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Abstract

Bolibruch proved in 1994 that irreducible systems can always be
transformed, using analytic transformations, into Birkhoff standard
form, i.e. into an equation with polynomial coefficient matrix. Here,
we discuss the same question for reducible ones, and we also allow
meromorphic transformations.

0 Introduction

Let an n–dimensional system of ordinary differential equations of the form

z x′ = A(z) x, A(z) = zr
∞∑

k=0

Ak z−k(0.1)

be given, where the series may converge for |z| > R, say, and r is a non–
negative integer which we refer to as the Poincaré rank of (0.1). In 1913, G.D.
Birkhoff [5] raised the following question: Can one always find an analytic
transformation

x = T (z) y, T (z) =
∞∑

k=0

Tk z−k(0.2)

(with T0 invertible, and the series converging for sufficiently large |z|), such
that the transformed equation

z y′ = B(z) y, B(z) = T−1(z)[A(z) T (z)− z T ′(z)](0.3)
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has a polynomial B(z) as its coefficient matrix? Every such equation (0.3)
will then be called a Birkhoff standard form (B.s.f. for short) for (0.1) (w.r.
to analytic equivalence), and we shall say that then (0.1) is analytically equiv-
alent to B.s.f.

Birkhoff himself in [5] showed that the answer to his question is positive under
the additional assumption that the monodromy matrix of (0.1) is diagonal-
izable, but seemed to believe that the same would hold generally. However,
in 1959 Gantmacher [9] and Masani [12] independently produced examples
of equations (0.1) (in the smallest non-trivial dimension n = 2) in which no
such transformation to Birkhoff standard form exists. These counterexam-
ples being triangular, this led to the following (harder) problem:

Calling (0.1) reducible if an analytic transformation exists for which the trans-
formed equation is (lower) triangularly blocked, (with square diagonal blocks
of arbitrary dimensions), is it so that every irreducible equation is analytically
equivalent to B.s.f?

This question was answered positively, first for dimension n = 2 by Jurkat,
Lutz and Peyerimhoff [11], then for n = 3 by Balser [2], and finally for any
dimension by Bolibruch [6], [7]. In this article, we shall consider reducible
equations and address the following two questions:

1. Under which additional assumptions can a reducible system (0.1) be
analytically equivalent to B.s.f?

2. Allowing meromorphic transformations x = T (z) y, where T (z) and its
inverse are assumed to be meromorphic near infinity, can every (re-
ducible) system (0.1) be (meromorphically) transformed into Birkhoff
standard form – note, however, that here we do not want to allow the
Poincaré rank of (0.3) to become larger than that of (0.1) (if one does
not restrict the Poincaré rank, then a variant of Birkhoff’s result shows
the answer to be positive). If such a transformation exists, we shall say
that (0.1) is meromorphically equivalent to B.s.f.

For dimensions n = 2 resp. n = 3, Jurkat, Lutz and Peyerimhoff [11] resp.
Balser [1] have shown the answer to question 2 to be positive. For general
dimension, but under the additional assumption of the leading matrix A0 of
(0.1) having distinct eigenvalues, H.L. Turrittin [13] also obtained a positive
answer, but in general the answer to 2 is still open and will also not be
answered in this article. Instead, we shall obtain a number of sufficient
conditions under which such a meromophic transformation exists. In this
discussion we shall restrict ourselves to reduced equations, since Bolibruch’s
result shows that for irreducible ones analytic transformations already suffice.
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1 Analytic transformations

From now on, we assume an equation (0.1) of the form

A(z) =




A11(z) O · · · O
A21(z) A22(z) · · · O

...
...

. . .
...

Am1(z) Am2(z) · · · Amm(z)




(1.1)

given, with square diagonal blocks of sizes sj, 1 ≤ j ≤ m, and m ≥ 2. We
shall call such an equation a reduced system. Moreover, we always assume
that the diagonal blocks are irreducible, hence by Bolibruch’s result [6], [7]
we can find a lower triangularly blocked analytic transformation T (z) such
that the transformed equation (0.3) is again reduced (of the same type as
(0.1)), but its diagonal blocks are polynomials and its off diagonal blocks
are polynomials both in 1/z and z. So for simplicity of notation, we shall
assume that (0.1) already has diagonal blocks which are polynomials in z and
it has off diagonal blocks which are polynomials in 1/z and z.

