then Theorem 1.2.9 of Lumer and Phillips implies that A is the generator of a
contraction semigroup. O

Now we only have to show, that surjective and dissipative operator on a Hilbert
space, or more generally on a Banach space, is closed. For that we need the
following result, see [ABHN], Proposition 4.3.6.

Lemma 3.4.12. Let E be a Banach space and A the generator of a bounded
Co-semigroup (T'(t))i>0 on X. Then Ker A* separates the points of Ker A.
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Now we are ready to formulate the main result of this section.

Theorem 3.4.13. Let E be a Banach space and A : E D D(A) — E a densely
defined, dissipative and surjective operator. Then A is the generator of a strongly
continuous contraction semigroup.

Proof. By Proposition 3.4.11, we only have to show that A is closed. It suffices to
show that A is injective. Indeed, for every z € D(A), there exists & € D(A) such
that A% = Az, because A is surjective. Hence A(r — %) = 0 and the injectivity
of A implies x = ¥ € D(A). Thus D(A) C D(A), which gives equality of the
domains and hence of the operators.

We show the injectivity by contradiction. Assume that A is not injective, then
there exists 0 # = € Ker A. Recall that A is surjective, because A is so. By
Lemma 3.4.11, A is the generator of a contraction semigroup on the Hilbert
space H. Hence, we get from Lemma 3.4.12 that Ker A" separates the points of
Ker 4, i.e. for 0 # x € Ker A4, there exists an z* € Ker A", such that z*(z) # 0;

in particular * # 0. Then for every x € D(A) we have
0=< A'z* z >=< z*, Az >,

which contradicts the surjectivity of A. Thus, A has to be injective. O

3.4.3 Application to the variational setting

We now return to the setting of Section 3.1. Hence, let V and H be two Hilbert
spaces, where V' is a dense subspace of H with continuous embedding. Moreover,
let a(t; ., .), t € [0,T] be a family of sesquilinear forms, satisfying (3.1) and (3.14),
and denote by (A(t))cjo,r the family of associated operators.

Then, as we saw in Section 3.1, for every x € H and every f € L?(0,7;V") there
exists a unique function v € L*(0,7;V) N H'(0,T; V') C C([0,T), H) satisfying
the inhomogeneous non-autonomous Cauchy problem

(INCP) {5(%; = —AWuO+ S, t>0

Note, that even here we could consider a variable initial time s, but obtain no
continuous dependence. Therefore, for f = 0, we obtain an evolution family
U(t, $)o<s<t<r on H, solving (NCP), but which is not strongly continuous. How-

ever, we shall obtain this property, if we regard the problem in the larger space
V.

Proposition 3.4.14. The operator G = —% — A(-) defined on the domain
D(G)={f e H (0, T;V'YNL*(0,T,V) : f(0) =0} is the generator of a strongly
continuous semigroup T on the Hilbert space L*(0,T;V").
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Proof. By Theorem 3.4.13 above, it is sufficient to show, that the operator
(G, D(G)) is a densely defined, dissipative and surjective operator.

First observe, that the space C}((0,T];V) := {f € C*([0,T};V) : f(0) = 0}
is contained in D(G) and dense in L?(0,T; V"), hence the operator G is densely
defined.

Now the multiplication operator A(-) is associated with the sesquilinear form
a:L?0,T;V) x L*>(0,T;V) — C given by a fo g(t)) dt, which
is continuous and elliptic. With the usual reductlon we only have to con-
sider the case, where a(t,.,.) for almosta all ¢t € [O,T] and hence a are coer-
cive. Hence (—A(-), L?(0,T,V)) is the generator of a contraction semigroup on
V' := L*(0,T; V"), and in particular it satisfies

Re < —A()f, [ >y, <0,

for all f € D(A(-)) = L?(0,T;V) and arbitrary f' € J(f). In particular, —A(-)
is dissipative. Moreover, with D(—4%) := {f € H*(0,T;V’) : f(0) = 0}, the
operator (—4%, D(—4)) is the generator of the shift group in L?(0,7; V"), which
is contractive, and therefore also for all f € D(—4%) and arbitrary f’ € J(f) we

dt
have

Re < — —f f >y (vll< 0.

Thus, for every f € D(G) = D(A(- )) N D(——) and arbitrary f' € J(f) we have
Re < (_ % —A(: ))f,f' >=Re < —A(")f, f' > +Re< —%f,f’ >< 0,
d

hence —% — A(-) is dissipative.

Finally, the surjectivity follows from Lions’ theorem. For x = 0 and for all
f € L?(0,T; V"), there exists a (unique) v € H'(0,T;V')N L?(0,T,V)) such that

u(0) = 0, i.e. u € D(G), and
(-5 - 40 u=-1

We wish to apply Theorem 3.4.7. Therefore, we need the following result.

O

Proposition 3.4.15. The semigroup T on L*(0,T; V") generated by the operator
G of the theorem above is an evolution semigroup.

Proof. We use the characterization given in Theorem 3.4.5. First observe, that
for f € D(G) and ¢ € C'(]0,T]) with support in (0, 7], we have of € D(G) and

Glof) = —2(ef)~ AL
= (S (5~ e(AC))

= (SO~ elGf),
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because A(-) is a multiplication operator, and by Lemma 2.3.2 we have that
AC)(ef) = o(A()f).

We still have to verify property (b), i.e. there exists a A\ € p(G) such that
R()\,G) : L2(0,T; V") — Co((0,T]; V') is continuous with dense image. Recall
that G is a surjective operator, because there exists a unique solution. Moreover
G~! is a is a bounded operator on L?(0,7;V’). Indeed, one has the estimate
167 fllezorvy < CUllG™ fllezorvy < Coll fllzzrvry by Lemma 3.1.17. In
particular G is injective and 0 € p(G). Moreover, R(0,G) : L*(0,T; V") — D(G)
is surjective, and from C3((0,T];V) C D(G) C Co((0,T]; V') we obtain that
R(0,G) has dense image in Cy((0,7];V"). Finally, again Lemma 3.1.17 yields
that R(0,G) : L*(0,T; V') — Co((0,T]; V') is continuous. O

Now we obtain our desired result.

Theorem 3.4.16. Let (A(t))wcor be a family of operators associated with a
family of sesquilinear forms satisfying (3.1) and (3.14). Then the homogeneous
non-autonomous variational Cauchy problem on L?(0,T;V")

at) = A@)u(t), t>s, t,s€[0,T]

u(s) = =z

(NCP) {

s well-posed in the sense of Definition 3.4.1.

Proof. We apply Theorem 3.4.7 and take the cores D, = D(G) N LP(r,T;V').
For s € (0,7] one has H C Yj, by Proposition 3.1.3, hence the spaces are dense
in V' and we get well-posedness on the spaces (Ys)se(o,T]- Well-posedness in the
case where s = 0 and again H C Y is obtained by extending the problem to the
negative real axis. O

Thus, we obtain a strongly continuous evolution family (U(¢, s)),ser C L(V')
solving (NCP) in L*(0,T;V").

However, Theorem 3.1.16 provides solutions of the problem (NCP) in the space
C([0,T]; H). Regarding again the problem for various initial times, this gives rise
to a family of operators (U(t, s)),s)er C L£(H) solving (NCP) and satisfying

o U(t,r)U(r,s) =U(t,s) and U(s,s) = Id.
e [5,T|>5t— U(t,s)x € H is continuous for all z € H and 0 < s < T.

Note that we obtain no strong continuity in the sense of (E2) in Proposition 3.4.2.
Now for initial values x € H and by uniqueness of solutions, one gets that
U(t,s)x = U(t, s)z, which implies

Ult,s) =U(t,s)u, for all (¢,s) € I.

This observation leads to the following result.
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Proposition 3.4.17. T leaves the space H = L*(0,T; H) invariant and the
restriction Ty 1s a strongly continuous semigroup.

Proof. Let G be the generator of 7. Then it is sufficient to show that the the
part of G in H, denoted Gz is the generator of a strongly continuous semigroup
on H. This semigroup then coincides with the restriction 73 of 7T to the space
H := L*(0,T; H). First observe, that D(G) is a dense subset of H. Therefore,
for each A > 0, we can restrict the resolvent R()\,G) to the space H and obtain
a linear operator R(A,G)» : H — H, which obviously satisfies the resolvent
equation and has dense image. Moreover, by the dissipativity of the operators
—A(.) and —% in H, we obtain for each f € H and A > 0,

NIRAGIE < ARe(ROG)f, RO G)/)
L Re(A()R(NG)f. RO\ G)F) + Re(L RO\, G) £, R(\, G) f)

dt
= Re(f,R(N,G)f)
< |fllall RO G) flls

because G = —4 — A(.) Therefore |[AR(X,G) x|l < 1 and (R(X, G)ja)aso is the
resolvent of a densely defined operator on A, which coincides with Gy and is the

generator of a strongly continuous semigroup. U

Remark 3.4.18. (i) Note that R(A\,G)H C D(Gy) C D(G) C Co((0,T]; H)
with dense inclusions implies that R(\, Gy) : H — Cy((0,T]; H) is continu-
ous with dense image. But we do not know if condition (a) of Proposition
3.4.5 is satisfied for Gy. Therefore, we cannot expect the restriction Tjy to
be an evolution semigroup.

(ii) Moreover, R(A,G) : Co((0,T]; H) — Cy((0,T]; H) is continuous with dense
image, which shows that the semigroup 7 leaves Cy((0,T]; H) invariant.
However, the restriction need not be strongly continuous.

From Proposition 3.4.17, we get a representation

(T @) )(s) =U(s, s = ) f(s = 1),

and as a consequence we obtain the invariance result below.

For a closed convex set K C H, let L?(0,T; K) denote the space of functions
in L?(0,T; H) which take their values almost everywhere in K. Observe that
L?(0,T; K) is a closed convex subset of L?(0,T; H).

Proposition 3.4.19. Let K C H be a closed convexr subset. Then one has
Tu()L*(0,T; K) C L*(0,T; K) for all t > 0, if and only if U(t,s)uK C K for
all s € [0,T] and all t € [s,T].
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Proof. Let T3 (t)L*(0,T; K) C L*(0,T;K) for all ¢t > 0, and # € K. Then the
continuous function f(t) = z belongs to L?(0,T; K), and we obtain

U(s,s —t) gz = (Tu(t)f)(s) € K,

for almost all s € [0,7] and all ¢ € [0,7], such that s —t € [0,7]. This implies
U(t,s)uK C K for all s € [0,T] and all t € [s,T], because t — U(t,s)z is
continuous.

Conversely, if U(t,s)gK C K for all s € [0,7] and all ¢ € [s,T], then for
f € L?0,T;K), one has f(t) € K for almost all ¢ € [0, T]. Therefore

(Tu@)f)(s) =U(s,s =t)uf(s = 1) € K,

forallt € [0,7] and almost all s € [0, 7], such that s—t € [0,7] and f(s—t) € K,
therefore T3 (t)f € L*(0,T; K). O

Therefore, an invariance of closed convex sets for the solution of the non-autono-
mous Cauchy problem is given by the invariance of closed convex sets under the
restriction of the evolution semigroup. We shall study the latter in the following
section.

3.5 Generalized Forms

In the previous section, we have seen the importance of invariance of closed convex
sets under the semigroup, which is obtained as the restriction of an evolution
semigroup. As in the autonomous case, we wish to characterize this property with
form methods. Unfortunately, neither the evolution semigroup nor its restriction
is generated by an operator, which is associated with a sesquilinear form.

This motivates the study of generalized forms, which were introduced by W.
Stannat in [Sta]. Moreover, he gave a characterization when the associated Cy-
semigroup is positivity preserving or sub-Markovian. After an introduction to
this theory, we will generalize these Beurling-Deny criteria to the invariance of
closed convex sets in the same way as in [Ou]. Finally, we will give an application
to non-autonomous Cauchy problems.

3.5.1 Motivation

Before we give the abstract definition of a generalized form, we explain the mo-
tivation. For that we start with the autonomous setting. For later application,
we use the same notation as in the preceding section. Let V SN VAPV
be the usual triple of Hilbert spaces. Define a sesquilinear form a on H with

domain V, which is continuous and elliptic. Then there exists a unique operator
A e L(V,V'), such that < Au,v >y y= a(u,v) for all u,v € V. Then —A and
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—Ay, are generators of strongly continuous semigroups on V' and H respectively.
Moreover, the operator A* € L(V, V') associated with the continuous and elliptic
sesquilinear form a*(u,v) := a(v,u), is the adjoint operator of A and generates
the adjoint semigroup. Conversely, if A € L£(V,V'), then A* € L(V,V') and
a(u,v) =< Au,v >y y= < A*v,u >y, defines a continuous sesquilinear form
on H with domain V.

Now let us replace A and A* by unbounded densely defined operators

G:VODEG) =V, ¢ :V>DG) -V,

where G* is the adjoint operator of G, when G is regarded as an operator from V
to V' and define a form by

{ <Gu,v>py ifueD(G),veV

glu,v) i =q ——— . \
<G*,u >y ifueV,ve DG,

which we call not yet a generalized form, unless the operator G is of a certain
structure as in [Sta]. Assume that —G is the generator of a contraction semigroup
T = (T(t))>0 C L(V') on V'. Then for every t > 0, T'(t) € L(V, V') and defines
a strongly continuous semigroup of contractions 7y = (T'(t))i>0 C L(V, V'), with
the same generator —G, because D(G) C V. Moreover, —G* is the generator of the
adjoint semigroup 7y = (T'(¢)*)i>0 C L(V,V’). Then (0,00) C p(—G) = p(=G*)
and [[AR(A, —G)|| = [|AR(A, —G)*|| = ||AR(\, =G*)|| < 1. From the definition of
g, one obtains for all w € V', v € V and A > 0 that

(RN, —G)u,v) = g(R\, —G)u,v) + A <u,v >y
= <u,v>py=<(G"+ AR\ -G )u,v >py
= g(v, R(A\, =G")u) + A< v, R(\, =G*)u >y, ,,
= gr(v, R(\, —G*)u).
Finally, if the semigroup 7 leaves H invariant, and the restriction is a strongly

continuous semigroup with generator Gy, the part of G in H, then (Gy)* = Gj,
and

(RN, =G)u, v) = (u,v)3 = ga(v, R(A, =G*)u),

forallu €e H,v €V and A > 0.

In view of the previous section, we shall consider operators G given as the sum
two operators, the one being associated with a continuous and elliptic sesquilinear
form, the other belonging to a class of operators containing the derivative.

3.5.2 Definitions and Basic Properties

We adapt the notation from [Sta] to our setting. In particular, we consider the
triple of complex Hilbert spaces V <2y H <25V Let abea sesquilinear form
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on ‘H with domain V), which is continuous and elliptic, and A € L(V,V’) the
associated operator.

Furthermore, let (A, D(A)) be a linear operator on H, satisfying the following
assumptions:

(i) (A, D(A)) generates a semigroup of contractions (S;);>o on H.

(ii) (Si)i>0 leaves the space V invariant and the restriction is a Cp-semigroup
on V.

Then the generator of the restricted semigroup is the part of A in V', denoted Ay.
Note that in particular the operator —% on the space H = L?(0,T, H) with
domain D(—4) = {f € H'(0,T,H) : f(0) = 0} satisfies these assumptions, if
V=L*0,T,V)and V <24 H. In order to define a generalized form with respect
to the operator G = A — A, we wish to interpret A as an operator from V to V'.
For that observe, that D(Ay) € D(A)NY C V, thus D(A) NV is dense in V.
Moreover, we have the following property.

Lemma 3.5.1. Let the operator (A, D(A)) on H satisfy (i) and (ii) above. Then
A:D(A)NY — V' is closable as an operator from V to V'.

Proof. Let (up)nen C€ D(A) NV and f € V' such that lim, ,o u, = 0 in V and
lim,, oo Au, = f in V'. Note that A is the generator of a contraction semigroup
and thus dissipative, hence

<Av— fiv>= lim < Av — Aup,v — u, >= lm (A(v — uy), (v —1u,)) <0,
n—oo n—oo
for all v € D(A) NV. In particular 7? < Av,v >< v < f,v > for all y € R,
which implies < f,v >= 0 for all v € D(A) NV, and thus for all v € V, because
D(A) NV is dense in V. It follows that f = 0. O

Let F denote the domain of the closure and denote again by A : F — V' the
closure. Then F provided with the graph norm [[ul% = [|ul|} + [|[Aul]} is a
Hilbert space.

Remark 3.5.2. In the particular case, where the semigroup S; can also be ex-
tended to a Cy semigroup on V', then F = D(A, V') NV, where D(A, V') denotes
the domain of the extension of A to ), which generates the extended semigroup.

Moreover, the adjoint semigroup (S;)i>0 of (S¢)i>0 can be extended to a Cp-
semigroup on V'. Its generator is the adjoint (A},, D(A})) of Ay, see [Sta], Lemma
2.4.

Let F := D(A}) NV. Since A} : D(A}) — V' is closed, A), : F — V' is closed as
an operator from V to V', and thus the space F provided with the graph norm
[ull% = [lull + [[Apull3, is a Hilbert space.
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Definition 3.5.3. Let

p a(u,v)— < Au,v >y y  fueFveV
u,v) = .
(u,0) a(u,v) — <Ajv,u >, ifueV,veF.

We call £ the generalized sesquilinear form associated with the form (a,))
and the operator (A, D(A)). Further we set &y(u,v) := €(u,v) + AM(u, v)3.

By [Sta], Lemma 2.7, < Au,v >=< Av,u > for all u € F,v € F, so that & is
well defined.

Remark 3.5.4. Since A generates a contraction semigroup on #, the operator
A is dissipative, i.e. Re(Au,u)y < 0, for all u € D(A,H). Further, for all
u € F there exists a sequence u, € D(A,H) NV converging to u in F. Then
Re < Au,u >= limy, 0o < Aty ty >= limy, o0 (Atn, u,) < 0. Consequently we
obtain for all u € F

Rea(u,u) < Rea(u,u) — Re < Au,u >= Re&(u, u). (3.20)
Lemma 3.5.5. Let u, —» u in F and v, = v in V. Then &(uy, v,) — E(u,v).
Proof. For u € F and v € V observe that

|5(U’7U)‘ = |Cl(’u,,’l))+ < Au,v >yry |
la(u,v)| + | < Au,v >y |

<
< Mllullyllvlly + [[Aulyllo]ly,

since the form a is continuous. If w, — u in F, then the convergence holds in
particular in V and thus u,, is bounded in V. Moreover, Au, — Au in V' and
Au, is bounded in V'. Finally,

€ty 00) — E(u,0)
< [E(Un, vn) = E(Un, V)| + [E(Un,v) — E(u,v)|
= |E(Un, vy —v)| + |E(Un — u,v)|
< Munllyllvn — vlly + Al llon — vl

+Mllun = ullyl|vlly + [|A(un = w)|(lvlly
— 0,

as n — oo and the claim follows. O

Theorem 3.5.6. The operator (A — A, F) is the generator of a strongly contin-
uous semigroup T = (T'(t))i>0 of contractions on V'
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Proof. As usual, we may only consider the case, where the sesquilinear form a is
coercive. First observe that for all u € F one has

Re < (A — A)u,u >y y=Re < Au,u >y —Rea(u,u) <0,

thus, A — A is dissipative. By Theorem 3.4.13, it now suffices to show that
the operator A — A is surjective. We claim that for all f € V', there exists
an element u € F such that (A — A)u = f, which is equivalent to the equality
< (A=A)u,v >y y=< f,v >y for allv € V. We will use Lions’ Representation
Theorem 3.1.13, in order to show that for all f € V', there exists a u € V) such
that < —Au,v >yy +< A*v,u >y, =< f,v >y holds for all v € V. Let
F :=7V and ® := D(A}) NV provided with the norm of V, then ® C F with
continuous injection. On F' X ® define a sesquilinear form by

E(u, p) =< —Au, ¢ >yy +< Ajp,u >y, .

