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Abstract

In this article we investigate power series solutions of a simple second
order partial differential equation in two variables. In contrast to previous
articles of various authors, we allow one term in the equation to have a
coefficient that is an arbitrary holomorphic function a(z). We show that
for arbitrary a(z) the same results concerning 1-summability of the formal
solution hold that had been obtained earlier by Lutz, Miyake, and Schäfke,
resp. by W. Balser, for the case of a(z) ≡ 1, when the equation becomes
the complex heat equation.

Introduction

In an article of Lutz, Miyake, and Schäfke [12], the Cauchy problem for the
complex heat equation ut = uzz, u(0, z) = φ(z), with a given function φ(z)
that is holomorphic near the origin, has been investigated. In context with the
so-called Cauchy-Kowalewskaya theory, it had been observed much earlier that
this problem has a unique solution in the space of power series in the variable
t with coefficients depending holomorphically upon z. However, the radius of
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convergence of this power series, in general, is equal to 0: Indeed, one verifies
that this power series equals

û(t, z) =
∞∑

j=0

tj

j!
φ(2j)(z) ,

where we use the notation û to emphasize divergence of this series for all t 6= 0.
This divergence is caused by the fact that the (2j)th derivative of φ(z), in
general, is of “magnitude” (2j)! as j → ∞. As their main result, the authors
of [12] have shown that this series is 1-summable1 in a direction d ∈ R if, and
only if, the initial condition φ(z) admits holomorphic continuation into (small)
sectors bisected by the rays arg z = d/2, resp. arg z = π + d/2, and can be
estimated by |φ(z)| ≤ C exp(K|z|2) in these sectors, with constants C, K >
0. In later articles, Balser [1], Miyake [14], and Balser and Miyake [6] have
obtained analogous results for more general PDE in two variables with constant
coefficients, under various (restrictive) assumptions on their form. Finally, in [4]
arbitrary PDE in two variables and with constant coefficients have been shown
to have formal power series solutions that are, in general, multisummable in the
sense of J. Ecalle [8, 9, 10]. Very recently, a first attempt has been made by S.
Malek [13] to obtain analogous results for equations with constant coefficients
but more than two variables. However, in this situation additional difficulties
arise, due to the fact that algebraic functions in several variables exhibit a much
more complicated behavior at infinity.

While the results mentioned above all concern PDE with constant coeffi-
cients, only few authors have treated the problem of summability of formal
solutions for equations with variable coefficients: M. Hibino studied first order
equations in [11], S. Ouchi [15] treated cases that can be viewed best as a per-
turbation of an ordinary differential equation with an irregular singularity at the
origin, and Plís and Ziemian [16] studied inhomogeneous equations with a ho-
mogeneous part that fits into the situation of the classical Cauchy-Kowalewski
theory, so that divergence of formal solutions is caused by the inhomogenuity
only.

In this article, we shall mainly be interested in formal power series solutions
of an initial value problem

(
∂t − a(z) ∂2

z

)
u = 0 , u(0, z) = φ(z) , (0.1)

where a(z) and φ(z) are functions that are holomorphic in the disc Dρ about the
origin of radius ρ > 0, while ∂z, ∂t stand for partial derivation with respect to
z and t, respectively. For a(z) ≡ 1, this problem coincides with the one studied
in [12], and we shall show that even for general a(z) the formal solution of (0.1)
is 1-summable if, and only if, the initial condition φ(z) has a certain additional
property which, however, in general is much harder to verify than for the heat
equation case. To obtain this result, it is more natural, both for the sake of

1For a detailed discussion of 1-summability, refer to Section 2.
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generality as well as for notational convenience, to study an inhomogeneous
equation which is best written in an integrated form as

(
1 − a(z) ∂−1

t ∂2
z

)
û(t, z) = f̂(t, z) , (0.2)

where û(t, z), f̂(t, z) are formal power series in t with coefficients that are holo-
morphic functions of z in Dρ, and ∂−1

t denotes termwise integration of power
series in t. In case that the right hand side is independent of t, this equa-
tion is equivalent to the initial value problem (0.1), while in general we can
differentiate both sides of (0.2) to see its equivalence with an inhomogeneous
initial value problem with right hand side equal to ∂t f̂(t, z) and initial condition
φ(z) = f̂(0, z). For a recent treatment of the inhomogenous case with a(z) ≡ 1,
see [5].