We now wish to discuss existence of an analytic transformation

T (z) =




I O · · · O
T21(z) I · · · O

...
...

. . .
...

Tm1(z) Tm2(z) · · · I




(1.2)

such that the transformed equation is in B.s.f. (and reduced). To do so, we
formulate the following condition upon the diagonal blocks of (1.1):

E) For every ν, µ with 1 ≤ ν < µ ≤ m, and every integer number k ≥ 1,
let Aνν(0) and Aµµ(0) + kI have no eigenvalue in common.

This condition is a natural generalization (to a block triangular case) of a
well-known classical nonresonance condition for Fuchsian systems of ODE.
To clarify the meaning of this condition, we now prove the following auxiliary
result on inhomogenuous equations:

Lemma 1 Let square matrices A1(z) and A2(z) of polynomials of degree
≤ r, not necessarily of the same dimensions, be given. Then the following
statements are equivalent:
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1) For every matrix C(z) (of the appropriate size) of polynomials in 1/z and
z, having poles at infinity of orders at most r, we can find a polynomial B(z)
of degree at most r, such that the inhomogenuous equation

zT ′(z) = A2(z) T (z)− T (z) A1(z) + C(z)−B(z)(1.3)

has a solution T (z) which is a polynomial in 1/z with T (∞) = 0.

2) For every natural number k ≥ 1, the matrices A1(0) and A2(0) + kI do
not have an eigenvalue in common.

Proof: To conclude 1) from 2), consider any

C(z) =
r∑

k=−k0

Ckz
k

and proceed by induction with respect to k0: For k0 = 0, we may take
T (z) ≡ 0, B(z) = C(z). For k0 ≥ 1, choose a matrix T such that

(A2(0) + k0 I)T − TA1(0) = −C−k0

(note that according to [9] this equation has a unique solution T provided 2)
is satisfied). Then we have

C̃(z) = z−k0 [TA2(z) T − T A1(z) + k0T ] + C(z) =
r∑

k=−k0+1

Ckz
k,

hence by induction hypothesis there exist T̃ (z) and B(z) such that (1.3)
holds for C̃(z) in place of C(z), and taking T (z) = T̃ (z) + z−k0T we then
obtain (1.3). Conversely, if 2) is violated for some k = k0, one can choose
C(z) = z−k0C in such a way that 1) fails. 2

From the above Lemma, we now obtain

Theorem 1 Let A(z) be as in (1.1), with polynomial diagonal blocks. Then
a transformation (1.2), transforming (0.1) into B.s.f., exists if the eigenvalue
condition E) holds.

Proof: If (1.2) exists, then the transformed equation obviously is again
reduced (of the same type as (1.1)). So it can be easily seen that existence
of (1.2) is equivalent to the following problem: For every ν, µ with 1 ≤ ν <
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µ ≤ m, and every C(z) = zr ∑k0
0 Ck z−k (of the appropriate size), can one

find a polynomial B(z) such that the inhomogenuous equation

zT ′(z) = Aµµ(z) T (z)− T (z) Aνν(z) + C(z)−B(z)

has a convergent power series solution T (z) in inverse powers of z? This,
however, follows from Lemma 1. 2

Remark 1 From Lemma 1 we see that condition E) in Theorem 1 is nec-
essary in the following sense: For given diagonal blocks of (1.1) for which
E) is violated, one may choose the off–diagonal blocks of (1.1) so that the
conclusion of the theorem is false – observe that in case (1.1) is analytically
equivalent to B.s.f., then the corresponding transformation T (z) has to be
a polynomial in 1/z, because the origin is a regular singular point of the
equation satisfied by T (z).

Remark 2 The above theorem gives an answer to the question under which
condition a triangularly blocked equation can be transformed to Birkhoff stan-
dard form by means of a triangularly blocked analytic transformation (in
which case the resulting equation is also triangularly blocked). (For other
sufficient conditions of such a type see [8]). It is, however, possible that a
triangularly blocked equation can be analytically transformed to a Birkhoff
standard form which no longer is triangularly blocked (because the trans-
formation used is not triangularly blocked either). Whether in such a case
another B.s.f. esists which is triangularly blocked seems an open question.
So because of this, Theorem 1 is not really the final answer to the question
1 in the Introduction, but just gives a condition under which the answer is
positive, and this condition is also necessary in the sense of the previous
remark.