Then for all ¢ € ®, the form u — E(u, ) is continuous on F. Moreover, there
exists a constant o > 0 such that |E(p, ¢)| > af|¢|3. Indeed,

|E(p, )] > —ReE(p,p)
= Re < Ap,p >yy —Re < AL, 0 >y y

> Rea(p, ¢) > alle]l}-
Moreover, L(y) :=< f, ¢ >y defines a continuous semilinear form on ®. Thus,

all assumptions of Theorem 3.1.13 are satisfied, and we conclude, that there exists
au € F =Y, such that

< —Au, @ >py +< Ajp,u >y = E(u,p) = L(p) =< f,o >y .
Now observe, that for v € V one has Au + f € V', thus one gets from the

equality < Ajp,u >y y= < Au+ f, ¢ >y, that u € D(A}) = D(Ay) = F and
< Ay, u >y =< Apu, ¢ >y, which proofs the claim. O

Theorem 3.5.7. The semigroup T = (T'(t))i>0 leaves the space H invariant and
the restriction Ty = (T'(t)1)i>0 is a strongly continuous semigroup on H.

Proof. Let G := A — A be the generator of 7. Then it is sufficient to show that
the the part of G in H, denoted Gy is the generator of a strongly continuous
semigroup on H. This semigroup then coincides with the restriction 73 of 7 to
the space H. First observe, that D(G) = F is a dense subset of V and thus of
‘H. Therefore, for each A > 0, we can restrict the resolvent R(\,G) to the space
H and obtain a linear operator R(A,G)» : H — H, which obviously satisfies the
resolvent equation and has dense image. Moreover, by the dissipativity of the
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operators A and —A as operators on H, we obtain for each f € H and A > 0,

MR, G)fI5, < ARe(R(A,G)f, R(A,G)f)

+Re(AR(M, G)f, R(A\, G) f) + Re(=AR(X, ) f, R(A, G) f)
Re(f, R()\, G)f)

< F Nl R(A, G) Fllaes

because G = A — A. Therefore ||AR(X,G) x| < 1 and (R(X, G)x)aso is the
resolvent of a densely defined operator on A, which coincides with Gy and is the
generator of a strongly continuous semigroup. U

Definition 3.5.8. The semigroup 7j = (T'(t)j%)e>0 is called the semigroup
associated with £.

Observe that G* = (A — A)* = A* — A* because A € L(V,V'). Thus,

<Gu,v>yy fue F=D(G),veV
E(u,v) =

<G, u>yy ifueV,ve F = D(G*),

Therefore, from the considerations in section 3.5.1, we obtain (Gx)* = G3, and
the equation

Ex((R(A =Gn)u, v) = (u, )5 = Ex(v, R(A, =G3)u),

for all A > 0.
For simplicity, we shall denote Ry := R(\, —Gy).

Remark 3.5.9. (i) R;(H) is a dense subset of F by [Sta], Remark 3.5.

(ii) By the resolvent equation (A — p)R\R, = R, — Ry with p = 1 we get
AR)R{ — R\Ry = Ry — Ry hence for u = R;h we have the equation

u — )\R)\u = R)\h — qu. (3.21)

(iii) Since Gy is the generator of a Cy-semigroup, we have limy_,,, AR u = u in
‘H for all u € H and by [Sta], Proposition 3.7 in V for all u € V.

3.5.3 Invariance of closed convex sets

We keep the notation as above and characterize in terms of the generalized form
& when the associated semigroup 77 leaves closed convex sets invariant.

Let K be a closed convex set in ‘H and denote by P the orthogonal projection
from H onto K. Then Pu for u € H is characterized by Re(u — Pu,k — Pu) <0
for all k € K.
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Theorem 3.5.10. The following assertions are equivalent.
(i) T(t)uK C K for allt > 0;
(i1) AR\K C K for all A > 0;

(iti) v e F = PueV and ReE(u,u — Pu) > 0.

Proof. (i) < (i3): This is obvious from the identities

R(A, =Gx) = /°° e Thu(t) dt

0

and 0 n .
Toul®) = Jim [SR (5. -Gw)]
(17) = (i11): First observe that one obtains the estimate

Re((uv — Pu) — AR\(u — Pu),u — Pu)y < Re(u — ARyu,u — Pu)y, (3.22)

indeed, Re(Pu — AR)Pu,u — Pu)y > 0 because ARyPu € K by (ii).

Now consider v = Rjh for h € H. We want to show that AR)(u — Pu) is
bounded in the Hilbert space V. The operator AR, is a contraction in H, hence
IARA(u — Pu)||3 < ||(u — Pu)l||%, and as ||.||% is equivalent to Rea(.,.) + (., )%,
it suffices to show, that Re a(AR)(u — Pu), AR)(u — Pu)) is bounded.

With (3.20), (3.21) and (3.22) we get

Re a(AR)(u — Pu), AR\(u — Pu))
< Re&(AR)(u — Pu), AR\(u — Pu))
= ARe&\(Ra(u — Pu), A\Ry(u — Pu)) — A> Re(Ry(u — Pu), \Rx(u — Pu))x
= ARe((u — Pu), \Rx(u — Pu))y% — A Re(Ry(u — Pu), AR\(u — Pu))y
ARe((u — Pu) — ARx(u — Pu), A\R\(u — Pu))y
ARe((u — Pu) — AR)(u — Pu), \Ry(u — Pu) — (u — Pu))y
+ARe((u — Pu) — AR)(u — Pu), (u — Pu))y
ARe((u — Pu) — AR\(u — Pu), (u — Pu))x
ARe(u — ARyu,u — Pu)y
ARe(Ryh — Ryu,u — Pu)y, (3.23)

ININA

which is bounded, because the last term converges to Re(h — u,u — Pu)s, and
hence AR)(u — Pu) is bounded in V. Since V is reflexive, there exists a subse-
quence A\, Ry, (u — Pu) converging weakly to v € V. But one has strong conver-
gence limy o AR)(u — Pu) = (u — Pu) in ‘H. Therefore u — Pu=v € V and as
u €Y we get Pu € V.
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Additionally we get for a(u,v) := 3(a(u,v) + a(v, u))
Rea((u — Pu), (u — Pu))
= lim a((u — Pu), \yRy, (u — Pu))

n—oo

< liminf(a((u — Pu), (u — Pu)))Y?(@(M\ Ry, (u — Pu), \yRy, (u — Pu)))'/2,
n—,oo
by Cauchy-Schwarz’s inequality. Hence, with (3.23)

Rea((u — Pu), (u — Pu))
< liminfRea(\, Ry, (u — Pu), A\ Ry, (u — Pu))
n—oo

limsup A, Re(Ry,h — Ry, u,u — Pu)y

n—00

Re(h — u,u — Pu)y = Re&(u,u — Pu) < |E(u,u — Pu)|

Mlullyllu = Pully + [[Aulhyllu — Pully

Cllully + llAully)[lu — Pully

Cllull#llu = Pully,

where the constant C' = max{M, 1}. Moreover,

Re&(u,u— Pu) = Re&(Rih,u— Pu) — Re(u,u — Pu)

= Re(h—u,u— Pu) = /\lggo AMRx(h —u),u — Pu)
= lim A(u — AR)u,u — Pu) > 0,

A—00

IN

IN A

since ARyu € K.

For arbitrary u € F let (uy)n>1 C Ri(H) such that w, — w in F, hence in
particular in ¥V and therefore also in H. The orthogonal projection is continuous
on ‘H and we get Pu,, — Pu in H.

By the above consideration

a(up — P, uy, — Puy,) < Cllug||#l|un — Pug|y

is bounded, hence u,, — Pu, is bounded in V. Then there exists a subsequence,
which is weakly convergent to v in V, but u,, — Pu,, — u — Pu in H. Therefore,
u— Pu=wv €V, and since u € V we get Pu € V.

Finally we get £(u,u — Pu) = lim,_, & (Un, U, — Pu,) > 0, by Lemma 3.5.5.
(#43) = (17): Assume that f € K, then Re(f — Ph,h — Ph)y < 0 for all h € H.
Now for A > 0, let u = R, f. We want to show, that u € K. By (iii) we have

0 < Re&(u,u— Pu)=Re&(Ryf,u— Pu)
= Re[Ex(Ryf,u — Pu) — A(Ryf,u — Pu)y] = Re(f — AR\f,u — Pu)y
= (1/A)Re(f = AR\ f, ARxf — PAR\ )%
= (1/A)Re(f — PAR\f, AR\f — PAR)f)n

—(1/A) Re(ARAf — PAR\f, AR\ f — PAR\f)u
—%IIARAf = PAR, 3

IN
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Therefore ARy f = PAR,f € K and thus u = R, f € K. O

3.5.4 The Beurling-Deny Criteria

In the following we assume, that the underlying Hilbert space H is also a Banach
lattice, which is the case if and only if A is of L:-type. Hence fix some o-finite
measure space (E, B, m), such that H := L?(E, m) is separable.

For real valued functions u,v : E' — R we set

uV v :=sup(u,v), uAv:=inf(u,v)
v :=uVO0and u” = (—u)".

Definition 3.5.11. (i) A bounded linear operator B is called positivity pre-
serving (resp. sub-Markovian) if Bf > 0 (resp. 0 < Bf < 1) for all
feH with f >0 (resp. 0 < f <1).

(ii) A Co-semigroup (T'(t))i>o is called positivity preserving (resp. sub-
Markovian) if T'(t) is positivity preserving (resp. sub-Markovian) for all
t > 0.

The Beurling-Deny Criteria characterize in terms of the generalized form, when
the associated Cy-semigroup is positivity preserving (resp. sub-Markovian), and
can be easily deduced from Theorem 3.5.10.

Proposition 3.5.12. The following statements are equivalent:
(1) T = (T ()j2)e0 is positivity preserving.
(i1) AR, is positivity preserving for all A > 0.

(iii) u € F implies (Reu)* € V and ReE(u,u — (Reu)™) > 0.

Proof. Consider the set K = {u € H : u > 0}, which is closed and convex. Then
a bounded operator B is positivity preserving, if and only if BK C K. The
projection onto K is given by Pu = (Reu)™, since for all v > 0
Re(u — (Reu)™,v — (Reu)™) = (Reu— (Reu)t,v — (Reu)")
—((Rew)™,v) + ((Reu)™, (Reu)™) < 0.
Now 7y is positivity preserving if and only if 7(¢)xK C K for all ¢ > 0. By

Theorem 3.5.10 this is equivalent to ARyK C K for all A > 0 and the fact that
u € F implies (Reu)™ € V and Re E(u,u — (Reu)t) > 0. O

Proposition 3.5.13. The following statements are equivalent:

(i) T = (T (1)j2)e0 is sub-Markovian.
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(i1) ARy is sub-Markovian for all A > 0.
(iit) u € F = (ReuA1)" €V and Re&(u,u — (Reu A1)™) > 0.

Proof. Consider the set K = {u € H : 0 < u < 1}, which is closed and convex.
Then a bounded operator B is sub-Markovian, if and only if BK C K. The
projection onto K is given by Pu = (Reu A 1)T = (Reu)™ A 1, since for all
0<v<1

Re(u — (Reu A1)t v — (ReuA1)T)
= (Reu— (ReuA1l)T,v — (ReuAl)")
(Reu—1,v—1) <0 Reu>1
= (0,v — Rew) =0 0<Reu<l1
(Rewu,v) <0 Reu<0

Now 7|3 is sub-Markovian if and only if 7 (¢)» K C K for all £ > 0. By Theorem
3.5.10 this is equivalent to ARyK C K for all A > 0 and the fact that u € F
implies (Reu A1)t € V and Re&(u,u — (Reu A 1)™) > 0. O
In the case of a real Hilbert space the projection onto K = {u € H : u > 0}
is given by Pu = u*. Then &(u,u — u*) = E(u, —(uv™)) = E(—u, (—u)™) and
therefore £(u,u—u*) > 0, if and only if £(u, u™) > 0 and we obtain the Beurling-
Deny criterion as in [Sta).

Remark 3.5.14. The third equivalence given in [Sta], Proposition 4.4, for H
real: A
veF=u"€Vand E(ut,u) >0,

reflects the fact, that if AR, is positivity preserving, so is AR. The proof uses
the fact that for Pu = u™ we have Pu—u = P(—u), which cannot be generalized
to arbitrary closed convex sets.

For applications one is interested in a formulation of sufficient conditions inde-
pendently for A and A. This was done in [Sta], Lemma 4.5 and Proposition 4.7,
in the real setting, which we cite here for completeness.

Lemma 3.5.15. Let (a,V) satisfy
u €V implies ut €V and a(u,u™) >0,

and (Au,u™)y <0 for all w € D(A). Then condition (iii) of Proposition 3.5.12
is satisfied.

Lemma 3.5.16. Let (a,)) satisfy
u€eV impliessut A1 €V and alu+u" Al,u—u" A1) >0,

and (Au, (u — 1)7) < 0 for all u € D(A). Then condition (iii) of Proposition
3.5.13 is satisfied.
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3.5.5 Application to non-autonomous Cauchy problems

The relation of generalized forms to non-autonomous variational Cauchy prob-
lems is given in [Sta], Example 4.9.(iii). In this section we recall the main steps
and apply the Beurling-Deny criteria.

As in section 3.1, we are given a bounded interval [0,7] C R and a triple of
Hilbert spaces V —— H —— V'. Let a(t,.,.): V. xV — C, t € [0, 7], be a family
of sesquilinear forms satisfying (3.1) and (3.14).

Then for the spaces V := L?(0,T;V) and H := L?*(0,T; H), we obtain for the
dual space of V that V' = L?(0,T;V"’) and get dense continuous embeddings
V <5 H << V. Define for u,v €V

a(u, v) = /0 at, u(t), v(t)) dt.

Then (a,V) is a continuous and elliptic sesquilinear form on H.
Consider on A the shift semigroup (S(t)):>o defined for f € H by

_f h(s—1t) ifs,s—te[0,T]
S(t)h(s) = { 0 otherwise.

Then both (S(¢)):>0 and the adjoint semigroup (S*(t))s>0 can be extended to Co-
semigroups of contractions on V'. Denote by (—%, D(—%,V")) and (&, D(4 V"))

the generators, where

D(—EV') = {uEV’:%uEV'andu(O)zO} and

dt’
d ' ', d ' _
D(%,v) = {ueV':ZueV and u(l) =0}

Let F := D(—=Z, V)NV and F = D(£,V")NY. The time dependent generalized

form corresponding to (a(t,.,.), V)i, is now given as follows.

a(u,v)+ < % v > fueF,veV,
E(u,v) :=

a(u,v)— < %’“ > ifueV,veF.
It is obvious, that the corresponding Cy-semigroup coincides with the restricted
Co-semigroup 73 obtained in Theorem 3.4.17.

Now assume that the underlying Hilbert space H is a real Banach lattice, then
H = L*(Q,R) for some measure space §2. Moreover, for all u € D(—%,H), one
has (—4u,u™) = (—Lu™,u) + (4u~,u") <0 and on the other hand, one gets
the estimate (—%u, (u—1)%) = (=% (uAl), (u—1)")+(—%(u—1)", (u—1)") < 0.
Therefore we obtain the following results as a consequence of Lemma 3.5.15 and

Lemma 3.5.16.
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Lemma 3.5.17. Let (a,V) satisfy
u €V implies ut € V and a(u,u™) > 0.
Then condition (iii) of Proposition 8.5.12 is satisfied.
Lemma 3.5.18. Let (a,V) satisfy
u €V impliecsut AN1€V and alu+ut Al,u—ut A1) > 0.
Then condition (iii) of Proposition 3.5.183 is satisfied.

Thus we obtain a generalization of the results in Section 3.2 to arbitrary Hilbert

spaces V s H = L?(,R). Again, we assume that the sesquilinear forms
a(t,.,.): V xV — C satisfy (3.1) and (3.14) for A = 0.

Corollary 3.5.19. Assume that for each u € V — H = L?(Q,R), one has
ut €V and

a(t;u™,u”) <0,
for almost all ¢ € [0,7], then for all positive initial values the solution of the

homogeneous non-autonomous Cauchy-Problem is positive.

Proof. First observe that for u € V), one has for almost all ¢t € [0, T] that u(t) € V,
hence ut(t) = u(t)t € V. Moreover, one obtains ut € V from the inequality

T e
||’U,+||y = fo ||u(t)+||%/dt = f{t;ogu(t)} ||u(t)+||%, < ||lully. Now, by the positivity of
the form a(t, .,.), we get

a(u,ut) = /0 a(t,u(t),u(t)™)dt

_ /0 ot u(t)u@) ) e — | altu(t),u(e)") dr
u(t))™, (— t

v

- / alt, (~u(®)*, (~u(t)) ") d

> 0,

since a(t, (—u(t))", (—u(t))”) < 0 almost everywhere on [0, 7.

Therefore, the assumptions of Lemma 3.5.17 are satisfied and thus condition (7i7)
of Proposition 3.5.12, which says that the corresponding Cy-semigroup (7 (t))e0
is positivity preserving. This means that 7p(t)L?(0,T; H.) C L*(0,T; H.), from
which we obtain with Theorem 3.4.19 that U(t,s)gHy C Hy for all s € [0,T]
and almost all ¢ € [s,T]. In particular for all positive z € H,, the solution given
by u(t) := U(t, 0)z is positive. O
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Corollary 3.5.20. Assume that for all u € V N L?(Q,R) one has ut € V|
uA1leV and
a(t;u,u A1) < a(t;u,u)

for almost all ¢ € [0,7]. Then the solution of the non-autonomous Cauchy
problem is sub-Markovian.