1 Gevrey order of formal solutions

In order to deal with (0.2), we shall throughout use the following notation:

• Given ρ > 0, we shall write Dρ for the disc of radius ρ about the origin. By
Oρ = O(Dρ) we shall denote the space of functions that are holomorphic
in Dρ.

• The set of formal power series in t with coefficients in C, resp. in Oρ, shall
be denoted by C[[t]], resp. Oρ[[t]]. Series x̂(t, z) ∈ Oρ[[t]] can then also be
viewed as (formal) power series in z with coefficients in C[[t]], or as power
series in two variables t and z, and shall always be written as

x̂(t, z) =
∞∑

j=0

tj

j!
xj∗(z) =

∞∑
n=0

zn

n!
x̂∗n(t) =

∞∑

j,n=0

tj zn

j! n!
xjn . (1.1)

For formal solutions û(t, z), resp. the inhomogenuity f̂(t, z), of (0.2) we
shall use a corresponding notation, with x replaced by u, resp. f , every-
where in (1.1).

• We write Oρ[[t]]1 for the set of formal power series x̂(t, z) ∈ Oρ[[t]], for
which one can find a radius r ∈ (0, ρ] and constants C, K > 0 such that

|xj∗(z)| ≤ C Kj (2j)! ∀ j ≥ 0 ∀ z ∈ Dr . (1.2)

Observe that then xj∗(z)/j! is of “magnitude” at most j!, so that Oρ[[t]]1
is the space of series of Gevrey order equal to 1 and coefficients in Oρ.

• For f ∈ Oρ, p ≥ 0, and r ∈ (0, ρ), we denote the Nagumo norm of order
p of f as

‖f‖p = sup
|z|<r

(|f(z)| · (r − |z|)p
)
.
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Obviously, ‖f‖p also depends upon the choice of r, but to simplify no-
tation, we choose not to display this dependence here. One can verify
the following properties of these norms (for a proof of the last and most
important property in a slightly more general case, see [7]):

‖f+g‖p ≤ ‖f‖p + ‖g‖p, ‖fg‖p+q ≤ ‖f‖p · ‖g‖q, ‖f ′‖p+1 ≤ e (p+1)‖f‖p

for every r, p as above, and every f, g ∈ Oρ. It is worth mentioning that
‖f‖0 is nothing but the sup-norm of f on the disc Dr.

Let f̂(t, z), û(t, z) ∈ Oρ[[t]]. Expanding as in (1.1), inserting into (0.2) and
comparing coefficients, we obtain that (0.2) holds if, and only if, we have

uj∗(z) = fj∗(z) + a(z)u′′j−1∗(z) ∀ j ≥ 0 ∀ z ∈ Dρ , (1.3)

interpreting u−1∗(z) ≡ 0. Accordingly, we observe that (0.2) defines a bijective
map f̂(t, z) 7−→ û(t, z) from Oρ[[t]] onto itself. Regarding series of Gevrey order
equal to 1, we now prove the following theorem:

Theorem 1 The map f̂(t, z) 7−→ û(t, z) is bijective from Oρ[[t]]1 onto itself.

Proof: Let û(t, z) ∈ Oρ[[t]]1, and define fj∗(z) by (1.3). Then there exists
an r ∈ (0, ρ] and C, K > 0 such that ‖uj∗‖0 ≤ C Kj (2j)! holds for every
j ≥ 0. Using the properties of Nagumo norms that were listed above, we find
that ‖u′′j−1∗‖2j ≤ e2 2j (2j − 1) ‖uj−1∗‖2j−2 for j ≥ 1. Accordingly, one obtains
from (1.3)

‖fj∗‖2j ≤ ‖uj∗‖2j + ‖a‖0 e2 2j (2j − 1) ‖uj−1∗‖2j−2 ∀ j ≥ 1 .