We now give conditions under which E) can be made to hold under ana-
lytic transformations: To do this, let an arbitrary system (1.1) be given. For
ν = 1, . . . , m, let tν denote the real part of the trace of the matrix Aνν(0)
(observe that by assumption Aνν(z) is a polynomial in z, so this makes good
sense). Note that, while the numbers tν are invariant with respect to analytic
transformations, they can be changed modulo one by meromorphic transfor-
mations (if we restrict to transformations which preserve the structure of the
equation). In detail, this follows from

Proposition 1 For an arbitrarily given meromorphic transformation T (z),
let k = kT be such that

det T (z) = zk(c + O(1/z)), z →∞(1.4)
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with c 6= 0. Then for systems (0.1) and (0.3), we have

trace(A(z)) = trace(B(z))− k + O(1/z)).(1.5)

Proof: First, let T (z) be an analytic transformation (hence k = 0). In
this case, B(z) = T−1(z)A(z)T (z) + O(1/z), hence (1.5) follows, using that
the trace of a matrix is invariant under similarity. In the general case, it
is well known that every meromorphic transformation can be factored as a
product T (z) = T1(z) zKT2(z), where T1(z), T2(z) are analytic transforma-
tions (moreover, T1(z) is a polynomial in 1/z) and K is a diagonal matrix
of integer diagonal entries (this factorization is referred in [10] to as the
Sauvage lemma). Using this, we may restrict to the case of T (z) = zK ,
(hence k = trace(K)), and then the proof follows, again using invariance of
the trace under similarity. 2

We shall now prove two lemmas; the first of them serves as a tool in the proof
of the second one, while the second one shall clarify the role of the numbers
tν (defined above) for what we have in mind:

Lemma 2 Let an arbitrary irreducible equation (0.1) and integers kj satis-
fying kj+1 ≥ kj + r(n−1) be arbitrarily given. Let µ1, . . . , µn be the eigenval-
ues of the matrix (1/2πi) ln G (where G is the monodromy matrix of (0.1)),
enumerated in any prescribed ordering, and normalized by requiring their real
parts to be in the half–open interval [0, 1). Then there exist integers d1, . . . , dn

which, for a suitable permutation σ, satisfy 0 ≤ dσ(j+1)− dσ(j) ≤ r, such that
(0.1) can be analytically transformed to B.s.f. B(z), with B(0) in lower tri-
angular Jordan canonical form and having eigenvalues equal to µj + kj + dj,
1 ≤ j ≤ n.

Proof: Follows from an analysis of the proof of Theorem 1 in [6]. 2

Lemma 3 Suppose that for some equation (1.1) we have (with tν as defined
above)

tν
sν

+
rsν(sν − 1)

2
+

sν − 1

sν

≤ tν+1

sν+1

− rsν+1(sν+1 − 1)

2
(1.6)

−sν+1 − 1

sν+1

for ν = 1, . . . , m − 1 (recall that sν is the dimension of the corresponding
diagonal block). Then (1.1) is analytically equivalent to B.s.f.
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Proof: It follows from Lemma 2, taking kj = jr(sν − 1), that there is a
diagonally blocked analytic transformation for which the constant term of the
νth diagonal block of the transformed equation has eigenvalues µj + jr(sν −
1)+dj, 1 ≤ j ≤ sν , with real parts of µj in [0, 1) and dj as described in Lemma
2. Moreover, their sum is an analytic invariant, according to Proposition 1.
This implies

tν = Re

(
sν∑

i=1

µi

)
+

r

2
sν(sν − 1)(sν + 1) +

sν∑

i=1

di.

Let d and D denote the minimal and the maximal value of the numbers dj

respectively. Let in turn µ and µ̃ denote the numbers with the minimal and
the maximal real parts respectively from the numbers µj. Then

D − 1

sν

sν∑

i=1

di ≤ r(sν − 1)

2
,

1

sν

sν∑

i=1

di − d ≤ r(sν − 1)

2
,

Re

(
µ̃− 1

sν

sν∑

i=1

µi

)
≤ sν − 1

sν

, Re

(
1

sν

sν∑

i=1

µi − µ

)
<

sν − 1

sν

.