Proof. As before, we obtain that ut € V. Additionally, for u € V, one has for
almost all ¢ € [0,7] that u(t) € V, hence (u™ A1)(t) = u(t)™ A1 € V. Moreover,

T
ALy = / lu(t)* A 1|2 dt
:'AM(KHM@ﬂﬁﬁ+/E 1dt <||u|ly + T,
£:0<u(t)<

{t:0<u(t)<1}

which shows that ut A1 € V. Now, observe that a(t;u,u A1) < a(t;u,u) is
equivalent to a(t;u,u —u A1) > 0. Since u A 1 is the orthogonal projection of u
onto the closed convex set {u € V : u < 1}, we get by Remark 1.3.6, that also
a(t;u A1L,u—u A1) > 0. From that, and by the positivity of the form a(t, .,.),
we get

a(u+ut Al,u—ut A1)

- /qdumﬂ+um+ALMﬂ—um+Anﬁ

Tﬁuw@ymw—u@+AU+amum+ALm0—um+Anﬁ

I
S—

= a(t,u(t),u(t)) + a(t,0,u(t)) dt
{tu(t)<0}

/ alt, u(t), 0) + alt, u(t), 0) dt
{t:0<u(t)<1}

_|_

+/ a(t,u(t),u(t) —u(t) A1) + a(t,u(t) AL u(t) —u(t) A1) dt
0 {tu(t)>1}
> 0,

since each integrand is greater than or equal to 0 almost everywhere on [0, 7.

Therefore, the assumptions of Lemma 3.5.18 are satisfied and thus condition (7i7)
of Proposition 3.5.13, which says that the corresponding Cy-semigroup (7 (t)):>0
is sub-Markovian. However, this means that 7(¢)L*(0,T; K) C L*(0,T; K),
where K = {z € H : 0 < z < 1}, from which we obtain with Theorem 3.4.19
that U(t, s);s K C K for all s € [0,7] and almost all ¢ € [s,T]. In particular for
all 0 < x <1, we have z € K, and thus the solution given by u(t) := U(¢t,0)z
belongs to K, which says that 0 < u(t) < 1 for almost all ¢t € [0,7]. Hence, the
solution is sub-Markovian. O
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Chapter 4

Infinite Dimensional Evolution
Equations

So far we only studied the theory of partial differential equations in finite dimen-
sional spaces. However, stochastic differential equations are related to infinite
dimensional evolution equations. For more details, we refer to [PZ].

Lately, there have been some analytic results on the heat equation in infinite
dimensions, see [CP], [ArDE] and [AbEK]. Here we will consider the more general
case of second order differential equations with mixed derivatives, to which we
refer as the non-diagonal case.

Before we recall the results on the heat equation, we shall give the necessary
background on the generators of the shift group and on Gaussian measures and
semigroups. Then we give necessary and sufficient conditions on the coefficients
a;; for well-posedness of the problem

Ou(t,x) __ ‘_82u(t,z‘)
o = Qaijen %ij ggm s >0

(P)
u(0,.)=f € BUC(®P),

with ai; € R.

Finally, we will study a generalization, where we replace the derivatives with
respect to z; by group generators.

4.1 The Heat Equation in Infinite Dimensions

Before studying the problem (P) we want to recall some results about the infinite
dimensional heat equation

du(t,z) _ 9%u(t,x)
ot = 2jen N ae? o 1> 0

(HEw)
w(0,.)=f € BUC(P)

107
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established in the papers [ArDE] and [AbEK].

In the subsequent paragraph, we precise the notion of derivative. Then we recall
the definition of Gaussian measures and semigroups and certain properties, which
we shall use for our results.

4.1.1 The shift group and its generator

Let 1 <p < oo and I? = {(zy)neny C R : ||z], := 000, \xn\p)l/p < oo}, which is
a Banach space for the norm ||.||,. Then its positive cone is given as the subspace
B = {(xn)nen € 1P : x,, > 0 for all n € N}. We denote by e, the k-th canonical
basis vector of [P. Let BUC(I?) be the space of functions f : [? — C, which are
bounded and uniformly continuous. Then BUC(I?) provided with the supremum
norm || f|lec = sup,ep | f(2)| is a Banach space.

Definition 4.1.1. Let f € BUC(I?) and k € N. We say that f € D(%), if for
every = € [P,

0 g fl@+ter) — f(=)
oz, (®) = lim t

exists and defines a function 52~ f € BUC(IP).
T

Note that % D aa_xkf defines a linear operator on BUC(I?) with domain

D(52).

For k € N and ¢ € R consider the shift operator Ty (t) : BUC(I?) — BUC(IP)
defined by (Tx(t) f)(x) = f(xz+tex). Then (T;(t)):ier defines a strongly continuous
group of operators. Let Dy denote its generator, then

D(Dy) = {f € BUC(IP) : 15%% exists in BUC(Z”)}

sy -t O

t—0 t

Lemma 4.1.2. The two operators % and Dy on BUC(IP) coincide.
Proof. 1f f € D(Dy), then for every z € I?,

Dyf(a) = lim OI@ = f@) _\p flatter) = f(a)

t—0 t t—0 t

exists and Dy f € BUC(IP). Hence f € D(%) and a—ikf =D f.
Conversely, if f € D(a%k), we have to show that f € D(Dy) and Dy f = a%kf =:g,
which is equivalent to

10)f - £ = [ Ts)ads.
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Since both terms belong to BUC(I?), it suffices to show equality pointwise. But,
since g(z + teg) = % (z + tex) = L f(z + tey),

To(t)f (@) - f(2) = f( + ter) — f(z) = / o(c + sex) ds = / Ty()g(x) ds

follows immediately. O

Hence, in the sequel, we will no longer distinguish between % and Dj. For more

convenience, we shall use the following definition for the functions belonging to
D(Dy,) for all k € N.

Definition 4.1.3. We call a function f belonging to the space

BUC'(I") := {f € BUC(I") : f € D(Dy) for all k € N} = (| D(Dy),

once partially differentiable in BUC({?), and analogously we call a function
f € BUC*(I?) := {f € BUC'(I?) : Dyf € BUC'(I?) for all k € N} twice
partially differentiable in BUC(I?).

Observe that the shift operators commute, i.e. for all s, € Rand k,! € N, one has
Te()T(s)f = Ti(s)Ty(t) f for all f € BUC(I?). Hence the resolvents R(\, Dy) of
the group generators Dy commute. This implies that Dy D, f = D, Dy f, whenever
f € D(Dy) N D(D,) such that D,f € D(Dy) and Dy f € D(Dy).

Lemma 4.1.4. Let f € BUC?(IP). Then DyD,f = D;Dyf for all k,l € N.

Proof. Obviously, for all f € BUC?(I?) one has f € D(Dy) N D(D;) such that
Dif € D(Dy) and Dyf € D(D)) for all k,1 € N, 0

From [ArDE], Proposition 2.4, one can conclude, that BUC(I?) is dense in
BUC(I?). We shall use the same argument in order to show, that BUC?(IP) is
dense. The proof is based on the abstract version of the Mittag-Leffler theorem,
see [Es| for a proof and further applications, see also [Am], V.1.1 and [ArEK].
Let Ny = NU {0}.

Theorem 4.1.5. (Mittag-Leffler) Let (M,,d,) be complete metric spaces and
On : My 1 — M, continuous mappings with dense image (n € Ny ). Let o € M,,
e > 0. Then there exist y, € M, (n € Ny) such that

(a) do(zo,y0) < €
(b) Gnyn—H = Un-

Calling a sequence (Y, )nen, With y, € M, projective if ©,y,,1 = y,, and calling
1o the final point of such a sequence, the theorem says that the set of all final
points of projective sequences is dense in M.
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Proposition 4.1.6. The space BUC?(I?) is dense in BUC(IP).

Proof. Let My = BUC(I?) with the supremum norm || f|| = sup,¢p; | f(z)], and
forn € N, let M, = {f € =y D(Dx) : D;f € Np—; D(Dy),1 < j < n} with
the norm || flln = 320y I1DDefIl + 25y IDefll + IfIl- Then (M, ||.[|n) is
a Banach space, because the Dy are closed operators. Moreover, the injection
O, : M,,1 — M, is continuous. Let x € M,,. Since the operators commute, one
has R(\, Dpy1)%*r € My, 1 and limy_,o N>R(A, Dy y1)?x — z in M,,. Thus, O, has
dense image for all n € Ny. Here, every projective sequence is constant and and
final points are the same as the elements of BUC?(IP). Thus, the Mittag-Leffler
theorem says that BUC?(I?) is dense in BUC(IP). O

Remark 4.1.7. The approach to infinite dimensional evolution equations in [CP]
requires Fréchet differentiability. Then for a Hilbert space H the space of all
functions with continuous second derivative C?(H) is dense in BUC(H), see [Ku].
However, the subspace of C?(H) consisting of all functions possessing bounded
uniformly continuous second derivatives fails to be dense in BUC(H), see [NS].

Let f € BUC(IP) and fix z,y € [P, then t — f(y+tz) defines a bounded uniformly
continuous function from R to C. This type of function plays an important role
in the sequel. In particular, we will use the following differentiability result.

Lemma 4.1.8. Let 1 < p < oo and b € IP. Assume, that f € BUC'(I?) and
> 10l ID; fll < oco. Then for all y € IP

limf(y+tb) —fly) _

t—0 t

D,

Proof. Since . [b;| || D; f|| < oo, the map s+ >, b;D;f(y + sb), is continuous.
Thus, it suffices to show, that f(y + tb) — f(y) = fot >.;biD;f(y + sb) ds for all
t € [0, 7] and some T > 0.

First observe, that for f € BUC'(I?) and all n € N and y € I? fix, the map

R" 9‘/E'_)f(xla"'axnayn+layn+25"') eR

is totally differentiable, because all partial derivatives exist and are continuous.
Hence, if we set b™ := (b1, ...,b,,0,...) € [?, we obtain for h € R,

Fly+(E+hb") = fly+t0") =Y D;f(y +tb") hb; + o(h).
7j=1
Thus, ¢ — f(y + tb") is differentiable and & f(y + tb") = > i1 biDif(y + "),

which is continuous, and we obtain f(y+tb")— f(y) = fot 2?21 biD;f(y+sb™)ds
for all ¢ € R. From now on, let us fix 7 € R and take ¢ € [0, 7].
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Moreover, f(y + tb") — f(y + tb) as n — oo uniformly in ¢ € [0,7]. Indeed, as
f € BUC(I?), for every € > 0 there exists a 6 > 0 such that ||z —yl||z < § implies
|f(z) — f(y)| < e. Thus, it is sufficient to show, that for every § > 0 there exists

1
an n € Nindependent of ¢ € [0, 7], such that ||tb" —tb|| =t (ZJ ~ il |b;[? ) ! <0,
which is possible, since t is bounded and b € [P.

Finally, 377, b;D;f(y + sb") — 3752, b;D; f(y + sb) as n — oo uniformly in
s € [0, 1], because

‘ S D f(y+ sb) — > biDf (y + sb7)
j=1 j=1

‘ S 0D f(y+sb) — > b;Dif(y + sb)
J=1 j=1

- ‘ Z biD;fy+sb) = D biDif (y + sb")

j=1

‘Zbny-l—sb Zbny—i—sb”

+‘ Zbny—i—sb”)

j=n+1

The first term converges to 0 uniformly in s with the same argument as before
for f, because Y °°, b;D;f € BUC(IP). For the second, > 22, [b;| || D;f|| < oo
implies convergence to 0 uniformly in s.

Now the uniform convergence allows to interchange integration and limit. Thus

fly+1t0) = fly) = lim fly+8") = f(y)
t n
= lim [ ) b;D;f(y+ sb") /Zbny—i—sb)
N

n—oo

which concludes the proof. O

Corollary 4.1.9. If ¢ : R — R is differentiable, then ¢ — f(y + ¢(¢)b) is
differentiable With derivative Y 7%, b;D; f(y + ¢(t)b)¢'(t). In particular one has

(y—i-\/_b fo lefo(y—i—\/_b)

Proof. By Lemma 4.1.8, t — f(y + tb) is differentiable with derivative given by
> 521 biD; f(y+1tb) and we apply the chain rule to ¢ — f(y+(t)b). In particular

¢(t) = V/t is differentiable for ¢+ > 0 and hence for all t > 7 > 0
t b.
Fu+ Vil =+ V7D = [ 352Dt + e,
T ]:1

and by letting 7 — 0, the claim follows. O
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We recall a simple result of semigroup theory. We refer to [Nal], A-IT 1.13 or
[Dal], Theorem 2.31 for the easy proof.

Proposition 4.1.10. Let B be the generator of an isometric Cy-group (T(t))ser
on a Banach space E. Then B? generates a contractive Cy-semigroup S given by

SO = s [T s (€ )

(4rt)

Remark 4.1.11. Since B2 = (—B)? and —B generates the isometric Cy-group
(T (—t))ser, we could write equivalently S(t)f = 4m)1/2 Jp e~/ T(~s)f ds for
f€E.

Recall that Dy is the generator of the isometric shift group 7} on the Banach
space BUC(I?). Hence D? generates a Cy-semigroup of contractions given by

(Se0)N)@) = s [ S = ser) ds

for f € BUC(IP).

Moreover, the semigroups S, commute, because the T, commute. Thus, for all
n € N, (ITi—, Sk(t))es0 is a Co-semigroup with generator D? +---+ D2, the
closure of the operator D? + --- + D2 defined on its domain (;_, D(D3), see
[Nal], A-I 3.8. Note that for f € BUC(I?),

(T5:00)@) = ot [ 1o ey

e=ls/4t
The fact that T

mean zero (and variance v/2¢ in the one dimensional case) motivates the following
definition.

is the density of the Gaussian (or normal) distribution with

Definition 4.1.12. On the Banach space BUC(R) the semigroup S given by
(S f)(z) = W Jp e~ 7% f(z—s)ds for f € BUC(R) is called the Gaussian
semigroup.

On BUC(lp)a we call (Sk(t)f)(z) - W fR 6_52/4tf(.’13 - S@k) ds the one di-
mensional Gaussian semigroup in direction k& and ([;_, Sk(?)):>0 the n-
dimensional Gaussian semigroup.

The subsequent paragraph is devoted to a generalization of Gaussian semigroups
in infinite dimensions.
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4.1.2 Gaussian Measures and Semigroups in Infinite Di-
mensions

The approach to the infinite dimensional heat equation (HE,) in [AbEK] uses
Gaussian semigroups. We will summarize the definitions and properties used in
the sequel. Throughout this paragraph, let £ be a separable Banach space.

The following definition is taken from the monograph [Bo]. There the measure is
defined on the smallest g-algebra, for which all continuous linear functionals on
E are measurable. This, however, coincides for a separable Banach space E with
the Borel o-algebra B(E), see [Bo|, Theorem A.3.7 or [VTC], Chapter I.

Definition 4.1.13. (i) A Borel probability measure x on R is called Gaussian
measure if it is either the Dirac measure J, at a point a or has density

1 (t—a)2>
2
»a,0°%) 1 t— exp | —
p( ) — o p( 57

with respect to Lebesgue measure. In the latter case p is called non-
degenerate. If the mean a = 0, then y is called centered or symmetric,
if additionally the variance 02 = 1, then y is called standard.

(ii) Let E be a separable Banach space, and B its Borel o-algebra. A probability
measure 4 defined on (E, B) is called Gaussian if for any real valued f € E',
the induced measure po f~! on R is Gaussian. The measure p is called
centered or symmetric, if all measures po f=!, f € E', are centered.

A centered Gaussian measure y is characterized by the following invariance prop-
erty. We refer to [Bo|, Proposition 2.2.10 for the proof. Here y ® p denotes the
product measure on E x E, which is again Gaussian.

Proposition 4.1.14. A probability measure p on (E, B) is centered Gaussian if
and only if for every ¢ € R, the image of the measure @ p under the mapping

E X E — E,(z,y) — sin oz + cos py

coincides with .

We will also need the following theorem, which is due to Fernique, see [Fe] or
[AbEK] with an alternative proof.

Theorem 4.1.15. (Fernique) Let i be a Gaussian measure on a Banach space
E. Then there exist T > 0, M > 1 and w > 0 such that

plllzll > 1) < Me ", ¢ > 7.

Corollary 4.1.16. Let x4 be a Gaussian measure on a Banach space E. Then
[z llz|["du(z) < oo for each r > 0.
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Proof. Let R(k) ={zx € E: k < ||z]| <k+1}, k€ N. Then E = {0} U], R(k)

/E lelrdu(z) < 1+Z / el du(z) < 1+ 3 (k+ 1) ullz]) > &)
k=1
1+Z (k 4+ 1)"M =¥’

IN

O

Observe that on the space BUC(I?) one has for the one dimensional Gaussian
semigroup in direction k,

(SN = s [ fa = sen)ds
S e 5/ f(z — Visey) ds
= G [ = Vise)

—32/4

= /fx—\/_sek)( Ar)1/2
_ / @ — Viser) dp(s),

ds

where (1 is a centered Gaussian measure on R given by the density s — ("4 8)1//2 The
great advantage of this writing is, that the Gaussian measure y is independent

of the parameter ¢. Analogously, one obtains

(ITse® 1)@ = | flo = VD seer) duns)

e—ls1?/4

where p, is a centered Gaussian measure on R” given by the density s — Gy

again independent of %.

Remark 4.1.17. We can extend p, to a centered Gaussian measure fi, on [P,
if we define fi, := u, ® g, where 57" denotes the infinite product of Dirac
measures at the point 0 for the coordinates x for kK > n + 1. Then for A C [P
we have [Ln(A) = ,un({(:vl,.. Tn) ERY 1 x = (xl,.. a:n,(),. ) € A}). Thus,
(Hk 1Slc fRn \/_Zk 15kelc dﬂn flp tS dﬂn( )
the followmg, we shall only use the notation p, for either the measure on R"” or
the one on /7.

Therefore we wish to know, if we can extend this notion to general centered
Gaussian measures and still obtain a Cy-semigroup.
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Proposition 4.1.18. Let i be a centered Gaussian measure on E. Fort > 0
and f € BUC(FE) define

(S(t)f)(x) = [E F(z + Vi) du(y).

Then (S(t))i>0 is a strongly continuous semigroup of operators on BUC(E).
Moreover, ||S(t)|| <1 holds for all t > 0.

Proof. For every t > 0, S(t) defines obviously a linear operator from BUC(FE)
to BUC(F) with ||S(¢)|| < 1, because p is a probability measure. We also have
S(0) = Id.

Note, that for all s,z € R there exists a ¢ € R such that sinyp = \/‘t/% and
j_ . Then

CosQ = =

(SHSE) @) = S /E F(z + v/5y) du(y)
_ /E /E fla+Viz+sy) duly) du(z)
- /EXEf<$+\/t+—S(\/%Z+ \/‘Qy)) d(p ® p)(y, )

= [ s+ VEESE dute

= (S(t+5)f)(x),
where £ = \/‘t/% z+ \/% y = sin pz + cos py for an appropriate ¢, which enables
us to use Proposition 4.1.14. Hence S(¢)S(s) = S(t + s).
Finally, we have to show, that for all f € BUC(E), the map t — S(t)f is
continuous in 0. Let € > 0. Since f is uniformly continuous, there exists a § > 0
such that ||z — 2o||p < ¢ implies |f(z1) — f(z2)| < 5.
Let 7, M and w be the constants due to the Theorem of Fernique 4.1.15. Choose
R > 7, such that 2| |l M e % < &.
Then for all 0 <t < (£)?