Since ‖uj∗‖2j ≤ r2j ‖uj∗‖0, the right hand side is bounded by C̃ K̃j (2j)!, with
C̃ = C (1 + ‖a‖0 e2 K−1r−2) and K̃ = K r2, so f̂(t, z) ∈ Oρ[[t]]1 follows. Con-
versely, if f̂(t, z) ∈ Oρ[[t]]1, then we find by the same steps as above that for
every r < ρ we have

‖uj∗‖2j ≤ ‖fj∗‖2j + ‖a‖0 e2 2j (2j − 1) ‖uj−1∗‖2j−2 ∀ j ≥ 1 .

For gj = ‖fj∗‖2j/(2j)!, define vj = gj+a vj−1, j ≥ 0, with v−1 = 0 and a = ‖a‖0.
Then by induction ‖uj∗‖2j/(2j)! ≤ vj follows. Setting g(x) =

∑∞
0 gj xj , v(x) =∑∞

0 vj xj , we conclude from the recursion for the vj that v(x) = g(x)/(1− a x)
holds formally. However, f̂(t, z) ∈ Oρ[[t]]1 implies that the series for g(x) has
positive radius of convergence, and so the same follows for v(x). This, however,
is equivalent to û(t, z) ∈ Oρ[[t]]1. 2

2 Summability of the formal solution

In this section we shall show that 1-summability of the formal solution û(t, z)
of (0.2) depends upon certain conditions that f̂(t, z) has to satisfy. To do so, we
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shall use the notion of summability of series with coefficients in a Banach space.
For a general treatment of this theory we shall rely on [2]. Here we shall, for
fixed r > 0, consider the Banach space of functions that are holomorphic in Dr

and continuous up to its boundary, equipped with the usual sup-norm. We then
say that, for some k > 0 and d ∈ R, a series x̂(t, z) ∈ Oρ[[t]] is k-summable in a
direction d, if one can find some r ∈ (0, ρ) so that the following two properties
hold:

• The formal Borel transform with respect to the variable t of order k, i. e.
to say, the power series

w(t, z) =
∞∑

j=0

uj(z)
tj

j! Γ(1 + j/k)
, (2.1)

converges absolutely for |z| ≤ r and |t| < R, with R > 0 that may depend
upon r but is independent of z.

• There exists a δ > 0 so that for every z ∈ Dr the function w(t, z) can be
continued with respect to t into the sector Sd,δ = {t : |d − arg t| < δ}.
Moreover, for every δ1 < δ there exist constants C,K > 0 so that

‖w(t, ·)‖0 = sup
|z|≤r

|w(t, z)| ≤ C exp[K |t|k] ∀ t ∈ Sd,δ1 . (2.2)

If this is so, the Laplace transform of order k of w(t, z), i. e. to say, the function

x(t, z) = t−k

∫ ∞(γ)

0

w(τ, z) e−(τ/t)k

dτk ,

integrating along the ray arg τ = γ with |d − γ| < δ, is called the k-sum in
the direction d of the formal series x̂(t, z). It follows from the general theory
presented in [2] that this sum is holomorphic in Gr×Dr, with a sectorial region
Gr of opening larger than π/k and bisecting direction arg t = d, and x(t, z) is
continuous with respect to z up to the boundary of Dr. Observe that the above
definition of k-summability agrees with J.-P. Ramis’s [17] original one when
all the functions uj(z) are constant. In fact, the following lemma characterizes
k-summability of a series in two variables in terms of a sequence of series in one
variable: For x̂(t, z) ∈ Oρ[[t]], let x̂∗n(t) be as defined above; then we have

Lemma 1 For k > 0 and d ∈ R, the following statements are equivalent:

(a) The formal series x̂(t, z) ∈ Oρ[[t]] is k-summable in the direction d.