Hence we may assume without loss in generality that the corresponding as-
sertions already hold for the eigenvalues of Aνν(0), which then implies that
the difference between the maximal value for the real part of any eigenvalue
and the average tν/sν is bounded by rsν(sν − 1)/2 + (sν − 1)/sν , while the
difference between tν/sν and the minimal value of the real parts is strictly
smaller than the same number rsν(sν−1)/2+(sν−1)/sν . Hence we see that
(1.6) implies that E) holds, so the proof is completed using Theorem 1. 2

Roughly speaking, the proof of Lemma 3 is based upon choosing numbers
kj with minimal differences. The following theorem gives another type of
sufficient condition under which a system (1.1) is analytically eqivalent to
B.s.f, based on an application of Lemma 2, but choosing kj with sufficiently
large differences. (This theorem for the case of two blocks is contained in
Corollary 1 of [8] and for any number of blocks it is an immediate corollary
of Theorem 1 and Remark 2 in [8], but here we present a simpler proof).

Theorem 2 Let an equation (1.1), with polynomial diagonal blocks Aνν(z),
be given, and assume that for 2 ≤ ν ≤ m each matrix Aνν(0) has at least one
eigenvalue which is incongruent modulo one to all eigenvalues of the matrices
A11(0), . . . , Aν−1,ν−1(0). Then (1.1) is analytically equivalent to B.s.f.

Proof: Note that the eigenvalues of Aνν(0), reduced modulo one such
that their real parts are in [0, 1), coincide with the eigenvalues of the matrix
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(1/2πi) ln Gν (where Gν is the monodromy matrix of the νth diagonal block

of (1.1), and let these be denoted by µ
(ν)
1 , . . . , µ(ν)

sν
, enumerated such that for

2 ≤ ν ≤ m, the eigenvalue µ
(ν)
1 is distinct from the eigenvalues corresponding

to the previous blocks (observe that by assumption such an eigenvalue exists).
Applying Lemma 2 (to each diagonal block) with k2, . . . , ksν sufficiently large
(relative to k1), one can show that (1.1) is analytically equivalent to an
equation for which condition E) holds. 2

2 Meromorphic transformations

In view of Lemma 3 and Proposition 1, we shall now address the question
whether in case (1.6) fails for a given equation, we can find a meromorphic
transformation to a likewise blocked equation (of the same Poincaré rank) for
which the corresponding inequality holds. For this purpose we will consider
a fixed formal fundamental solution H(z) of (1.1) of the following form:

H(z) = F̂ (z) zL exp[Q(z)],(2.1)

with

• a lower triangularly blocked formal (matrix) power series (in 1/z) F̂ (z),
whose formal determinant is not the zero series,

• a diagonal matrix Q(z) of polynomials in roots of z, such that (in the
block structure of A(z)) each diagonal block of Q(z) is closed under
analytic continuation; this means that for every diagonal entry q(z) of
Q(z) all (finitely many) analytic continuations q(z exp[2νπi]) belong to
the same diagonal block as q(z), so that we can find a diagonally blocked
matrix R = diag[R1, . . . , Rm], with each block being a permutation
matrix, for which

Q(ze2πi) = R−1Q(z)R,

and

• a constant, lower triangularly blocked matrix L for which exp[2πiL] =
DR, with R as above, and D commuting with Q(z) (and being lower
triangularly blocked), and we choose L so that its eigenvalues have real
parts in the interval [0, 1).

Remark 3 A reduced system always has such a formal fundamental solu-
tion: According to [4], every such system possesses a formal fundamental
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solution H(z) = Ψ(z) exp[Q(z)], with Q(z) as above and Ψ(z) being a formal
logarithmic matrix having the same lower triangular block structure as A(z),
and combining results from [4] and [3], one can see that H(z) can be chosen
to be of the form required above.

With help of such a formal fundamental solution we define the formal mero-
morphic normal form of (0.1) to be the system

zx′ = C(z) x, C(z) = L + zL+IQ′(z) z−L.(2.2)

It follows from the structure of the formal solution that C(ze2πi) = C(z),
and some elementary estimate, using the assumption upon the eigenvalues
of L, then shows that (2.2) has Poincaré rank equal to the smallest natural
number which is larger than or equal to the maximal (rational) degree of the
elements in Q(z). This, however, shows that its rank cannot be larger than
r (which was the Poincaré rank of (0.1)).