I0F =l = sup| [ (e VEn) = @) duto)

zcE

< swp[ [ 1 Vi) - @)ty
v Vi) - @) duty)]
< ShofllMe R <e.

2
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For the first estimate we use that u is a probability measure and the fact that
lo + vty —all < Vtllyll < ¢ for |ly|| < R and hence |f(z + Vty) = f(z)| < 5
uniformly in # € E. For the second, we have |f(z + vty) — f(z)| < 2||f|| for all
z € E, and u(|ly]| > R) < M e “E* by Fernique’s Theorem 4.1.15.

Hence t — S(t) f is continuous and (S(t)):>o a strongly continuous semigroup. [

Since the Gaussian semigroups Which occurred so far admit a Gaussian measure
n, on R and a representation (S( = [, f(@+V1y) dp,(y) for all functions
f e BUC(I?), we get in no conﬂlct w1th the following definition.

Definition 4.1.19. We call a family S(¢) of operators on BUC(F) a Gaussian
semigroup, if there exists a centered Gaussian measure p and S(¢) admits a
representation

(S(t)f)(x) = [E f(z +viy) du(y).

Note that by the above proposition, a Gaussian semigroup is a strongly continuous
semigroup of contractions.

Remark 4.1.20. Recall, that on the metric space E with two measures p and v
such that the equality [, fdu = [, fdv holds for all f € BUC(E), then p = v,
see e.g. [Par], Theorem 5.9. Hence the measure u of a Gaussian semigroup is
unique.

In the sequel, we shall be concerned with Gaussian measures on the separable
Banach space E = [P. We have the following convenient relation between a
Gaussian semigroup and the generators of the shift groups on the space BUC(IP).

Lemma 4.1.21. Let 1 < p < oo and let S = (S(t))i>0 be a Gaussian semigroup
on BUC(IP). Then for all f € D(Dy) and all T > 0 one has S(1)f € D(Dy) and

DyS(7)f = S(7) Dy f.

Proof. Since Dy, is the generator of the shift group Tk, We have to show for all

f € D(Dy) and 7 > 0 that Ty (t)S(7) f=S(7) f = fo Ty (s)S(T)Dy f ds in BUC(IP).
Therefore, it is sufficient to show equahty p01ntW1se i.e. for all x € [P, we have
to show that S(7)f(z + tex) — fo 7)Dif(x + sei) ds. But

S(r)f(@ +ter) = S(r)f(x) = | flz+ter +VTy) — f(z+VTy) du(y)

g

and by Tonelli’s Theorem
t t
/ S(T)Dyf(x + sex)ds = / Dy f(z + sex +v/Ty) du(y) ds
0 o Jiw
t
= / / Dy f(z + sex + /Ty) ds du(y).
w Jo



4.1. THE HEAT EQUATION IN INFINITE DIMENSIONS 117

Hence it is sufficient to show for each y € [P that

Fly +tex) — £(y) :/0 Def(y + sex) ds,

which holds by Lemma 4.1.8. O

4.1.3 Semigroup Theory for the Heat Equation

The finite dimensional heat equation in R" is given as

du(t,x) __ n  8%u(t,x)
ot =21 st o >0

(HE,)
u(0,.)=f € BUC(R"),

which we regard as the abstract Cauchy problem for u(t) := u(t,.) € BUC(IP)
associated with the operator D?+- - -+ D2, Recall that the closure D? + - - - + D2
is the generator of the n-dimensional Gaussian semigroup on BUC(R"),

(TT5/07)0) = s [ e = 3 e .

Thus, the orbits ¢ — ([]}_, S;(t)) f are the unique mild solution of the abstract
Cauchy problem associated with D? + - -- + D2. Moreover (;_, D(D3) is invari-
ant under []7_, S;(t), such that for f € (;_, D(D3), t = ([Ij_, S;(t))f solves
(HE,) in the classical sense.

Let A = (Aq,...,A,) € R” and consider the generalized heat equation

Ou(t,x) n 8%u(t,x)

u(0,.) = f € BUC(R").

(HE\,)

Then the solution is given by the orbits of the n-dimensional Gaussian semigroup
with change of speed A on BUC(R"),

n

S ON@ = TIS000@) = s [ 1= 30 VAjsieg) ds

=1

The natural extension from the n-dimensional setting to an infinite dimensional
situation is achieved by replacing R™ by one of the real sequence spaces [P with
1 < p < co. Then we obtain the infinite dimensional heat equation

du(t,x) _ 9%u(t,x)
Tot = 2jeni g 1> 0

(HEw)
w(0,.) = f € BUC(P).
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Since the finite product provides the solution for the finite dimensional problem,
the infinite product of Gaussian semigroups seems to be a good candidate to
solve the infinite dimensional heat equation. Therefore the convergence of the
infinite product of Gaussian semigroups was thoroughly studied for example in
[CP] and [ArDE]. From the latter we took the following result. In this context
the existence of a change of speed A = ()\;),en is essential.

Proposition 4.1.22. Let 1 < p < 00 and A = (Ap)nen € lﬁﬂ. Define on the
Banach space BUC(IP) the n-dimensional Gaussian semigroup S™ with change
of speed \ by

n

(50N = [ Si0u05(@) = ) 2 [ e f(a ZW

Jj=1

for f € BUC(IP). Then
S(t)f = lim S™(¢)f

n—o0
converges uniformly on [0,7] in BUC(IP) for every T > 0, f € BUC(IP) and
defines a strongly continuous semigroup S on BUC(IP). We call it the heat
semigroup of speed \.

Remark 4.1.23. The above result was shown in [ArDE] even for 0 < p < 1 and
weighted [P-spaces. But in the following, we need 1 < p < oo.

Lately in [AbEK], there has been developed a different approach to the semigroup
solving the infinite dimensional heat equation (HE,,).

Recall that the finite dimensional Gaussian semigroup S™(¢) = [[}_, S;(\;t) with
change of speed A, has a representation

S™(t)f(z) = g flz+Vty) dua(y),
—s2/4x;

i lm, hence is a

where the measure p, is given by the density s — []’
centered Gaussian measure.

The question, weather the heat semigroup S(t) = [[,—; S;(A;t) is also Gaussian,
was answered positively in [AbEK] as a consequence of a characterization of
Gaussian semigroups.

Proposition 4.1.24. Let 1 < p < 00 and A = (A\y)nen € P2, The semigroup
S = (S(t)e=0 = (I[}Z, Si(Ajt))es0 on BUC(IP) is Gaussian, i.e. there ezists a
unique Gaussian measure p on [P, such that S admits a representation

(S )) = [ flz+Vty)duly),

p

for all f € BUC(IP).



4.1. THE HEAT EQUATION IN INFINITE DIMENSIONS 119

Definition 4.1.25. For 1 < p < oo we call this Gaussian measure y on [P
associated to the sequence A = (\,)nen € IP/2.

Remark 4.1.26. The crucial point is indeed to show the existence of a measure.
Additional properties guarantee that it is Gaussian and represents the semigroup.
Note that Ay, : f+— (S(t)f)(x) defines a positive functional on BUC({?). If it is
order continuous, then by the Daniell-Stone theorem, there exists a measure i,
such that Ay,f = [ fdu,. At the end of this chapter in Section 4.4, we show
this result as a consequence of the better known Riesz representation theorem.

We shall soon see that indeed, the heat semigroup provides a solution of the
infinite dimensional heat equation. For that we need the following lemma, which
gives some analog to partial integration with respect to a Gaussian measure.

Lemma 4.1.27. Let i be the Gaussian measure on IP associated with the sequence
\; € IP/2. Then for a function f € BUC*(IP), one has

dp(y) = 2X y)d
lpf( Y)yi dp(y g 8% ) dp(y).

Remark 4.1.28. Note that because of Corollary 4.1.16, the left hand side has a
sense.

Proof. The heat semigroup of speed A is given as the Gaussian semigroup asso-
ciated with the Gaussian measure p on [P, as well as the infinite product of one
dimensional Gaussian semigroups. Therefore

(SWON@) = | fla+Viy)dp(y)
»
= lim [ f(z+Vty)du(y),
n—00 fpn
where p,(y) is given by the density y — H % Hence if a function ¢ de-
pends only on a finite number of variables, then [, g(y) = [z 9(¥) dpn(y).

Assume first, that f depends only on a finite number of Varlables. Then also
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a%i f(y) depends only on a finite number of variables and
[ twdut) = [ r@sdua)
» R7
o Yi /4N oY/
- /R l/f Y 1/2dy H (Wd%
e yl/4>\ eV /4N
= 2 A1 —o
/Rn 1 A / 52/1 47?)\ gy I_IZ (4m ;)12
- ay, (¥) dpn(y)
= 2 [ G duty)
since

e_yi /4/\i d
/Rf(y)yiﬁ Yi

s Sl 2 ) B d
= |—=f(y) v . + /ayz Yi

2), ) Ly o
a / 3,% o

by partial integration, and because e~ ¥ {/4% vanishes as lys| — oc.

Now if f depends on infinitely many variables, define the map II, : 7 — [P
by (z1,--) %0 Tag1,---) = (T1,---,2n,0,...). Then f, := foll, € BUC(IP)
and depends only on a finite number of variables. Moreover, for ¢ < n, one has
2= ( )oHn, and fori > n, 2 f, = 0. Thus f, € BUC (1) and also 2 f,

depends only on a finite number of Varlables Hence by the above cons1derat10ns,
0
l faW)yi dp(y) = 2 i =—fa(y) dp(y).

Now fu(y) = f(y) as n — oo and |[fu(y)uill < [flllsl < Mlyll, which is
integrable by Fernique’s theorem. Hence by Lebesgue’s dominated convergence
theorem

, Fa@yidu(y) — | f(y)yidu(y).

I»

On the other hand a%ifn(y) = (6%2, ) oIl,(y) — %f(y) and also one has
ol < (35:f) o1

gence theorem 5
[ ot dutn) = [ S auty)
» »

i

< M, hence again by Lebesgue’s dominated conver-
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and the claim follows. O

Corollary 4.1.29. Under the assumptions of Lemma 4.1.27, for o € R,
1
SS(ay)yidu(y) = 2% | Dif(ay) du(y).
» P

Now we are given all the necessary results to establish a relation between the
heat semigroup S(t) = [[;2, S;(A;t) on BUC(I?) and the infinite dimensional
heat equation (HFEy).

Theorem 4.1.30. The generator B of the heat semigroup S(t) = [[;2, Sj(At)
15 an extension of the operator

JEN
D(B) = {u € BUC\(I") : Dyu € D(D;) and Y || |D2ul] < oo}.
jEN

Proof. We have to show for every f € D(B) that f € D(®B) and Bf = Bf,
which is equivalent to S(t)f — f = fo s)B f ds Since both terms are elements

of BUC(IP), it suffices to show S(t)f(x) fo x)ds for all z € IP.
Since S is a Gaussian semigroup, one has S flp x + \f ty) du(y) for all
f € BUC(I?), where p is the Gaussian measure assoc1ated with A = (X)) en-

Let as before II,, : I — [P, (z1,...,%n, Tns1,-.-) — (Z1,...,2p,0,...) and let

fn = foll,. Then for j <n, D;f, = (D,f)olIl,, and for j > n, D;f, = 0. Thus,
fn € D(B) and by Corollary 4.1.29,

S@BA@) = [ Bua+vsn)dus) = [ S ADfula+ V5w duty)

jEN

- /ZAD2fnx+\fy du(y Z/MAD (Dj fa)(z +Vsy) du(y)

Z/wan)mfy duy /Z (D31)(x + /5 9) du(y).
I w2
Hence, by Tonelli’s Theorem and Corollary 4.1.9,

/S VB, (z ds‘//lp. (D) + /3y) duly) ds

:// Dfn)(x+\/_y)dsd,u() fn($+\fy) Fal@) du(y)
= () fn() (4.1)
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Now f,(z) — f(z) as n — oo and ||f,|| < ||f]|. Hence by Lebesgue’s dominated
convergence theorem

(S fa)(@) = [ fulz+Viy)duly) = [ flz+Viy)duly) = (SE)f)(@).

i r

Moreover,

Bf () = Bfa(z)] = |Y_ ADif( ZA D2 f(z)

JEN
= [Y AD}f(x ZA (D2f) o I ()|
JEN
< ) NDif(x) Z/\ (D2f) o I, (z)|
JEN jEN
+|ZA (D2f) o I, ( Z)\ (D?f) o Iy (x)],
7j=1

where the first term converges to 0 as n — oo, because for f € D(B) one
has .y A\;D3f € BUC(IP), and additionally for the second term one has the
estimate | Y222 Aj(D3f) o Tn(x)| < 372, 5 [A[ID3f|l, which also vanishes
as n — 00. Therefore Bf,(x) — Bf(x) for all x € I and consequently as
before S(s)Bf,(x) — S(s)Bf(x) for all s > 0. Once more we apply Lebesgue’s
dominated convergence theorem to obtain fo 8)Bfn(z)ds — fot S(s)Bf(x)ds.
Uniqueness of the limit gives S(t) f(z)— f(z) = fo S(s)Bf(z) ds, hence f € D(®8)
and Bf = Bf. O

Remark 4.1.31. Note that one could prove (4.1) also using the definition of
the heat semigroup given by S(t)f = lim,,_,., S™(¢)f for all f € BUC(I?), where
S™(t) = [I}=, Sj(Ajt) is the n-dimensional Gaussian semigroup generated by the
closure of the operator B” := Y " | A\;D7. Observe that for all f € BUC(I?) one
has S(t)fn = (S™(t)f)n and, for f € D(B) one has f, € D(B), f € D(B™) and
Bf, = (B"f)n. Thus,

SWfh=tfa = (S0 f)a— fu= (5" = = ( / ") fds)

_ /Ot(S”(s)B"f)ndsz/otS( /OS VB, ds.

As a consequence we obtain solutions of the heat equation

du(t,x) — . )\.azu(t,x) t>0
(HEOO) { ot Z]EN J 8:092- ’

u(0,.)=f € BUC(IP) (1<p< o).
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Definition 4.1.32. A function u : [0,00) x I? — C, (t,z) — u(t,z) is called a
solution of (HE,,), if for t > 0 the function u(t) := u(t,.) has its values in D(B)
and is differentiable as a function with values in BUC(I?), such that (HE,) is
satisfied.

Proposition 4.1.33. Let 1 < p < oo and let S(t) = [[}2, Sj(\jt) be the heat
semigroup on BUC(IP). If f € D(B) then (t,x) — u(t,z) := S(t)f(x) is the
unique solution of (HEy,).

Proof. For every f € BUC(IP) the orbit u(t) := S(t) f is the unique mild solution
of the abstract Cauchy problem associated with the operator 8, which is an
extension of B. Hence it suffices to show, that the orbit u(t) = S(t)f € D(B)
for every f € D(B). If f € D(B), then f € D(Dy) and also Dyf € D(Dy) for
all k € N. Therefore applying Lemma 4.1.21 twice yields S(¢)f € D(Dy) for
all £ € N and DyS(t)f € D(Dg). Moreover DiS(t)f = S(t)Dif, and one gets
> e NLIIDFS @Il = 3 5en NSO DI < Xjen [N IDFfII < oo. Thus
S(t)f € D(B). O

4.2 Second Order Differential Equations

The previous section was devoted to the infinite dimensional heat equation. Now
we want to allow also mixed second order derivatives, but no lower order terms.
We consider the problem

ou(t,x) _ &2u(t,x)
o = Dijen % agog, 0 1> 0

(P)
u(0,.)=f € BUC®P),

with ai; € R.

Definition 4.2.1. A function u : [0,00) X I? — C, (t,z) — u(t,z) is called a
solution of problem (P) if for all ¢ > 0, the function u(t) := u(t,.) has its values
in BUC?(I?) and is differentiable as a function with values in BUC(I?), such that
(P) is satisfied with absolute convergence of the sum in BUC(IP).

In order to examine this problem and its solutions, we want to introduce some
notations. Let the operator A be defined by
o | <}

D(A) = {ueBU02 2 Z|aw| Fult,z)

2
Au = Y o200

Then A is a linear operator on BUC(I?). Hence the Problem (P) is the abstract
Cauchy problem associated with (A, D(A)).
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Definition 4.2.2. We say, that the Problem (P) is well-posed, if the operator
(A, D(A)) is closable and its closure (A, D(A)) is the generator of a strongly
continuous semigroup (G(t)):>o-

If the Problem (P) is well-posed, then the the orbits u(t) = G(t)f, f € BUC(IP)
(resp. f € D(A)) are the unique mild (resp. classical) solutions of the abstract
Cauchy problem associated with (A, D(A)). See also [EN], Section IL6, for
further details on the concept of well-posedness.

However, under certain assumptions we get solutions of the Problem (P) in the
sense of Definition 4.2.1 whenever f € D(A).

Lemma 4.2.3. Let the Problem (P) be well-posed and assume that the semigroup
(G(t))is0 generated by (A, D(A)) is Gaussian. Then for every f € D(A) the
function (t,x) — u(t,z) := G(t) f(x) is the unique solution of Problem (P) in the
sense of Definition 4.2.1.

Proof. For every f € BUC(IP) the orbit u(t) := G(t)f is the unique mild solu-
tion of the abstract Cauchy problem associated with (A, D(A)). Therefore, we
only have to show, that G(t)f € D(A), whenever f € D(A) C BUC?(I?). Ap-
plying Lemma 4.1.21, we get G(¢t)f € BUC?(I?) and D;D,;G(t)f = G(t)D;D;f.
Moreover,

D lagl IDD; GO fN = Y lag | IG@) DiD;f[| <Y lag| || DiD; fI| < oo,

2% 2 2

since f € D(A), and the claim follows. O

Our aim is to characterize well-posedness with respect to the coefficients a;;.
We will first find a necessary condition and then sufficient conditions for well-
posedness.

4.2.1 Necessary Condition for Well-Posedness

Assume, that the Problem (P) is well-posed. Further suppose, that the semigroup
generated by (A, D(A)) is Gaussian. Although this is a restriction, under this
additional assumption we know that the orbits of the semigroup define solutions of
the Problem (P). Moreover, it enables us to deduce a property of the coefficients
Q-

Proposition 4.2.4. Let 1 < p < co. Assume that the Problem (P) is well-posed
and that the semigroup G(t) generated by (A, D(A)) is a Gaussian semigroup on

BUC(IP). Then the ay; satisfy agr, > 0 for all k € N and Y, a,(f;cﬂ) < o0, for
p>2and Yy, oy ap, < 0o, forp<2.
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Proof. Since G(t) is a Gaussian semigroup on BUC(I?), there exists a Gaus-

sian measure 1 on [P such that for all f € BUC(I?) one has the representation
= [, flz +Vty)du(y). |

For the glven initial function f(x) = ", which obviously belongs to D(A), we

can calculate the solution in two different ways.