(b) The formal series x̂∗n(t) all are k-summable in the direction d. Moreover,
there exists a sectorial region G that is independent of n and has opening
larger than π/k and bisecting direction d, in which all sums x∗n(t) of
the series x̂∗n(t) are holomorphic, for n ≥ 0. Finally, for every closed
subsector S in G there exist constants C,K > 0, independent of n, so that
for s = 1 + 1/k and every n, ` ≥ 0 and t ∈ S

|∂`
t x∗n(t)| ≤ C Kn+` n! Γ(1 + s `) .
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Proof: This lemma is a consequence of a more general result in [3], but we
include its simple proof here for the sake of completeness: Assume (a). Then
for some r ∈ (0, ρ) there exists a sectorial region G that has opening larger
than π/k and bisecting direction d, so that the sum x(t, z) of the series x̂(t, z)
is holomorphic in G × Dr. Moreover, for every closed subsector S in G there
exist constants C,K > 0, so that

|∂`
t x(t, z)| ≤ C Kn+` Γ(1 + s `) ∀ ` ≥ 0 , t ∈ S , |z| ≤ r .

Setting x∗n(t) = ∂n
z x(t, z)|z=0, we observe

∂`
t x∗n(t) =

n!
2π i

∮

|z|=r

∂`
t x(t, z)
zn+1

dz ,

and this implies the estimate in (b), with C,K not necessarily the same as
above. This shows that each x∗n(t) is the k-sum in direction d of some series
x̂∗n(t), and the definition of x∗n(t) implies x̂∗n(t) = ∂n

z x̂(t, z)|z=0, hence (b)
follows. Conversely, if (b) holds, define x(t, z) =

∑∞
n=0 x∗n(t) zn/n!. Then

we find that for every closed subsector S ⊂ G there exists r ≥ 0 such that
the series converges for |z| < r and t ∈ S. Even more than that, we obtain
for t ∈ S that ∂`

tx(t, z) =
∑∞

n=0 ∂`
tx∗n(t) zn/n!, with the series converging for

|z| < r = 1/K, and |∂`
tx(t, z)| ≤ C K` Γ(1 + s `) (1 − K |z|)−1. Choosing a

subsector S of G whose opening is larger than π/k, this implies that x(t, z) is
the k-sum of x̂(t, z) =

∑∞
n=0 û∗n(t) zn/n!. 2

Using the above lemma, we can now characterize 1-summability of the formal
solution:

Theorem 2 Let d ∈ R, and assume that a(0) 6= 0. Given f̂(t, z) ∈ Oρ[[t]], the
formal solution û(t, z) of (0.2) is 1-summable in the direction d if, and only if,
the series û∗0(t), û∗1(t) and f̂(t, z) all are 1-summable in the direction d.

Proof: If the solution û(t, z) of (0.2) is 1-summable in the direction d, then we
learn from Lemma 1 that all û∗n(t) are equally summable. Moreover, the general
theory implies that partial derivatives of 1-summable series are so summable,
too, and so we obtain from (0.2) the 1-summability in the direction d of f̂(t, z).
Conversely, assume 1-summability in the direction d of û∗0(t), û∗1(t) and f̂(t, z).
Set û(t, z) = û∗0(t)+z û∗1(t)+∂−2

z v̂(t, z). Then v̂(t, z) is a uniquely determined
power series from Oρ[[t]], satisfying

(1 − b(z) ∂−2
z ∂t) v̂(t, z) = ĝ(t, z) ,

with b(z) = 1/a(z), ĝ(t, z) = b(z) ∂t (û∗0(t) + z û∗1(t)− f̂(t, z)). By assumption
on a(z), its reciprocal b(z) is holomorphic in a disc about the origin, whose
radius shall be denoted by ρ̃ ≤ ρ. The series ĝ(t, z) ∈ Oρ̃[[t]] is 1-summable
in the direction d, and the proof shall be completed once we have shown 1-
summability of v̂(t, z) in the direction d. To do this, observe that

v̂(t, z) =
∞∑

n=0

v̂n(t, z) , v̂n+1(t, z) = b(z) ∂t ∂−2
z v̂n(t, z) ∀ n ≥ 0 ,
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with v̂0(t, z) = ĝ(t, z). According to the theory of 1-summability, each one
of the series v̂n(t, z) is 1-summable in the direction d, and we denote its sum
by vn(t, z). Then we conclude that vn+1(t, z) = b(z) ∂t ∂−2