We shall call a lower triangularly blocked meromorphic transformation T (z)
admissible (w.r.to (2.2)), if it does not increase the Poincaré rank when ap-
plied to (2.2)). For the diagonal blocks Tνν(z) of T (z), we define kν = kTνν

as in Proposition 1. Then we have

Proposition 2 Let A(z) be as in (1.1), with polynomial diagonal blocks.
Then to every admissible meromorphic transformation T (z) we can find an-
other meromorphic transformation T̃ (z), lower triangularly blocked, trans-
forming (1.1) into B(z) (having Poincaré rank at most r), with polynomial
diagonal blocks Bjj(z) such that

trace(Bjj(0)) = trace(Ljj)− kj, 1 ≤ j ≤ m.

Proof: We may write the formal fundamental solution H(z) of (1.1) in the
form H(z) = F̂ (z) T (z) G(z), G(z) = T−1(z)zL exp[Q(z)]. For sufficiently
large integer N , we can factor F̂ (z) T (z) = T̃ (z) F̂N(z), with a meromorphic
transformation T̃ (z) (which, in fact, has a terminating expansion in z−1)
and a formal power series in z−1 of the form F̂N(z) = I + O(z−N), both
factors being lower triangularly blocked. The transformation x = T̃ (z)y
then produces an equation with coefficient matrix B(z) (as in (0.3)) which is
also lower triangularly blocked, but will, in general, not have polynomials for
its diagonal blocks. Moreover, the Poincaré rank of (0.3)) can be checked to
equal that of the formal meromorphic normal form (because of definition of
admissibility of T (z)), hence is the minimal rank that can occur within the
equivalence class w.r. to formal meromorphic transformations. Therefore, it

9



cannot be larger than that of (1.1). From the fact that (0.3)) has a formal
fundamental solution of the form H̃(z) = F̂N(z) G(z), one can compute,
using Proposition 1:

trace(Bjj(z)) = zpj(z) + trace(Lj)− kj + O(z−1),(2.3)

with a polynomial pj(z). The diagonal blocks of (0.3)) are again irreducible
(note that, according to [4], irreducibility with respect to meromorphic trans-
formations coincides with irreducibility with respect to analytic ones). So
applying Bolibruch’s result to the diagonal blocks of (0.3)), we may find a di-
agonally blocked analytic transformation for which the transformed equation
then has polynomial diagonal blocks. However, this analytic transformation
does not change the leading terms in (2.3), which completes the proof. 2

We shall now give sufficient conditions for the existence of an admissible
transformation for which (1.6) is satisfied:

Theorem 3 Let an equation (1.1), with polynomial diagonal blocks, be given,
and let (2.1) be a formal fundamental solution of (1.1), for which the matrix
L is diagonally blocked. Then (1.1) is meromorphically equivalent to B.s.f.

Proof: Observe that the transformation T (z) = diag[zk1Is1 , . . . , z
kmIsm ] is

admissible, for every choice of integers k1, . . . , km, and apply Proposition 2.
2

Since it may not be so easy to verify that L is diagonally blocked, it is
worthwhile to give the following sufficient condition under which this is going
to happen:

Corollary to Theorem 3 Let an equation (1.1), with polynomial diagonal
blocks

Aνν(z) = zrAνν + . . . ,

be given, and assume that the spectra of the matrices Aνν are all distinct.
Then (1.1) is meromorphically equivalent to B.s.f.

Proof: Note that the eigenvalues of Aνν , divided by r, equal the leading
terms of the polynomials in Q(z), and use this to conclude that L then must
be diagonally blocked. 2

Aside from the situation where L is diagonally blocked, there are many more
cases in which L has a form such that admissible transformations of the form
T (z) = zK , with a diagonal matrix K of integer diagonal entries, exist for
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which the transformed equation satisfies (1.6), and consequently is mero-
morphically equivalent to B.s.f. This is so, whenever we can find matrices
K = diag[K1, . . . , Km] for which the numbers kj = trace(Kj) have suffi-
ciently large differences, so that the transformation T (z) = zK is admissible,
i.e. the Poincaré rank of

z−KC(z)zK −K = z−K [L−K + zL+IQ′(z) z−L]zK

is not larger than that of C(z). We shall not go into more detail about this
here, since it is not so easy to generally describe when this is going to happen.
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