On the one hand the solution is given as the orbit of the Gaussian semigroup and

we obtain

u(t,z) = GA)f(z) = | flz+Vty)duly) = /l i VIR iy ()

p

= e / eV dpu(y).
»

On the other hand for the initial function f(x) = €*®* the Problem (P) reduces
to a one dimensional problem

Ou(t,xy)
ot

u(0, 7)) = €',

. = ap ZUEm) 4> 0
(1 — dim) k

in the sense that if u(¢, x) solves (1-dim), then (¢, ) := u(t, x) solves (P).
The solution of the one dimensional heat equation is well known to be given by
the one dimensional Gaussian semigroup

_g2 1 _
e 8 [Atagg ez(wk s) ds

1
u(t,r) = ——
9= 7 |
which yields after substituting r := —_Z;’akk

T
ek

o
uta) = S [ e gy

= Tk e—takk

since €*°/2 is invariant under Fourier transformation.

Comparing the two results we get by the uniqueness of the solution

/ eV du(y) = e torr
1»

As [, ek dpu(y = [0 e~k dy(y) by the symmetry of the Gaussian measure,

we obtain
1 ) .
etk — (/ eZ\/iyk dﬂ(y)+/ e—l\/i?/k du(y))
2 » »

- /l cos(Vt yx)dp(y).
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Hence, we get

on = e o= ([ otvimamn)
= /lp%(cos(\/?_fyk))ﬁzodﬂ(y) = A]lﬂ% [W} %’%d,u(y)
= %Lyidu(y) > 0.

Therefore, for p > 2,

(1], ®/2) 1\ @2
@ = (5 [taw) < (3) [ mrauto)
» P

by Holder’s inequality and the fact that p is a probability measure.
For 1 < p < 2, however, we obtain by the same argument

e < (5) [ ot

Consequently for p > 2

(p/2) 1 (p/2) 1 (p/2)
Sap? < X (5) [mbat=(3) [ X lwrdut)

keN keN keN
NE
= (3) [ Wiant) <

and respectively for 1 < p < 2, since Y, |yx|? < (Zk |yk|p)2,

1 p
Sa<(5) [ wliFaue) <

keN

In both cases the boundedness follows by the corollary to Fernique’s theorem. [J

A if =i
0 for j#i-
the infinite dimensional heat equation. Thus the condition 3 a?/” = 3 AP/? < oo
is sufficient for well-posedness, which is also necessary for p > 2. However, for
1 < p < 2, the necessary condition Y a}, =Y N < oo is weaker.

Remark 4.2.5. Let a;; = \id;; = { Then the Problem (P) is
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4.2.2 Sufficient Condition for Well-Posedness
Let 1 < p < oo. Recall that the Problem
2ulbt) = 3 JeN Qki %;c;;)’ t>0

u(0,.) = f € BUC(P)

(P)

is well-posed, if the operator A = Zk’l a“#f%z is closable and its closure is the
generator of a strongly continuous semigroup G(t) on BUC(IP).

We will proceed as follows. We transform the semigroup S solving the infinite
dimensional heat equation (HF) into a new semigroup G and determine its
generator 4. Then we will give sufficient conditions on the coefficients a;;, with
1,j € N, such that the closure of the operator A coincides with A.

For that, consider

Ju(t, o%u(t,
= Ten Mg, >0,

(HE)
u(0,.)=f €BUC(I") (1<r<o0).

We use the results established in the papers [ArDE] and [AbEK] and already
recalled in Section 4.1.

For 1 <r <ooand A = (A, )neNel’/Q

S(t)f = lim S"(t)f = lim [[S;(\t)f

n—00 n—00 -

converges uniformly on [0,7] in BUC(I?) for every 7 > 0, f € BUC(I?) and
defines the strongly continuous heat semigroup S on BUC(I?).
This semigroup S = (S(t))>0 is Gaussian, hence it admits a representation

SOf)=@) = | fl@+Viy)duy),

i

where f € BUC(I") and p is the Gaussian measure on [” associated with \ € ["/2.
Moreover, the generator of S is an extension of the operator B = Y A, 6‘122,
with its appropriate domain.

We start with some heuristic considerations which will lead us from the heat
equation to the non-diagonal problem (P).

Let A denote the infinite diagonal matrix with entries (A, )nen € l:L/ ?. Further,
let M be a bounded linear operator from [" to [? with the matrix representation
M = (mj); jen with respect to the canonic bases of I” and /. Note that for
the matrix representation of its adjoint M™ : I — [, where I = (I?)' with
% + z% = 1, one has mj; = mj ;. Then MAM" defines a bounded linear operator
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from I” to I?, because M : I" — I” is bounded, hence its adjoint M € L(I*',1"")
and as (\,), € lr/2 C I" the operator A maps I" to [' C I". In particular for all
k,l € N one has ZiEN NiMypiMy; = (MAMT)M = (MAMTel)k e R

Since for all ¢ € (I?)’ one has ¢ o M € (I") and the image measure defined by
par(y) == pw(M~'y) on [P is also a Gaussian measure.

Then we can define the Gaussian semigroup with respect to this image measure
on BUC(IP),

GW)f(2) = | flz+Viy)dpu(y) = | flz+ ViMy)du(y).

» r

In particular (G(¢) f )oM S(t)(foM). We deduce a very useful relation between
the generator A := 2G(t).— and the generator B of the heat semigroup S.

Lemma 4.2.6. (i) If f € D(A), then foM € D(*B) and B(foM) = (Af)oM.

(i1) Suppose additionally that M has dense image in IP. If f o M € D(*8) and
B(foM)=goM for one g€ BUC(I?), then f € D(A) and Af =g.

Proof. (i) We have to show that S(¢)(fo M) — foM = fo Y((AFf) o M) ds
Since f € D(A), we have

S@W(foM)—foM = (G#t)f)oM—foM=(G)f—f)oM
- (/0 G(s)(Af)ds)oM:/O(G(s)(Af))OMds
- / S(s)((Af) o M) ds

(il) We have to show that G(t)f — f = fo s)gds. But both terms are elements
of BUC(IP), hence it suffices to show equahty pointwise on the dense subset
Im M C IP or equivalently to show (G(t)f)o M — fo M = fo s)gds) o M in
BUC(I™). Since fo M € D(B), we have

(GW)f)oM—foM = S(t)(foM)—foM = / M)) ds
= /S goM)dS—/O‘(G())ons

= (/OtG(s)gds> oM

O

Since we do not know the operator B, we shall use in the following the above
result for B replaced by B.
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Corollary 4.2.7. Suppose that M has dense image in [P. If f o M € D(B) and
B(foM)=go M for one g € BUC(I?), then f € D(A) and Af = g.

Our aim is to determine the generator A := —G( )jt=0, and in particular to find

a relation with the operator A.

For the following formal calculation, we assume, that z € Im M C [P, then there

exists a w in [" such that z = Mw.
0 0

SGOf(@) = SGOf(Mw) =

ot ot
0

_ a/V(foM)(w+\/%y)dﬂ<) 2507 0 M)(w)

(M + VtMy)du(y)

- S(t):%)\iaa—;(foM)](w)

- S(t):ZEZNA th o M| (w)

= S(t):%;/\ i > mgimi axkaxlf) M| (w)

= s(t):;%;Ammmn 683xlf) o M| (w)

= G0 oul D)), (42)

k,l

provided that Apr ‘= ZiEN /\ka,mh Then A = (akl)k,lEN = MAMT™ defines a
bounded linear operator from *' to .
Therefore, to continue these investigations, we will restrict ourselves to the case,
where the matrix of the coefficients has such a representation.
This formal calculation gives the idea that the generator .4 of the Gaussian
semigroup G could be the closure of the operator A. However, we need to precise
the assumptions for the equalities in the formal calculation (4.2).
As we wish to use Corollary 4.2.7, we first establish conditions for f o M to
belong to D(B). We shall automatically obtain that B(f o M) = go M for some
g € BUC(IP).
Lemma 4.2.8. Let 1 < p,r < oo and M : 1" — [P a bounded linear operator with
matriz representation (m;;); jen with respect to the canonic bases. Assume, that
f € BUCH(P) and >, |my;| ||Dif|| < oo for all j € N. Then fo M € BUC'(I")
and Dj(f 9 M) = Zl mllef oM.
Proof. First observe, that obviously f o M € BUC(I"), whenever f € BUC(I?)
and M : 1" — [P is bounded. We have to show for all j € N,
. fOM($+t€j)—fOM
lim
t—0 t

Z my;Dif o M(z) € BUC(I").
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But if we fix j € N and set Mz =y and Me; = (my;)2, = b € [P, we obtain with
Lemma 4.1.8,

foM(z+tej) — foM(x) f(Mz +tMe;) — f(Mz)

lim = lim
t—0 t t—0 t
I VRS O i ()
t—0 t
= Z bD,f(y) = Z my; Dy f (M)
! l
= Zmllefo M(.Z‘)
l

As >, my;| || Dif|| < oo implies Y, my;Dif € BUC(IP), the right hand side is
obviously in BUC(I") and the claim follows. O

Corollary 4.2.9. Let 1 < p,r < oo and M : " — [’ a bounded linear operator

with matrix representation (m;;); jen With respect to the canonic bases. Assume,
that f € BUC'(I) and ), |my;| ||D.f|| < oo for one j € N. Then foM € D(D;)
and D;(foM) =", m;D,foM.

Lemma 4.2.10. Let 1 < p < oo and g, € BUC'(I?), for all | € N. Assume that
Yo llall < oo and Y, || Drgil] < oo for all k € N. Then >, g, € BUC(I?) and

DiY " 90=>", Dy

Proof. We immediately get >, g € BUC(I?), because ), ||gi|| < oo, and further
> IDkgi]] < oo implies that ), Dygi(x) converges uniformly in z. This allows
to interchange summation and differentiation, which gives Y_, g, € BUC"(I?) and

Dy, Zl g = Zl Dyg,. U

Proposition 4.2.11. Let 1 < p,r < oo and M : I — [P a bounded linear

operator with matriz representation (m;);jen with respect to the canonic bases.
Assume, that f € BUC?(IP) and for all j € N

(1) 22 lmu;| [ Duf| < o0,
(ii) >, lmui| |DeDif|| < oo for all k € N, and
(i18) 3 gy Imus| [mus] [[ De Dy f]] < oo.

Then fo M € BUC(I") and D;(f o M) € D(D,) and one has the formula
DJQ'(f oM) = Zk,l myimy; DDy f o M for all j € N.

Proof. As f € BUC?*(I?) C BUC'(I?) and Y, |my;| || Dif]] < oo, we get from
Lemma 4.2.8, that fo M € BUC*(I") and D;(f o M) = >, m;;D,f o M for all
j €N. Let us fix j € N.



4.2. SECOND ORDER DIFFERENTIAL EQUATIONS 131

Let g, = my;D,f, then g, € BUC'(IP), because f € BUC?(I*). Further we have

Yllall = 22, Iy | Dif]| < oo and 3, [[Drgill = =, Imuj| [| DDy f[] < oo for
all k € N. Hence, by Lemma 4.2.10 we get Y, g, € BUC"'(I?) and the equality

Dk Zl q = Zl Dk:gl holds.
Additionally, we have

> ‘Dkzng = Y |muyl ‘ZDkng = ||
k I k . k

DDl Imus| || Dk Dy f || < 00
k l

‘ Z Dymy; D, f H
!

IN

Hence we can apply on the function Y, g, € BUC*(I) the corollary to Lemma
4.2.8 and obtain ), g0 M € D(D,) and

Dj(gioM) = Y myDpY groM = m ¥ DygioM
k l k !
= szijkglOM-
!

k

Substituting g; by my; D, f, we get >, my; D f o M = D;(f o M) € D(D,) and

Dj(myDif o M) = D}(fo M) = > > my;Dymy;Dif o M

ko1
= Z Z mkjmljDlef oM,
ko1
which concludes the proof. O

Lemma 4.2.12. Let 1 < p,r < o0 and M : " — [ a bounded linear operator

with matriz representation (m;;); jen with respect to the canonic bases. Assume,
that f € BUC?(IP) and for all j € N

(i) >, Imu;| | Dif]| < oo, and
(i) >, |mu;| || DDy f]| < oo for all k € N.

Assume further, that for the sequence A = (Ap)nen € 11/2, one has absolute conver-
gence of the series D 3 > iy )\imkimli(%zmlf) in BUC(IP), then foM € D(B).
Moreover B(f o M) = Zj > kg A DDy f o M.

Proof. If Zk,l D ieN )‘imkimli(ﬁzml f) converges absolutely, then we can inter-

change the order of the sums and get absolute convergence in BUC(IP) of the
. 62

series oy i Zk,l mkimli(—azkax,f)'

In particular (|\i| 2 [mil [muil (|55 f1)i € 1F € 1%, As A = (An)nen € 117,

we have that \; > 0 for each 7 € N and hence ), ; [my;| [my;] ||#28wlf” < 00
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for each ¢ € N. Thus, all assumptions of Proposition 4.2.11 are satisfied and we
can conclude that f o M € BUC'(I") and D;(f o M) € D(D;) and one has the
formula D3(f o M) = >k Miimui DDy f o M for all j € N. Therefore

62
S|z (Fo )| < DY I Iy | DeDuf o M
ieN v ieN k,l
= D) Al fmug| Imus| || DD f]] < o0,
kl ieN
Hence fo M € D(B) and B(f o M) =>_.>",  Aimgjmu; DeDif o M. O

Proposition 4.2.13. Let 1 < p,r < oo and let (a;;)ijen = MAMT™, where
M :I" — [P is a bounded linear operator with matriz representation (m;j); jen
with respect to the canonic bases and with dense image in [P and A = diag(\,)

with (A)nen € lﬁﬁ. Assume, that f € BUC?(IP) and for all j € N

(i) >, Imy;l | Dif]] < oo, and
(i) >, |muj| || DDy f|| < oo for all k € N.

Assume further, that the series Y ;> ien Aimkimli(#zwlf) converges absolutely
in BUC(I?), then f € D(A)ND(A) and Af = Af

Proof. (aij)ijen = MAMT implies ay, = >, \imyimy;, hence the absolute conver-

(92 . . .
gence of ki > icN )\imkimli(m f) implies absolute convergence of the series
2

> ki akl(ﬁf) in BUC(IP). As f € BUC?(I?), we get f € D(A). In particular
Af € BUC(IP).

Observe further that the absolute convergence of Zk,l Zi2€N )‘imkimli(#zwl f) im-
plies the absolute convergence of 37, >, Aimkimli(ﬁ f)- Hence all assump-
tions of Lemma 4.2.12 are satisfied, which gives f o M € D(B) and additionally
B(foM)=goM, where g =35, \ymyjmy; DDy f € BUC(IP). Hence by
Corollary 4.2.7, f € D(A) and

Af = ZZ)‘jmkjmljDlef:ZZ)\jmkjmljDlef
ik kil j

= Y auDiDif = Af,
kol

because of the absolute convergence, which enables to interchange the order of
summation. U

Lemma 4.2.14. Let D C D(A) N D(A), such that D is dense in BUC(I?) and
Af = Af forall f € D. If G(t)D C D for allt > 0, then A= A.
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Proof. The closed operator A is uniquely determined on a core. Since the dense
subset D is invariant under the semigroup, it is by [EN], Proposition IL.1.7, a
core for the generator A. Thus Af = Af for all f € D implies that A = A. O

We will make use of [AbEK], Corollary 4.3. For v € I}, the subspace
DY = {f € BUC?(IP) : sup v | Dy f|| < 0o and sup vy || DiDif|| < oo}
k k,l

is dense in BUC(IP).

In the next section, we also give a proof to this result in a more general context,
where the operators Dy are replaced by general group generators, see Lemma
4.3.7.

Lemma 4.2.15. D" is invariant under the Gaussian semigroup G(t), i.e. for all
f € DY one has G(t)f € D¥ for allt > 0.

Proof. Let f € D", then in particular f € BUC?(I?). Since G is Gaussian, we
can apply Lemma 4.1.21 twice and obtain G(t)f € BUC?(I?) and the equalities
DyD,G(t)f = DyG(t)D,f = G(t)DyD,f. Moreover, G is contractive. Then
one has supy, v ||DrG(t) f|| = supy vk||G(t) Dy f|| < supy vkl Def|| < oo and also
supk,l l/kl/lHDleG(t)f“ = supk,l I/kl/lHG(t)Dlef“ < supk’l I/kl/l”Dlef” < Q.
Thus G(t)f € D¥, whenever f € D". O

We summarize the above results.

Corollary 4.2.16. Assume there exists a decomposition of the matrix of coef-
ficients A = (a;)ijen = MAMT™, where A = diag()\,) with (A,)nen € P2 and
M 1" — I” is a bounded linear operator with matrix representation (m;;); jen
with respect to the canonic bases and with dense image. Let v € [P. If for all
f € D" and for all j € N

(1) X2 [z | [ Duf] < o0,

(11) Zl |ml]-| ||Dlef|| < oo forall k €N,

and the series D ki DieN Aimkimli(#lef) converges absolutely in BUC(IP), then
A=A, ie. the Problem (P) is well-posed.

Proof. The matrix A and the functions f € D" satisfy the assumptions of Propo-
sition 4.2.13. Hence D” C D(A)N D(A). Since by Lemma 4.2.15, G(t)D” C D",
we conclude with Lemma 4.2.14, that A = A and hence the Problem (P) is
well-posed. O
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Hence, given the coefficients a;;, ¢,7 € N, we first have to verify, that the matrix
A = (a;j)ijen is a bounded operator from I to I” and admits a decomposition
A= MAMT",where M : " — [P is a bounded operator with matrix representation
M = (m;;); jen and dense image in [P, M7 its adjoint and A a diagonal operator
given by a series A\ = (Ay)nen € 11/2. Finally one has to find a v € [P, such
that for all f € D”, and all j € N, Y, |my;| || D.f]] f 00, >, |mu;| || DeDif|] < o0
for all k € N, and the series »_, ;> )\imkimli(m f) converges absolutely in
BUC(IP), in order to conclude well-posedness of the Problem (P).

Absolute convergence of the series

From the Problem (P), we are given 1 < p < oo and ax € R for £,/ € N. In
order to concentrate on the absolute convergence of the series,we will suppose in
this paragraph the following assumptions.

(A1) The matrix (aki)ken admits a decomposition MAM?.

(A2) M : 1" —» P, 1 <r < oo, is a bounded linear operator with dense image.

(A3) A is a diagonal matrix with entries (A,)nen € lr/ 2

Moreover, let pu denote the Gaussian measure on (" associated with the sequence

()‘n)nEN S l:-/2
We shall examine the series one after the other. For that we fix v € lﬂ and take
f € D¥. Then for all i € N,

B

] "
<0
i x5

provided that (—ﬂ>l . € I'. And analogously under this assumption, we obtain
€
for all i,k € N,
82 \mlz\
; Hmh&ckaxlfH Z l/kl/l H 8xk8xl H

|| |l
< o, mul _ o L mal
2 =
For simplicity, we denote ; := >, % Further we get
82 |mkml| 82
53 masm | = 2o o v |
Mg Ty Miki my;
e DT DL LR P DL DL EeS BERRT
i kol k I i

i
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if for r > 2, 47 € 1%, with ¢ = %5 and for 7 < 2, v; € 1.