z vn(t, z) for every
n ≥ 0, and this implies existence of a sectorial region G that is independent of
n and has bisecting direction d and opening more than π, and an r > 0, also
independent of n, so that all the sums vn(t, z) are holomorphic in G × Dr and
continuous in z up to the boundary of Dr. Let S be a closed subsector of G.
From the theory of 1-summability we conclude existence of constants C,K such
that |∂`

t v0(t, z)| ≤ C K` Γ(1 + 2`) for every ` ≥ 0 and (t, z) ∈ S × Dr. With
B = max{|b(z)| : z ∈ Dr } we conclude by induction with respect to n the
estimate

|∂`
t vn(t, z)| ≤ C Kn+` Γ(1 + 2(n + `)) Bn |z|2n

Γ(1 + 2n)
∀ n ≥ 0 . (2.3)

Summation over n then implies

|∂`
t v(t, z)| ≤ C K` Γ(1 + 2`)

∞∑
n=0

(
2(n + `)

2n

)
(K B |z|2)n .

The series on the right hand side converges for sufficiently small values of |z|,
and can, for fixed z, be bounded by K̃`, with sufficiently large K̃, independent
of `. So from this estimate we conclude that v(t, z) is the 1-sum in the direction
d of some series which, according to the definition of v(t, z), is equal to v̂(t, z).

2

We shall end this article with a discussion of how to apply the above re-
sult: The formal series f̂(t, z) may be considered as known, and while its 1-
summability may not be obvious, we shall assume that this is known. In fact, in
many applications this series may even converge for sufficiently small values of
|t|. Hence, what will cause difficulties in a concrete application is that one has
to verify 1-summability of the series û∗0(t), û∗1(t) as well, which are not among
the given data. However, the whole formal solution û(t, z), and in particular
û∗0(t), û∗1(t), can (at least theoretically) be computed in terms of f̂(t, z), and
so in a weak sense the summability of û∗0(t), û∗1(t) can be verified. On the
other hand, an explicit computation of û∗0(t), û∗1(t) may not be possible for a
general coefficient a(z). However, if a(z) is a constant a 6= 0, this computation
can be done and implies that

û∗0(t) =
∞∑

j,k=0

ak tj+k

(j + k)!
fj,2k , û∗1(t) =

∞∑

j,k=0

ak tj+k

(j + k)!
fj,2k+1 . (2.4)

In case of a homogeneous Cauchy problem, i. e., when fjn = 0 for every j ≥ 1,
then

û∗0(t) =
∞∑

k=0

ak tk

k!
f0,2k , û∗1(t) =

∞∑

k=0

ak tk

k!
f0,2k+1 ,
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and 1-summability in a direction d of these series holds if, and only if, the series

v0(t) =
∞∑

k=0

ak tk

(2k)!
f0,2k , v1(t) =

∞∑

k=0

ak tk

(2k + 1)!
f0,2k+1

both have positive radius of convergence and the two functions so defined can be
continued into a small sector bisected by the ray arg t = d and are of exponential
growth of order at most 1 in this sector. This in turn is equivalent to the
functions

g+(z) =
∞∑

k=0

z2k

(2k)!
f0,2k , g−(z) =

∞∑

k=0

z2k+1

(2k + 1)!
f0,2k+1

being holomorphic in two sectors bisected by rays d̃ = (d + arg a)/2 and the
”opposite one” π + d̃, and being of growth of order 2 there. Since g+ is even
while g− is odd, these properties are equivalent to g(z) = g+(z) + g−(z) being
holomorphic and of order 2 in the same sector, and this function is equal to
f0∗(z), i. e., to the initial condition for the homogeneous Cauchy problem.
For a = 1, this is exactly equal to the necessary and sufficient condition for
summability of formal solutions of the heat equation, found by Lutz, Miyake,
and Schäfke [12].
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