In particular, we get absolute convergence of ) . .\ A; Zk,l mkimli(#gwl f) and

by interchanging the order of summation, we obtain absolute convergence of
2 .

Zk,l D ien )\imkimli(ﬁf). Hence all assumptions of Corollary 4.2.16 are sat-

isfied and the Problem (P) is well-posed.

We summarize the result so far.

Proposition 4.2.17. Let 1 < p < oo and ax € R for k,l € N. Suppose (A1),
(A2), and (A3). Assume further, that there exists a sequence v € I, such that

2
(M)l N €l and (Zl il ) N € 19 withq = 55 forr > 2 and g = oo otherwise.
€ i€

17 vy
Then the generator A of the Gaussian semigroup G(t) associated with the image
measure [y 1S given by

Af(2) =) aw <3x(z25xlf> (z),

k,l

for f € D¥. Moreover the operator A is closable and its closure coincides with
A, i.e. the Problem (P) is well-posed.

The conditions so far require a complete knowledge of the matrix M. We
shall give conditions only on the coefficients a;;. Note that by assumption
(A1), the coefficients are given as ag = .,y \iMgiMy;- In particular, one has

1EN
Uk = D ey Ai mg; > 0, thus [my;| < ( Ai )/,

Proposition 4.2.18. Let 1 < p < oo and ax € R for k,1 € N. Suppose (A1),
(A2), and (A3). Assume further, that there erists a sequence v € I, such that

k \/IfkT < 00. Then the Problem (P) is well-posed, which is equivalent to saying

that the operator A = Zk,l aklﬁle is closable and its closure is the generator of
a strongly continuous semigroup on BUC(IP).

Proof. If 3, @ < o, then for f € D¥ and all i € N,

E ; = E yll=—| <C E — |my;

|l|‘ H ; 14 la.’L'l - lll/l‘l|
1 alll/2 a”

< C =

Analogously, we obtain for all 7,k € N,

|le‘
2l 2
l/kl/l
1/2

1 q C, all/Z
< C = < 0Q.
N 2; vt VA Vv ; v

1
022 —V|mlz’|
l

83: 8acl 3$ka$l Vg
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Finally, one has

ZZ)‘ Mg [l
1 kol 1 ) .
< Ckz’l e ;)\z|mk1| ;| < CZ o (; )\im%,) (; Aimi’)
a2 1/2 a,le{f
= CZVM _C(Z yk) < o0.

k

ZZ Ailrmea| [mai] H 0’ f
Vgl

ViV 6xk 8:1:1

‘8 oz,

Hence, Zk,l Do A mli% is absolutely convergent and by Corollary 4.2.16
the claim follows. O

However, so far we needed the assumptions (A1), (A2), and (A3). Our aim is cer-
tainly to deduce these properties directly from the assumptions on the coefficients
5, Z,_] e N

Observe that under the assumptions (A1), (A2), and (A3) in the case, where
p = 2, the matrix A = (ag),en defines a bounded linear operator on [, which is
positive and self-adjoint. This explains our assumption for the next paragraph.

The matrix A defining a bounded operator on /2

Throughout this paragraph, we shall suppose the following assumption.

(A4) The matrix A = (aj)ijen defines a bounded strictly positive self-adjoint
operator from [2 to (2.

Remark 4.2.19. Recall, that an operator A on a Hilbert space is called strictly
positive, if (Az,z) > 0 for all x # 0. This assumption corresponds to ellipticity
in finite dimensions. In particular we get axr > 0, by taking for x the elements
of the canonical basis.

Since A is a positive self-adjoint operator on the Hilbert space (2, it admits
a square root, i.e. a unique positive self-adjoint operator M : [2 — [? such
that A = M - M, see [RS], Theorem VI.9. Let M = (m;;); jen be the matrix
representation, then ay = ZjeN My;Mj = ZJEN MMy = ZJEN m;xm;i, and
hence all these series are finite. In particular az, = ZjeN mij, which implies
imij| < \/akk, and by symmetry [my;| < | /a;;, and one gets [my;| < a,leff ]1]/4.

Let w = (wk)ren be a bounded strictly positive sequence and define m: i
and let M’ = (m/ _ _ ) v

ij)i,jEN' Then the matrix of coefficients admits a decomposition
A = (aij)ijen = M - M = M'A(M')", where A is a diagonal matrix with entries
Wi, k € N.
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1/2
Lemma 4.2.20. Let ), awk—z < 00. Then for 2 < p < oo the matriz M' defines

a bounded linear operator from IP to IP. If in addition ), a,lcff < o0, then M’
defines a bounded linear operator from [P to IP for 1 < p < 2.

Proof. Observe first, that the operator defined by M’ = (m’ )
)isjen is bounded

from [2 to [2. Indeed, let z € [2, then

Iy = (Z(M'z)?) " (Z (;mgm)j y

% ]

1/2 1/2
< (;(;m;i)(zijz)) = el (sz) /
1 2
s> (n7=) JIRE b2
kood 1/2 1/2
= Jall (Z}) = Jlz]l» (Z ff)
< Cllal, (4.3)

1/2
because ), ao’j—: < 00, which also implies, that (/axx)ren is bounded.

A similar calculation gives boundedness from [*° to [*°. Indeed,
IM'z]o0 = sup |(M'a)] = sup | > mia]
K3 (2
k

N

< = supZm{ = ||z SUP‘Z—‘

“”wi klml ”“‘x’i SN
VvV Qkk
< lzfloosup Y =,
Z— VvV Wk

and sup; >, —V\/‘;i: => ‘Z—a_lf\/wk is finite, because >, T is finite and further
w e P2 cli™.

Hence by the Riesz-Thorin interpolation theorem, M’ : [P — [P is bounded for all
2<p< 0.

Let 1 <p < 2, and assume that ), a;i/zl is finite.
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Then
ey = 321070 = 30| D mes
< ZZ'm;kxk‘:ZZ‘mzka Z|xk|Z|m
7 k
< ||xk||1sgpz'm;k

RVCRVZ

1/4
< |xk||1supz ’f’“ = ] sup A s
wk .

1 4 e 1/2 1/2 1
and sup, £ f is bounded, because ﬁ = <£: ) ,and %k ¢ |1 C [®. The

boundedness of ) . al/*, follows from the addltlonal assumptlon

Hence again by the interpolation theorem, if ), %’ is finite, then M’ : [P — [P
is bounded for 1 < p < oc. O

’L’L’

Lemma 4.2.21. Under the assumptions of Lemma 4.2.20, and the additional
assumption, that w = (wg)ken € IP for 1 < p < 2, the operator A : IP' — IP is
bounded.

Proof. By Lemma 4.2.20, M’ : [P — [P is bounded. Since the transposed matrix
defines the adjoint operator, (M')™ : I’ — I? is bounded. For p > 2, the
condition that w = (wg)ken is bounded, implies A = diag(wy) : I*' — I¥' C IP is
bounded, and for 1 < p < 2 the assumption w = (wg)ren € [P guarantees, that
the application A = diag(wg) : P — I' C [? is bounded. Hence the operator
A= M'A(M") : P — I is bounded. O

Lemma 4.2.22. Let 2 < p < 00 and w = (Wk)ken € I, Assume as before that

Dok 0" < 00. Then the operator M' : [P — [P has dense image.

Wk

Proof. First observe, that the strict positivity of A implies, that M and hence A
is an injective operator from [? to /2. Indeed, for all 0 # = € 2,

0< (Az,z) = (M - Mz,z) = (Mz, Mz) = ||Mz]||.

Hence Mz = 0 implies z = 0, and Az = 0 implies M(Mzx) = 0, hence Mz =0

and therefore z = 0.

Assume, that Tm M’ # [P, Then there exists 0 # y* € I? such that F@fan' =0,
ie. 0 =y*(M'z) = (M')"y*(z) for all z € IP. Hence (M')” is not injective as an
operator from *' to [?'.

Therefore, if p > 2, there exists an 0 # z € I’ C 12, such that (M")"2z = 0. Hence
Az = M'A(M")"z = 0, which contradicts the injectivity of A as an operator from
12 to I2. O
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Lemma 4.2.23. Let 1 < p < 2 and w = (wg)ken € 5. Assume as before that

1/2 , o
K Z’“—’Z < oo and Yy, a,lc{f < oo and additionally that A : [P — [P is injective.

Then the operator M' : I[P — [P has dense image.

Proof. Assume, that Im M’ # [P. Then there exists 0 # y* € [P such that
Ymmr = 0, 1e. 0=y"(M'z) = (M')"y*(z) for all z € . Hence (M')" is not
injective as an operator from ' to [¥'.

Therefore, there exists an 0 # x € [”', such that (M’')"z = 0. Hence, one has

Az = M'A(M'")"z = 0, which contradicts the injectivity of A as an operator from
17 to IP. O

Now we are ready to formulate the main result of this section.

Proposition 4.2.24. Let 1 < p < oco. Let the matriz A = (a;j)ijen define a
bounded strictly positive self-adjoint operator from 1? to [2. Assume, that there
exists a sequence w = (wg)gen € lﬁﬂ, such that

1/2
> Tk < o,
PRl
Assume additionally for p < 2, that ), a,lc{f < oo and that A : P — [P is
injective. Then the Problem (P) is well-posed in BUC ().

Proof. Since the matrix A = (a;;);jen defines a bounded strictly positive self-
adjoint operator from 2 to [2, it admits a square root, i.e. there exists a
decomposition A = M - M = M'A(M')", where M’ is the matrix given by

m — and A is the diagonal matrix with entries w = (wg)ken € li/Q. By

]
th¥ lemmas above, M’ : [P — [P has dense image and is bounded, hence (A1),

(A2), and (A3) are satisfies and the claim follows by Proposition 4.2.18, because
w= (wk)ken € B C 2. -

4.3 Evolution Equations with Group Genera-
tors

For a generalization of the previous result, we will replace the space of bounded
uniformly continuous functions on a sequence space by a general Banach space
E and the operators Dy by generators of Cy-groups of operators on FE.

We proceed as before. First, we construct a strongly continuous semigroup. Then
we give the relationship between its generator and the generalized problem.
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4.3.1 Construction of a Semigroup

In order to obtain a similar result, the group generators should have properties
analogous to those of the operators D;. We need the concept of [P-continuity, see
[ArDE], Definition 3.3.

Definition 4.3.1. Let 0 < p < co. A commuting family (7%)xen of contraction
semigroups (resp. groups) on a Banach space E is called [P-continuous, if for
every x € F and every € > 0 there exists 6 > 0 such that

(H Tk()\k)) rT—z

for all finite sequences (A,..., ;) in R,y (in R, respectively in the group case).

Example 4.3.2. The shift groups 7} on the Banach space BUC(I?) are [P-
continuous. Indeed, let f € BUC(I?) and ¢ > 0. Choose § > 0 such that
|z — yl|}» < 6 implies |f(z) — f(y)| <e. Let (A1,...,A,) be a finite sequences in
R, such that > 7_, [A\e[? < 6. Then ||z + > p_, Mex — z|P = Y5 [ AP < 6 for
all z € 7 and [[(TTx=; Te(A)) £ = fll = supgep |f (@ + 325 Advex) — f(2)| < .

Throughout this section, we assume the following hypothesis.

n

Z | Ak|P < 6 implies

k=1

<e

(H1) Let (A;)jen be a family of group generators, such that the associated fam-
ily of groups (7});en is [P-continuous, commuting and contractive on the
Banach space FE.

Then we will consider the general problem

Au(t
) = 3, en G Ai Ajult), >0

(Py)
u(0)=f €E,

where a;; € R and we seek a solution u : [0,00) = E.
In this situation, we define

D(A) = {x € E:ze(\D(A), Az € (\D(4).j €N,

and 3 Jag| [ A; Aje]| < oo}
i,jEN
Ax = Z aiin AjZ‘.
i,jEN

According to Definition 4.2.2, the problem (FP,) is well-posed, if the operator
(A, D(A)) is closable, and its closure is the generator of a strongly continuous
semigroup.

We shall achieve a condition on the coefficients a;;, which is similar to that in
Proposition 4.2.24, in order to obtain well-posedness of the Problem (P,). Hence,
we suppose throughout this section the following assumption. Here 1 < p < oo.
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G1) The matrix of coefficients A = (a;;)i;en defines a bounded strictly positive
j)ije
selfadjoint operator from /2 to /2.

1/4
(G2) There exists a sequence w = (wy)pen € I7/%, such that >k aw’C—: < .

1/2
Ok

Remark 4.3.3. Assumption (G2) implies ), a,lc{f < oo and }, k- < oo
Therefore (G2) is more restrictive, than the assumptions in the previous section.

Under these assumptions, the matrix of coefficients admits a decomposition given
as A = (aij)ijen = M'A(M')", where A is the diagonal matrix with entries
w = (Wg)ken € lﬂ/z, and M’ : [ — [P is bounded with dense image. Recall that if
o
N
Let 1 be the Gaussian measure on [P associated with w = (wg)gen € lﬁﬂ in the

sense of Definition 4.1.25 and ujs the image measure, which is also Gaussian on
P,

(17i jen is the matrix representation of M’ one has the estimate |p' < ¢

We will see, that under the above assumptions, the Problem (P,) is well-posed.
For that, we construct a semigroup G on E and show, that its generator coincides

with the closure of the operator A.
Assume (H1) and let A = (Ag)ken € IP. Then by [ArDE], Proposition 3.4, the
group product

T)\(t) = H Tk()\kt)

exists, i.e. for all z € E, Ty(t)z := lim, o0 [ [;_; Tk(Aet)z converges uniformly
on compact subsets of R. Moreover, T)(t) defines a strongly continuous group on
E.

Lemma 4.3.4. For x € E andt € R, the map I 5 A — T)\(t)x € E is bounded
and uniformly continuous.

Proof. Since each of the T} is a contraction, T)(¢) is also a contraction. Thus
IT\(t)z||g < ||z]|, which implies the boundedness. Let € > 0. As the family of
groups (7});en is [P-continuous, there exists a 6 > 0, such that for every n € N,
Sor_y laglP < 6 implies ||(ITi—; Tk(cx)) 2 — z|] < e. Then for all A, X2 € [P such
that ||[A* — \2||, < 6/+/%, one has

T (0 - Tl < | ﬂTk(A,ﬁm - f[Tk(waH
+H ﬁTk(/\}ct)a: - f[Tk(Azt)xH

+H Ii[lTk()\it)x E[l Tk(Aﬁt)xH

3¢,

IN
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if we choose n large enough. O

Thus, the integral in the following definition has a sense.

Definition 4.3.5. For ¢t > 0 and z € E define
Glt)s = / (VD) dpar (V).
P

Lemma 4.3.6. The family of operators (G(t))i>o is a Co-semigroup on E.

Proof. As the groups T}, are contractive, the product is also contractive. Hence
IG@)z|| < [ 1TV |2 dpaa (A) < ||z]], because iy is Gaussian. Hence, for
all t > 0, G( ) is a bounded linear operator on E.

Further G(0)z = [, Tx(0)x dpupr (N) = [, © dpar(X) = @, hence G(0) = Id.

For the semigroup property, we use Proposition 4.1.14, which says, that u is
centered Gaussian, if and only if 4 ® u(z,y) = p(xsin ¢ + ycos p) for all ¢ € R.

Observe that for ¢,s > 0 there exists a ¢ € R such that sinp = \/;/% and

cos p = \/\% Then

G(t)G(s)z = G(t) / T5(Vs)z dpnr (V)
PR / (V3 dyiagr (N dpiarr (3)
_ / V3)z (e ® par) (A, A)
- / ATV T T )z dlune © 1) 3, )
_ / TG+ AvB)w duar @ ) (3, 2)

_ [W (viTs (i Wﬁgm N )edons e 53

= [T (VS dan ® ) (0,0
1P %P Vits \/m

= /l T)\(\/t + S)ZC d,U,MI ()\)
= G(t+s)x.

We still have to show the strong continuity. But
1G(t)z — xl|p < / IT(V)z — |5 dpar (V) — 0,
p

as t — 0 by Lebesgue’s dominated convergence theorem, because one has point-
wise convergence ||Th(vt)z — z||z — 0 and [|Tx(vVt)z — z||z < 2||z||5. O
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4.3.2 Properties of the Semigroup

Lemma 4.3.7. Let1 < p < oo. Let {Tj : j € N} be an [P-continuous, commuting
family of contraction semigroups with generators Aj, j € N. Let v = (vp)nen € P,
such that v, > 0 for alln € N. Then the set

D = {x e N\ D(4) : Az € (\D(A,) for all j €N,

sup v;||A;z|| < oo, and supvv;||A; Az < oo}
i irj

18 dense in E.

Proof. Let n € N. Let

Mhg = / T1<V181)T2(V232)---Tm (”msm) zds ...dsm
(0,1)m n n n

= nm/ Ti(181) - Ti(VmSm) x dsy . . . dSpy,.
(0,5)™

Then M) € L(F) and ||M]}|| < 1. Moreover,

”M:H—k T — My, x|

Vm+18m+1 Vmn+kSm+k
< / Tomt1 (T Tk | ————— ) T — || dSpq1 .. - dSpptk
(0,1)%

n
= nk/ 1y | Tont1 (Vmt18m41) * * * Dotk (Vi Smtk) © — | dSmst - - - Sk
(Oaﬁ)

The right hand side converges to 0 as m — oo uniformly in n by the [P-continuity
of the family {7} : £ € N}. Indeed, for € > 0, let § be such that Z;Zl I\l <6

implies HHéZIT](AJ)x - xH < ¢. Then for v € [P choose m large enough such
that 7% [v;| < d, and one gets

nk / - ||Tm+1 (Vm+15m+1) T Tm—}—k(l/m—f—ksm—f—k) T — $|| d3m+1 s dsm—f—k
(07;)

1\*
< nF (—) E=E¢.
n

Hence, M"z := lim,, ,,, M], = exists for all x € E uniformly in n. Therefore
M"™ € L(E) and ||[M™|| < 1. Since lim,_,o, M2z = z for all m € N, by Lebesgue’s
dominated convergence theorem, it follows, that lim,_,,, M"x = x for all x € F.
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Let j € N. Then for z € F and m > j,
A;M T (VmSm) x dsy . .. dsy,

— nAj/" T;(v;s5) [ / HT’“ VSk) & Hdsk] ds;

I
o~

S
3

e

~
5

&

0 "kt k#j
w do;
= nAj ; T'](O']) e HTk VkSk x Hdsk v;
0.3) "kt k#j
_n Vi
J
N o1 J
- i —] :
an /(0,1)"1_1 H k(visk) |1 - T—z ,H Sk
= 2n / HT’C VkSk HdSk [J( ).’E—ZL‘},
vj ,_ ym— k# k n
n J #J

which converges, as m — 0o, by the same argument as above. Since A; is closed,
we obtain M"z € D(A;) and further v;||A;M"z|| < 2n||z||, because T} is a
contraction. Moreover, for € D(A;) the identity T;(t)z — =z = f(ij(S)Ajac
implies A;M"z = M"A;z.

Hence for all z € E, and all n € N, one has M"M"x € [, D(Ax) as well as
A;MPM™r = M"A;M™x € (), D(Ag). As v;||A; M M x| < 2n||M"z|| < 2n||z|]
obtain M"M"x € D". Since

|M"M"z — z|| |M"M"z — M"z|| + ||M"z — ||

M| |M"z — x| + | Mz — z[| =0

IN A

as n — 0o, DV is dense in E. O

Lemma 4.3.8. If v € D(A,), then G(t)x € D(A;) and A;G(t)x = G(t)Ax for
all t > 0.

Proof We have to show T;(1)G(t)z — G(t)z = [, T} t)A;z do. Recall that
G(t)x = [, Ta(Vt)zdu()), where T,\ is the group product of the commuting
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groups Ty. Hence, T;(7) and Ty(v/t) commute also. Thus, by Tonelli’s theorem,
T,(r)G ) — Glt)e = Ty(r) [ T(viaduh) = [ Tuvi)e du(
= [ @EOne =W du) = [ T ) - a) du(y)

- /WTA(\/%)(/OTT( JAjzdo) d /l/ Ty(VA)T;(0) Ajr do dpu(\)
_ /OT/lij(a)TA(\f)Axdu(A)d :/0 Ti(o )(/T/\(\[)Axdu()\)) i
= /O (o) () Ay do

0

Corollary 4.3.9. If z € D(}_; 4;), i.e. z € [); D(4;) and ) _; [|A;z|| < oo, then
G(t)xz € D(3_; Aj) and Y, A;G(t)x = G(t) 3, Ajx for all ¢t > 0. The same holds
for ). A; replaced by A.

Remark 4.3.10. In the lemma and corollary above, one can replace the semi-
group G by either the infinite product T)(¢) := [ ], Tx(Axt) or the finite product
[T5—; Tk(Axt) for any n € N and any A € [P,

Lemma 4.3.11. For all v € IP, D" is invariant under the semigroup G.

Proof. Let z € D”, then in particular x € D(A;) for all j € N. Hence for all ¢ > 0,
by Lemma 4.3.8, G(t)z € D(A;) and A;G(t)x = G(t)A;z for all j € N. Moreover
Ajx € D(A;) for all i € N, and we can apply Lemma 4.3.8 once more and obtain
all 7,5 € N. Finally sup, v;||4A;G(t)z|| = sup,; v4||G(t) Asx|| < sup, vi||Aiz|| < oo
and sup, ; vv;|| AiA;G (t)x|| = sup, ; viv;]|G(t) AsAjx|| < sup, ; vivs|| A A || < oo,
which shows that G(t)x € D". O

Hence D" is a core for the generator A of the semigroup (G(t)):>o. Thus, in order
to show, that the generator A coincides with the closure of the operator A, it is
sufficient to show Az = Az for all z € D".

Recall that Az = $G(t)z = for z € D(A) and

G(tyr = / To (Vi) dpiasr () = / Ty (VE)z dp())
= /HTk k)T dps( ):/lpHTk( (ka] ))xd,u A).

Therefore we are interested, if the function ¢ — [, Tx(v/% (22 mi;Ai)) is differ-
entiable, what we shall obtain as a corollary to the following lemma
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Lemma 4.3.12. Let 8 = (Bi)ren € IP and x € (), D(Ax). Assume further that
> e 1Bkl | Akz|| < 0o. Then for all o = (o )gen € 1P,

Hk T (o + hBr)w — [T, Tilow)x Z/B]A HTk )z

h—>0 h

Proof. First, observe that = € (), D(Ax) and ), 8| ||Axz|| < oo implies that
0 — > BiA;i T Tilow + 08k)x = [, T(ax + 05x) >_; BjAjx is continuous, by
the strong continuity of the group product. Thus, it suffices to show that

h

H Tk(ak + h,@k)x - H Tk(ak)x = /Z ﬁjAj H Tk (O!k + Gﬂk)a: de.

0o J

Recall that the group 7,(h) := [[i—, Tx(hBk) is generated by the closure of the
operator 7, b;A;. Hence one has T,(h)y —y = foh Tn(0) 35—, bjAjy do for all
Y€ Niey (Ak) Now let " := (B1,.--,Bn,0,...). Then

[[Z:(ex+080)z = [ [ Telew) [ [ Te(hB7) = [ ] Telw) Tu(h) = Tu(h) [ | Te(ew)-

k

If we set y = [],, Tx(c)z, which obviously belongs to (,_, D(A), then

h n
HTk ay, + b} x—HTk o) T(h)y—y:/ n(a)ZﬁjA,-yde

/ZIBJ HTk o7 xd@—/ Zﬁg ]HTk ay + 087z db.

Note that by [ArDE], Proposition 3.4, T,(h)y = [1,_; Tk(hBk)y — 11, Tk(hBk)y
as n — oo uniformly on compact subsets of [0,00). Hence, the left hand side

[, Te(ow + hB7)x — 11, Ti(aw)x — 11, Th(ow + hBk)x — [ Tr(ou)z, as n — oo.
For the right hand side, observe that for every 6 € [0, h] and with the notation
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£ =3, B;4;z, one has
H Z@A HTk oy + 080)z Z@A HT,c o + 05) H
< H Zlﬁ’jAj E[Tk(ak +68;)z — Zl BiA; E[Tk(ak + 9/31055”
= =
+| i B; A l;ITk(ozk + 0Bz — f; B; A ];[ Ti(o + 0B4)s |
- =
| T] 2eton+ 030 Xn;ﬂjAj:c - [[ e+ 08) Zn;ﬂjAijH
= =

[T e + %k)(fjﬁjfljx - fj Bize) |

< [T 7eten+ 080 — T Teton+ 050¢] + > 18l o

j=n+1

IN

as n — oo, with the same argument as before for the first term and as a
onsequence of the assumption for the second Hence by Lebesgue’s theorem

fo i1 BiAj 1, T(ow + 06 ) df — fo >, BiA; 1 Tr(ow + 0B,)z df and the
claim follows by the uniqueness of limits. O

Corollary 4.3.13. Let z € (), D(A), B € [P such that Y, || [|4;2] < oc.
Then the function defined by ¢ — [], Tx(v/tB¢)z is differentiable for ¢ > 0 and the
derivative is given by the formula 4 [T, T}(Vt8)z = Do 2\/A 1, T (V1Br) .

Proof. By the above lemma, the application ¢ — [], T} (t8x)z is differentiable
and has derivative . B8;A; [, Ty (tBx)z. Moreover ¢ — V1 is differentiable for
t > 0 and we apply the chain rule. O

4.3.3 Well-Posedness

Lemma 4.3.14. Assume (G1) and (G2) and let p be the Gaussian measure
on l” associated with w € lp/z. Then for every x € DY and t > 0 one has

d G x = Z\f flﬁ Z Hk Tk(\/g(zl m;clAl)) Z, mﬁzx An d,u()\).
Proof. Fix A € I” and let B, = >, mj,\, € IP. Then

1 1
> 1Bl 14zl < ZZ gl [Nl —will Az < CZ JZ [ Alloo
1/4 o ol o/

< CZ v e o e <3220 e (Z /@) Ml < CJA],
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and we can apply the corollary above and obtain
WA me = LT[ TWise = 3 2Za, [[ Tu(Visy)s
dt 4, — dt 4. — 2Vt
> M An
= = A [TV )
; N Jl;[ i ;mkl B
1
J n k l
1
= o Z H T (Vt Z Mg A1) Z M, AT A,
n k l J

because

n k l

J
< 20D Im Il 4zl < ClIALL < oo,
7 n

which allows to interchange the order of summation. Moreover, we used the
fact that for n € N fixed, > . m/, A; 1, Tk()x = [I, T() >2; mj,Ajz for all
z € (); D(4;) such that >, [m},| [|A;z]| < cc.

Thus [, Tx(vt Y, mi,A)z is differentiable with respect to t for every A € IP.
Moreover, since A — M') is continuous, with Lemma 4.3.4 we conclude that
the map A — [[, Tk (Vt Y, mj;\)z is continuous. Also, A — > > M A A,

and thus A — &[T, T,(Vt >, muN)z = [T, T(VE X, myA) >, > M A Aja,

is continuous. The latter is bounded by C||A||,, which is integrable with respect
to the Gaussian measure p by Fernique’s theorem.

We conclude with Lebesgue’s Theorem that [, [T, Ti(v/t >, mjyA)z du(X) is dif-
ferentiable and

%G(t)x = % /l ];[Tk(\/il:mﬁcm)mdu(k)

- /l STV iz du()
- 2%/,; /l ZHTk(\/E(Zm;clAZ))Zm;nAixAndu(A).
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We shall soon see, that

L ST mig)) Z ml A A dpp(N)
2 /u’ Z wnai/\n H Tk(\/f(z miAi)) Z mi, Ayx dp(X)

Lemma 4.3.15. Assume (G1) and (G2) and let u be the Gaussian measure on
P associated with w € lﬁ/Q. Then for every x € DY and t > 0, the function

Fa(A) =11, T (VS mig ) X iz belongs to BUC(IP; E) and

d :
) = x/i;mjnAjfn(A)

Proof. Since z € D“, we have y = > . mi Ax € [, D(Ax). Indeed, take a
k € N, then for every N €N, we have D(4g) 3 ZZ VA — Y A and
AN i = N i A — Z WAkA x, because one has the estimate

1/4
Sl | A Asz]] < Conn P 3o, i- < oo. Now, since the Ay are closed and k was

arbitrary, y := >, ppAiz € [, D(Ax) and Ag Y-, iz = Y, pArAiz. Let
r € Nand let 8= (v/ tmy,)x € [P, then

D 1Bl Al = Z\/ilmkrl A Y mi A
- .
< \fZIWAZImmIIIAkAxII

viey: '”;f:' S <o

IN

Hence for a = (\/E(Zl m,\i))ken € [P, we obtain with Lemma 4.3.12,

d o In(A+he) = (D)
— lim [ 1 T (o + VE(my, her))y =TT, T (ow)y
h—0 h

= ) BA HTkakyeBUC(lp E).
J

Since r was arbitrary, f, € BUC!(I’; E) and in particular we obtain the desired
formula ﬁfn (A) = \/EZ] My, Aj fa(N), if we take r = n. 0
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Corollary 4.3.16. For every N € N

/lP EN: H Ty <\/??( Z m;cl)\l)) Z my, Ai A ds(N)

n=1 k
N
= 2/lana%HTk<\/Z<Zm}cl/\l>)2m;nz4ixdp(/\).
P n=1 "ok 1 i

Proof. We use Lemma 4.1.27 on the functions f, € BUC'(I’; E), 1 < n < N,
where again f,,(\) = [, Tk (VX miu\)) X, iz € BUC(1P; E). Then

[TV 23 man)) S i
= 3 [ IIE(( S ) S i i
= 2;]:; /l wn%ng(ﬂ(;mzlAl))Zijm;nAz-xdu(A)
= 9 /l nziwn%ng(ﬁ(zljmzlAl))Zijm;nAixdu(A)-

O

We shall use Lebesgue’s dominated convergence theorem twice, in order to obtain
the desired result.

Lemma 4.3.17. Assume (G1) and (G2) and let 11 be the Gaussian measure on
[P associated with w € lﬁﬂ. Then for every x € D¥ and t > 0,

A}l_I)I;O /lp i H Ty (\/E( Z m;cl)\l> ) Z my, Ait Ap dp(N)
= /lp i H Ty, (\/%( Z mfcl)\l)) Z mi, Ayt A dp(N)

n=1 k

Proof. Since [T, Ta(VH(2, migh)) Xy i Aix =TT, Te(VEH(M'N)) 3o, mi, Ai,
the application A — f,(A) = [1, Tu (Vt(3S, mi, ) 3, sz is continuous, be-
cause M' : X\ — M') is continuous from [? to [? and A — Ty(7)y is continuous
for all 7 € R and y € E by Lemma 4.3.4. Moreover f, is bounded, thus for
all N € N, 22721 Jn(A)Ay is integrable. Further, > > A, A;x is absolutely
convergent, (see e.g. the proof of Lemma 4.3.14), and [[, Tx(v/ (3>, mjN\)) is
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bounded. Therefore

3 o ST (VE( S miah)) S A,

n=1 k

= 1;[ T (\/E( ; m}cl)\l>) ; ; My, AnAi,

is continuous. Indeed, the map A+ > > A, A;x is linear and bounded, i.e.
15, 3 mAndiz|| < C||A|l,, hence continuous, and A — [[, Tu(v/  t(>2, mi\))

is bounded and strongly continuous. Finally, for every N € N, one has the
estimate || S, [T, T (VE(S, i) 3 mly A Al < ClAll, and [\l s in-
tegrable by Fernique’s theorem. Hence we can apply Lebesque’s dominated con-
vergence theorem, which concludes the proof. O

Lemma 4.3.18. Assume (G1) and (G2) and let u be the Gaussian measure on
[P associated with w € lﬁﬂ. Then for every x € D¥ and t > 0,

tm [ S e L TIT(VE( i) S Ay
-/ i%% TT7(Vi( i) 2ot du)
= \/_/ HTk kal/\ )) ZZan M, My, Aj Az dp(N).

Proof. Let g,()\) := % [T, T (Vt (>0, mig ) D ml, Aix dju(N). Then by Lemma
4.3.15,

\/E;m;nAjI;[Tk(\/Z(kal )) meAa:
ﬁl;[Tk(\/E<;m;€l)‘l)) ZZm M Aj A,

as 32, 5, mil| [l 14, Az < € (™) < oo, and T, Tu(VE(T, mju)

is bounded. With the same arguments as in the proof before, g, is continuous
and bounded, hence for every N € N, 3"V w,g,()) is integrable. Moreover,

ZZZIwnIIm HmmlllAAx||<cZZZ |lm

aAglA 1/ 1/ al/t 1/4

j Onn Q;; Qnn / i1
< szzwn ajj — Z —CZ“”Z JJ Z "

i
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Thus, A = 3, nga(X) = T, Te(VEE, M A)) X, 3o, 3o ml, gpid; A s
also continuous. Finally, for all N € N, Zivzlwngn()\) is bounded, hence we
obtain the result with Lebesgue’s dominated convergence theorem. 0

From uniqueness of limits, we immediately get the announced result.

Corollary 4.3.19. Assume (G1) and (G2) and let p be the Gaussian measure
on I associated with w € I*’*. Then for every z € D* and t > 0

[ ST (Vi) S Aoy
2 [ S T (Vi3 o)) S5t ).

Now we are well prepared to proof the following well-posedness result.
Proposition 4.3.20. Assume (G1) and (G2). Then Problem (P,) is well-posed.

Proof. We have to show that the operator (A, D(A)) is closable and its closure
is the generator of a strongly continuous semigroup. For that it suffices to show,
that for every x € D“, which is a core for the generator A of the semigroup G,
one has z € D(A) and Az = Azx.

If z € D, then z € (), D(4;) and Ajz € (), D(4;) for all j € N. Moreover

> lagl 4 Azall = 37 | 0 wamp | 14 A2
1,jEN ,JEN n
< 30D w114 Asal] < oo,
,jEN n

because D > >, wy my, p'AjAix is absolutely convergent. Therefore, one
has Az =3 375> wamiy, A Aiz.

With the previous lemmas, we get for every x € D“ and every ¢t > 0,

d %G(t)x = %\/EA’;E[T]C <\/¥<;le&)) ;m;nAix An dp(A)
- zwna% HTk(\/z(zmzlAl)) S s dpa()
_ _\/ / HTk ka,xl)) D30 il miy Ay A dpa()
= G(1) ZZan m, my, AjAx = G(t)Ax.

Since t — G(t)Az is continuous, we can consider the limit, as ¢ — 0. Thus,
z € D(A) and Az = 4G(t)z;—0 = G(0) Az = Axz. O
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4.4 Order Continuous Linear Forms on BUC(FE)

Order continuous positive linear forms on the space of bounded uniformly con-
tinuous functions on a complete metric space are characterized by a notion of
tightness. This is equivalent to the functional being represented by a measure.
These results are also presented in [ET].

This characterization is used to construct a Gaussian measure for the represen-
tation of the heat semigroup as a Gaussian semigroup, see [AbDE] and [AbEK],
and therefore presented in this chapter.

4.4.1 Characterization of Order Continuous Linear Forms

Let E be a separable, complete metric space. We denote by BUC(E) the space
of functions f : E — R, which are bounded and uniformly continuous. Then
BUC(E) provided with the supremum norm || f||o := sup,cg | f(2)| is a Banach
space. We shall denote by 1 the constant-one-function.

We call a sequence (fy)nen in BUC(E) decreasing to 0, if for all m > n € N,
fm(z) < fu(z) and f,(x) — 0 as n — oo for all z € E. We write f, | 0.

Definition 4.4.1. A functional A : BUC(E) — R is called positive, if Af > 0,
whenever f > 0.

A positive functional A on BUC(FE) is called order continuous, if for each se-
quence (f,)nen in BUC(E) decreasing to 0, the real sequence A(f,) is decreasing
to 0.

We call a functional A on BUC(FE) tight, if for all £ > 0, there exists a compact
set K C E, such that |[A(f)| < sup,cx |f(z)| + €| f|| for all f € BUC(E).

The aim of this section is to give a direct proof of the following result.

Theorem 4.4.2. A positive functional A on the space BUC(E) mapping the
constant-one-function 1 onto 1, i.e. A1 =1, is order continuous if and only if it
18 tight.

As a consequence, we will deduce from the usual Riesz representation theorem
(for positive functionals on C(K) with K compact) that each order continu-
ous positive functional can be represented by a measure. This result is used in
[AbDE]. Below we indicate an alternative way of proof based on the Daniell-Stone
theorem.

Proof. (=) Let {y;,i € N} be a countable, dense subset in E. For n,k > 1, we
set

k k
Cn,k: = UF(yZa %)a Dn,k) = U B(yla %)
=1 i=1
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Where B(z,r) is the open ball in E with center 2 and radius r and B(z,7) its
closure. Remark that these sets are increasing in k£ with respect to inclusion.
Let (fnk)nk be the sequence of functions defined on E by

d(ﬂ?,CDn,k)
d(l‘, C2n,k) + d(l‘,CDn,k) ’

fn,k(x) =

Then 0 < fr <1, fak(z) =1if 2 € Copy and frx(z) =0if 2 ¢ D,y .
Further d(Coy x,“Dp ) > Ln > 0. Consequently the functions f, ; are uniformly
continuous on E. Additionally for fixed n, the sequence (f,x)r is increasing.

) d(z,Coy, )
Indeed, fnx(z) = 1, o) with o, ,(z) = dgcﬁn’;;’ and since Copp C Copgt1
and Dy g1 C Doy we get appr1(7) < api(z). As the function z — —— is

14+an,
1+x

decreasing for x > 0, it follows that f,x(z) < fuxt1(x). On the other hand

(far)ks /1 as k — oo.
Now, let € > 0 and n € N. Since A is order continuous and A1 = 1, there exists

l, € N such that .

We can choose the [, increasing and we set K, ﬂ C,,, and K' = ﬂ Ck I

Then K’ is compact, since it is closed in F and therefore complete and totally
bounded (precompact), because for each arbitrary small radius it can be covered
by a finite number of balls.

We set gn(x) = fi,, () fo,(x)... fuy, (@), then supp (g,) C K, and with gy := 1,

n—1 n—1 n—1
1
[Agn = 1S D I Agker = Agi | € D | Mfiagn —1ISe) 5y < e
k=0

Hence for every f € BUC(FE),

[AfD < TAGF(E=g0) [+ [ ASgn [SI S llool 1= Algn) [ + sup | f(2) |

T€EK,
< el flloo+ sup | f(z)].

mE n

We claim that liminf, o sup,ck, | f(z) |< sup,cx |f(2)|, for every function
f € BUC(E).
It is sufficient to show, that for all € > 0, there exists an n € N such that

sup |f(z)| < sup |f(2)] + ¢,
which holds, if for all z € K,,, there exists a z € K’, such that |f(z)| < |f(2)|+e.
Since f is uniformly continuous, for ¢ > 0, there exists a § > 0, such that
|z — z||p < 6 implies | f(z) — f(z)| < &, which again implies || f(z)| — | f(z)|| <e.
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Therefore the claim follows, if for all n € N and all z € K,,, there exists a z € K’
such that ||z — z||z < L. Indeed, let n € N and = € K,, = (i_, UX., B(ys, 1),
then for every 1 < k < n there exists a 1 < 4 < I such that = € B(y;,, 1)-
Observe that for all 1 <k <mn, ||yi, — vi, | < v — 2|+ llz — v ]| < 2+ 5 <2
Hence, if we set for k& > n, i}, := i,, then

oo oo Iy
z:=vy,, € kolB(yik, %) C kol .QIB(yi, %) =K'

In particular one has ||z — z|| < &, and the claim follows.

(<) Let (fn)n>1 be a sequence not identically zero in BUC(E) which decreases
to 0. We will show that the sequence of real numbers (A(f,)),>1 decreases also
towards 0. Let € > 0 and K a compact subset of E such that for all f € BUC(FE)

Af] < ||f||oo+:1€1£|f(x)"

_c
2 f1lloo

By the theorem of Dini, the sequence (f,),>1 converges uniformly to 0 on K.
Hence there exists an integer n. such that sup . | fn(z)| < €/2 for every n > n..
It follows that | Af, |< e for every n > n.. O

4.4.2 The BUC - Compactification

In order to apply the Riesz representation theorem to BUC(FE), we need an
identification with some C(K), where K is a compact space, which we call the
BUC - compactification. The construction is the same as the Stone-Cech com-
pactification, which can be found in [Con], §V.6.

Let E be a metric space and BUC(FE) the space of bounded and uniformly
continuous functions f: E — C. If z € E, let 6, : BUC(E) — C be defined by
d:(f) = f(x) for every f € BUC(E). It is easy to see that §, € BUC(E)* and
1] = 1.

Lemma 4.4.3. Let ¢ : E — BUC(E)* be defined by p(x) = ;. Denote by w*
the weak*-topology in BUC(E)*. Then ¢ : E — (o(E),w*) is a homeomorphism,
i.e. a bijective continuous mapping with continuous inverse.

Proof. Let z, — x in E, then f(z,) — f(z) for all f in BUC(FE). This says that
0z, — 0z (w*) in BUC(E)*. Hence ¢ : E — (BUC/(E)*,w*) is continuous.

If 21 # x5, then there is an f in BUC(FE) such that f(z;) = 1 and f(z9) = 0.
Thus 6z, # 0z, and ¢ : E — (p(F), w*) is injective. The surjectivity is obvious.
For the continuity of the inverse, it suffices to show that ¢ : E — (¢(F), w*) is
an open map. Let U be an open subset of F and let o € U. Then there is an
fin BUC(E) such that f(zy) =1 and f =0 on E\U. Let V] be the subset of
BUC(E)* defined by Vi, = {¢p € BUC(E)* : ¢(f) > 0}. Then V; is w* open in
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BUC(E)* and Vi Np(E) = {0, : f(z) > 0}. Soif V=V, Np(E), V is w* open
in (F) and 6., € V C ¢(U). Slnce xo was arbitrary, ¢(U) is open in ¢(E).
Therefore ¢ : E — (¢(F), w*) is a homeomorphism. O

Theorem 4.4.4. Let E be a metric space. Then there exists a compact space K
such that:

(i) there is a continuous map ¢ : E — K with the property that ¢ : E — o(F)
1s a homeomorphism;

(ii) ¢(F) is dense in K;
(i1i) the map C(K) — BUC(EYpffio ¢ is an isomorphism.

Proof. Let ¢ : E — BUC(E)* be the map defined by ¢(x) = §, and let K
be the w* closure of p(F) in BUC(FE)*. By Alaoglu’s Theorem and the fact
that evidently ||0,|| = 1 for all z, K is compact. By the preceding lemma, (i)
holds. Assertion (ii) is true by definition. For (iii) it remains to show, that
C(K) — BUC(E3¥pffio ¢ is surjective.

Fix g in BUC(E) and define f : K — C by f(¢) = {(g,%) for every % in

K Cc BUC(E)*. Clearly f is continuous and f o ¢(z) = f(d;) = (9,9:) = g(x)

and (iii) holds. O

4.4.3 Existence of a probability measure

Now we return to the situation, where E is a separable, complete metric space.
Let 9B be the Borel o-algebra on E. Recall, that a measure p on (E,B) is called
regular, if for every B € B

w(B) = inf{u(0) : B C O open} and

wu(B) = sup{u(K) : B D K compact}, if u(B) < oc.

Since E is a separable, complete metric space, every finite measure p on (E,B)
is regular, see [Coh|, Proposition 8.1.10. In particular, a finite measure p on
(E,*B) is tight, i.e. for each ¢ > 0, there exists a compact set K. C E, such that
wE\K.) <e

If 44 is a probability measure on (F,B) and if for every f € BUC(FE) we define
Af := [, fdp, then A is a positive functional on BUC(E), satisfying A(1) =
Moreover, A is tight. Indeed, since p is a tight probability measure, for all € > 0,

Af| < /|f\du=/K |f\du+/q( fldp
< sup |f(@)|u(K.) + sup |f () |u(E\ K.)
T€EK, $¢KE
< sup [f@)] +ellflle.

ZEGE
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Conversely, the following proposition shows, that all tight positive functionals A
on BUC(E), which satisfy A1 = 1, are integrals with respect to a probability
measure.

Proposition 4.4.5. Let A be a positive functional on BUC(E) satisfying A1 = 1.
If A s tight, then there exists a unique probability measure p on E, such that
Af = [, fdu for all f in BUC(E).

Proof. Assume, that there exist two probability measures ;4 and v on E such that
Ju fdp = [, fdv for all fin BUC(E). As E is a metric space, we obtain by
[Par], Theorem 5.9, that u = v, hence the measure is unique.

By Theorem 4.4.4, there exists a compact K, such that BUC(F) is isomorphic
to C(K). We can view E as a dense subset of K, and then the isomorphism is
given as j : C(K) — BUC(E), f+— fis-

Hence A defines a positive functional on C(K'), mapping the constant-one-func-
tion onto 1. Therefore, by the Riesz representation theorem, see [Coh], Theorem
7.2.8, there exists a unique regular probability Borel measure i on (K,B(K)),
such that

Af:/fdﬂ for all f € C(K).
K

As A is a tight functional on BUC(FE), for every n € N, there exists a compact
K, C E, such that for all f € BUC(E),

AF < sup [£@)]+ ~ o (4.4)
K. n

zeEKy

We obtain a sequence (K,)n,en of compact sets, satisfying K, € K,y C E.
Observe for f € C(K) that sup,cx | f(2)| = sup,cp | f(z)|, because E is dense in
K. Hence (4.4) is also satisfied for all f € C(K).

As compact subsets of E are also compact in K, the K, are in particular closed
in K, and therefore K,, € B(K) for all n € N.

Since fi is regular, for every ¢ > 0, there exists a compact set C. C K \ K,
such that (K \ K,) < i(C.) + €. Since C. N K,, = (), there exists a function
fe € C(K), such that 0 < f. <1, f =1o0n C; and f, =0 on K,.

Therefore

MK\ K,) < ﬂ(05)+6§/Kfsdﬂ+€=Afs+e

1 1
< sup [fo(@)] + | felloo +6 < — + &
rxEK, n n

As ¢ > 0 was arbitrary, g(K \ K,) < + for all n € N. Since K,, C Kp.1,

ﬂ(K \ (UneN Kn)) <infey ﬂ(K \ Kn)
We claim that B(F) = {A € B(E) : AN, ey Kn € B(K)} =: 6. Tt is sufficient
to show that G is a g-algebra in E/, which contains the closed subsets of E. Indeed,
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E € B(FE) and EN{, ey Kn = U,en Kn € B(K). Further, if A € B(E) such that
ANU, oy Ko € B(K), then YA = E\ A € B(E) and K\ (AN, . K,) € B(K).
Hence, because |, .y K C £ C K,

ANUK, = (ENANUK,=(EK\A)N UK,

neN neN neN
= K\(An UK,)n UK, € B(K),
neN neN

which shows “4 € &. Finally, for Ax € &, U,y Ar € B(E) and

(LLAk)ﬂ LJB%QZ LJL4kﬂ LLK%)E!B(K).

keN neN keN neN
Now, let C' C E be closed. Then for every n € N, CN K, is compact in F and K.
In particular CNK, € B(K), which implies CNJ,,cyy Kn = U,,en CNEK, € B(K),
i.e. each closed subset of E is an element of the o-algebra G.
Now define on (E,B(E)) the measure p by u(A) = @(AN U,y Kn) for every
A € B(E). Then for every f € BUC(FE),

AM=AGD = [ = |

Un Kn

ﬁmeZ/fW,
E

which concludes the proof. O

Obviously, by Lebesgue’s dominated convergence theorem, a probability measure
on FE defines an order continuous linear form on BUC(FE) satisfying A1 = 1.
Conversely, combining the above results, we obtain

Corollary 4.4.6. For each positive order continuous functional A on BUC(FE)
satisfying A1 = 1, there exists a unique probability measure px on E, such that

Af = [, fdp.

This is also a consequence of the Daniell-Stone Theorem, which can be found in
the monographs [Bau|, Theorem 7.1.4, [HL], Section 2.2, and [K&], Chapter V.
See also [Ki] for a very short proof. Note that by the Daniell-Stone Theorem the
measure /4 is given on the smallest o-algebra, with respect to which all functions
in BUC(FE) are measurable. In this context, this o-algebra coincides with the
Borel o-algebra B(FE) on E, see e.g. the proof of [AbDE], Proposition 2.

Hence for the proof of the one implication in Theorem 4.4.2 one could also argue
as follows. The order continuity of A implies the existence of a unique measure
on E, such that Af = [, fdu for all f in BUC(E). Moreover, y is a probability
measure, because A1 = 1. Since F is a separable, complete metric space, the
finite measure p is tight. Thus, by the considerations before Proposition 4.4.5, A
is tight.
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Zusammenfassung in deutscher
Sprache

Die vorliegende Dissertation stellt einige Resultate vor, die aus Untersuchungen
von Formmethoden hervorgingen. Diese spielen eine wichtige Rolle fiir Evolu-
tionsgleichungen, wenn sich diese als abstraktes Cauchy Problem schreiben lassen,
bei dem der lineare Operator zu einer Sesquilinearform assoziiert ist. Dies ist der
Fall fiir die meisten partiellen Differentialgleichungen. Falls diese Form dicht
definiert, stetig und elliptisch ist, so ist das zugehorige abstrakte Cauchy Pro-
blem wohlgestellt, denn der Operator ist der Generator einer analytischen Kon-
traktionshalbgruppe. Dann ist man an den Eigenschaften der Losung interessiert,
die direkt von der Form abgelesen werden konnen, wie Positivitat, Kontraktivitat
und Regularitat. Die Situation ist heikler fiir nicht autonome Cauchy Probleme,
wenn die Form auch vom Zeitparameter abhidngt. Unter geeigneten Mef3barkeits-
annahmen definiert die Familie der assoziierten Operatoren einen Multiplikations-
operator.

Im ersten Kapitel werden wichtige Definitionen und Resultate wiederholt, die im
Laufe der Dissertation benutzt werden. Zunachst gehen wir dabei auf vektorwer-
tige Funktionenraume und die Definition des Bochnerintegrals ein. Dann stellen
wir die Grundlagen fiir abstrakte Cauchy Probleme und die Halbgruppentheorie
zusammen. Zum Abschlufl geben wir eine Einfiihrung in Formmethoden.

Trotz des gemeinsamen Ausgangspunktes hat die Forschung in drei verschiedene
Richtungen gefiihrt, die hier in unabhingigen Kapiteln dargestellt werden.

Im zweiten Kapitel beschaftigen wir uns mit Multiplikationsoperatoren. In skala-
ren Funktionenrdumen bieten sie einfache Beispiele, wahrend operatorwertige
Multiplikationsoperatoren auf vektorwertigen Raumen komplizierter sind. Ihre
Bedeutung erlangen sie von nicht-autonomen Cauchy Problemen. Nach einer
Einfiihrung in Vektorverbande untersuchen wir Operatoren auf Vektor- und Ba-
nachverbanden, wobei wir uns dabei auf das Zentrum und seine Eigenschaften
konzentrieren. Auf dem Banachverband der skalaren p-integrierbaren Funktio-
nen stimmen die Zentrumsoperatoren mit den Multiplikationsoperatoren iiberein.
Wir geben eine passende Definition von Zentrumsoperatoren auf verktorwertigen
Funktionenrdumen, um eine analoge Charakterisierung beziiglich beschriankter
Multiplikationsoperatoren zu erhalten. Dann fiihrt die Betrachtung unbeschrank-
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ter Multiplikationsoperatoren iiber die Spektraltheorie zu Multiplikationshalb-
gruppen. Auf der Grundlage dieser Resultate erhalten wir eine Charakterisierung
von Multiplikationsoperatoren, die zu Sesquilinearformen assoziiert sind, sowohl
im skalaren Fall, als auch fiir operatorwertige Multiplikationsoperatoren.

Das dritte Kapitel behandelt nicht-autonome variationelle Cauchy Probleme.
Solche sind assoziiert zu einer Familie von zeitabhidngigen linearen Operatoren,
von denen jeder von einer stetigen elliptischen Sesquilinearform kommt. Nach
einer Einfilhrung in die zugrunde liegenden Raume und ihre Eigenschaften for-
mulieren wir das betrachtete Problem auf verschiedene aquivalente Weisen. Wir
erinnern an einen Darstellungssatz, der auf J. L. Lions zuriickgeht, und aus dem
wir Wohlgestelltheit fiir das Problem ableiten konnen. Nach der Existenz und
Eindeutigkeit von Losungen, die stetig von den gegebenen Werten abhangen,
interessieren wir uns fiir ihre Eigenschaften. Zunéchst studieren wir Verband-
operationen auf bestimmten zugrunde liegenden Rdumen und erhalten dann hin-
reichende Bedingungen an die Formen, so dass die Losungen positiv oder sub-
markovsch sind. Dabei erhalten wir dieselben Bedingungen an die Formen wie
sie im autonomen Fall durch die Beurling-Deny Kriterien gegeben sind. Die
Untersuchungen zur Regularitat ermoglichen uns einen alternativen Beweis der
maximalen Regularitdt im autonomen Fall. Allerdings kénnen diese Methoden
nur in einem ganz bestimmten nicht-autonomen Fall angewandt werden. Nicht-
autonome Cauchy Probleme konnen auch mittels Halbgruppenmethoden unter-
sucht werden, wobei hier die Definition der Wohlgestelltheit strenger ist. Wir
geben eine Einfiihrung in Evolutionshalbgruppen und -familien. Unsere Charak-
terisierung von Wohlgestelltheit verallgemeinert das bekannte Resultat fiir stetige
Funktionen. Ein Generationssatz fiir surjektive und dissipative Operatoren fiihrt
uns zur Wohlgestelltheit des nicht-autonomen variationellen Cauchy Problems
in einem grofleren Raum, und wir konnen diese Losung auf den urspriinglichen
Raum einschranken. Schliellich untersuchen wir die Invarianz abgeschlossener
konvexer Mengen. Um dafiir Formmethoden direkt auf nicht-autonome Cauchy
Probleme anzuwenden, braucht man verallgemeinerte Formen, zu denen wir eine
kurze Einfiihrung geben. Wir charakterisieren die Invarianz abgeschlossener kon-
vexer Mengen unter der zugehorigen Halbgruppe beziiglich der Form. Daraus
erhalten wir Beurling-Deny Kriterien, die wir dann auf nicht-autonome Evolu-
tionsgleichungen anwenden konnen.

Im letzten Kapitel beschaftigen wir uns mit partiellen Differentialgleichungen in
unendlichdimensionalen Raumen. Wir benutzen zwar keine Formmethoden, aber
ihre Anwendung auf Differentialoperatoren zweiter Ordnung motivierte die Unter-
suchungen. Nach einer Einfithrung in Gaufimafie untersuchen wir Gauf$halbgrup-
pen und deren Beziehung zur unendlichdimensionalen Warmeleitungsgleichung.
Auf dieser Basis studieren wir Wohlgestelltheit von partiellen Differentialgleichun-
gen zweiter Ordnung in unendlichdimensionalen Raumen. Die Idee dabei ist, die
Matrix der Koeffizienten zu diagonalisieren, wobei die Diagonalmatrix die Bedin-
gungen der Warmeleitungsgleichung erfiillt, und somit ein Gaufimafi definiert.
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Aus dem Bildmafl unter der Transformationsmatix erhilt man wiederum eine
starkstetige Halbgruppe, die das Problem zweiter Ordnung lost. Dann verallge-
meinern wir diese Ergebnisse, indem wir die Ableitungen durch allgemeine Grup-
pengeneratoren ersetzen. Wie fiir die Differentialoperatoren beginnen wir mit
der Konstruktion einer Halbgruppe und geben Bedingungen an, unter denen der
Generator mit dem gewiinschten Operator iibereinstimmt. Schliefllich betrachten
wir ordnungsstetige Linearformen auf dem Raum der beschrankten, gleichmafig
stetigen Funktionen auf einem Banachraum. Die dargestellte Charakterisierung
wird benutzt, um ein GauBmaf fiir die Darstellung der Warmehalbgruppe zu
konstruieren, was den Zusammenhang zum restlichen Kapitel erklart.
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